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ABSTRACT

The evolution of parallel and distributed architectures and program-
ming paradigms for performance-oriented program development challenges
the state of technology for performance tools. Coupling different program-
ming paradigms such as message passing and shared memory programming
for hybrid cluster computing (e.g. SMP clusters) is one example for high
demands on performance analysis tools that are capable to cope with applica-
tions for multiple programming models and target architectures. Performance
tools must be able to observe performance problems at all levels of a system
while relating low-level behavior to the application program.

This dissertation presents a set of novel techniques and methods for per-
formance instrumentation, measurement, monitoring and analysis of cluster
and Grid applications. We introduce a classification of temporal overheads for
parallel programs that can be used to explain sources of performance prob-
lems. A highly customizable instrumentation and measurement system allows
to control the instrumentation and performance measurement for code re-
gions and performance metrics of interest in a flexible and automatic way.
A data repository is employed in order to store performance data and in-
formation about performance experiments which alleviates the association of
performance information with experiments and the source code. Performance
analysis can be conducted for single and multiple experiment(s).

To overcome the limitation of existing performance analysis techniques,
which are based on the hard computing model, we propose a novel approach
to performance analysis for parallel and distributed systems that is based on
soft computing. Firstly, we introduce the concept of performance score rep-
resenting the performance of code regions that is based on fuzzy logic. We
then propose techniques for classifying the performance according to fuzzy
terms representing performance characteristics. A high-level query language
is introduced to support the search for performance problems by using lin-
guistic expressions. We present fuzzy-based ranking analysis and bottleneck
search. Secondly, we propose methods for measuring performance similarity
among code regions and among experiments. We introduce the performance
similarity analysis that can be employed for multiple experiments. Finally, we
develop and implement a fuzzy C-means clustering for performance analysis,
and introduce fuzzy rules that can be utilized to filter irrelevant performance
data. We propose the soft performance analysis approach in order to sup-
port making soft decisions on evaluation, classification, search and analysis of
the performance of parallel and distributed programs, rather than only hard
decisions as in most existing performance tools.

This dissertation introduces a unified monitoring and performance analysis
system for the Grid. The unified system integrates performance monitoring,
dynamic instrumentation of Grid applications, and performance analysis of
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Grid scientific workflows into a single system, which is implemented as a set
of grid services based on the Open Grid Services Architecture (OGSA). The
unified system provides an infrastructure for conducting online monitoring and
performance analysis of a variety of Grid services including computational and
network resources, and Grid applications. We develop a self-managing sensor-
based middleware for monitoring and integrating performance data in Grids.
The middleware unifies both system and application monitoring in a single sys-
tem, storing and providing a variety of types of monitoring and performance
data in decentralized locations. We have developed event-driven and demand-
driven sensors to support rule-based monitoring and data integration. Grid
service-based operations and TCP-based data delivery are exploited in or-
der to balance tradeoffs between interoperability, flexibility and performance.
Peer-to-peer features have been incorporated into the middleware, enabling
self-configuring capabilities, supporting group-based and automatic data dis-
covery, data query and subscription of performance and monitoring data.

We present Grid services for dynamic instrumentation of Grid-based ap-
plications, performance monitoring and analysis of Grid scientific workflows.
We describe a Grid service to support dynamic instrumentation of Grid ap-
plications. The dynamic instrumentation service provides a widely accessible
interface for other services and users to conduct the dynamic instrumentation
of Grid applications during the runtime. We introduce a Grid performance
analysis service for Grid scientific workflows. The analysis service utilizes var-
ious types of data including workflow graphs, monitoring data of resources,
execution status of activities, and performance measurements obtained from
the dynamic instrumentation of invoked applications. We store workflows and
their relevant information including performance metrics, devise techniques
to compare the performance of constructs of different workflows, and support
multi-workflow analysis.

Finally, we propose a new approach to performance analysis, data sharing
and tool integration in Grids that is based on ontology. We devise an ontology
for describing the semantics of monitoring and performance data that can be
used by performance monitoring and measurement tools. We introduce an
architecture for ontology-based performance analysis, data sharing and tool
integration. The core of this architecture is a Grid service which offers facilities
for other services to archive and access ontology models along with collected
performance data, and to support the search and reasoning about performance
data.

As a proof-of-concept, we have developed SCALEA and SCALEA-G which
implement the above-mentioned techniques and methods. This dissertation
presents several experiments of real-world applications and examples to vali-
date the proposed methods and techniques.



ACKNOWLEDGMENTS
This dissertation cannot be finished without the involvement of a number of
people:

First of all, I would like to especially thank Professor Thomas Fahringer,
who over the years has been an inspirational supervisor. He first brought me to
Austria and has tirelessly provided supports and guidance for my PhD study.
I am grateful to him for guiding my research career and leading me to new
research challenges. I also would like to acknowledge the critical comments
and suggestions he has given me to improve my weakness. My knowledge has
been enriched by his judgment and wisdom.

Professor Schahram Dustdar, my second advisor, has provided me the
guidance for the study on the impact of peer-to-peer computing on work-
flow management systems that eventually has impacted my research greatly.
I would like to thank him for valuable comments and suggestions that help
me to improve the quality of this dissertation.

Over the past four years, the Austrian Science Fund (FWF) and the In-
stitute for Software Science (IFS) of the University of Vienna have supported
my work within the framework of the Special Research Program AURORA.
The EU projects, IST APART and IST K-WF Grid, have partially supported
my work. My research cannot be carried out without these fundings.

I would like to express my thanks to Professor Hans Zima, the chair of
IFS and the speaker of AURORA, and to Professor Siegfried Benkner, the
head of IFS for their continuous supports. I really appreciate the help of Dr.
Ian Glendinning, who has helped me to improve scientific writing styles. I
am grateful for the helps and co-operation of many AURORA researchers,
who have provided their applications for the experiments conducted in this
dissertation, and of the system administrators of IFS and AURORA, who have
helped to establish the environment for these experiments. Many thanks are
to the secretaries of AURORA and IFS, namely Elisabeth Wurth, Elisabeth
Obermaier and Marry Cherry, for their kind helps and assistance.

Over the course of my PhD research, my colleagues in the tool group,
Alexandru Jugravu, Sabri Pllana, Radu Prodan and Clovis Seragiotto, have
not only provided valuable discussions in our research fields but also brought
up many interesting social issues. The pleasant time working in a group of
international researchers with different cultures has led to many memories
that would never be forgotten.

I am in debt to my loving wife, Thu Ha. Her love and deeply understanding
have helped me to overcome the most difficult moments, encouraging me to
forget the bad things and giving me a new hope when I am down. She not
only nourishes me with the best Vietnamese foods and but also takes care for
every tiny things of my life. Last but not least, I deeply thank my parents
for always supporting and believing in whatever I do. Without their love and
supports, I would never be able to finish this dissertation.

Vienna, 28th January 2005



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Performance Measurement and Instrumentation . . . . . . . . . . . . . 11

2.2.1 Customizable Instrumentation . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Dynamic Instrumentation for Grid Applications . . . . . . . 13

2.3 Performance Data Representation and Repository . . . . . . . . . . . 14
2.3.1 Experiment Data Repository . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Semantic Representation for Performance Data . . . . . . . . 15

2.4 Performance Analysis for Parallel Programs . . . . . . . . . . . . . . . . . 16
2.4.1 Overhead Analysis for Parallel Programs . . . . . . . . . . . . . 16
2.4.2 Search and Filter Performance Data . . . . . . . . . . . . . . . . . 17
2.4.3 Multi-Experiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Soft Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Performance Monitoring and Data Integration Middleware
for the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Performance Analysis of Grid Workflow-based Applications . . . 21
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Parallel Architecture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Symmetric Multi-Processor Machine . . . . . . . . . . . . . . . . . 26
3.2.2 Massively Parallel Processing Machine . . . . . . . . . . . . . . . 27
3.2.3 Cluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Parallel Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Shared Memory with OpenMP . . . . . . . . . . . . . . . . . . . . . . 29



II Contents

3.3.2 Message Passing with MPI . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Hybrid Parallel Paradigm with OpenMP/MPI . . . . . . . . 30
3.3.4 Data Parallelism and Hybrid Data Parallelism . . . . . . . . 31

3.4 The Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Types of Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Grid Computing Environment Model . . . . . . . . . . . . . . . . 34
3.4.3 Open Grid Services Architecture . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Globus Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Grid Workflow-based Applications . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Workflows in the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Scientific Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Modeling Workflows and Mapping Workflows onto

Grid Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Workflow Execution Status . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Program Structure and Classification of Code Regions . . . . . . . 40
3.6.1 Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Code Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 Classification of Code Regions . . . . . . . . . . . . . . . . . . . . . . 41
3.6.4 Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.5 Dynamic Code Region Call Graph (DRG) . . . . . . . . . . . . 43

3.7 Performance Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Introduction to SCALEA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 SCALEA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 SISPROFILING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 SCALEA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 The Role of SCALEA/SCALEA-G in ASKALON Toolset . . . . 57
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Performance Analysis for Parallel Programs . . . . . . . . . . . . . . . 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Classification of Temporal Overheads . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Control of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Additional Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.5 Loss of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.6 Unidentified Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.7 A Note on the Classification of Temporal Overhead . . . . 66

5.3 The Instrumentation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Command-line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 SIS Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 SIS High-level Instrumentation Library . . . . . . . . . . . . . . . 69



Contents III

5.3.4 Instrumentation Description File . . . . . . . . . . . . . . . . . . . . 70
5.3.5 Standard Interface for an Instrumentation Engine . . . . . 70
5.3.6 Measurement Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Overhead Analysis based on the DRG . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Performance Data Repository for Performance Analysis . . . . . . 73

5.5.1 Performance Metrics Catalog . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Experiment Data Repository . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Performance Analysis and Tool Integration based on

Experiment Data Repository . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 A Soft Computing-based Approach to Performance Analysis

of Parallel and Distributed Programs . . . . . . . . . . . . . . . . . . . . . . 85
5.6.1 Hard Computing and Soft Computing . . . . . . . . . . . . . . . . 87
5.6.2 Soft Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6.3 Representing Performance Characteristics with Fuzzy

Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.4 Performance Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.5 Performance Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.6 Fuzzy-based Performance Classification . . . . . . . . . . . . . . 95
5.6.7 Fuzzy-based Query for Searching Performance Data . . . 97
5.6.8 Fuzzy Ranking Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.9 Fuzzy Approach to Bottleneck Search . . . . . . . . . . . . . . . . 100
5.6.10 Similarity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.11 Fuzzy Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.12 The Use of Fuzzy Rules for Data Reduction . . . . . . . . . . 106

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Performance Monitoring and Analysis for the Grid . . . . . . . . 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 A Unified System for Monitoring and Performance

Performance Analysis in the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.1 Self-Managing Sensor-based Middleware . . . . . . . . . . . . . . 111
6.2.2 Sensor-based Middleware Overview . . . . . . . . . . . . . . . . . . 112
6.2.3 Sensor Model for Performance Monitoring and Data

Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.4 Self-Organizing Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.5 Data Query and Subscription . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.6 Communication, Data Delivery and Aggregation . . . . . . 127
6.2.7 Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Grid Service for Dynamic Instrumentation . . . . . . . . . . . . . . . . . . 131
6.3.1 Instrumentation and Measurement Techniques for the

Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 Standardized Intermediate Representation for

Executable Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.3 Instrumentation Request Language (IRL) . . . . . . . . . . . . 135
6.3.4 Grid Dynamic Instrumentation Service . . . . . . . . . . . . . . . 137



IV Contents

6.3.5 Incrementally Updating Profiling Data . . . . . . . . . . . . . . . 142
6.4 Performance Monitoring and Analysis of Grid Workflow-based

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4.1 Supporting Workflow Computing Paradigm . . . . . . . . . . . 145
6.4.2 Activities Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.3 Intra-activity and Inter-activity Performance Metrics . . 148
6.4.4 Multi-workflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Ontology-based Approach to Performance Analysis, Data
Sharing and Tool Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5.1 Semantics of Performance Data . . . . . . . . . . . . . . . . . . . . . 151
6.5.2 Using Ontology to Describe Performance Data . . . . . . . . 153
6.5.3 PERFONTO: Ontology for Describing Performance

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5.4 Architecture of Ontology-based Performance Analysis,

Data Sharing and Tool Integration . . . . . . . . . . . . . . . . . . 157
6.5.5 Discussion on Enhanching Automatic Performance

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2.1 SCALEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.2 SCALEA-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2.3 Ontology-based Performance Analysis . . . . . . . . . . . . . . . . 166

7.3 Performance Analysis of Parallel Programs . . . . . . . . . . . . . . . . . 167
7.3.1 Molecular Dynamics (MD) Application . . . . . . . . . . . . . . . 167
7.3.2 Backward Pricing Application . . . . . . . . . . . . . . . . . . . . . . . 169
7.3.3 Stommel Model of Ocean Circulation Application . . . . . 170
7.3.4 3D Particle-In-Cell (3DPIC) . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.5 LAPW0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3.6 Fuzzy C-Mean Clustering Experiments . . . . . . . . . . . . . . . 183
7.3.7 Clustering Analysis of Performance Experiments . . . . . . 183

7.4 Performance Monitoring and Analysis for the Grid . . . . . . . . . . . 185
7.4.1 Grid Test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.4.2 Administrating Sensor Manager Services and Sensors . . 186
7.4.3 Performance Monitoring and Analysis User GUI . . . . . . . 186
7.4.4 Performance Analysis of Data Discovery . . . . . . . . . . . . . . 187
7.4.5 Monitoring and Performance Data Integration . . . . . . . . 189
7.4.6 Workflow Performance Monitoring and Analysis . . . . . . . 191
7.4.7 Searching Example with PERFONTO . . . . . . . . . . . . . . . 195

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



Contents V

8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.2.1 Soft Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.2.2 Middleware for Grid Monitoring and Data Integration . 203
8.2.3 Grid Workflow Instrumentation and Analysis . . . . . . . . . 203
8.2.4 Semantic Performance Data and Ontology-based

Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B Abbreviations and Accronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C Code Region and Performance Metric Mnemonics . . . . . . . . . 209
C.1 Code Region Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
C.2 Performance Metric Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D SIS Command-line Options and APIs . . . . . . . . . . . . . . . . . . . . . . 217
D.1 Command-line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
D.2 High-level Instrumentation APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 220
D.3 On Detailing Instrumentation for OpenMP and MPI Code

Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E Performance Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
E.1 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

F Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.2 Fuzzy Sets and Membership Functions . . . . . . . . . . . . . . . . . . . . . 229

F.2.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.2.2 Common Membership Functions . . . . . . . . . . . . . . . . . . . . 230

F.3 Basic Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
F.4 Fuzzy Modifiers (Hedges) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
F.5 Fuzzy Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

G Ontology and Ontology Languages . . . . . . . . . . . . . . . . . . . . . . . . . 233
G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
G.2 An Overview of Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
G.3 Ontology Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253





List of Figures

3.1 SMP machine model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 MPP machine model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Model of a cluster machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Execution model of OpenMP programs described in [47]. . . . . . . 30
3.5 Execution model of a single process in hybrid parallel program. 31
3.6 Grid environment model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Grid programming models and tools (based on [54]). . . . . . . . . . . 36
3.8 Execution model of a workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 The classification of code regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.10 A code region with several entry and exit points . . . . . . . . . . . . . . 44
3.11 OpenMP code excerpt with DRG when executing with 4

threads (denoted by TCR0 − TCR3). Code regions r1, r2 are
executed only in thread 0 whereas r3, r4, r5 are executed in 4
threads. This program is running with 1 process (denoted by
PCR0) on a computational node (denoted by CCR0). . . . . . . . . 47

3.12 General model of a performance experiment. . . . . . . . . . . . . . . . . . 49

4.1 Architecture of SCALEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 High-level view of SCALEA-G architecture . . . . . . . . . . . . . . . . . . 56
4.3 ASKALON tool integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 The classification of temporal overhead. . . . . . . . . . . . . . . . . . . . . . 61
5.2 Algorithm for computing overheads. . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 SCALEA experiment-related data model . . . . . . . . . . . . . . . . . . . . 77
5.4 Components interacting with the experiment data repository. . . 78
5.5 Generated classes for accessing experiment data. . . . . . . . . . . . . . 80
5.6 Example of extracted performance data in XML. . . . . . . . . . . . . . 81
5.7 Interface for search and filter of performance data in SCALEA . 82
5.8 Specify complex performance conditions. . . . . . . . . . . . . . . . . . . . . 82
5.9 Results of performance search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.10 Multiple experiment analysis GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . 84



VIII List of Figures

5.11 Example of representing high Tcomm/Tcomp. . . . . . . . . . . . . . . . . . 87
5.12 Performance characteristic terms T = {low, medium, high}

with their associated fuzzy sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.13 Membership in {low, medium, high} L2 cache miss ratio for

selected code regions of 3DPIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.14 BNF description of the top-level syntax of PERFQL. . . . . . . . . . 97
5.15 Performance rank for 3DPIC, executed on 4 processors, using

{(wtime,1)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.16 Performance rank for 3DPIC, executed on 4 processors, using

{(odata recv,0.5), (odata recv, 0.5)}. . . . . . . . . . . . . . . . . . 100
5.17 Fuzzy versus crisp bottleneck search. . . . . . . . . . . . . . . . . . . . . . . . . 101
5.18 Results of bottleneck search based on fuzzy sets. . . . . . . . . . . . . . 102
5.19 Cache accesses similarity analysis for DO JACOBI of Stommel

executed on two 4-CPU SMP nodes. Similarity is measured
with {(L2 TCA,1)}, membership function is S-function, and
distance measure is based on Euclidean function. gsr411->1-0
means thread 0 in process 1 in computational node gsr411. . . . . 103

5.20 Similarity analysis for LAWP0 with 6 experiments and 7
code regions. We used (wtime, 1.0) to compute similarity
measure, and distance measure is based on Euclidean function.
Experiment 2Nx4P,P4,36 is selected as the base. 1Nx4P means
1 SMP node with 4 processors. P4 and GM correspond to
MPICH CH P4 and Myrinet, respectively. The problem size is
either 36 or 72 atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.21 Fuzzy sets describing similarity measure. . . . . . . . . . . . . . . . . . . . . 105

6.1 High-level view of self-managing sensor-based middleware . . . . . 113
6.2 Conceptualization of monitoring sensors. . . . . . . . . . . . . . . . . . . . . 114
6.3 XML schema of data provided by

path.bandwidth.capacity.TCP sensor. . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 Top-level XML schema of application profiling data. . . . . . . . . . . 116
6.5 Excerpt of XML schema used to describe sensors in the sensor

repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 Sensor Manager Service Implementation . . . . . . . . . . . . . . . . . . . . . 118
6.7 A fuzzy variable describing status of the bandwidth of a

network path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8 Example of rule set for bandwidth of a network path. . . . . . . . . . 121
6.9 Using a demand-driven sensor to integrate performance data. . . 121
6.10 Example of querying monitoring data by using information

from Registry Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.11 Service-based invocations and TCP-based data streams. . . . . . . . 128
6.12 Data aggregation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.13 Excerpt of XML schema of SIRBC. . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.14 Excerpt of XML schema of Instrumentation Request Language. 136
6.15 Example of IRL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Figures IX

6.16 Architecture of the Grid service of dynamic instrumentation . . . 138
6.17 Steps in conducting a request for instrumentation. . . . . . . . . . . . . 139
6.18 Excerpt of interfaces of Mutator Factory. . . . . . . . . . . . . . . . . . . . . 140
6.19 Excerpt of interfaces of Mutator Instance . . . . . . . . . . . . . . . . . . . . 141
6.20 Updating profiling data to Sensor Manager. . . . . . . . . . . . . . . . . . . 143
6.21 Model of monitoring and performance analysis of

workflow-based application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.22 Multiple workflows of an workflow-based application: (a)

Sequence workflow, (b)Fork-join workflow, and (c) Fork-join
structured block of activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.23 Example of an activity execution status graph. � represents a
state, © represents an event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.24 Illustrative classes and properties of experiment-related
concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.25 Description of RegionSummary has four object properties
namely inProcessingUnit, ofCodeRegion, hasChildRS,

hasMetric that specify associated processing unit, code
region, sub region summary and performance metric of the
region summary, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.26 An example of merging two ontologies. Two ontologies share
the same concepts of Experiment and CodeRegion which can
be merged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.27 Three layers architecture for ontology-based performance
analysis, data sharing and tool integration . . . . . . . . . . . . . . . . . . . 158

6.28 Model of interactions between clients and ontology-based
performance data repository service. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.29 An example of RDQL query based on PERFONTO. . . . . . . . . . . 161
6.30 An example of Rule-based Reasoning based on PERFONTO. . . 162

7.1 Execution time of the MD application. . . . . . . . . . . . . . . . . . . . . . . 168
7.2 The L2 cache misses/cache accesses ratio of OMP DO regions

in the MD application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 Execution times of the HPF+ and OpenMP/MPI version for

the backward pricing application . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.4 Load imbalance analysis of an OMP DO code region in the

subroutine DO JACOBI executed with 4SMP nodes. . . . . . . . . . . . . 172
7.5 Execution summary of Stommel executed with 4 SMP nodes. . . 172
7.6 Region to Overhead mode for Stommel executed on 4 SMP

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.7 Overhead to Region mode for Stommel executed on 4 SMP

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.8 Execution time of Stommel in 6 experiments. 1Nx4P means 1

SMP node with 4 processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.9 Performance overheads of Stommel in 6 experiments. . . . . . . . . . 174
7.10 Inclusive/Exclusive analysis for sub-regions of the MAIN program.175



X List of Figures

7.11 Metric ratios for important code regions. . . . . . . . . . . . . . . . . . . . . 175
7.12 Overhead-To-Region and Region-To-Overhead analysis . . . . . . . . 176
7.13 Execution time summary for an experiment with 3 SMP-nodes . 178
7.14 Execution time summary for an experiment with 1 SMP-node . . 178
7.15 Overall execution time and speedup/improvement for 3DPIC.

1Nx4P means 1 SMP node with 4 processors (in case of 7Nx4P
only 25 processors are used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.16 Performance overheads of the 3DPIC application. Note that
total and unidentified overhead are missing as no sequential
code version is available for the 3DPIC. . . . . . . . . . . . . . . . . . . . . . 179

7.17 Execution times for LAPW0 code regions. . . . . . . . . . . . . . . . . . . . 179
7.18 Speedup values for LAPW0 code regions. . . . . . . . . . . . . . . . . . . . . 180
7.19 Sources of control of parallelism overhead for LAPW0. . . . . . . . . 181
7.20 Execution time of LAPW0 with 36 and 72 atoms. CH P4,

GM means that MPICH 1.2.3 has been used for CH P4 (for
Fast-Ethernet 100Mbps) and Myrinet, respectively. . . . . . . . . . . . 181

7.21 Execution time of computationally intensive code regions.
1 Nx4P,P4,36 means 1 SMP node with 4 processors using
MPICH CH P4 and the problem size is 36 atoms. . . . . . . . . . . . . 182

7.22 Performance overheads for LAPW0. . . . . . . . . . . . . . . . . . . . . . . . . 183
7.23 Execution time for fuzzy C-means clustering with 4 clusters,

algorithm terminating criteria ε = 0.01, and degree of fuzziness
of the clustering m = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.24 Fuzzy C-means clustering (4 clusters, algorithm terminating
criteria ε = 0.01, degree of fuzziness of the clustering m = 2)
for an experiment of LAPW0 (executed with 4 CPUs, MPICH
CH P4). Problem size is set to 36 atoms. . . . . . . . . . . . . . . . . . . . . 184

7.25 Fuzzy C-means clustering (4 clusters, algorithm terminating
criteria ε = 0.01, degree of fuzziness of the clustering m = 2.)
for an experiment of 3DPIC (executed with 4 CPUs, MPICH
CH P4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.26 Grid experimental test-bed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.27 SCALEA-G Administrator GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.28 Performance monitoring and analysis GUI . . . . . . . . . . . . . . . . . . . 188
7.29 Ping latency and search time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.30 Analysis of profiling data provided by application sensors. . . . . . 190
7.31 Events generated from a rule-based sensor monitoring network

bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.32 Snapshots of online monitoring system load, CPU usage and

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.33 Experimental workflows of the Montage application: (a)

workflow executed on single resource, (b) workflow executed
on two resources, and (c) workflow executed on n resources. . . . 192

7.34 Monitoring execution status of a Montage workflow executed
on 2 resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



List of Figures XI

7.35 Execution time of states of Montage workflow executed on 2
resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.36 GUI used to control the instrumentation of activity instances
of a workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.37 Performance analysis of workflow activities. . . . . . . . . . . . . . . . . . . 195
7.38 Analysis of Montage executed on 5 machines: (a) response

time and synchronization delay of mImgtbl, and (b) load
imbalance of mProject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.39 Speedup factor for subgraph ProjectedImage of Montage
workflows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.40 Example of search on ontological data . . . . . . . . . . . . . . . . . . . . . . . 197

D.1 SIS main options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218





List of Tables

5.1 Overhead of data movement: example of code regions and
measurement methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Synchronization overhead: example of code regions and
measurement methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Control of parallelism overhead: example of code regions and
the measurement methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Additional computation overhead: example of code regions
and measurement methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Loss of parallel overhead: example of code regions and
measurement methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Contents of an entry in the instrumentation description file
(IDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Sample of SCALEA’s performance metrics catalog. . . . . . . . . . . . 76
5.8 Example of performance scores with various membership

functions, performance metrics and weight sets. The
performance scores of code regions are computed relatively to
the whole program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Parameters for measuring similarity between controllable
factors. In all test cases, maximum atoms is 72, maximum
number of CPUs is 64, maximum network bandwidth
benchmarked is 158.20 Mbytes/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Example of similarity analysis with experiment factors
for code region CA MULTIPOLMENTS in 6 experiments. The
similarity is measured with the first experiment as the
base. The performance score of the code region is based on
S-function. Distance measure is based on Euclidean function. . . 104

5.11 Example of using linguistic terms representing similarity
measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



XIV List of Tables

6.1 Example of transfer time without compression (Tf ),
transfer time of compressed data (Tfcd), compression
ratio (r), compression and decompression time (Tc + Td)
for CPU usage data. Time is measured with Java
System.currentTimeMillis() call. Compression and
decompression are implemented based on java.util.zip

package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Example of event names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Overheads (s) of the MD application. Ti, Tu, To are identified,
unidentified and total overhead, respectively. . . . . . . . . . . . . . . . . . 167

7.2 Overheads (s) of the HPF+ version for the backward pricing
application. Todata and Toctrl are data movement overhead
and control of parallelism overhead, respectively. Ti, Tu, To

are identified, unidentified and total overhead, respectively. Tp

is total execution time. The execution time of the sequential
version, Ts, is 316.417 (s). 1N, 4P means 1 SMP node with 4
processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 Control of parallelism overheads (s) for the HPF+ version for
the backward pricing application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4 Overheads (s) of the OpenMP/MPI version for the backward
pricing application. Todata, Tolopa, Toctrl and Tosyn are
data movement, loss of parallelism, control of parallelism,
and synchronization overhead, respectively. Ti, Tu, To are
identified, unidentified and total overhead, respectively. Tp is
total execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Control of parallelism overheads of the OpenMP/MPI version
for the backward pricing application. . . . . . . . . . . . . . . . . . . . . . . . . 171

7.6 Overheads (s) of LAWP0. Todata, Tolopa and Toctrl are data
movement, loss of parallelism, and control of parallelism
overhead, respectively. Ti, Tu, To are identified, unidentified
and total overhead, respectively. Tp is total execution time. . . . . 180

C.1 Code region mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.2 Mnemonics for measured timing and counter metrics. . . . . . . . . . 214
C.3 Mnemonics for overhead metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.1 Command for control common code regions . . . . . . . . . . . . . . . . . . 219
D.2 Parameters for controlling HPF+ code regions. . . . . . . . . . . . . . . . 219
D.3 Parameters for controlling MPI code regions. . . . . . . . . . . . . . . . . 219
D.4 Parameters for controlling OpenMP code regions. . . . . . . . . . . . . 220
D.5 Examples of instrumentation for OpenMP and MPI code

regions implemented in SIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



1

Introduction

Performance analysis of distributed and parallel programs is a complicated
process which involves a variety of computer science and engineering fields.
Performance analysis is a required task for developing efficient and scalable
parallel and distributed applications. Performance analysis not only helps the
application developer to assess and improve the performance of applications,
to identify potential performance problems, and to determine locations in
the code where the performance problems occur but also provides essential
feedbacks to the design and implementation of system software and middle-
ware (e.g., operating system, communication library and resource broker),
programming models (e.g., message passing, thread-based and data parallel),
computer architectures and communication networks. Therefore, performance
analysis tools have a very important role in developing effective, efficient and
high performance applications and computer systems.

Over the past decades, a large number of architectures for high perfor-
mance computers have been introduced such as vector computer [43, 76, 210,
152, 153], MPP [198, 259], SMP [181, 185, 69], etc. With the continuous ad-
vances of novel high performance microprocessors and the existence of high
speed networks as off-the-shelf commodity components, clusters of SMPs or
PCs/workstations appear to be a promising solution to design low cost parallel
machines [186, 53].

The trend of using cluster of SMP requires programming efforts for port-
ing message passing applications to the hybrid memory model. On the one
hand, a large number of existing high performance applications still use the
message passing model. On the other hand, parallel applications have shifted
from thread-aware, tuple space, message passing, HPF [127] to OpenMP [266],
hybrid parallel models such as OpenMP/MPI. MPI [124] has been devel-
oped for parallel programming of distributed memory multiprocessor systems.
OpenMP has recently emerged as the standard for parallel programming of
SMP architectures. Using MPI for handling communication between SMP
nodes and OpenMP for implementing parallelization strategy within an SMP
node, the hybrid OpenMP/MPI paradigm is the emerging parallel program-



2 Introduction

ming model for the development of parallel applications on current SMP clus-
ters [125, 224, 57, 123, 229].

Recently, Grid computing [99, 41] has presented a compelling vision of
using geographically and institutionally computational and information re-
sources that is based on the concept of virtual organization [147]. Grid com-
puting aims to integrate and coordinate diverse and disparate computation,
data, and other resources and to provide a uniform access to them. Despite
the tremendous potential to the Grid paradigm, as well as large investments
on and strong commitments to the research of Grid computing, the dynamic
and complex nature of the Grid environment poses many challenges that have
not been solved yet.

The evolution of parallel and distributed architectures and program-
ming paradigms for performance-oriented program development challenges
the state of technology for performance tools. Coupling different program-
ming paradigms such as message passing and shared memory programming
for hybrid cluster computing (e.g SMP clusters) is one example of high de-
mands on performance analysis tools. Performance analysis tools should be
able to cope with applications for multiple programming models and target ar-
chitectures. Performance tools must be able to observe performance problems
at all levels of a system while relating low-level behavior to the application
program. As Grids evolve from clusters to virtualized organizations deployed
in distributed and wide-area systems, the monitoring and performance anal-
ysis for the Grid requires standards and many novel techniques to deal with
challenges posed by Grid environments. Few software tools exist to assist the
user to monitor and analyze the performance of Grid-enabled applications,
especially scientific workflows in the Grid.

To keep the pace with the evolution of state-of-art parallel and distributed
architectures and models (e.g., from SMP to clusters of SMP to Grid sys-
tems) and of parallel and distributed applications (e.g., from MPI, OpenMP
to OpenMP/MPI to Grid workflows), effective instrumentation and measure-
ment techniques for these applications, systems and models need to be in-
vestigated and developed. Due to the complexity of the applications and the
systems on which the applications are executed, there is a need of collecting,
gathering and utilizing monitoring and performance data from many sources,
which may be distributed and diverse, in order to understand the performance
of the applications. As a result, techniques for integrating monitoring and per-
formance data are important. The complexity and quantity of performance
measurements are so overwhelming that new performance analysis techniques
are required to support efficient, scalable and fast analyses. In addition, per-
formance data needs to be shared and exchanged among different tools. There-
fore, techniques and methods to represent and archive performance data and
to support tool integration are of prominent importance.
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1.1 Motivation

Performance analysis for parallel and distributed computing is faced with
numerous complexities and open problems that have not been solved by ex-
isting tools or technologies. These open problems or shortcomings of existing
approaches motivated the research described in this dissertation.

How to determine program locations that expose performance problems and
to explain to the user the performance problems?: Commonly, the gap between
ideal and measured execution time reflects the performance problems in user’s
programs. This gap is commonly defined as the overhead implied by paral-
lelizing a program. A classification of performance overheads will provide the
user with a detailed understanding of where and how performance is lost.
As programming models constantly being evolved, the classification has to be
updated to cover (new) performance overheads of the new programming mod-
els. Therefore, a classification of performance overheads for message passing,
shared memory and hybrid parallel programs should be investigated. Most ex-
isting tools, however, lack a classification of performance overheads and only
support limited measurement and instrumentation features, thus a systematic
performance analysis is severely hampered.

The realization that one of the challenges faced by performance analysis
tools is the selection of an appropriate level of measurement and analysis de-
tail in order to systematically identify the origins of performance problems: A
programmer may be well aware of which code sections and performance met-
rics should be in the center of the performance analysis. On the other hand,
tools can automatically divide a program into code regions, determine whether
those regions cause performance problems or not, and map code region to a
given class of performance overheads. A combination of user directions and
tools functionality can provide a simple and efficient mechanism to control the
level of measurement and analysis. Most existing instrumentation systems do
not provide enough flexibility for the user to specify code regions for which
performance metrics of interest should be determined. Mostly, they just allow
the user to specify a set of pre-defined code regions with built-in performance
metrics.

The need of supporting the user in conducting performance analysis across
experiments: In the cycle of application development, the developer refines
and develops several code versions, and then conducts several experiments
by running programs on various platforms. The resulting experiments are
used not only for verifying the correctness of the program but also for the
performance comparison. Unfortunately, there is a lack of tools that are able
to compare and analyze multiple experiments. Most users have to manipulate
performance data of experiments in order to perform the comparisons. Besides,
many experiments generate a huge amount of performance data which further
needs to be filtered and archived in order to support the performance analysis
and comparison of multiple experiments. This large volume of performance
data can also be processed by other performance analysis tools, which can
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provide more analyses for the user, as well as can be used by high-level tools.
To date, little effort has been done to employ data repositories to organize and
store performance data for performance analysis. In addition, different tools
represent performance data in different ways, and they lack the capability to
export their data to other common formats. Consequently, the collaboration
between performance tools and high-level tools is still a difficult task.

The lack of specification and control of inexact parameters, commands and
requests in existing performance analysis tools: Current techniques in existing
performance analysis tools have mainly been used to process the performance
data that are in the form of precise numerical and measurement-based data.
Firstly, these techniques always apply exact analysis methods that result in
exact conclusions about performance characteristics of applications. However,
performance measurements collected may have limited accuracy or missing
data, in other words, performance measurements may be incomplete and un-
certain data. Therefore, exact analysis methods might not be appropriate for
processing uncertainty data. Secondly, performance tools based on numerical
analysis interact with the user through complex numerical values which are
not easily understood by the end user. Moreover, in the real world we largely
rely on domain expertise and user-provided inputs as parameters to control
the performance analysis and tuning. Such expertise and inputs may be in-
exact and uncertain. However, there is no mechanism to specify and control
approximate and inexact parameters in existing performance analysis tools, in
other words, these tools do not provide a mechanism for making soft decisions.
These techniques are based on hard computing models, which are based on bi-
nary logic, crisp system and numerical analysis and do not accept imprecision
and uncertainty. To address the issues mentioned above, we can investigate
performance analysis techniques that are based on soft computing models, e.g.
fuzzy logic and machine learning, which are useful tools for processing and
analyzing uncertainty and large-volume data. Soft computing [278, 45, 202]
presents another way to evaluate and analyze data that is based on the con-
cept of soft, inexact, uncertainty about the data. Unlike hard computing, soft
computing accepts imprecision and uncertainty, supports approximate reason-
ing, offers cost effectiveness, and is much closer to the real world [278, 45]. By
integrating soft computing techniques, we can develop techniques for perfor-
mance tools that can (i) extract useful performance information from large,
dynamic and multi-relational performance measurement sources, (ii) support
the specification and the control of approximate and inexact parameters, com-
mands and requests in existing performance analysis tools, and (iii) interact
with the user through high level notions and concepts expressed in linguistic
expressions.

The need of a unified performance monitoring and analysis system for
the Grid: Grid monitoring is a crucial task that provides useful information
for several functions such as performance analysis and tuning, performance
prediction, fault detection and scheduling. However, most existing Grid mon-
itoring tools are separated into Grid system monitoring and Grid application
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monitoring. The lack of the combination of two domains in a single tool makes
the user difficult to correlate performance metrics provided by various tools
at different levels of representation when performing Grid monitoring and
performance analysis. Grid performance tools that combine application- and
system-specific monitoring and performance analysis will provide users a uni-
fied view and support users to correlate performance metrics from various
sources. Moreover, although recently the Grid evolves towards a Grid system
architecture based on service-oriented concepts, existing performance analy-
sis tools are not service-oriented yet. Due to the fact that they lack a set
of interfaces and conventions that follow specifications of Grid/Web services,
they are not well suited for Grid environments. A Grid performance tool is
used to conduct monitoring and performance analysis for the Grid, thus, it
must address and deal with the challenges in the Grid such as geographically
dispersion, heterogeneity, security, etc. Grid computational, software, and net-
work services should be monitored and related together in a single system.
Therefore, the Grid performance tool has to integrate instrumentation, mea-
surement, and analysis and monitoring of a variety of Grid services at various
levels of abstraction.

The lack of Grid services for dynamic instrumentation, monitoring and
performance analysis of scientific workflows in Grids: even though many ex-
isting tools support the construction and execution of scientific workflows in
the Grid. While existing Grid toolkits provide core services for job submission,
resource discovery, similar Grid services for instrumenting Grid applications
do not exist. The instrumentation of Grid application must be carried out by
the end user. Consider the diversity and dynamics of the Grid sites. On the
one hand, if a user wants to instrument his code, the user has to know in
advance the Grids he submits job to, and has to select the right instrumen-
tation tool for a Grid site. As a result, the user has to do a daunting task
in order to instrument his code. Moreover, the selected instrumentation tool
may not work with the monitoring middleware deployed in the selected Grid
site. On the other hand, instrumentation techniques are typically bound to
specific languages and systems. More importantly, workflows tend to be com-
posed from deployed components whose source code is not available. Without
the instrumentation of code regions of workflow activities themselves, we are
only able to monitor at the level of activity, thus it significantly reduces the
ability to detect and correlate performance problems. Recently, increased in-
terest can be witnessed in exploiting the potential of the Grid for scientific
workflows. As the Grid is diverse, dynamic and inter-organizational, even for
a particular scientific experiment, there is a need of having a set of different
workflows because (i) one workflow mostly suits for a particular configuration
of the underlying Grid environment, and (ii) the available resources allocated
for a scientific experiment and their configuration are changed for every dif-
ferent run on the Grid. This requirement is a challenge in the performance
monitoring and analysis of workflows because very often the client of the per-
formance monitoring and analysis tools wants to compare the performance of
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different workflow constructs with respect to the resources allocated in order
to determine which workflow construct should be best mapped to which Grid
site. Therefore, multi-workflow analysis, the analysis and comparison of the
performance of different workflow constructs, ranging from the whole workflow
to a specific construct (e.g. a fork-join construct), is an important feature.

How to understand and process performance data where the data is di-
versely collected and when there is no central component to manage and pro-
vide its semantics?: This question is raised by the Grid community. Nor-
mally, users run their applications in multiple Grid sites, each is equipped
with different computing capabilities, platforms, libraries that require differ-
ent performance tools to conduct the monitoring and measurement. A single
performance tool no longer meets user’s need. In the absence of the central
component, performance monitoring and measurement tools need an agreed
and well-defined semantic representation for describing the data they collect
and provide because on top of them many tools and services need perfor-
mance data for further works such as performance analysis, scheduling and
resource matching. Current Grid performance tools focus on the monitoring
and measurement, but neglect the representation for performance data. A
widely accepted semantic representation of data helps in sharing the data,
leveraging the tool integration and reducing the human intervention in the
performance analysis process. However, due to the complexity of the Grid and
the diversity of resources in Grid, any proposed data representation should
easily be extended to describe new resources and metrics. To that end, we
can devise a novel ontology for representing semantics of performance data
that can be used by performance monitoring and measurement tools. Based
on that ontology, a Grid service can be developed to archive and provide on-
tology models with collected performance data to performance analysis tools
and other services.

Stimulated by above motivating factors, in this dissertation we propose
solutions to address the above-mentioned drawbacks.

1.2 Contributions

In the following we describe the contributions of this dissertation to the short-
comings of existing approaches as mentioned in the previous sections.

The first contribution is a novel classification of temporal overheads
and overhead analysis techniques for shared and distributed memory
parallel programs that includes data movement, synchronization, control of
parallelism, additional computation, loss of parallelism, and unidentified over-
heads.

The second contribution is a customizable instrumentation and mea-
surement system which can be precisely controlled by program directives
and command-line options. The user can specify code regions for which per-
formance metrics should be determined. Our instrumentation system is one
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of the first that can support a variety of program paradigms including se-
quential, MPI, OpenMP, HPF and hybrid parallel programs (OpenMP/MPI,
OpenMP/HPF).

The third contribution is the implementation of an experiment data
repository for performance analysis, data sharing, tools integration
and multi-experiment analysis. We employ a performance data reposi-
tory to store the most important information about performance experiments
including application, source code, machine information, and performance re-
sults.

The fourth contribution is the soft performance analysis approach.
We propose a new approach to performance analysis that is based on soft
computing. In this approach, soft computing techniques, e.g. fuzzy logic, ma-
chine learning, and the combination of the two, are utilized for evaluating
the performance of parallel and distributed applications. We introduce flexi-
ble and convenient methods to deal with uncertainty in performance analysis,
e.g. fuzzy-based bottleneck search, and means for conducting performance
analysis in the form closer to human notions, e.g. fuzzy-based search query.

The fifth contribution is the design and implementation of a novel
unified monitoring and performance analysis system for Grids.
We have designed and implemented a sensor-based middleware for perfor-
mance monitoring and data integration. The middleware is capable of self-
management, supporting event- and demand-driven sensors, rule-based moni-
toring. Based on that middleware a unified monitoring and performance analy-
sis system that unifies Grid infrastructure and application monitoring, source
code and dynamic instrumentation, and performance analysis into a single
system.

The sixth contribution is the design and implementation of a novel
Grid dynamic instrumentation service for Grid-based applications.
We develop a Grid service that supports the dynamic instrumentation of Grid
applications. We devise a novel instrumentation request language for facili-
tating the interaction between instrumentation service and clients during the
instrumentation of applications in Grids. We develop a standardized inter-
mediate representation for binary code which can be used to describe the
application structure.

The seventh contribution is centered around novel techniques and
methods for performance analysis of scientific workflows in the Grid.
We have developed an integrated system to support performance monitoring
and analysis of scientific workflows in Grids. We introduce techniques to sup-
port the performance analysis of multiple workflows.

The eighth contribution is a novel ontology for describing perfor-
mance data and a Grid service of ontology-based performance data
repository. Initial results show that ontology approach is a promising so-
lution in the domain of performance analysis because it not only provides
a common understanding about performance data among tools but also in-
creases the automation of performance analysis.
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As a result of our research, we have implemented several novel methods and
techniques for instrumentation, measurement, monitoring and performance
analysis of cluster and grid applications in two frameworks named SCALEA
[246] and SCALEA-G [249]. SCALEA includes an instrumentation system,
measurement, performance analysis and visualization tool for parallel pro-
grams. SCALEA-G is an integrated framework that supports monitoring and
performance analysis of Grid systems and applications, dynamic instrumenta-
tion of Grid applications, and the integration of multiple types of monitoring
and performance data.

The work described in this dissertation has been widely accepted in the
area of performance analysis, measurement and monitoring for cluster and
Grid architectures. This dissertation is based on the papers which published
contributions described above [255, 244, 254, 245, 246, 251, 248, 250, 249, 252]
together with the papers submitted for publication [253, 247].

1.3 Dissertation Overview

The rest of this dissertation is organized as follows: in Chapter 2 we briefly
present the related work and outline research challenges.

Chapter 3 presents preliminaries for the rest of this dissertation. We discuss
parallel architectures, the Grid, and their supported programming models, and
other related concepts such as program structure and code regions, and per-
formance experiment model. We present a new data structure named dynamic
code region call graph which reflects the dynamic relationship between code
regions and their subregions and enables a detailed overhead analysis for code
region.

Chapter 4 presents an overview of the SCALEA and SCALEA-G frame-
work. We introduce SCALEA, a performance instrumentation, measurement,
and performance analysis for parallel programs, and SCALEA-G, a unified
performance monitoring, instrumentation and analysis system for the Grid.

Chapter 5 details novel techniques and methods for performance measure-
ment, instrumentation and analysis for cluster applications. We introduce a
classification of temporal overhead, the overhead analysis and a customiz-
able instrumentation system. We present an experiment data repository for
performance analysis and its utilization. We introduce a novel approach to
performance analysis for parallel and distributed systems that is based on
soft computing.

Chapter 6 details novel techniques and methods for performance instru-
mentation, monitoring and analysis of the Grid. We present a sensor-based
middleware that unifies the performance monitoring and analysis for Grid
applications and infrastructures in a single framework. We introduce a Grid
service for dynamic instrumentation of Grid applications. We present the tech-
niques for monitoring and performance analysis of Grid scientific workflows.
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A novel approach to performance analysis that is based on ontology is intro-
duced.

Chapter 7 presents experiments of real-world applications as a proof of
concept of our methods and techniques. We present several experiments con-
ducted on cluster and Grid environments to demonstrate the usefulness of our
proposed methods and techniques.

Chapter 8 summarizes the dissertation and gives an outlook to the future
work.





2

Related Work

2.1 Introduction

Our work is best described as an attempt to develop a set of novel techniques
and methods for instrumentation, measurement, monitoring and analysis of
parallel and distributed programs on cluster and Grid systems. In this chapter,
we discuss the related work in the following topics:

• instrumentation and measurement techniques
• performance data representation and repository
• overhead analysis for parallel programs, multi-experiment analysis, soft

performance analysis
• monitoring and performance analysis for the Grid

2.2 Performance Measurement and Instrumentation

Instrumentation techniques have a long history. Several techniques can be
used to instrument distributed and parallel programs. Instrumentation can be
employed at many levels such as source code, object code, libraries and binary
code, and at static, before the execution of the application, or dynamically,
during the runtime of the application (for a greater detail, see [105, 222]). Our
work is mostly related to the automatic instrumentation at source code level
for parallel programs and to the dynamic instrumentation of Grid applications.
In the following, we briefly describe instrumentation approaches and related
tools.

2.2.1 Customizable Instrumentation

For source code instrumentation, instrumentation probes, which are used to
measure the performance of code regions, are inserted into source files auto-
matically by an instrumentation system or manually by the end-user. In an
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automatic source code instrumentation system, the system, maybe under the
guidance of the user or the high-level tool, will insert instrumentation probes
directly into source files of the program. The key elements of an automatic
instrumentation system are a mechanism for constructing a parsing tree from
source code, a set of functions for manipulating and restructuring the pars-
ing tree, and an unparsing mechanism for generating new source code from
the restructured form. Some automatic instrumentation systems are based on
parser and unparser part of a compiler infrastructure; others just use sim-
ple text parser and unparser that are independently from any compilers. The
advantages of source code instrumentation are i) we can instrument at ar-
bitrary level of source codes (e.g. loop, function call), and ii) we can relate
performance data to the source code. However, this approach requires the
availability of source code. Especially, in the case the automatic instrumen-
tation is carried out with the support of compiler parser and unparser, this
approach may require all source modules; pre-compiled module may not be
accepted.

Several tools follow the source code instrumentation approach. TAU [221]
performance framework is an integrated toolkit for performance instrumenta-
tion, measurement, and analysis for parallel, multi-threaded programs. TAU
attempts to target the general computation model with different instrumen-
tation strategies: source-code instrumentation, dynamic instrumentation, in-
strumented library. Its profiling and tracing currently uses PDT [163] for
automatic instrumentation of C++ source code. PDT extracts the high-level
interface and outputs item description to a program database. These descrip-
tions characterize the program’s functions and classes, including template in-
stantiations, as well as template, other types, namespaces, macros, and source
files.

Pablo source code instrumentation [215] supports the instrumentation with
user-selected code regions. Pablo provides a GUI to support the selective in-
strumentation of outer loops and function calls.

AIMS [272] is a software toolkit for measurement and analysis of Fortran
77/C parallel programs based on PVM (Parallel Virtual Machine)1. It provides
a source code instrumentor, with a GUI, to support tracing parallel programs.
AIMS allows the user to specify the instrumentation of entire subroutines,
communication constructs and I/O structures. AIMS allows users to select all
constructs, but a subset of code regions or metrics.

A source-to-source instrumentation for C programs is introduced in [193].
C control statements, e.g. for, while, can be instrumented. The instrumen-
tation is used for the optimization of an automatic reading system.

Source code instrumentation can also be conducted by compilers in which
the compiler will insert instrumentation code into user program at compile
time. The advantages of this approach is that the user just indicates whether or
not to instrument code regions by using a small and simple set of options, and

1 http://www.csm.ornl.gov/pvm/



2.2 Performance Measurement and Instrumentation 13

the rest is carried out by the compiler. Examples of well-known tools based
on compiler are gprof and CPROF. In gprof [112, 89], which is a profiling
framework based on compiler, the instrumentation is done by the compiler
through command line -pg. The CPROF system [162] is a cache performance
profiler that annotates source listings to identify the source lines and data
structures that cause frequent cache misses.

Recent work on an OpenMP performance interface [175] is based on di-
rective rewriting. A general method for instrumenting OpenMP codes is pre-
sented. Directives are introduced to mark user-defined code regions and to
control performance data collection. This approach does not allow the users
to specify for which code regions which performance metrics should be de-
termined. In addition, only specific OpenMP constructs, functions in the
OpenMP runtime library, and user-defined code regions can be instrumented.
As a result, it restricts the selection of only interesting code regions for instru-
mentation. This approach is similar to the use of the MPI profiling interface,
which is widely used in many tools [221, 167, 179].

Most existing source instrumentation tools support limited customizable
instrumentation. They mostly allow the user to select a set of code regions
for which a number of pre-defined metrics are measured. Therefore, a user
cannot specify the performance metrics of interest for his selected code region.
Code region instrumented is restricted at level of program unit (functions,
subroutines, e.g. [112, 89] ) and loop but not of arbitrary code region (some
tools support the instrumentation of arbitrary code regions but manually, e.g.
[221]). There is no restriction for the code region should be instrumented, e.g.
the user cannot restrict few code regions in a program unit. In addition, the
center of existing instrumentation techniques are code region based, not metric
based. That means, given a program, the instrumentation system supports
the user to select a set of code regions for which the instrumentation system
will measure. However, in metric based approach, the user is interested in
performance metrics collected. Thus, the user just specifies the performance
metrics, e.g. communication overhead, and lets the instrumentation system
perform appropriate functions, e.g. to find and instrument all code regions
of which measurements may provide the user-selected performance metrics.
Since the user may not have any census about which code regions may cause
which performance problems, metric based approach is very helpful.

2.2.2 Dynamic Instrumentation for Grid Applications

Executable code instrumentation takes the advantage in case the source code
is not available for instrumentation. In addition, the instrumentation can be
done independently with programming languages and compilers. In executable
code instrumentation, the instrumentation can be done before the execution
of the program or during the runtime; the latter is called dynamic instrumen-
tation. This approach reduces time consuming in re-compiling instrumented
code of large applications due to source code instrumentation. It also allows
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us to instrument third party libraries and user applications whose the source
code may not be available or when recompiling the source will not be possible.

PARADYN [172] is a well-known tool for automatic performance analy-
sis of large-scale parallel programs developed in Paradyn project [9]. PARA-
DYN applies dynamic instrumentation at the runtime of the application and
searches for the bottleneck based on pre-defined constraints.

DPCL (Dynamic Probe Class Library) [75] is an object-based C++ class
library that supports tool developers and users to build instrumentation tools
based on dynamic instrumentation powered by Dyninst [51].

DITools [220] is an application level tool that supports dynamic interpo-
sition on dynamically-linked procedure-call boundaries.

The OMPtrace [59], MPItrace [80] and OMPItrace [81] tool instrument
OpenMP, MPI, combined OpenMP and MPI parallel codes. These tools gen-
erate trace files where basic activities in a program are recorded. They support
for both timing and hardware counters. OMPtrace, MPItrace and OMPItrace
rely on a dynamic interception mechanism that enables them to intercept calls
to the runtime library. The instrumentation code is inserted into binary file.
The trace files generated by these tools can be visualized with Paraver [258].

All above-mentioned tools are based on Dyninst library [51] for manipu-
lating binary code during or before the execution.

Etch [208] is a general-purpose tool for rewriting Win32/x86 binaries. Etch
provides framework for modifying executables for both measurement and opti-
mization. In instrumentation phase, Etch selects and instruments components
of program such as instructions, basic blocks and procedures. Etch supports
timing and hardware parameter measurement.

Dynamic instrumentation seems very suitable for Grid applications as the
Grid is a very dynamic system whose resources can join and leave arbitrarily.
Moreover, the resources on which a Grid application is executed are differ-
ent from an experiment to another one, thus, source code instrumentation,
in which instrumented files have to be compiled and linked on the target
resources, is not well suited. However, little effort has been spent on study-
ing and applying dynamic instrumentation techniques for the Grid. Existing
tools supporting dynamic instrumentation are not designed to work with the
Grid. Nor provide these tools enough accessible interfaces and interoperable
protocols that can be used on the Grid. As a result, external services, e.g. per-
formance analysis, find difficult in controlling and using them for conducting
the dynamic instrumentation of Grid applications.

2.3 Performance Data Representation and Repository

2.3.1 Experiment Data Repository

Since computer systems and applications become larger and complex, a large
amounts of performance data have been generated and collected over the
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course of performance experiments. On the one hand, to process the massive
data, scalable and automatic techniques have to be developed to help the
user to extract and recognize important features, and to prescribe possible
solutions. Thus, performance data should be organized in a systematic way in
order to enable such scalable and automatic techniques. On the other hand,
performance data needs to be collected and archived for various purposes
such as performance comparison, multi-experiment analysis, etc. Even though
performance analysis tools proliferate, most existing tools do not organize data
into a well-defined data repository; performance data is normally stored in files
with specific representations.

Prophesy [235] is such a tool that employs relational database for archiving
performance data. Prophesy uses performance data to perform the automatic
generation of performance models.

USRA Tool family [191] collects and combines information of parallel pro-
grams from various sources at level of subroutines and loops. Information is
stored in flat files which further be saved in a format understood by spread-
sheet programs. APART working group [1] proposes the performance-related
data specification however it does not address the implementation issues [83].
In [144], information about each experiment is represented in a Program Event
and techniques for comparison between experiments are done automatically.
A prototype of Program Event has been implemented in Paradyn. However,
it does not provide a data repository

Previous approaches have many limitations. For example, using file repos-
itory to store performance data [191] does not provide a better infrastructure
for storing, querying and exporting performance data. The lack of capability
to export and share performance data has hindered external tools from using
and exploiting data, e.g. in [145]. APART does not provide system-related
data which is useful for correlation analysis between application- and system-
specific metrics. Therefore, there is a need to develop a novel experiment
data repository. Our work is stimulated by APART performance-related data
model but we extend that model in several dimensions as well as we provide
a robust implementation.

2.3.2 Semantic Representation for Performance Data

The Pablo Self-Defining Data Format (SDDF) [29] is a data description lan-
guage that specifies both data record structures and data record instances.
Few schemas are proposed for representing performance data such as APART
[83], SCALEA [245] and Prophesy [235]. However, these approaches are tool-
specific rather than widely-accepted data representations. Moreover, it is dif-
ficult to extend database schema structure to describe new resources, covering
new performance metrics.

The Global Grid Forum (GGF) Network Measurements working group
has created an XML data schema which provides a model for network mea-
surement data [106], but not for applications. Similarly, GLUE schema [237]
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defines a conceptual data model to describe computing and storage elements
and networks. In [73], ontology has been applied for improving the seman-
tic expressiveness of network management information and the integration of
information definitions specified by different network managements. None of
these schemas models concepts of application experiments.

Our approach to describe the semantics of performance data is based on on-
tology by using OWL (Web Ontology Language) [188]; OWL can express data
in a high semantic level. The data models in the above-mentioned approaches
do not support knowledge discovery via inference whereas the ontology model
does. Therefore, building a reasoner on that models is more intensive work,
difficult and costly. Different from the above-mentioned schemas, our ontology
focuses on representing performance data of both applications and resources.
The modeled objects in GGF and GLUE schema are quite generic for re-
source objects, e.g. networks and computational nodes, thus vocabularies and
terminologies of these schemas can be incorporated into our resource-related
ontology.

CIM [66] is a very generic model for describing overall management infor-
mation in a network/enterprise environment. Our work is different as we are
focusing on describing performance data using existing models such as OWL.

Recent work in [233] describes how ontology can be used for matching re-
source in the Grid. That confirms that an ontology for describing performance
data of both computational resources and applications can be a useful tool
which can be used to provide performance data for matching resources in the
Grid.

2.4 Performance Analysis for Parallel Programs

Over the past few years, numerous performance analysis tools have been de-
veloped to assist application developers to analyze the performance of their
applications on SMP clusters. These tools fall into two categories: tracing an-
alyzers, e.g. [272, 204, 279, 179, 221, 268, 196] and profiling analyzers, e.g.
[260, 221, 6, 170]. In this section, we discuss our related work with respect to
distinct features of our analyses.

2.4.1 Overhead Analysis for Parallel Programs

Overhead analysis is a powerful conceptual tool in understanding the perfor-
mance behavior of parallel programs. Overheads associated with parallelism
are classified into temporal and spatial overheads. Temporal overhead has an
impact on the execution time of a program whereas spatial overhead influences
demands on memory.

Temporal overhead, defined based on Amdahl’s law [25], is the difference
between achieved and optimal parallelization. It is important to determine
which factors cause the temporal overhead in which part of the code. Based



2.4 Performance Analysis for Parallel Programs 17

on that, further tuning techniques can be applied in order to improve the
performance of parallel programs. Overhead analysis is powerful because it not
only provides the programmer insights about the performance characteristics
of programs but also reveals why the programs behave poorly.

The approach of using overhead analysis for performance analysis is not
new. Crovella et al. called temporal overhead as lost cycles [68]. They catego-
rized overhead into Load Imbalance, Insufficient Parallelism, Synchronization
Loss, Communication Loss, and Resource Contention. Bull then proposed a
classification of temporal and spatial overheads [52]. Bull’s classification of
temporal overheads is designed to meet criteria proposed by Crovella et al.
Temporal overheads are classified into: Information Movement, Critical Path,
Control of Parallelism, Additional Overhead, and Unidentified Overhead.

FINESSE [178] is a prototype environment designed to support rapid
development of parallel programs for single-address-pace computers. Perfor-
mance is interpreted in terms of the extra execution time associated with a
small number of categories of parallel overhead including Version cost, Un-
parallelized code cost, Load imbalance cost, Memory access cost, Scheduling
cost, Unexplained cost. FINESSE determines improvements in performance
relative to either a base reference implementation or a previous version in the
performance improvement history.

OVALTINE [35] is a tool that automates the determination of the over-
heads of a given OpenMP implementation with respect to a given sequential
implementation. Currently OVALTINE supports only Fortran 77 source files.
OVALTINE uses the classification described in [52] for the overhead analysis.

A speedup component model for shared-memory parallel programs is pre-
sented in [149]. The speedup component model categorizes overhead factors
into several main components: memory stalls, code overhead, thread manage-
ment, and computation overhead.

Previous overhead classifications [52, 68] do not cover various ranges of
programming paradigms such as OpenMP, MPI and mixed parallel programs.
They do not exploit overheads specifically bound in these parallel programs.
There is a lack of connection between overhead classification and instrumen-
tation in these tools. They normally treat the instrumentation as a different
aspect. In performance analysis phase, these tools analyze performance over-
heads, however, the performance analysis of these tools does not instruct their
instrumentation systems to collect and measure only performance overheads
of interest for selected code regions.

2.4.2 Search and Filter Performance Data

Whereas there exist performance tools that provide bottleneck search capabil-
ities [55, 86], another issue is that most existing performance tools lack basic
search and filter capabilities. Commonly, the tools allow the user to browse
code regions and associated performance metrics through various views of
performance data. For example, tools such as [279, 109] provide numerous
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displays including process time-lines with zooming and scrolling, histograms
of state durations and message data. Those views are crucial but mostly re-
quire all data to be loaded into the memory, eventually making the tools
in-scalable. Moreover, the user has difficulty in finding out the occurrence of
events with interesting criteria of performance metrics, e.g. code regions with
overhead of data movement [244] larger than 50% of total execution time.
Search of performance data will allow the user to quickly identify interesting
code regions. Filtering performance data being visualized helps to increase the
scalability of performance tools. Utilizing a data repository allows us to power
the archive, to facilitate search and filter with great flexibility and robustness
based on SQL language, and to minimize the implementation cost.

2.4.3 Multi-Experiment Analysis

Most performance tools investigate the performance for individual experi-
ments one at a time, e.g. [172, 167, 179, 204, 258, 82].

Karavanic et al. presented techniques for the quantitative comparison of
several experiments, and performance diagnosis based on dynamic instrumen-
tation [144]. Performance analysis is done automatically for every experiment
based on historical data [143].

Recently, Song et al. presented an algebra which can be used to compare,
integrate, and summarize performance data from multiple sources [226]. The
algebra supports arithmetic operations to merge, subtract and average per-
formance data from different experiments.

2.4.4 Soft Performance Analysis

Soft computing has been widely applied in industrial electronics, automotive
systems and manufacturing, intelligent robotic systems, decision-support sys-
tems, system engineering monitoring, etc2. Fuzzy logic has recently been used
in performance monitoring of parallel and distributed program, e.g. to make
sure applications running under performance contracts [263], adaptive control
of distributed application [207]. However, soft computing, especially fuzzy
logic, has not been exploited in data analysis techniques, e.g., performance
classification, performance search, of existing performance analysis tools for
parallel and distributed programs.

We propose and develop a set of techniques for performance analysis of
parallel programs; the techniques are based on soft computing. In our ap-
proach, we use fuzzy logic to develop a concept of performance score and
we introduce a concept of performance similarity based on similarity theory.
Several soft techniques for performance analysis are proposed and developed,

2 see series Studies in Fuzziness and Soft Computing published by Springer
(http://www.springeronline.com).
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such as fuzzy-based classification, fuzzy-based performance search, similarity
analysis, fuzzy clustering analysis and fuzzy rules for reducing data.

The APART working group introduces the concept of performance prop-
erty [83] that characterizes a specific negative performance behavior of code
regions. However, performance property is associated with a single perfor-
mance metric. A performance property cannot represent a set of performance
metrics. Instead, performance properties can be grouped into a collection, as
discussed in [87]. However, there is no concept of weight operator associated
with performance properties. A set of performance properties is just a collec-
tion with simple operators, e.g. min and max. Our performance score is based
on theory of fuzzy logic. Fuzzy logic also allows the representation of fuzzy
concepts, such as near and very, which cannot be found in performance prop-
erties. In addition, performance score can be computed based on linear and
non-linear model with various membership functions where performance prop-
erty is computed based on linear model (mostly employ ratio-based schema).

Similarity of profiling data has been used in guiding adaptive compilation
[150]. However, it applies only profiling data in a run that aims to provide in-
formation for optimizing code in compiler. In [56] dispersion statistics is used
to characterize the load imbalance by measuring the dissimilarity of perfor-
mance metrics. Performance metrics are normalized by measuring deviation
from a mean value of a data set. Dissimilarity is characterized based on Eu-
clidean distance of normalized metrics. Our similarity measure is based on
normalized metrics which are computed based on fuzzy logic and normalized
into the range [0, 1]. Our similarity measure can be applied for code regions
(e.g. load imbalance) and for experiment factors.

Recent work has focused on developing scalable analysis methods for per-
formance analysis. Vetter presented classification based on machine learning
that has been used for classifying performance characteristics of communica-
tion in parallel programs [261]. Ahl and Vetter used multivariate statistical
techniques on hardware performance metrics to characterize the system [22].
They also evaluated the use of clustering and factor analysis to extract per-
formance information. However, only joining (tree) and k-means clustering
are examined. They do not deal cases in which multiple variables with dif-
ferent scales and weight factors. In [211], statistical analysis is used to study
different factors that affect the mapping process of scientific computing algo-
rithms to advanced architectures. The use of design of experiments, analysis
of variance (ANOVA) correlation and subset feature selection has applied to
performance data to reveal the relationship between high-level abstracts to
low-level performance information.

In TAU, simple rules have been used to reduce the volume of tracing data
[166]. The rules support the specification of simple conditions in the form of
crisp expressions of performance metrics that can exclude some important
data. As the user usually has no priori knowledge about the experiment, soft
conditions for filtering data are more suitable.
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Existing techniques are based on crisp and numerical analysis, employing
some machine learning techniques, but not fuzzy logic and the combination
of the two. They do not consider cases in which multiple variables with dif-
ferent scales and weight factors. Our work differs from existing techniques as
we use fuzzy logic to represent performance data with different scales and dif-
ferent weight factors. We focus on exploiting soft computing techniques, e.g.
fuzzy logic, machine learning and the combination of the two, to provide soft
techniques to classify, search and analyze performance data. Our work com-
plements existing scalable and intelligent methods for performance analysis by
introducing a new set of fuzzy-based analysis techniques to the performance
analysis of parallel and distributed programs.

2.5 Performance Monitoring and Data Integration
Middleware for the Grid

Recently, work that exploits peer-to-peer (P2P) features for Grid computing
has shown many advantages, e.g. in [129, 232, 133]. However, P2P techniques
have not been exploited in Grid monitoring middleware.

Over the past few years, numerous Grid monitoring and performance tools
have been developed, as studied in [104]. Several existing tools are available
for monitoring Grid computing resources and networks, e.g. MDS (also known
as GRIS) [70], NWS [269], GridRM [31], Gangila [168], GDMonitoring [65].

Grid Monitoring Architecture (GMA) [30] proposal of Global Grid Forum
(GGF) [107] describes the major components of a Grid monitoring architec-
ture and their essential interactions. GMA provides standard terminology and
describes a specification to support the development of interoperable moni-
toring tools for the Grid. The DataGrid3 has developed a Relational Grid
Monitoring Architecture (R-GMA) [19] for distributed resources. R-GMA ex-
poses a relational database model with SQL support to provide static as well
as dynamic information about Grid resources.

Network Weather Service (NWS) [269] is a generalizable and extensible
facility designed to provide resource performance forecasts in metacomput-
ing environments. NWS provides a set of system sensors, such as CPU and
network sensors, that periodically monitors and dynamically forecasts the
performance of various networks and computational resources.

JAMM Monitoring System [241] is an automated agent-based architecture
to support monitoring data about computer systems. JAMM provides sensors
wrapping common utilities such as netstat, iostat and vmstat. JAMM lacks
support for application monitoring and performance analysis.

Ganglia [168] is a monitoring system targeting to wide area cluster. Ganglia
is comprised of two components: Gmon for local-area monitoring and Gmeta
for wide-area system. At the cluster level, Gmon uses UDP multicast protocol

3 http://eu-datagrid.web.cern.ch/eu-datagrid/
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to monitor state within a single cluster. Gmons are organized into hierarchical
monitoring tree by using Gmetas. A Gmon communicates with its Gmeta by
using XML streams atop TCP connections. Ganglia stores monitoring data
in time-series databases based on RRD (Round Robin Database) [3]. With
Ganglia, however, it is difficult to construct the tree hierarchy because Gmeta
needs a priori knowledge of other nodes. Ganglia supports a large set of pre-
defined metrics. However, it is not quite sure how monitoring data of (Grid)
applications/services can be published into the middleware.

Mark Baker and Garry Smith present a prototype Grid-site Monitoring
System (GridRM) [31] which is based on three-tier architecture. At each grid
site, a GridRM Gateway is employed to control access to local resource infor-
mation and to provide a mechanism for the user to query the status of remote
resources. GridRM Gateway provides a web client for the user to control and
conduct the monitoring. GridRM Gateway actually accesses information of
resources from other services such as MDS and SNMP. At each Gateway, a
relational database is employed to store resource monitoring information and
general site metadata.

2.6 Performance Analysis of Grid Workflow-based
Applications

NetLogger [240, 118] is a distributed application, host and network logger.
However, application sensors have to be instrumented manually. NetLogger
supports only post-mortem analysis of applications based on event traces.

GRM [196] is a semi-on-line monitor that collects information about an
application running in a distributed heterogeneous system and delivers the
collected information to the PROVE visualization. The application is manu-
ally instrumented by inserting C functions. On the host where the application
processes are running, a local monitor is used to handle trace data recorded
by application sensors and stored in shared memory buffer. The local monitor
will send trace data to the main monitor when the shared memory buffer is
full. PROVE conducts off-line or semi-online analysis based on data provided
by the centralized main monitor of GRM.

Autopilot [207] is a distributed performance measurement and resource
control system that is based on the Pablo toolkit [204]. Autopilot’s sensors
are embedded in a program prior to program execution to collect and mea-
sure performance data. Autopilot’s actuators are used to enable and configure
application behavior and resource management policies. An Autopilot Man-
ager is used to maintain information about available sensors and actuators,
and their associated properties. Autopilot also captures various system per-
formance statistics on a set of machines. Performance data is stored in Self-
Defining Data Format (SDDF) files.

OCM-G [34] is an infrastructure for Grid application monitoring which
uses OMIS [165] as a communication interface. Application monitor embedded
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in the monitored application collects performance data and passes the data
to a local monitor which resides on each node. A service manager is used to
control several local monitors. One of service managers named main service
manager is used to hold collected information about the whole application.

G-PM [50] is a performance analysis tool targeting to interactive Grid ap-
plication. G-PM allows the user to conduct the performance analysis online
during the execution of the application. However, application code is instru-
mented only by linking with wrapper libraries consisting of probes used to
collect performance data. Instrumentation code can be activated or deacti-
vated by controlling conditional variables. G-PM uses OCM-G as its based
Grid monitoring system.

None of aforementioned systems provides OGSA-capable services. They
support monitoring and performance analysis of scientific applications, but
workflow-based applications, executed on the Grid.

Monitoring of workflows is an indispensable part of any WfMS (Workflow
Management System). Therefore it has been discussed for many years. Many
techniques have been introduced to study quality of service and performance
models of workflows, e.g. [148, 58], and to support monitoring and analysis
of the execution of the workflow on distributed systems, e.g. in [212, 21].
Our work and existing work share many general concepts of performance
metrics of and monitoring techniques for the workflow in distributed systems.
However, existing work concentrates on business workflows and Web services
processes. Little effort has been spent on studying performance metrics and
on monitoring and analyzing the performance of scientific workflows executed
on Grids which are more diverse, dynamic and inter-organizational.

Most effort on supporting the scientist to develop Grid workflow-based
applications is focused on workflow language, workflow construction and exe-
cution systems4, but not concentrated on monitoring and performance anal-
ysis of the Grid workflows. P-GRADE [142] is one of few tools that supports
tracing of workflow applications. Instrumentation probes are automatically
generated from the graphical representation of the application. It, however,
limits to MPI and PVM applications.

2.7 Summary

Classification of temporal overhead and techniques to explain performance
problems for shared and distributed memory parallel programs have not been
fully investigated for new programming paradigms such as hybrid parallel
OpenMP/MPI. Creating a performance tool that provides customizable in-
strumentation and measurement system, which can be precisely controlled by
user to specify code regions of which performance metrics should be deter-
mined, has not been investigated. Most of current tools lack conceptual and

4 e.g., see Scientific Workflows Survey at http://www.extreme.indiana.edu/swf-
survey/
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systematic organization for performance-related data representation. In addi-
tion, performance data sharing and tool integration have not been focused.
The performance analysis still is a daunting task because of the lack of support
of performance search and multiple experiments analysis.

Current techniques in existing performance analysis tools have mainly been
used to process the performance data that are in the form of precise numerical
and measurement-based data. These techniques apply exact analysis methods
that result in exact conclusions about performance characteristics of applica-
tions. Moreover, performance tools based on numerical analysis interact with
the user through complex numerical values which are not easily understood
by the user.

Most existing Grid monitoring tools are separated into two distinct do-
mains based on what they are monitoring: Grid infrastructure monitoring
and Grid application monitoring. The lack of combination of two domains in
a single system has hindered the user from correlating measurement metrics
of various sources at different levels when conducting the monitoring and per-
formance analysis. In addition, most existing Grid monitoring tools focus on
the monitoring and analysis for Grid infrastructure; yet little effort has been
done for integrating and analyzing performance data of Grid applications.

Although existing Grid monitoring tools have monitoring sensors operat-
ing in a distributed manner, these tools do not focus on the interoperability
among sensor networks and the self-organization within them, and support
limited types of sensors. Mostly they support only event-driven sensors. Sen-
sor managers are configured into tree of point-to-point connections; or di-
rectory services, supporting discovery of data and sensor managers, do not
interact with each other. Currently data discovery and DQS (data query and
subscription) are mostly based on hierarchical or centralized models. How-
ever such models do not work well with more dynamic, large-scale distributed
environments in which the structure of resources frequently changes.

To date, most existing Grid performance analysis tools are not based on
Grid service-oriented model because most of them are originally designed for
and targeted to conventional parallel and distributed systems (e.g. clusters,
SMP machines). As a result, these performance analysis tools do not well ad-
dress challenges in Grid environments such as scalability, online analysis and
security. There is a lack of suitable tools that support dynamic instrumenta-
tion for Grid applications and performance analysis of Grid workflow-based
applications.
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Model

3.1 Introduction

Before we begin to expose our techniques and methods in detail, we present
a few preliminaries. First, we describe parallel architecture models and the
programming paradigms on these models. Second, we describe the Grid com-
puting and the workflow-based applications executed on the Grid.

We present the concept of code regions and the classification of code re-
gions. We introduce a novel representation for code regions named dynamic
code region call graph (DRG). The DRG reflects the dynamic relationship be-
tween code regions and its subregions and enables a detailed overhead analysis
for every code region. We outline performance experiment model and perfor-
mance metrics used in the rest of this dissertation.

3.2 Parallel Architecture Models

Traditionally, computer organizations are categorized based on Flynn’s Tax-
onomy [91]. Flynn’s classification is based on programming models used on
different machines and includes four categories named SISD, SIMD, MISD
and MIMD.

• SISD (Single Instruction, Single Data): In this type, machines have one
CPU and thus can only execute one instruction stream serially.

• SIMD (Single Instruction, Multiple Data): In this type, machines have
a large number of identical processors. All the processors simultaneously
execute same instruction, in lock-step, on distinct data streams.

• MISD (Multiple Instructions, Single Data): In this type, machines theoret-
ically execute multiple instructions on a single data. However, no machines
of this type have been built.

• MIMD (Multiple Instructions, Multiple Data): In this type, machines ex-
ecute several instruction streams in parallel on different data streams.
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However, presently parallel systems are normally classified into shared mem-
ory systems and distributed memory systems based on the memory organiza-
tion of these systems [259].

• Shared Memory Systems: have multiple CPUs which share the same ad-
dress space. Shared memory systems can be SIMD or MIMD. Examples
of this type are SMP (Symmetric Multi-Processor), PVP (Parallel Vector
Processing).

• Distributed Memory Systems: have multiple CPUs and each CPU has its
own associated memory. The CPUs are connected by interconnecting net-
works. Distributed memory systems can be SIMD or MIMD. Examples of
this type are MPP (Massively Parallel Processing) and Clusters.

In the following we briefly discuss SMP, MPP and cluster model, which
are the architectures that we support. More detail of parallel machines can be
found in [69, 194, 186, 53, 259, 131, 156, 198].

3.2.1 Symmetric Multi-Processor Machine

Symmetric Multi-Processor (SMP) machines [69] are characterized by tightly-
coupled series of identical processors that share common memory modules. As
depicted in Figure 3.1, in the SMP architecture, all processors and memory
modules are linked through an interconnect, typically a bus, crossbar, or mul-
tistage interconnect [69]. In practice, each processor of SMP machine may
have its own local cache or the shared-memory has the hierarchical form. In
the SMP architecture, memory access time is the same on all processors.

As each processor can directly access to all memory, the SMP architec-
ture directly supports the globally shared address space programming model.
Processes exchange data and coordinate with each other through reading and
writing the shared address space. Message passing programming model is also
supported on SMP architecture but through the use of system software that
implements send/receive operations on top of read/write operations.

P PP P

MEMORY IO

Interconnect

MEMORY

Fig. 3.1. SMP machine model.

The SMP architecture is increasingly widely used for a wide range of ma-
chines, from mid-range machines with few processors to supercomputers with
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hundreds of processors1. One of the main reasons is that while SMP provides
high throughput and performance through multiprocessing, it is relatively
straightforward to develop parallel programs on the SMP architecture. Fur-
ther information about SMP machines can be found in [69, 259].

3.2.2 Massively Parallel Processing Machine

Massively Parallel Processing (MPP) machine [198], also known as multicom-
puter [96], has a distributed-memory multiprocessor architecture. Figure 3.2
illustrates MPP machine model. MPP machine comprises a number of nodes,
each node is a computer containing a CPU and memory; nodes are linked by
an interconnect. The structures of interconnecting network of MPP normally
employ hypercube, flat tree, or 2-D/3-D mesh topology [259].

In MPP model, a processor of a node cannot directly access to memory in
another node. Nodes communicate with each other by sending and receiving
messages over the interconnect. In the ideal interconnect, communication time
between two nodes is independent of node locations. Obviously, memory access
time on local memory (in the same node) is much smaller than that on non-
local memory (in different node).
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Fig. 3.2. MPP machine model.

1 The number of processors of most SMP machines is smaller than 100.
An example of SMP machines with more than 100 processors is Fujitsu
PRIMEPOWER 2500 whose maximum number of processors is 128 (see
http://www.fujitsu.com/global/services/computing/server/unix/enterprise/pw2500).
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Due to their loosely couple model, MPP systems normally have more pro-
cessors than SMP ones. This makes MPP systems become the choice for large-
scale parallel computers. Further information about MPP machines can be
found in [198, 259].

3.2.3 Cluster Model

Clusters offer modest parallel computing systems that can be built using com-
modity computers, e.g. workstations and PCs (Personal Computers), and local
area network (LAN) technology [194, 186, 53]. Gregory F. Pfister defines a
cluster as follows.

Definition 3.1 (Cluster). “A cluster is a type of parallel or distributed sys-
tem that (i) consists of a collection of interconnected whole computers, (ii)
and is utilized as a single, unified computing resource”. [194]

Interconnecting Network

Compute Node

Compute Node Compute Node Compute Node Compute Node

Front-end Node

Compute Node Compute Node Compute Node

Fig. 3.3. Model of a cluster machine.

The cluster, illustrated in Figure 3.3, is a distributed memory parallel
system. Normally, each cluster provides a special node called the front-end
node. The user uses the front-end node to edit programs, to compile code,
to submit jobs, etc. The outsider views and utilizes the cluster as a single
computing resource. The cluster model requires additional system software to
aggregate network of compute nodes onto a virtual unified parallel computer;
these software basically provide (1) utilities for initializing and starting paral-
lel applications on nodes of the cluster, and (2) a library (e.g. message passing
system) used by parallel applications to exchange data between cluster nodes
[194, 259].

Cluster and MPP systems are similar as both have distributed memory
architecture. However, they differ in (i) the interconnect between processors
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and (ii) architecture of nodes. The interconnect in MPP systems is high band-
width and low latency while the interconnecting network in clusters normally
is based on commodity LAN technologies. Both MPP and cluster systems
normally have off-the-shelf processors. However, usually not all MPP nodes
have complete I/O resources and MPP nodes normally do not have complete
conventional operating system facilities, but a specific customized operating
system. Cluster nodes normally have a completed and conventional operating
system.

An SMP cluster is a special type of cluster systems in which nodes are
SMP machines. The architecture of SMP cluster fosters the hybrid parallel
programming models that expose both message passing and shared memory
models. The emerging programming trend on SMP clusters is to combine
message passing and shared memory. For instance, MPI is used for commu-
nication between SMP nodes, and multi-thread or OpenMP is used between
processors within an SMP node.

More detail of cluster systems can be found in [194, 186, 53, 259].

3.3 Parallel Programming Models

Our framework supports a variety of parallel programming models including
OpenMP, MPI, HPF+ and hybrid parallel models including OpenMP/MPI
and HPF+/OpenMP. In this section, we briefly describe these programming
models. Further detail of these parallel programming models can be found in
[266, 61, 225, 96, 115, 127].

3.3.1 Shared Memory with OpenMP

The shared memory programming model exploits the parallelism in shared
memory multi-processor in a portable way. The most well-known standard
established by the industry is OpenMP (Open Multi-Processing) [266, 61].
OpenMP is a parallel programming model for shared memory and distributed
shared memory on multi-processor. OpenMP works in conjunction with ex-
isting languages, such as C/C++, Fortran and Java, by introducing a set
of directives for specifying the shared memory parallelism in source codes, a
small set of runtime library routines, and environment variables.

OpenMP uses the fork-join model of parallel execution [47, 61]. Figure 3.4
shows the execution model of OpenMP programs described in the OpenMP
specification [47]. An OpenMP program begins execution as a single-threaded
process, referred to as the master thread. The master thread executes sequen-
tially until it encounters a parallel construct. Before executing the parallel
construct, additional threads will be created and all threads form a team of
threads with the master thread as the master of the team. Threads in the team
execute, in parallel, all program statements enclosed by the parallel construct.
At the end of the execution of the parallel construct, the threads in a team
synchronize and only the master thread continues the execution.



30 Model

FORK

JOIN

Master thread executes sequentially

Master thread continues
execution. Slave threads
disappear

Master thread encounters a parallel
construct and creates a team of threads

 At the end of the parallel construct,
Threads in the team synchronize,
terminate, leaving only the master
thread.

  The statements in the program that are
enclosed by the parallel construct are
executed in parallel by each thread in
team.

Fig. 3.4. Execution model of OpenMP programs described in [47].

3.3.2 Message Passing with MPI

In the message passing model [225, 96, 115], each process has a private address
space that cannot be accessed by other processes. A process has to commu-
nicate explicitly with other processes in order to exchange the data and to
coordinate the work. Communication is performed through send/receive op-
erations and both sender and receiver processes are involved explicitly. The
sender has to know and specify to whom it sends data. Normally, data is
packed at the sender side and unpacked at receiver side because the data is
exchanged on heterogeneous systems.

The Message Passing Interface (MPI) [225, 115, 124] currently is the most
widely supported and used standard for programming of distributed memory
parallel systems in message passing models. MPI is also currently used for par-
allel programming on shared memory systems and hybrid shared/distributed
memory systems. We mostly use MPICH [114], a portable implementation of
MPI, in our performance experiments. MPICH supports message passing via
sockets or shared memory. Other MPI implementations, e.g. LAM [7], are also
working well with our tools.

3.3.3 Hybrid Parallel Paradigm with OpenMP/MPI

Figure 3.5 shows the execution model of a generic process in a hybrid parallel
program. The process executes a program which is subdivided into sequential
and parallel regions. A process may dynamically spawn/fork, synchronize, and
terminate threads during execution of the program. All threads of the process
share the same address space. In a sequential region only one thread within the
process is active (executes the code region). In a parallel region several threads
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may be active and execute simultaneously. Threads may be spawned at the
beginning of the program or at the beginning of the parallel region which
is language/implementation dependent. At the end of the parallel region the
active threads may be synchronized (e.g. through a barrier synchronization or
join operation), and only one thread continues to execute the following region;
other threads will either be terminated or turned passive (do not execute a
region but remain alive) at the end of a parallel region. A passive thread
can be turned active in a subsequent parallel region or terminated at the end
of the program execution. Active threads within the same process exchange
data through the shared memory. Exchanging data between different processes
is enabled only between active threads, associated with different processes,
through generic send and receive operations which can be executed in both
sequential and parallel code regions.
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Fig. 3.5. Execution model of a single process in hybrid parallel program.

We support performance analysis for hybrid parallel programs based on
a mixed execution model comprising both distributed and shared memory
parallelism. Our current implementation uses mostly OpenMP as the shared
memory programming language and MPI for message passing.

3.3.4 Data Parallelism and Hybrid Data Parallelism

Data parallelism exploits the concurrency that applies the same operation
to multiple elements of a data. The concept of data parallel programming
originates from SIMD style of programming. The most well-known language
that supports data parallelism features is High Performance Fortran (HPF).
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HPF [127] is a superset of Fortran 90. In HPF the compiler normally
handles the parallelism. The programmer puts directives specifying the data
distribution for the tasks into the source code. The compiler then conducts
the parallelization. Because the HPF compiler hides all the detail of the par-
allelism, in order to capture performance information about parallelized code,
the performance tools have to work closely with the compiler.

HPF+ [40, 39] is an improved version of HPF that provides new features for
an efficient handling of irregular codes. HPF/OpenMP [38] is an extension of
HPF for clusters of SMPs. HPF/OpenMP provides a mechanism for specifying
the hierarchical structure of SMP clusters in HPF programs, mapping data
arrays onto a set of SMP nodes and within an SMP node. Both HPF+ and
HPF/OpenMP have been implemented in VFC compiler [37].

Because the HPF compiler hides all parallel tasks, automatically generated
from high level specifications provided by the developer, from the developer,
the performance of an HPF program depends largely on the capabilities of the
compiler. Therefore, the performance tool should be able to capture perfor-
mance metrics that characterize HPF programs such as sequential bottleneck,
communication costs, etc., by measuring generated HPF code.

We support instrumentation, measurement and performance analysis of
data parallelism programs developed with VFC compiler. In VFC complier,
HPF+ [39] , HPF+/OpenMP code will be translated into Fortran90/MPI and
Fortran90 MPI/OpenMP, respectively. Thus, the execution model of HPF+
and HPF+/OpenMP follow the execution model of MPI and OpenMP/MPI,
respectively, as discussed in Section 3.3.2 and 3.3.3.

3.4 The Grid

The term the Grid [99, 41] was initially used to indicate “Computational
Grid”. Ian Foster and colleagues define Computational Grid as follows.

Definition 3.2 (Computational Grid). “A computational grid is a hard-
ware and software infrastructure that provides dependable, consistent, perva-
sive, and inexpensive access to high-end computational capabilities”. [99]

However, over the past few years, the Grid has been developed and extended
substantially and Grid computing has been applied to a wide range of domains.
As a result, the current Grid is much differently from the meaning of its
initial definition [147]. The basic tenet of the Grid concept is “coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual
organizations” [147]. In an article on ComputerWorld2, Sami Lais defines Grid
computing as follows

2 www.computerword.com
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Definition 3.3 (Grid computing). “Grid computing is a hardware and
software infrastructure that clusters and integrates high-end computers, net-
works, databases and scientific instruments from multiple sources to form a
virtual supercomputer on which users can work collaboratively”. [157]

As stated in [97], a Grid system, which is different from conventional dis-
tributed systems, must have the following properties:

• coordinating resources that are not dependent on and are not controlled
by a centralized authority

• utilizing and providing protocols and interfaces that are standard, suitable
to be used for multiple basic purposes.

• delivering numerous and diverse qualities of service

The Grid computing is commonly illustrated by analogy with a power grid
[99, 199, 63]. When we connect the power plug of a device into an electri-
cal socket, we expect that the device gets the correct electric power without
concern about the actual source of that power. Similarly, a Grid infrastruc-
ture consists of many diverse resources, e.g. computers, networks, database.
A user has access to the Grid in order to get the computing power that the
user needs. However, individual resources of the Grid will not be visible to the
user and the user is not necessarily aware of how the resources are gathered
and assembled. To make this vision become reality, Grid computing must
be based on standards that address the interoperability and integration of
that many diverse resources. Currently, the Open Grid Services Architecture
(OGSA) [93, 94] and the Globus Toolkit [108] play a major role in providing
the necessary framework for building the above-mentioned vision.

3.4.1 Types of Grids

Grids can be categorized based on the type of applications that they support
(e.g, in [113, 135]) or based on the organization of the Grid infrastructure (e.g.,
in [238, 203, 141]). As presented in [113, 135], with respect to the applications
that the Grid supports, three primary types of Grids are computational grid,
scavenging grid, and data grid.

• Computational grid: A computational grid [99] provides high-end compu-
tational capabilities. Most computational nodes in computational grid are
high-end computational machines (e.g. SMP, MPP, Cluster).

• Scavenging grid: A scavenging grid commonly harnesses the available com-
puting power of a large number of personal computers which are usually
available as resources of the Grid when they are not used by their owners.

• Data grid: A data grid [62] is a specialization and extension of the Grid
that aims at providing an integrated infrastructure for housing, accessing
and utilizing large data collections across multiple organizations.
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The peer-to-peer computing model [173] is also considered as another form
of Grid computing [98, 17, 122]. While we do not support the performance
monitoring and analysis of peer-to-peer systems, we exploit ideas and features
of peer-to-peer computing on the design and development of a middleware for
performance monitoring and data integration in the Grid.

3.4.2 Grid Computing Environment Model

Wide area network
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Data
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Grid site
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LAN
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Grid site
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Fig. 3.6. Grid environment model.

Our Grid environment is mainly computational grid, but also mixed with
scavenging grid. Figure 3.6 presents the Grid computing environment model
on which we will conduct the performance monitoring and analysis. A Grid
environment is viewed as a set of Grid sites.

Definition 3.4 (Grid site). A Grid site is comprised of a set of grid services,
within a single organization that is utilized as a single, unified computing
service.

A Grid site consists of a number of computational nodes (or hosts, computers)
that share the same security infrastructure. Computational nodes in a Grid
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site exchange data with each other through a local network and are utilized as
a single, unified computing resource. Computational nodes in a Grid site are
controlled by a single resource management service. A computational node can
be any computing platform, from a single processor workstation to an SMP
to an MPP system. A Grid site may contain only a single computational node
or may consist of a cluster.

Each computational node may have single or multiple processor(s). On
each computational node, multiple application processes execute, each process
may have multiple threads of execution.

Grid sites exchange data with each other through a, mostly wide area, net-
work. The user may reside in one of Grid sites or in a different site. Depending
on a particular configuration of a Grid site, a computational node of that Grid
site may or may not directly communicate with another computational node
within another Grid site.

With respect to the organization of a Grid, our Grid site is similar to
IntraGrid [203, 141], InfraGrid [141] or Cluster Grid [238].

3.4.3 Open Grid Services Architecture

The evolution of the Grid has been a continuous process. The current genera-
tion of the Grid [209] follows the service-oriented approach [190, 132, 154, 264].
A service-oriented Grid is an important move because the service-oriented
approach aims to achieve the interoperability and integration, which are key
issues of the Grid, among distributed applications. The Open Grid Services
Architecture (OGSA) represents an evolution towards a Grid system archi-
tecture that is based on Web services concepts and technologies [154, 264].
In OGSA, the Grid is considered as a set of Grid services. A Grid service in
OGSA is defined as follows.

Definition 3.5 (Grid service). “A Grid service is a Web service that pro-
vides a set of well-defined interfaces that follows specific conventions. The
interfaces address discovery, dynamic service creation, lifetime management,
notification, and manageability; the conventions address naming and upgrad-
ability”. [94]

In OGSA [94], the interfaces, or portTypes in WSDL (Web Service Description
Language) terms [14], address:

• Discovery: provides mechanisms for discovering available services and de-
termining the characteristics of those services.

• Dynamic service creation: provides mechanisms for dynamically creating
and managing new service instances. A new service instance can be created
by a factory service.

• Lifetime management: provides mechanisms for handling the fault toler-
ance of services.

• Notification: provides mechanisms for services to notify each others asyn-
chronously of interesting changes of state.
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• Manageability: addresses authorization, policy management, monitoring
and management of Grid service instances.

The conventions address version management and compatibility between ser-
vices. Details of OGSA can be found in [94].

As the Grid is moving towards service-oriented architecture, and with the
proliferation of service-oriented Grid middleware and applications, monitoring
and performance analysis tools for the Grid should be Grid service-based as
well. Grid performance analysis tools based on Grid service not only can
smoothly access and monitor Grid services and be easily deployed in the
Grid environments but also are easily being integrated in and interoperated
with other Grid tools/services. Our Grid performance analysis framework is
OGSA-based.

3.4.4 Globus Toolkit

The current de facto standard middleware for the Grid is the Globus Toolkit
(GT) [108]. GT provides fundamental services to securely access and to man-
age distributed shared resources. Three main services of the GT are:

• Grid Security Infrastructure (GSI): provides security for the Grid that is
based on public key infrastructure.

• Grid Resource Management (GRAM): provides mechanism to submit and
execute jobs onto remote resources.

• Grid Information Service (GIS), also known as MDS (Monitoring and Dis-
covery System): provides facilities for discovering the available resources.

3.5 Grid Workflow-based Applications

Grid programmers face many difficulties in developing Grid applications due
to the very dynamic and diverse nature of the Grid. Grid programmers have
to manage the computation in “an open-ended, heterogeneous, and dynamic”
environment and to design “the interaction between remote services, data
sources, and hardware resources” [54]. Moreover, Grid programmers suffer
from the lack of high-level development tools, e.g., performance monitoring
and analysis.
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Fig. 3.7. Grid programming models and tools (based on [54]).
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Figure 3.7 presents current programming models used in the Grid, as sur-
veyed in [54]. While existing Grid applications are built by using the cur-
rent programming tools, yet the open question is which programming models
suited for the Grid because it seems that the current tools and languages
are insufficient to support the effective development of Grid applications [54].
This situation requires strong research efforts in the design of programming
models and languages supporting the development of Grid applications.

Meanwhile, there is a growing trend on using workflow-based applications
on the Grid [164, 155, 236, 74]. Workflow applications currently represent the
most interesting class of Grid applications that are truly distributed: using
multiple Grid sites for a single application execution at the same time. The
workflow, on the one hand, exploits the coarse-grained computing model on
which activities (tasks), executed on different resources in Grid sites, can
interact together in order to solve a particular problem. On the other hand,
an activity of a workflow can exploit various fine-grained parallelism, by using
OpenMP, MPI, etc., on a Grid site. Grid workflow applications raise a lot
of interest in the Grid community to further increase the class of potential
applications for the Grid. However, the Grid workflow community suffers from
the lack of the supportive tools, e.g. performance monitoring and analysis, and
of the workflow programming environments that integrate these supportive
tools. We therefore focus on performance monitoring, instrumentation and
analysis of Grid scientific workflows. In the following section, we describe the
two basic concepts behind our supporting Grid workflows: workflows in the
Grid and scientific workflows.

3.5.1 Workflows in the Grid

The concept of workflow has been widely used in the business community.
The Workflow Management Coalition [13] defines the workflow in the context
of business as follows.

Definition 3.6 (Workflow). “Workflow is the automation of a business pro-
cess, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of pro-
cedural rules”. [13]

A Grid workflow can be defined as an automation of a process in the
Grid. There are two major differences between Grid workflows and business
workflows: (i) a Grid workflow is not limited to a business process, and (ii)
a Grid workflow runs on the Grid. These differences rise many challenges to
the performance monitoring and analysis. The first difference means that the
Grid workflow can be executed in an ad-hoc fashion, not in regular fashion as
normally in business workflows. Therefore, monitoring and analysis tools must
be capable of handling ad-hoc workflows. The second difference poses many
challenges due to the nature of the Grid such as diversity, cross-organization,
and dynamics, just to name a few.



38 Model

• Diversity: the monitoring and analysis tool has to collect and utilize a vari-
ety of types of data. Moreover, the tool must support diverse environments
and must be capable of handling diverse types of applications.

• Cross-organization: the monitoring and measurement have to be conducted
spanning over multiple organizations. Each organization can impose dif-
ferent policies and may have different requirements.

• Dynamics: the resources allocated are frequently changed. Thus, the mon-
itoring and analysis tool has to work on a dynamic manner and has to
cope with the dynamics of both Grid applications and resources.

Conventional production and business workflows are normally executed in
enterprise environments which are less diverse and dynamic than their Grid
counterparts.

3.5.2 Scientific Workflows

Most works in the scientific process are collecting, measuring, generating,
analyzing, and inferring large amounts of heterogeneous data through vari-
ous experiments conducted in the process [12, 64, 265]. Therefore, scientific
workflows [223, 262, 164, 265] are quite different from business counterparts.
Munindar P. Singh and colleagues define scientific workflows as follows.

Definition 3.7 (Scientific workflows). “Scientific workflows describe a se-
ries of structured activities and computations that arise in scientific problem-
solving”. [223, 262]

Different from production and administrative business workflows, in which
the business processes are usually predefined and executed in a routine fashion,
scientific workflows are normally more flexible and diverse3. Scientific work-
flows normally connect a variety of scientific analysis tools executed on diverse
computational environments. Another aspect is that applications in scientific
workflows are typically high-computation demand and performance-oriented.
Therefore, performance monitoring and analysis of scientific workflows and
applications within the scientific workflows are important tasks.

3.5.3 Modeling Workflows and Mapping Workflows onto Grid
Environments

A workflow (WF) consists of WF constructs. Each WF construct consists of
a set of activities. WF constructs can be fork-join, sequence, do loop, etc.
More details of existing WF constructs can be found in [20]. Each activity is
associated with one or multiple invoked application(s). Invoked applications
can be executed in sequential or parallel manner.

Currently, in our performance monitoring and analysis, we focus on scien-
tific workflows modeled as Direct Acyclic Graph (DAG) workflows.

3 see [265, 110] for detailed differences between scientific workflows and business
workflows
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Definition 3.8 (Workflow model). A workflow is modeled by a Directed
Acyclic Graph (DAG) WF = (N, E), where N is the set of workflow activities
and E is the set of directed activity dependencies. A node a ∈ N represents
an activity (task), a directed edge (ai, aj) ∈ E indicates that the execution of
ai must be finished before the execution of aj .

The invoked applications, which perform the processing of particular activi-
ties, of a workflow are executable programs and shell scripts; shell scripts may
call executable programs. The edge represents the control flow only. Data
transfer tasks in the workflow are modeled as activities. Hence, we denote
(ai, aj) as the dependency between activity ai and aj . Let G = (N, E) be a
given DAG and select an arbitrary activity ai. We denote pred(ai) and succ(ai)
as the sets of the immediate predecessors and successors, respectively, of ai.
Formally,

succ(a) = {b ∈ N |∃e ∈ E such that e = (a, b)}

pred(a) = {b ∈ N |∃e ∈ E such that e = (b, a)}

Figure 3.8 presents the execution sequence of a WF. The user submits
a WF to the workflow management system (WfMS) [13]. When executing
a workflow, the WfMS instantiates workflow activities. The WfMS locates
the Grid sites and submits invoked applications of activity instances to lo-
cal schedulers of Grid sites. The schedulers locate computational nodes and
execute processes of the invoked applications on corresponding nodes.
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Execute a workflow
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Execute an application process

Execution of the application
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Execution of the invoked
application completed

Execution of the workflow
completed

Execution of an
application process

Invoked application started

Execution of an
activity instance

Execution of an
invoked application

Execution of a
workflow

Fig. 3.8. Execution model of a workflow.

The WfMS manages the execution of the whole workflow. A WfMS may
consist of several tools and services such as

• Process Definition tool: defines, models and constructs the workflow.
• Scheduling service: locates resources for activities and maps activities onto

that resources.
• Workflow Invocation and Control service: executes activities and controls

the execution of activities.
• etc.
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We collect monitoring data of activities from the Workflow Invocation and
Control (WIC) service. This service knows the state of activities as well as
the resources on which invoked applications of activities are executed.

3.5.4 Workflow Execution Status

WfMS manages the status of activity instances. An activity state represents
internal conditions determining the status of an activity instance [16]. When
an activity instance moves from one activity state to another state, a state
transition happens. The WfMS records the state transition and generates an
activity event that captures information related to the state transition.

Our monitoring and analysis tool will monitor and process information
about activity states and activity events. Activity states and events are used
to build activity execution status graph. We use a directed, acyclic, bipartite
graph to represent the activity execution status graph of scientific workflows
in the Grid.

Definition 3.9 (Activity execution status graph). An activity execution
status graph consists of activity states and activity events of an activity in-
stance in a workflow. Let P be an activity execution status graph. P is a
directed, acyclic, bipartite graph (S, E, A) in which S is a set of nodes repre-
senting activity states, E is a set of nodes representing activity events, and A
is a set of edges representing ordered pairs of activity state and event.

The activity execution status graph, P (S, E, A), may consist of a single
activity state or a single activity event. If a = (x, y) ∈ A, then either
(x ∈ S) ∧ (y ∈ E) or (x ∈ E) ∧ (y ∈ S). The activity execution status
graph is modeled by using the discrete process presented in [227].

Performance analysis for parallel programs and programs as part of work-
flow activities are based on the program structure and a classification of code
regions which are explained in the following.

3.6 Program Structure and Classification of Code
Regions

3.6.1 Program Structure

Our performance analysis supports programs written in imperative languages
such as Fortran, C/C++. In this section we discuss the program structure
based on Fortran concepts and terminologies defined in [92].

Definition 3.10 (Program). A program consists of one or more program
units.
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A program unit, e.g. a function, procedure (subroutine), is usually a sequence
of program statements that define the data environment, the program controls
and the computations. Basically, an execution of a program is a sequence of
actions. Program statements are classified into executable and non-executable
statements. An executable statement performs or controls one or more actions,
e.g., an assignment, a function call. A non-executable statement defines the
program environment in which actions happen, e.g., a variable declaration.
The syntax of a statement in a programming language is defined by the spec-
ification of the corresponding language. An executable construct, e.g. do loop,
if-then-else, while do, for, is built up from executable statements.

3.6.2 Code Region

The basic elements in our analysis are code regions.

Definition 3.11 (Code region). A code region r is a lexically sequence of
program statements of a program unit that is enclosed by two program state-
ments senter and sexit; senter denotes the first program statement of r and
sexit denotes the last program statement of r.

Our instrumentation system can automatically determine typical executable
statements and constructs of interest in program units such as loops, function
calls, the entire program units, etc., and abstract them as code regions. We
call such code regions tool-defined code regions. Another type of code regions
is called arbitrary code region which refers to code regions explicitly defined
by the end-user.

Definition 3.12 (Arbitrary code region). An arbitrary code region r is a
user-defined code region which consists of program statements enclosed by two
arbitrary program statements senter and sexit; senter denotes the first program
statement of r and sexit denotes the last program statement of r.

A program contains a set of instrumented code regions.

Definition 3.13 (Program code region set). A set of (instrumented) code
regions in a program version is represented as CR = {r1, r2, · · · , rn}.

3.6.3 Classification of Code Regions

Code regions normally have some common properties with respect to the
code region type (e.g. a loop or function call) and functionality (e.g. used to
send data or to synchronize processes). In order to support the user to select
code regions and to support the instrumentation and measurement system to
identify potential performance problems occurring in code regions, we classify
code regions into subclasses (categories). At the top level, code regions are
divided into generic code regions and specific code regions, as shown in Fig.
3.9.
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Fig. 3.9. The classification of code regions.

Generic code regions are programming paradigm-independent. Subclasses
of generic code regions are loop, procedure call4, arbitrary code region, etc.
Specific code regions are programming paradigm-dependent code regions
which further are classified into:

• Subclasses of MPI code regions: send, receive, scatter, broadcast, etc.
• Subclasses of OpenMP code regions: parallel, parallel do, critical section,

etc.
• Subclasses of HPF code regions: executor, independent, etc.

A code region class is assigned to a unique code region type which is used
to distinguish code region classes. A subclass of code regions might associate
with certain types of performance overheads. For example, the subclass of code
regions used to send data typically associates with communication overheads.
By classifying code regions in a program, given an interesting performance
metric, the performance analysis framework can determine code regions that
should be instrumented and analyzed in order to obtain that metric.

The current code region classification covers only code regions of invoked
applications that we support. Note that although we support workflows, the
concept of code regions is not associated with workflows, but associated with
invoked applications of workflows. The invoked applications can be sequential,
OpenMP, MPI, HPF programs.

A given code region may associate with one or several types of perfor-
mance problems that need to be determined. In the instrumentation phase,
the instrumentation system will detect potential code regions, map them to
corresponding code region types, and insert probes to collect performance
measurements. In the analysis phase, different code region types will be an-
alyzed differently to compute possible overheads occurred. The list of code
region types can be found in Appendix C.1.

4 Henceforth, we use two terms procedure and subroutine interchangeably.
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3.6.4 Processing Unit

A code region can be executed multiple times during runtime of a program.
A processing unit indicates the context on which the code region is executed.

Definition 3.14 (Processing unit). A processing unit specifies the context
on which a code region is executed. In a parallel application, it is built up
from information of computational node, process, thread in the experiment.
A processing unit pu is a triple (n, p, t) where n, p and t are computational
node, process identifier and thread identifier, respectively. In a Grid work-
flow application, it is built up from information of activity, computational
node, process, thread in the experiment. A processing unit pu is a quadru-
ples (a, n, p, t) where a, n, p and t are activity identifier, computational node,
process identifier and thread identifier, respectively.

Note that the processing unit does not contain information about Grid sites.
We can determine Grid sites based on computational nodes because each
computational node is associated with a Grid site.

3.6.5 Dynamic Code Region Call Graph (DRG)

Every program consists of a set of code regions which can range from a single
statement to the entire program unit. A code region can be, respectively,
entered and exited by multiple entry and exit control flow points (see Figure
3.10). In most cases, however, code regions are single-entry-single-exit ones.

In order to measure the execution behavior of a code region, the instru-
mentation system has to detect all entry and exit nodes of a code region
and insert probes at these nodes. Basically, this task can be done with the
support of a compiler or guided through manual insertion of directives. Fig-
ure 3.10 shows an example of a code region with its entry and exit nodes. To
select an arbitrary code region, the user, respectively, marks two statements
as the entry and exit statements – which are at the same time entry and exit
nodes – of the code region (e.g., by using directives). Through the compiler
analysis, the instrumentation system then automatically tries to determine
all entry and exit nodes of the code region. Each node represents a statement
in the program. Figure 3.10 shows an example of code region with multiple
entry and exit nodes. The instrumentation tries to detect all of these nodes
and automatically inserts probes before and after all entry and exit nodes, re-
spectively. Code regions can overlap each other, however, we at this point do
not support instrumentation of overlapped code regions. Meanwhile we sup-
port mainly instrumentation of single-entry multiple-exit code regions. We are
investigating to support also multiple-entry multiple-exit code regions.
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Fig. 3.10. A code region with several entry and exit points

3.6.5.1 Dynamic Code Region Call Graph (DRG)

A code region is active (active code region) if its execution has begun but has
not yet terminated5. An instrumented (static) code region can be executed
multiple times (each time one activation of the code region is executed) during
runtime of a program. An activation of the code region is also called as a code
region instance.

Definition 3.15 (Code region instance). An execution of a code region r
on a processing unit pu in an experiment e is called a code region instance.

5 In other words, the program execution reaches statements of the code region.
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One activation of an instrumented code region is associated with a code region
stack trace which is our extension version of the program stack trace for
functions [120] to arbitrary code regions (ranging from a single statement to
the entire program unit):

Definition 3.16 (Code region stack trace). A code region stack trace of
a program at an instant of time is the sequence of instrumented code regions
that are active at that time.

A code region stack trace C denoted by C = (crm1
→ crm2

→ · · · →
crmk

) starts with an activation crm1
of the root code region rm1 , followed

by an activation crm2
of code region rm2 executed inside the activation crm1

,
followed by an activation of code region rm3 executed inside the activation
crm2

, and so on. The above definition implies that activations of the same
code region may appear in the same code region stack trace or in various
code region stack traces. For example, a program Q which has a set of code
regions R = {r1, r2, r3, r4} may have three different code region stack traces
at different times as follows:

• c1
r1

→ c1
r3

→ c1
r4

,
• c1

r1
→ c1

r2
→ c3

r3
→ c4

r4
, and

• c1
r1

→ c3
r2

→ c4
r3

→ c5
r4

where r1 is the root code region and cl
ri

→ ck
rj

means that activation numbered
k of code region rj is executed inside activation numbered l of code region ri.
We then define the equivalence relation for code region stack traces:

Definition 3.17 (Equivalence relation for code region stack traces).

Let pnk
rmk

be the activation numbered nk of code region rmk
and q

n′

k′

r′

m
k′

be the

activation numbered n′

k′ of code region r′mk′
. Cp = (pn1

rm1
→ pn2

rm2
→ · · · →

pnk
rmk

) is the code region stack trace which leads to activation pnk
rmk

and Cq =

(q
n′

1

r′

m1

→ q
n′

2

r′

m2

→ · · · → q
n′

k′

r′

m
k′

) is the code region stack trace which leads to

activation q
n′

k′

r′

m
k′

. The stack trace Cp is called equivalent with Cq iff both stack

traces satisfy the following conditions: (i) k = k′, k > 1 and (ii) for all
1 6 i 6 k, rmi

≡ r′mi
.

To clarify the above definition, we consider the above-mentioned example.
The equivalence relation holds for the code region stack trace of activation
c4
r4

and c5
r4

. However, the code region stack trace of activation c1
r4

and c4
r4

do
not fulfill the conditions of the equivalence relation. The key idea is that if
activations of a code region have equivalent code region stack traces, we can
compact them into a record of the data structure representing the calling be-
havior of code regions while still can associate their performance metrics with
their calling context. For example, instead of storing information of activation
c4
r4

and c5
r4

in two separate records, we compact their information into one
record.
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We then extend the code region stack trace into the context of the parallel
program with the assumption that a parallel program has multiple processes,
each process consists of several threads of computation, and the parallel pro-
gram is executed on a set of computational nodes.

Each code region stack trace is associated with a processing unit on which
activations inside the code region stack trace are executed. We can define a
new data structure called dynamic code region call graph (DRG) which is
used to record the calling behavior and performance metrics of code regions:

Definition 3.18 (Dynamic code region call graph(DRG)). A dynamic
code region call graph (DRG) of a program Q with a set of code regions R =
{r1, r2, ..., rn} is defined by a directed flow graph G = (N, E, s) with a set of
nodes N and a set of edges E. A node n ∈ N represents a set of activations of
a code region rk ∈ R which is executed at least once during runtime of Q. The
equivalence relation holds for all code region stack traces of all activations in
n. An edge (n1, n2) ∈ E is a pair of n1, n2 ∈ N where n1 and n2 are a set
of activations of code region rp and rq, respectively and activations in n2 are
executed directly inside activations in n1. The set of activations of the first
code region executed during execution of Q is defined by s.

In one experiment, a parallel program is executed on multiple processing units.
Each DRG of a program is associated with a processing unit. We build a DRG
for a performance experiment by creating a dynamic processing unit graph
(DPG) that includes nodes for computational node, process, and thread. In
a DPG, a thread is a child of a process which is a child of a computational
node. Each DRG of program is then associated with a thread node of DPG
that results in a DRG for a performance experiment. For example, Figure 3.11
shows an excerpt of an OpenMP code together with its associated DRG of
performance experiment.

The DRG is stimulated by the idea of the calling context tree (CCT) [26].
However, the DRG differs from CCT in several aspects:

• A node in the CCT represents for activations at procedure-level whereas
in the DRG a node is defined as a set of activations of an arbitrary code
region (e.g. function, loop, statement, etc.).

• The DRG provides the context of parallel program. Calling context as-
sociates with not only call path of code regions but also computational
calling environments (computational nodes, processes, threads).

Each activation of a code region is associated with a set of measurements.
When constructing a node n of the DRG, measurements of activations in n
will be summarized by aggregated operators (e.g. sum). A node in DRG is
also called a dynamic code region summary.6

Definition 3.19 (Dynamic code region summary). A region summary
rs is used to store performance metric records of region instances of a code

6 Hence region summary refers to dynamic code region summary.
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PROGRAM EXAMPLE;
INTEGER::X, A,N
..
PRINT *, "Input N="
READ *,N
X=0
...
call SISF_START(3)

!$OMP PARALLEL SHARED(X,N),
DEFAULT(PRIVATE)

A =0
call SISF_START(4)

!$OMP DO
DO I=1,N

A =A+1
END DO

!$OMP END DO NOWAIT
call SISF_STOP(4)
call SISF_START(5)

!$OMP CRITICAL
X =X+A

!$OMP END CRITICAL
call SISF_STOP(5)

!$OMP END PARALLEL
call SISF_STOP(3)
...

END PROGRAM
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Fig. 3.11. OpenMP code excerpt with DRG when executing with 4 threads (de-
noted by TCR0−TCR3). Code regions r1, r2 are executed only in thread 0 whereas
r3, r4, r5 are executed in 4 threads. This program is running with 1 process (denoted
by PCR0) on a computational node (denoted by CCR0).

region r in a processing unit pu; the instances must have the same code region
stack trace.

The DRG is used as a key data structure to conduct a detailed performance
overhead analysis under SCALEA (presented in Chapter 5). Note that the
generic timing overhead of a code region r with n explicitly instrumented
sub-regions r1, ..., rn is given by

T (r) = T (Startr) + T (r1) + ... + T (rn) + T (Remain) + T (Endr) (3.1)

where T (ri) is the timing overhead for an explicitly instrumented code region
ri ( 1 ≤ i ≤ n). T (Startr) and T (Endr) correspond to the overhead at the be-
ginning (e.g. fork threads, redistribute data, etc.) and at the end (join threads,
barrier synchronization, process reduction operation, etc.) of r. T (Remain)
corresponds to the code regions that have not been explicitly instrumented.
However, we can easily compute T (Remain) as region r is instrumented as
well.

Call graph techniques have been widely used in performance analysis. Tools
such as Vampir [179], gprof [112, 89], CXperf [126] support a call graph which
shows how much time is spent in each function and its children. In [55] a
call graph is used to improve the search strategy for automated performance
diagnosis. The DRG requires less space than the dynamic call tree (each node
represents a single activation of a procedure) and provides information more
precisely than the dynamic call graph (each node represents all activations
of a procedure). In addition, nodes of the call graph in these tools represent
function calls [89, 126]. In contrast our DRG defines a node as an arbitrary
code region (e.g. function, function call, loop, statement).
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3.6.5.2 Generating and Building the Dynamic Code Region Call
Graph

Calling code region r2 inside a code region r1 during the execution of a pro-
gram establishes a parent-children relationship between executions of r1 and
r2. The measurement library will capture these relationships, build nodes of
the DRG and maintain them during the execution of the program. Each node
in the DRG is represented by a data entry point which contains performance
measurement for all activations whose code region stack traces are equivalent.
An edge (n1, n2) of the DRG is represented by a link from the caller n1 to the
callee node n2. In our implementation, a global pointer per thread is used to
maintain the current node (data entry point) of the sub-DRG of the thread.
The performance measurement of the current activation will be stored into
the corresponding data entry point maintained by the global pointer.

If a new activation of code region r2 starts to be executed inside an activa-
tion of code region r1, the instrumentation library then searches all children
of the current data entry point maintained by the global pointer. If no child
representing activations of r2 is found, then a new data entry point is gener-
ated for recording information of the new activation and an edge linking the
current entry point to the new data entry point is made. Otherwise, there
exists a previous data entry point representing activations of r2; code region
stack traces of these activations are equivalent to that of the new activation.
In this case, the existing data entry point is used to keep information of the
new activation. In both cases, the global pointer is then pointed to the new
or existing data entry point which holds information of the new activation.
When the new activation ends its execution, the data entry point maintained
by the global pointer will be updated with performance measurement. And
then, the global pointer is transfered to the parent of the current data entry
point. If a code region r (e.g. the first code region to be executed) is encoun-
tered that it isn’t child of any other code region, an abstract code region is
assigned as its parent. Every code region has a unique identifier which is in-
cluded in the probe inserted by the instrumentation system and stored in the
instrumentation description file (presented in Section 5.3.4).

The DRG data structure maintains the information of code regions that
are instrumented and executed. Every thread of each process will build and
maintain its own sub-DRG when executing. In the post-processing phase,
the DRG of the entire application will be built based on the individual sub-
DRGs of all threads by processing the profiles/trace files that contain the
performance data of threads.

3.7 Performance Experiments

To conduct the performance analysis of an application, we execute the appli-
cation on various resources and collect performance measurements for analysis
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task. The results of the analysis are used as inputs to various tasks, e.g. per-
formance tuning, parameter study, performance prediction, etc.

Definition 3.20 (Performance experiment). Each run of an application
on a set of given resources is called an experiment.

Each performance experiment is a procedure in which input variables of
an execution of an application are purposefully changed so that we may ob-
serve and identify the corresponding changes in the performance of the ap-
plication by studying the performance measurements of the execution. Figure
3.12 presents the simple black-box model (also known as experiment pro-
cess model) [177, 8] which can be used to describe experiments we will en-
counter in performance measurement and analysis. The application processes
will be stimulated by factors. These factors can either be controlled (such as
problem size or machine settings) or uncontrolled (such as operating system
load). These factors interact with application processes. Measuring execution
of application processes produces performance measurements. These perfor-
mance measurements can be used to analyze the application processes that
we measure. Through the analysis phase, performance metrics that reflect the
performance of the application are produced.

Definition 3.21 (Performance metric). A performance metric reflects the
quantity of some specific performance behavior.
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Fig. 3.12. General model of a performance experiment.

Factors and performance metrics obtained are used to explain the perfor-
mance of the application. The factors and performance metrics are measured,
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collected and analyzed in order to observe and understand how they behave
and relate to each other. Performance data collected in each experiment is
organized into a performance experiment data.

For each performance study, a set of performance metrics (performance
criteria) is selected. Not all metrics in that set can be obtained in the mea-
surement phase. Instead, some metrics will be obtained in measurement phase,
others will be available only after or during the analysis phase. The choice of
performance metrics is an important issue and is a difficult task [137]. We
categorize the performance metrics into:

• measured timing metrics: timing metrics obtained from the measurement.
Examples of measured timing metrics are wall-clock time, system time,
etc.

• measured counter metrics: counter metrics obtained from the measure-
ment. Measured counters also include hardware counters. Examples of
measurement counters metrics are the number of L2 cache accesses, the
number of function calls, etc.

• overhead metrics: metrics derived from overhead analysis (presented in
Chapter 5). Examples of overhead metrics are send/receive, synchroniza-
tion overheads, etc.

• ratio metrics: metrics which are computed from other metrics by using
ratio-based scheme. Examples of ratio metrics are L2 cache miss ratio,
system time per wall-clock time, etc.

Values of performance metrics are quantitative data. As pointed in [137],
depending on the utility function of a performance metric, the metric can be
categorized into three classes:

• higher is better: the higher value of a metric indicates the better perfor-
mance with respect to the metric. Examples of this type of metrics in our
tool are cache hit ratio, MFLOPS (Millions of Floating-Point Operations
Per Second).

• lower is better: the lower value of a metric indicates the better performance.
Examples of this type of metrics in our tool are overhead metrics, response
time, etc..

• nominal is best: both high and low values are undesirable, depending on
the analysis and the client of the analysis. Examples of this type of metrics
are resource utilization, the average number of jobs in the queue, etc.

Through the measurement and analysis, a set of performance metrics will
be measured and analyzed for every code regions. Performance metrics of a
code region are stored in performance metric records.

Definition 3.22 (Performance metric record). A performance metric
record pm is represented as a tuple (m, v) where m is the metric name and v
is the metric value.
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Definition 3.23 (Performance class). Given a performance metric, the
performance metric can be classified into classes. Each class is associated with
a function that maps the value of the performance metric into the class.

For example, we can classify L2 cache miss ratio into three classes: poor,average,
good. The class good can be determined as follows

fgood(x) =

{

1 x ≤ 0.3,

0 x > 0.3
(3.2)

where x is the value of L2 cache miss ratio and fgood is the function that
maps the value of L2 cache miss ratio into the class good. Each performance
class is identified by a unique performance characteristic term. Performance
class can be used to represent the qualitative aspect (e.g., good or poor) of
performance metrics.

Definition 3.24 (Performance characteristic term). A performance char-
acteristic term is a linguistic term that determines a performance class.

Examples of performance characteristic terms are good, poor, high, etc.
Although the performance of a code region is characterized by a set of

performance metrics associated with the code region, in this dissertation, the
term performance of a code region refers to wall-clock time of the code region.
Similarly, the performance of a parallel or Grid application refers to the wall-
clock time of the application. When mentioning the performance of a code
region with respect to a specific metric, we indicate the metric name. Note
that the performance of the entire program can be determined through the
performance of a code region (the entire main unit of the program). The
execution time of the whole main unit of a program is the execution time of
the whole program.

Definition 3.25 (Performance experiment data). Performance data col-
lected in an experiment is called performance experiment data. Performance
experiment data E can be described as E = (PU, RS, CR) where PU is a pro-
cessing unit set, RS is region summary set, and CR is (instrumented) code
region set.

3.8 Summary

Our methods and techniques of performance monitoring, instrumentation,
measurement and analysis are targeting to OpenMP, MPI, HPF and hybrid
parallel programs on SMP cluster and Grid environments and scientific work-
flows on the Grid.

Code regions are classified in order to support the user to select code
regions and to support the instrumentation and measurement system to de-
tect the performance problem occurring in a code region. We introduce a
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new representation of code regions, called the dynamic code region call graph
(DRG). The DRG reflects the dynamic relationship between code regions and
its subregions and stores performance measurements of code regions in a com-
pact form. The DRG is not restricted to function calls but also covers loops,
I/O and communication statements, etc. We have presented the performance
experiment model which is used to study relationships between experiment
factors and performance metrics and to analyze the performance of applica-
tions.
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Introduction to SCALEA-G

4.1 Introduction

In this chapter we first introduce SCALEA which is a performance analysis
framework for parallel programs that covers HPF, OpenMP, MPI and mixed
programming paradigms. We then describe the SCALEA-G framework which
unifies performance monitoring and analysis of Grid infrastructures and appli-
cations, and dynamic instrumentation of applications in the Grid. SCALEA-G
consists of distributed monitoring and performance sensors and sensor man-
ager services, directory services for supporting information publication and
discovery, archival system for storing collected monitoring and performance
data, instrumentation service, and various performance analyzers. SCALEA-G
is built up on a set of open Grid protocols and partially reuses existing state-of-
the art tools and framework for Grid, and the SCALEA system. SCALEA-G
is a middleware that is capable of self-management. It exploits the concept of
Grid Monitoring Architecture (GMA) [30], sensor networks [23, 257] and peer-
to-peer computing [173], and is being implemented as a set of OGSA-enabled
grid services [93, 94].

4.2 SCALEA Overview

SCALEA is a performance instrumentation, measurement, and analysis sys-
tem for distributed memory, shared memory, and mixed parallel programs.
The main objective of SCALEA is to support performance oriented program
development and to help the programmer to understand the intricate details
of the programming model, program transformation system, and architecture
that may result in any performance problem. Figure 4.1 shows the architec-
ture of SCALEA which consists of several components: SCALEA Instrumen-
tation System (SIS), SCALEA Runtime System, SCALEA Performance Data
Repository, and SCALEA Performance Analysis & Visualization System.
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SIS is an automatic instrumentation system for Fortran programs. SIS is
built based on the Vienna Fortran Compiler (VFC) [37] which is a compiler
that translates HPF/HPF+ Fortran programs into Fortran90/MPI or mixed
OpenMP/MPI programs. The parser and unparser of VFC can work with
MPI, OpenMP, OpenMP/MPI, HPF/HPF+ Fortran 90 programs. SIS uti-
lizes the parser and unparser of VFC for processing the input programs. Thus,
it supports HPF/HPF+, MPI, OpenMP and hybrid parallel programs, e.g.
OpenMP/MPI and HPF+/OpenMP. The input programs of SIS are processed
by the compiler frontend which generates an abstract syntax tree (AST). SIS
enables the user to select (by directives or command-line options) code re-
gions and performance metrics (timing, hardware counters, and performance
overheads) of interest. Moreover, SIS provides an interface for other tools to
traverse and annotate the AST to specify code regions for which performance
metrics should be obtained. Based on pre-selected code regions and/or per-
formance metrics, SIS automatically inserts probes (instrumentation code) in
the code. The probes will collect all relevant performance information during
the execution of the program on the target architecture. SIS also generates
an instrumentation description file (presented in Section 5.3.4) that enables
to relate all gathered performance data to the input program. We also work
on a prototype of SIS based on Open64 open sources [5].

The SCALEA runtime system supports profiling [242] for cluster applica-
tions and uses benchmarks to capture performance data of individual com-
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putational nodes and networks in clusters. Profiling measurement is provided
by SISPROFILING library which collects timing and counter information, in-
cluding hardware counters, of code regions. Hardware counters are determined
through an interface with the PAPI library [49].

After compiling and linking the instrumented program with the SCALEA
instrumentation library, an executable program is created. Depending on the
instrumentation library linked, profile files storing performance data will be
created during the execution of the program. The post-mortem performance
analysis comprises two phases. First, a pre-processing phase filters and ex-
tracts all relevant performance information from the profile files and com-
putes the DRG. Both filtered performance data and DRG are then stored
in an experiment data repository. Second, a performance overhead analysis
is conducted that reads performance data from the data repository, analyzes
them, computes the performance overhead requested, and stores them in the
repository. The performance overhead analysis can also analyze performance
data in profile files. Moreover, a visualization engine is provided that displays
various metrics in isolation or together with the source code.

The experiment data repository is used to store experiment-related data,
e.g., performance data and result, application source files, etc. The repository
is powered by PostgreSQL[10] which is supported on many platforms.

SCALEA provides analysis tools interacting with the user via a rich set
of Graphic User Interface (GUI) components. SCALEA Analysis and Visual-
ization components are written in Java and access the PostgreSQL database
during the analysis. Therefore, the analysis can be carried out on any platform
that supports Java. This makes SCALEA to be more portability than other
tools that are running only on a specific platform.

4.3 SISPROFILING

SISPROFILING contains a set of measurement libraries which are used to
capture performance measurements of cluster and grid applications.

On the cluster environment, SISPROFILING supports post-mortem anal-
ysis by providing measurement libraries for measuring sequential, OpenMP,
MPI, HPF, and hybrid parallel programs written in Fortran and C/C++.
These libraries capture performance data and store that data into files, which
later on are processed by performance analysis tools, for instance SCALEA.

On the Grid environment, SISPROFILING supports online analysis by
providing application sensors that measure and gather performance informa-
tion of Grid applications and middleware. These sensors capture monitoring
data and performance measurements and send the data to the online analysis
components.
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4.4 SCALEA-G

SCALEA-G is a unified monitoring and performance analysis system for the
Grid. SCALEA-G is an open architecture that consists of a set of Grid services
and sensors for monitoring and performance analysis of Grid infrastructures
and applications. Figure 4.2 depicts the architecture of SCALEA-G frame-
work which includes the following main components: Directory Service (DS),
Sensor Manager Service (SM), Mutator Service (MS), Client Service (CS), and
Graphical User Interface (GUI). All of them are Grid-enabled services/clients
and can be deployed on different hosting environments. DS is the core service
that provides information about data in SCALEA-G. SM is the core service
for archiving and providing performance and monitoring data, and MS is the
core service for dynamic instrumentation of Grid applications.

The Directory Service (DS) is used for publishing and searching informa-
tion about producers and consumers that produce and consume performance
data, and information about types and characteristics of that data.

The Archival Service (AS) is a data repository which is used to store
performance results collected and analyzed by other components.

The Sensor Manager Service (SM) is used to manage sensors that gather
and/or measure a variety of types of data for monitoring and performance
analysis, to store monitoring data and to provide that data to consumers.
Application instrumentation can be done at source code level manually or
automatically, or dynamically at the runtime; source code instrumentation
is based on SIS. The Instrumentation Forwarding Service (IFS) receives in-
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strumentation requests from clients and forwards the requests to the Mutator
Service (MS) which conducts the dynamic instrumentation.

The Client Service (CS) provides interfaces for administrating other SCALEA-
G services and for accessing data in these services. In addition, it provides
functions for analyzing performance data. Any external tools and services can
access SCALEA-G by using CS.

A GUI - supported by CS - enables the user to graphically examine mon-
itoring and performance analysis results. SCALEA-G services register and
search information about their service instances in Registry Services.

Interactions among SCALEA-G services are divided into Grid service-
based operations and TCP-based stream data delivery. Grid service opera-
tions are used to perform tasks which include controlling activities of services
and sensors, subscribing and querying performance data, registering, query-
ing and receiving information from DS. TCP-based stream channels are used
to transfer monitoring data, performance data and results among producers
(e.g. sensors, SMs) and consumers (e.g. SMs, clients). Grid service operations
incorporate transport-level and message-level security whereas TCP channels
are based on secure connections; the security in SCALEA-G relies on Grid
Security Infrastructure (GSI) [267].

When deploying SCALEA-G, instances of sensors and MSs are executed
on computational nodes being monitored. An instance of SM can be deployed
to manage multiple sensors and MSs in a node or a set of nodes, depending on
the real system. Similarly, SMs in different administrative domains can publish
information in multiple DS instances. The client discovers SCALEA-G services
through Registry Services which can be deployed in different domains.

The main objective of our approach is to unify a variety of types of mon-
itoring and performance data. While we have a set of different sensors to
provide different data types, whose data structures are diverse, we have to
make sure that the clients use the same interface with the same mechanism
to access that diverse data types.

4.5 The Role of SCALEA/SCALEA-G in ASKALON
Toolset

The design and implementation of SCALEA/SCALEA-G is largely centered
on the tool integration aspect. SCALEA/SCALEA-G are targeted to two
types of clients: the end-user and the external tools/services. SCALEA/SCALEA-
G are parts of the ASKALON programming environment and toolset for clus-
ter and Grid architectures [88]. ASKALON integrates four interoperable tools:
SCALEA/SCALEA-G for instrumentation, monitoring and performance anal-
ysis, ZENTURIO for automatic experiment management [201], AKSUM for
automatic bottleneck analysis [87], and the PerformanceProphet for appli-
cation modeling and performance prediction [195]. Figure 4.3 presents the
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architecture of ASKALON in which SCALEA, ZENTURIO, ASKUM and
PerformanceProphet are integrated into a single framework.

SCALEA is used by various other tools in ASKALON to support auto-
matic bottleneck analysis, performance experiment and parameter studies,
and performance prediction of parallel programs. In this context, SCALEA
provides functions for instrumentation, measurement and analysis of parallel
programs, collects relevant experimental data including application, source
code, machine information, and performance data and results, and stores col-
lected data and information into the repository. SCALEA provides an inter-
face with search and filter capabilities for other tools to access the repository.
Other tools such as such as AKSUM, PerformanceProphet and ZENTURIO
can access data in the repository through the provided interface. Data can
also be exported into XML format so that it can easily be transfered to and
processed by other tools. SCALEA-G is currently being integrated with new
Grid scheduler, resource brokering, and workflow management service being
developed recently in the ASKALON toolset.

4.6 Summary

SCALEA, which supports performance instrumentation, measurement , anal-
ysis and visualization of parallel programs, and SCALEA-G, a unified sys-
tem for performance monitoring, data integration and analysis for the Grid,
are the two main frameworks in which proposed techniques and methods in
this dissertation have been developed and applied. SCALEA and SCALEA-G
are parts of ASKALON toolset for cluster and grid computing that support
various other high-level tools such as experiment managements, performance
predictions, automatic bottleneck search.
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Performance Analysis for Parallel Programs

5.1 Introduction

In this chapter we present a novel classification of temporal overhead for
parallel programs that is used to compute a variety of performance metrics. A
highly flexible instrumentation and measurement system is provided which can
be controlled by command-line options and program directives. We present a
library which can be interfaced by external tools through the provision of a full
Fortran90 OpenMP/MPI/HPF frontend. The library allows external tools to
instrument an abstract syntax tree at a very high-level with C-function calls
and to generate source code.

We exploit a relational-based experiment data repository for performance
analysis. We describe the design and use of SCALEA’s experiment data repos-
itory which is employed to store information about performance experiments
including application, source code, machine information and performance in-
formation. The performance results are associated with experiments, source
code and machine information. SCALEA is able to offer search and filter
capabilities, supporting performance analysis and comparison of multiple ex-
periments. Moreover, the repository provides well-defined interfaces for other
tools to access the experiment data, thus leveraging the performance data
sharing and tool integration.

We present a new approach to automatic performance analysis that we
call the soft performance analysis. In this approach, we use soft computing
techniques, such as fuzzy logic (FL), machine learning (ML) concept, and the
combination of FL and ML, and similarity theory to develop soft techniques
and methods for performance analysis of parallel and distributed programs.

This chapter is based on the work presented in [255, 244, 254, 245, 246,
247].
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5.2 Classification of Temporal Overheads

According to Amdahl’s law [25], theoretically the best sequential algorithm
takes time Ts to finish the program, and Tp is the time required to execute
the parallel version with p processors. The temporal overhead of a parallel
program, To, is defined by

Definition 5.2.1 (Temporal overhead) To = Tp − Ts/p

The temporal overhead reflects the difference between achieved and optimal
parallelization. To can be divided into Ti and Tu such that To = Ti + Tu,
where Ti is the overhead that can be identified and Tu is the overhead fraction
which could not be analyzed in detail. Theoretically, To can never be negative,
which implies that the speedup Ts/Tp can never exceed p [156]. However, in
practice it occurs that temporal overhead can become negative due to super
linear speedup of applications. This effect is commonly caused by an increased
available cache size.

Temporal overhead can be classified into subclasses, each describes one
type of overhead. Figure 5.1 shows the latest version of our novel and substan-
tially refined overhead classification which includes Data movement, Synchro-
nization, Control of parallelism, Additional computation, Loss of parallelism
and Unidentified overhead.

5.2.1 Data Movement

Data movement shown in Fig. 5.1(b) corresponds to any data transfer within
local memory (e.g. cache misses and page faults), file I/O, communication
(e.g. point-to-point or collective communication), and remote memory access
(e.g. put and get).

The communication overhead is classified into point-to-point and collective
communication overhead. Point-to-point communication overhead is due to
the network overhead of exchanging data between two peers such as send
and receive operations. Collective communication overhead includes collective
operations such as scatter, broadcast operations and the communication part
of collective operations.

Remote memory access (RMA) overhead is due to operations on memory
in remote machines including put and get (e.g. MPI RMA communication).
Note that the Communication of Accumulate Operation overhead has been
stimulated by the MPI Accumulate construct [115] which is employed to move
and combine (through MPI reduction operations) data at a remote site via
remote memory access.

Table 5.1 presents an example of code regions which may cause data move-
ment overhead, and measurement methods.
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Fig. 5.1. The classification of temporal overhead.
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Subclass of Data Move-
ment Overhead

Code Regions Measurement Methods

Local memory access All Hardware counter mea-
surement, benchmark,
etc.

Communication MPI SEND, MPI RECV,

MPI ISEND,

MPI SENDRECV,

MPI BCAST,

MPI GATHER,MPI SCATTER,

MPI REDUCE, etc.

Timer, Benchmark

Remote memory access MPI PUT,

MPI GET,MPI ACCUMULATE,
etc.

Timer

File IO MPI FILE READ,

MPI FILE WRITE, etc.
Timer

Table 5.1. Overhead of data movement: example of code regions and measurement
methods.

5.2.2 Synchronization

Synchronization (e.g. barriers and locks) shown in Fig. 5.1(c) is used to co-
ordinate processes and threads when accessing data, maintaining consistent
computations and data, etc. We subdivided the synchronization overhead into
single- and multiple-address space overheads. A single-address space overhead
corresponds a synchronization inside a single process on parallel systems, for
instance any kind of OpenMP synchronization falls into this category whereas
multi-address space synchronization has been stimulated by MPI synchroniza-
tion, RMA locks, barriers between different processes, etc.

Table 5.2 presents an example of code regions that may cause synchro-
nization overhead, and methods that are used to measure the synchronization
overhead.

5.2.3 Control of Parallelism

Control of parallelism (e.g. fork/join operations and loop scheduling) shown
in Fig. 5.1(d) is used to control and manage the parallelism of a program that
can be due to code inserted by the compiler (e.g. runtime library) or by the
programmer (e.g. to implement data redistribution).

Table 5.3 presents an example of code regions that may cause control of
parallelism overhead, and methods that are used to measure the overhead.

5.2.4 Additional Computation

Additional computation shown in Fig. 5.1(e) reflects any change of the original
sequential program including algorithmic or compiler changes to increase par-
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Subclass of Synchro-
nization Overhead

Code Regions Measurement Methods

Single Address Space Syn-
chronization

OMP BARRIER, OMP

FLUSH, OMP INIT LOCK,

OMP SET LOCK, etc.

Timer, Benchmarks

Multiple Address Space
Synchronization

MPI BARRIER,

MPI WIN FENCE,

MPI WIN START,

MPI WIN COMPLETE,

MPI WIN POST,

MPI WIN WAIT,

MPI WIN UNLOCK,

MPI WIN UNLOCK,MPI WAIT,

MPI TEST, etc.

Timer, Benchmark

Table 5.2. Synchronization overhead: example of code regions and measurement
methods.

Subclass of Control of
Parallelism Overhead

Code Regions Measurement Methods

Schedule OMP SCHEDULE, etc. Timer, Benchmark

Work distribution HPF INDEPENDENT Timer

Inspector/Executor HPF INDEPENDENT Timer

Fork/join threads OMP PARALLEL, OMP

PARALLEL DO, etc.
Timer, Benchmark

Initialization/Finalization
message passing

MPI INIT, MPI FINALIZE,
etc.

Timer

Spawn processes MPI COMM SPAWN MULTIPLE,

MPI COMM SPAWN, etc.
Timer, Benchmark

Table 5.3. Control of parallelism overhead: example of code regions and the mea-
surement methods.

allelism (e.g. by eliminating data dependences) or data locality (e.g. through
changing data access patterns). Moreover, requesting the processing unit iden-
tification or the number of threads to execute a code region can also imply
additional computation overhead.

Table 5.4 presents an example of code regions that may cause additional
computation overhead, and methods that are used to measure the overhead.

5.2.5 Loss of Parallelism

Loss of parallelism shown in Fig. 5.1(f) is due to imperfect parallelization of a
program. That is a workload in sequential version that has not been conducted
fully in parallel in the parallel version.

Definition 5.1 (Workload). The workload of an application is the total
amount of work that the application must conduct.
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Subclass of Additional
Computation Overhead

Code Regions Measurement Methods

Algorithm change all Timer

Compiler change all Timer

Front-end normalization all Timer

Data type conversion MPI PACK, MPI UNPACK Timer

Processing unit informa-
tion

MPI CART CREATE,

OMP IN PARALLEL, etc.
Timer

Table 5.4. Additional computation overhead: example of code regions and mea-
surement methods.

Loss of parallelism is further classified into unparallelized code (executed
by only one processor), replicated code (executed by all processors), and par-
tially parallelized code (executed by more than one but not all processors).

Table 5.5 presents an example of code regions that may cause loss of
parallelism overhead, and methods that are used to measure the overhead.

Overhead Category Code regions Measurement Method

Unparallelized code ALL Timer

Replicated code ALL Timer

Partial parallelized code ALL Timer

Table 5.5. Loss of parallel overhead: example of code regions and measurement
methods.

5.2.5.1 Unparallelized code

Let r be a code region. Let Tp(r) be the execution time of r in the experiment
with p processors. Let Wr be the total amount of work of r. If this code is
executed in parallel with p processors, theoretically Wr/p will be the amount of
work executed on each processor in the ideal case, thus each processor should
take Tp(r)/p to complete r. However, if r is an unparallelized code region,
only one processor executes it on behalf of all others. The loss of parallelism
Tolopa due to unparallelized code r executed in the processor executes r is
defined by

Tolopa(r) =
(p − 1)Tp(r)

p
(5.1)

If Tp(r) is fixed, it means that the execution time of the unparallelized code
does not depend on the number of executing processors, the overhead of un-
parallelized code will increase when the number of processors is increased.

Remark 1 Loss of parallelism overhead due to sequential code region will
increase when the number of processors is increased.
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Proof: We compare the unparallelised overhead when using p and p′ proces-
sors. Let Tolopa(r) and T ′

olopa(r) be the overhead due to unparallelized code
in p and p′ processors, respectively. Let p ≤ p′, we have

Tolopa(r) =
(p − 1)Tp(r)

p
(5.2)

T ′

olopa(r) =
(p′ − 1)Tp′(r)

p′
=

(p′ − 1)Tp(r)

p′
, (5.3)

Tolopa(r) ≤ T ′

olopa(r) ≡
(p − 1)Tp(r)

p
≤

(p′ − 1)Tp(r)

p′

≡ (p × p′ − p′) ≤ (p′ × p − p) ≡ p ≤ p′ut

(5.4)

Note 5.2. Theoretically, if r is an unparallelized code region then Tp(r) =
Ts(r) where Ts(r) is the execution time of r in sequential version. Thus, Equa-
tion 5.1 can be rewritten as

Tolopa(r) =
(p − 1)Ts(r)

p
(5.5)

However, we opt Equation 5.1 because there are unparallelized code regions
which exist in parallel version but not in sequential version. Therefore, Equa-
tion 5.1 must be more generic.

5.2.5.2 Replicated code

It is the case when the same work is carried out in parallel in the parallel
version. Theoretically, let Wr be the workload conducted by a code region r.
In principle, with p processors, each processor should take Wr/p. However, if r
is a replicated code region, processors which execute r will take Wr. Therefore,
a loss of parallelism overhead due to replicated code region r in processor i,
T i

olopa(r), can be defined by

T i
olopa = T i

p(r) −
T i

p(r)

p
(5.6)

where T i
p(r) are the execution time of r in processor i of the parallel version

with p processors.

5.2.5.3 Partial parallelized code

It is the case when the work is carried out in parallel but not enough for all
processors. An overhead due to partial parallelized region r can be measured
as follows:

T i
olopa(r) = T i

p(r) −

∑w

i=1 T i
p(r)

p
, 1 < w < p (5.7)
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where T i
p(r) is the execution time of code region r on processor i, T i

olopa(r) is
the loss of parallelism due to partial parallelized code, p is the total processors
allocated for conducting the computation of r and w is the actual number of
processors executing this code region.

5.2.6 Unidentified Overhead

Unidentified overhead corresponds to the overhead that is not covered by the
above categories.

5.2.7 A Note on the Classification of Temporal Overhead

In theory it would be desirable to provide an orthogonal overhead classifi-
cation as suggested in [68]. In practice, however, it is very difficult to build
an overhead analysis that can support an orthogonal overhead classification.
For instance, data movement commonly contains synchronization overhead.
Control of parallelism may contain synchronization and data movement, etc.
It is however of paramount importance that any overhead is assigned to only
one sub-class of the overhead classification scheme. For example, if we can
measure synchronization time as part of a data movement operation, then
we should count this synchronization time either for data movement or for
synchronization overhead but not for both of them.

5.3 The Instrumentation System

SCALEA Instrumentation System (SIS) provides the user with three alterna-
tives to control instrumentation which includes command-line options, direc-
tives, and an instrumentation library combined with a Fortran90 OpenMP/
HPF/MPI frontend and unparser. All of these alternatives allow the specifi-
cation of performance metrics and code regions of interest for which SCALEA
automatically generates instrumentation code and determines the desired per-
formance values during or after program execution. In the remainder of this
section we assume that a code region refers to a single-entry single-exit code
region. A large set of predefined mnemonics (for a detailed list see Appendix
C.1) is provided by SIS for selecting code regions and performance metrics.
The current implementation of SIS supports a variety of code region and per-
formance metric mnemonics:

• code region mnemonics: arbitrary code regions, loops, outermost loops,
procedures, I/O statements, HPF INDEPENDENT loops, HPF redistri-
bution, OpenMP parallel loops, OpenMP Sections, OpenMP Critical, MPI
send, receive, and barrier statements, etc.
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• performance metric mnemonics: wall-clock time, CPU time, communi-
cation overhead, cache misses, barrier time, synchronization, scheduling,
compiler overhead, unparallelized code overhead, hardware parameters,
etc. See also Fig. 5.1 for a classification of performance overheads consid-
ered by SIS.

5.3.1 Command-line Options

With the command-line options, performance metrics and code regions of
interest for instrumentation are specified through the command-line parame-
ters when invoking the instrumentation system. Command-line options can be
used along with directives. SIS provides a large set of command-line options
for instrumenting parallel programs (see Appendix D.1 for more details about
command-line options).

5.3.2 SIS Directives

The user can specify arbitrary code regions ranging from the entire program
units to single statements, as shown in the following:

!SIS$ CR region name BEGIN
code region r

!SIS$ END CR

Command-line options and other SIS directives (mentioned below) can then
be used to indicate whether or not arbitrary code regions will be instrumented
and if so, what performance metrics should be computed for them.

In order to specify a set of code regions R = {r1, ..., rn} in an enclosing
region r and performance metrics which should be computed for every region
in R, SIS offers the following directive:

!SIS$ CR region name [,cr mnem-list ] [PMETRIC perf mnem-
list ] BEGIN

code region r that includes all regions in R
!SIS$ END CR

Code region r defines the scope of the directive. Note that every (code)
region in R is a sub-region of r but r may contain sub-regions that are not in
R as well.

The code region (cr mnem-list) and performance metric (perf mnem-list)
mnemonics are indicated as a list of mnemonics separated by commas. One
of the code region mnemonics (CR A) refers to arbitrary code regions. Note
that the above specified directive allows indicating either only code region
mnemonics or performance metric mnemonics, or a combination of both. If
in a SIS directive d only code region mnemonics are indicated, then SIS is
instrumenting all code regions that correspond to these mnemonics inside of
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the scope of d. The instrumentation is done for a set of default performance
metrics which can be overwritten by command-line options. This option can
be particularly useful if the user knows that only a few code regions can cause
critical performance problems whose performance overheads are unknown.
Only if the mnemonic CR A is included in the list of code region mnemonics
of a directive d, then instrumentation for arbitrary code regions inside of the
scope of d will be conducted.

If only performance metric mnemonics are indicated in a directive d then
SIS is instrumenting those code regions that have an impact on the specified
metrics. This option is very useful if a user is interested in specific performance
metrics but does not know which code regions may cause these overheads.
For instance, compilers often substantially restructure OpenMP (e.g. implicit
synchronization) and HPF (e.g. implicit data redistribution) code which is
not visible at the input code. In order to find the associated compiler over-
head, the programmer, e.g., could specify some control of parallelism overhead
mnemonics in a SIS directive.

If both code region and performance metrics are defined in a directive
d, then SIS is instrumenting these code regions for the indicated performance
metrics in the scope of d. Feasibility checks are conducted by SIS, for instance,
to determine whether the programmer is asking for OpenMP overheads in
HPF code regions. Warnings are displayed to the programmer. If neither code
region nor overhead mnemonics are indicated then the directive is simply
ignored.

All previous directives are called local directives as the scope of these
directives is restricted to part of a program unit (main program, subroutines
or functions). The scope of a directive can be extended to the entire program
unit by using the following syntax:

!SIS$ [CR cr mnem-list ] [PMETRIC perf mnem-list ]

A global directive d collects performance metrics – indicated in the
PMETRIC part of d – for all code regions – specified in the CR part of d –
in the program unit which contains d. A local directive implies the request for
performance information restricted to the scope of d. There can be nested di-
rectives with arbitrary combinations of global and local directives. If different
performance metrics are requested for a specific code region by several nested
directives, then the union of these metrics is determined.

SIS also supports the user to map a code region to a code region type.

!SIS$ CR coderegiontype, coderegionname BEGIN
code region r

!SIS$ END CR

This feature allows the user to specify a set of different code regions at different
locations as a single code region. Thus the instrumentation and measurement
will aggregate performance measurements of different code regions under a



5.3 The Instrumentation System 69

single record. Furthermore, SIS provides specific directives in order to control
tracing/profiling. The directives MEASURE ENABLE and MEASURE DIS-
ABLE allow the programmer to turn on and off tracing/profiling of specific
code regions.

!SIS$ MEASURE DISABLE
code region r

!SIS$ MEASURE ENABLE

In the following example we demonstrate some of the directives as men-
tioned above by showing a fraction of the Stommel application [189].

d1: !SIS$ CR PMETRIC ODATA SEND, ODATA RECV, ODATA COL

call MPI BCAST(nx, 1,MPI INTEGER, mpi master,MPI COMM WORLD,mpi err)

...

d2: !SIS$ CR comp main, CR A, CR S PMETRIC wtime, L2 TCM BEGIN

...

d3: !SIS$ CR init comp BEGIN

dj=real(nx,b8)/real(nodes row,b8)

...

d4: !SIS$ END CR

...

d5: !SIS$ MEASURE DISABLE

call bc(psi,i1,i2,j1,j2)

d6: !SIS$ MEASURE ENABLE

...

call do force(i1,i2,j1,j2)

...

d7: !SIS$ END CR

Directive d1 is a global directive which instructs SIS to instrument all
send, receive and collective communication statements in this program unit.
Directives d2 (begin) and d7 (end) define a specific code region with the name
comp m ain. Within code region comp main, SCALEA will determine wall-
clock times (wtime) and the total number of L2 cache misses (L2 TCM )
for all arbitrary code regions (based on mnemonic CR A) and subroutine
calls (mnemonic CR S ) as specified in d2. Directives d3 and d4 specify an
arbitrary code region with the name init comp. No instrumentation as well as
measurement is done for the code region between directives d5 and d6.

5.3.3 SIS High-level Instrumentation Library

SIS has been integrated with the VFC [37] source-to-source compiler which
supports a Fortran90 OpenMP/MPI/HPF frontend and provides an abstract
syntax tree and a sophisticated mechanism to traverse the AST, to detect
code patterns and to generate source code. Even though directives and com-
mand line options are powerful mechanisms for requesting instrumentation,
high-level tools must select code regions and insert directives and/or invoke
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command lines. In order to faciliate the interaction between the high-level
tool and the instrumentation system, a high-level instrumentation library is
provided.

SIS provides a high-level library that can be used by other tools to exploit
SIS instrumentation functions. We have developed a C-library that can be
used to traverse the AST and to mark arbitrary code regions for instrumen-
tation; the library is called SISHL. For each code region, the high-level tool
can specify the performance metrics of interest. Similarly to SIS directives,
SISHL provides corresponding functions to insert directives into source code.
The detailed APIs of SISHL can be found in Appendix D.2.

For example, in order to instrument all loops (denoted by CR L) and sub-
routine calls (denoted by CR S) enclosed by statement s1 and s2 and to in-
dicate the instrumentation to measure metrics wall-clock time (denoted by
wtime) and L2 cache misses (denoted by L2 TCM), the high-level tool can use
the following code:

char *perf_mnem[5]={"wtime","L2_TCM"};

char *cr_mnem[5]={"CR_L","CR_S"};

sishl_insert_local(s1,s2, cr_mnem,2,perf_mnem,2,"region1’’);

SISHL will traverse the AST and insert instrumentation directives used to
measure the requested code regions and metrics. Based on the annotated
AST, SIS then automatically generates an instrumented source code.

5.3.4 Instrumentation Description File

A crucial aspect of performance analysis is to relate performance informa-
tion back to the original input program. When instrumenting a program, SIS
generates an instrumentation description file (IDF) which correlates profiling,
trace and overhead information with the corresponding code regions. For ev-
ery instrumented code region, the IDF maintains a variety of information (see
Table 5.6).

A code region type describes the type of the code region, for instance, en-
tire program, outermost loop, read statement, OpenMP SECTION, OpenMP
parallel loop, MPI barrier, etc. The program unit corresponds to a subroutine
or function which encloses the code region. The performance data of a code
region stored in a separate repository is associated with the code region via
the code region identifier.

5.3.5 Standard Interface for an Instrumentation Engine

In Section 5.3.3, we present how the other tools can use high-level instrumen-
tation APIs of SIS to request the instrumentation system to instrument and
measure performance metrics and code regions of interest. SIS takes the source
of programs, represents programs in its own intermediate language (IL), and
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IDF Entry Description

id code region identifier

type code region type

file source file identifier

unit identifier of the program unit which encloses this region

line start line number where this region starts

column start column number where this region starts

line end line number where this region ends

column end column number where this region ends

pm mnemonics mnemonics representing performance metrics which will be col-
lected or computed for this region

aux auxiliary information

Table 5.6. Contents of an entry in the instrumentation description file (IDF)

constructs the AST. SIS provides APIs for traversing and querying perfor-
mance metrics and code regions based on the IL (e.g. VFC IL or WHIRL
[15]) it uses. The high-level tool (e.g. AKSUM [87]) then uses these APIs to
traverse and query the request.

However, this approach has some limitations. The high-level tool has to
know the IL used by the instrumentation system and to use the APIs which
are dependent on the IL. As a result, the high-level tool is likely to stick to
the infrastructure provided by a single instrumentation. As the high-level tool
usually does not need detailed information about the source code and should
not be fixed to a specific underlying instrumentation system, the instrumen-
tation system can provide a simplied and standardized mechanism for the
high-level tool to specify the instrumentation requests. To this end, we can:

• standardize the way to describe instrumentation requests (e.g. using di-
rectives and command options).

• provide a high-level and simple IL (e.g. based on XML).
• standardize instrumentation description file (for relating performance mea-

surements back to source code).

The high-level tool uses the high-level IL and commands to control and re-
quest the instrumentation system. The instrumentation engine agrees on the
way to specify instrumentation requests (e.g. by directive or command lines),
and provides the high-level IL. The high-level IR should be simple as much
as possible. However, it should provide enough capabilities for traversing and
manipulating source code at level of program units, executable constructs, exe-
cutable statements; it may not consider checking semantics of source programs.

This idea has been realized by the joint work conducted in APART working
group [1]. A high-level IL, based on XML, and a set of instrumentation and
monitoring requests have been proposed to facilitate the interaction between
the high level tool and the instrumentation system [219, 218].
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5.3.6 Measurement Probes

In order to collect and provide measurements for the performance analysis of
a parallel program, firstly code regions in that program are selected, and then
instrumented and measured. The selection and instrumentation can be done
automatically by tools, as presented in previous sections. To measure a code
region, appropriate probes are inserted into the source code. A generic probe
in SIS has the following form

sis start(PB, cr type)
code region r

sis stop(PB)

where PB points to a unique internal data structure used to store measure-
ment data of the code region r; PB also associates with a unique data entry in
the instrumentation description file; the entry contains information about the
instrumented code region. cr type is code region type according to the classi-
fication of code regions. Probes will be started at entry points and stopped at
exit points of code regions. Performance metrics measured can be controlled
at the instrumentation phase by directives or at runtime by setting environ-
ment variables. In the latter case, the user can choose timing in combination
with hardware counters metrics for each experiment without recompiling the
program.

5.4 Overhead Analysis based on the DRG

Types of overheads and portion of identified overhead within total overhead
determined are dependent on the instrumentation and measurement. In the
analysis phase, we conduct two tasks: (1) to determine the total overhead To,
and (2) to determine detailed types of overheads for each code region. After
that we can derive the identified overhead Ti and the unidentified part Tu.

Given a code region r, let Ts(r) and Tp(r) be the execution time in se-
quential version and in parallel version with p processors, respectively. The
total overhead To(r) of code region r when executed with p processors can be
computed as follows

To(r) = Tp(r) −
Ts(r)

p
(5.8)

The total overhead can be determined only when (i) both sequential and paral-
lel version of r exist1, or (ii) r is an addition parallel programming-dependent
code region. In the latter case, r is necessarily required for the parallelization
of programs, e.g. a code region used to send data (e.g. MPI SEND); r is not
introduced in the sequential version.

1 However, with the complexity of parallel programs, we may not have the sequen-
tial version of a corresponding parallel one.
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The total overhead provides an overall figure of how much overhead occurs
in a code region; with total overhead we may figure out whether a perfor-
mance problem exists or not. However, in order to determine more detailed
information about the sources that contribute on the overall figure, we need
to determine sub overhead categories of the total overhead. These categories
can provide us more insightful information, which can be used to reveal the
causes of performance problems. To this end, we may need to divide a code
region into subregions, to measure that subregions and to determine types
of overheads of individual subregions besides measuring the code region. To
clarify this idea, consider the example presented in Figure 3.11. Based on the
DRG, we can compute To(r3), To(r4) and To(r5). Assume that we have the
control of parallelism overhead Toctrp(r4) of OMP DO, then we can compute
the control of parallelism overhead Toctrp(r3) of OMP PARALLEL as follows:

Toctrp(r3) = Toctrp(r4) + Toctrp(CR OMPBPA) + Toctrp(CR OMPEPA)
(5.9)

where Tctrp(CR OMPBPA) and Tctrp(CR OMPEPA) are the control of
parallelism overhead caused by OMP PARALLEL and OMP END PARAL-
LEL directive, respectively. To determine detailed factors of the total over-
head, we base on performance measurements, types of code regions. In some
cases, training sets data may be employed.

The overhead is analyzed for every thread (it also means for every pro-
cessors). Figure 5.2 describes the algorithm used to compute overhead based
on the DRG. Overhead is determined for all code regions. This algorithm
basically computes overhead of threads of a performance experiment. As an
experiment is executed on multiple processing units, we may need to define
the overhead for the entire experiment. We first compute the overhead for a
process based on the overhead of its threads. Let T i

o and T i
p be the overhead

and execution time of the thread i of a process P with p threads, respectively.
Let thread 0 be the master thread. T 0

p is the execution time the process P . As
threads of a process are executed in parallel, the overhead of a process is not a
sum of the overhead of threads, but is a statistics of that. Overhead of process
P is computed based on statistics operations, e.g. min, max and average of
{T i

o}. Similarly, overhead of an experiment is computed by applying statistics
operations, e.g. min, max and average, of overhead To of processes.

5.5 Performance Data Repository for Performance
Analysis

Collecting and archiving performance data are vital tasks for performance
analysis and optimization process, especially for supporting multi-experiment
analysis, performance comparison and automated performance diagnosis.
However, little effort has been done to employ data repositories to organize
and store performance data for performance analysis. This lack of a system-
atic organization of data has hindered several aspects of performance analysis
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startNode ← root node of DRG of program
Call overhead computing(startNode) to compute overheads of startNode.
procedure overhead computing(startNode)
begin

if (startNode is a leaf node) then
Determine types of overhead categories of startNode.
Compute total overhead To based on the code region type and the equiva-
lent code region in sequential version by applying the equation To = Tp−

Ts

p
.

Compute identified overhead Ti and unidentified overhead Tu of startNode.
else

for (all edges e(startNode,currentNode) in DRG) do
Call overhead computing(currentNode) to compute overheads of cur-
rentNode.
Compute and update types of overhead categories of startNode based on
overheads of currentNode and on type of the code region represented by
currentNode.

end for
Compute total overhead To of startNode based on its code region type and
on its equivalent code region in sequential version by applying the equation
To = Tp −

Ts

p
.

Compute identified overhead Ti and unidentified overhead Tu of startNode.
end if

end

Fig. 5.2. Algorithm for computing overheads.

tools. For example, the users commonly create their own performance data
collections, extract performance data, and use external tools to compare per-
formance outcome of several experiments manually. Moreover, different per-
formance tools employ different performance data formats and these tools
lack well-defined interfaces for accessing the data they provide. As a result,
the collaboration among performance tools and high-level tools is hampered.

Utilizing a data repository and providing well-defined interfaces to access
data in the repository can help to overcome the above-mentioned limitations.
We can structure the data associated with performance experiments. There-
fore, performance results can always be associated with their source codes
and description of machine on which the experiment has been taken. Based
on that, any other performance tool can store performance data it collects for
a given application to the same repository, thus providing a large potential
to enable more sophisticated performance analyses. And then, other tools or
system software can easily access the performance data through a well-defined
interface. To this end, we have investigated and exploited a relational-based
experiment data repository for performance analysis.

In this section we describe the approach to exploit a relational-based ex-
periment data repository for performance analysis. We present the design and
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use of the experiment data repository which is used to store performance data
and information about performance experiment which alleviates the associa-
tion of performance information with experiments and source code. Besides
the utilization of powerful search capability of relational database for searching
performance data, other two significant achievements have been gained when
utilizing this data repository. Firstly, the experiment data repository supports
multi-experiment analysis that allows the user to examine and compare the
performance outcome of different program executions. Historical performance
comparison can be conducted easily. Secondly, the experiment data repository
simplifies the collaboration among performance tools and higher-level tools by
providing open interfaces for accessing data in the repository, and leverages
the performance data sharing and exchanging by exporting performance data
into XML format.

5.5.1 Performance Metrics Catalog

Most performance and monitoring tools provide various types of performance
metrics. However, the lack of documentation and interpretation has prevented
the user from understanding the semantics of these performance metrics, and
hampered the collaboration among the performance tools and external tools.
In order to provide a user/tool a solid understanding of the semantics of per-
formance metrics provided by a given tool, these performance metrics should
be documented and standardized.

Performance metrics vary from low level metrics, the metrics provided at
the measurement (e.g. wall-clock time, CPU time , hardware counter [49]),
to the high-level ones, the metrics derived from low-level metrics (e.g. data
movement overhead [246], load imbalance, later send [82]). To document them,
we propose each performance metric should be described by, at least, following
properties:

• unique name: identifies the performance metric.
• data type: describes data type (e.g. double, uint64) of the value of the

performance metric.
• unit : indicates the measurement unit (e.g. microsecond, kilobyte, MB/s)

of the performance metric.
• well-defined meaning : explains the semantics of the performance metric. It

has to be well defined so that any users, tools can understand the semantics
and the usage of the performance metrics they are dealing with.

All defined metrics then can be stored into a performance metrics catalog .
Based on this catalog, a tool A has necessary information, e.g. name, units,
data type of metrics when it wants to utilize performance metrics provided
by tool B. The performance metrics catalog also helps a tool to understand
the semantics of metrics provided by another tool and to make use of metric
values correctly.
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We have documented such a performance metrics catalog in SCALEA.
Table 5.7 shows a sample extracted from SCALEA’s performance metrics
catalog2. This catalog has provided a convenience to the user/tool when spec-
ifying, acquiring and retrieving performance data during the instrumenta-
tion and analysis procedure. The full list of performance metrics covered by
SCALEA can be found in Appendix C.2.

Name Data type Unit Descriptions

wtime double microsecond Wall-clock time
utime double microsecond User CPU time
stime double microsecond System CPU time

L2 TCM uint64 counter Total level 2 cache misses
L2 TCA uint64 counter Total Level 2 cache accesses

odata send double microsecond Overhead due to SEND operations
odata recv double microsecond Overhead due to RECV operations
odata p2p double microsecond Overhead due to send+receive operations
odata col double microsecond Overhead of collective communication
octrp fkjn double microsecond Overhead of Fork/join threads
octrp infl double microsecond Overhead of Initialize/Finalize message pass-

ing

Table 5.7. Sample of SCALEA’s performance metrics catalog.

5.5.2 Experiment Data Repository

The experiment data repository is used to store the most important infor-
mation about performance experiments including application, source code,
machine information, and performance results.

5.5.2.1 Experiment-related data

Figure 5.3 shows the structure of experiment-related model for the data stored
in the experiment data repository. An experiment refers to a sequential or par-
allel execution of a program on a given target architecture. Every experiment
is described by experiment-related data, which includes information about the
application code, the part of a machine on which the code has been executed,
and performance information. An application (program) may have a number
of implementations (code versions), each of them consists of a set of source
files and is associated with one or several experiments.

Every source file has one or several static code regions (ranging from entire
program units to single statements), uniquely specified by their positions –

2 In this dissertation, we use the two metric names system CPU time and system
time interchangeably. The two metric names system CPU time and system time
are also used interchangeably.
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Fig. 5.3. SCALEA experiment-related data model

start/end line and column – where the region begins and ends in the source
file. A static (instrumented) code region contains following information:

• region identifier : a unique static identifier generated or assigned by in-
strumentation system. The region identifier is used to related performance
data to the source code.

• source positions : positions (e.g. line, column) of the code region in the
source file.

• code region type: the type indicates the subclass of the classification of code
regions that the code region belongs to (see Section 3.6.3). Depending on
the code region type, other static information can be stored, for example,
SCHEDULE strategy in OpenMP do loop.

At the runtime, (static) instrumented code regions will be executed. A
region summary refers to the performance information collected for a given
code region on a specific processing unit (see Section 3.6.4). The region sum-
maries are associated with performance metrics that comprise performance
overheads, timing information, and counters (including hardware counters).
A region summary has a parent region summary; this reflects the dynamic
code region relationship. Each performance metric is represented in a tuple
(name,value) where name is defined in the performance metrics catalog.

Experiments are associated with the virtual machines on which they have
been taken. The virtual machine is a collection of physical machines available
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to the experiment; it is described as a set of computational nodes (e.g. single-
processor systems, SMP nodes) which are gathered in clusters. A Cluster
is a group of physical machines (computational nodes) that are connected
by specific networks. Physical machines in the same cluster have the same
physical configuration. Note that our data structure is still suitable for network
of workstations which can be classified into small groups of machines having
the same configuration. Specific data of physical machines such as memory
capacity, peak MFLOPS, etc., are measured and stored the data repository. In
addition, for each computational node, performance characteristics of shared
memory (e.g. lock, barrier, fork/join thread using shared memory libraries)
are measured by benchmarks and stored in NodeSharedMemoryPerf. Similarly,
performance characteristics for message passing model of networks of a cluster
are also measured and stored in NetworkMPColPef and NetworkMPP2PPerf
for collective and point-to-point operations, respectively.

5.5.2.2 Collect, Store and Access Data in Experiment Data
Repository

OpenMP, MPI, HPF,
Hybrid Programs

Experiment
 Data Repository

Overhead
Analyzer

Profile/Trace Files

Post ProcessingInstrumentation
Description File

System
benchmark

Single
Experiment

Analysis

Multiple
Experiment

Analysis
External tools

Searching

Fig. 5.4. Components interacting with the experiment data repository.

Figure 5.4 depicts components that interact with the experiment data
repository. The post-processing is used to store source programs and instru-
mentation description file generated by instrumentation system into the data
repository. In addition, it filters raw performance data collected for each ex-
periment and stores filtered data into the repository.

The overhead analyzer performs the overhead analysis according to the
overhead classification based on the filtered data in the repository (or based
on profile files). The resulting overhead is then stored into the data repository.

The system benchmark is used to collect system information (computa-
tional node, memory, harddisk, etc), to determine specific information (e.g.
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overhead of probes, time to access a lock), and to perform benchmarks for ev-
ery target machine of interest. By using MPI, OpenMP micro benchmarks, we
obtain reference values for both message passing (e.g. blocking send/receive)
and shared memory operations (e.g. lock, barrier) with various networks, li-
braries. The collected data is used for correlation analysis between application-
and system-specific metrics. Usually, this task is performed only when a new
hardware/software, library version to be installed.

Based on the data available in the repository, various analyses can be
conducted such as single- and multi-experiment analysis, performance search,
etc.

5.5.2.3 Experiment-related data APIs

For each table represented in Fig. 5.3, a corresponding Java class which im-
plements methods to access data in the table is generated. In addition, we
define two classes ProcessingUnit and ExperimentData. The first class is used
to describe where the code region is executed; it consists of information of
computational node, process, thread. The latter implements major interfaces
used to access experiment data. Figure 5.5 highlights some classes with few
selected methods.

The experiment-related data APIs simplify the way to access performance
data in the experiment repository. For example, we can compute the ratio
of identifier overhead to wall-clock time, oall ident

wtime
, of code region region1 in

node gsr1.vcpc.univie.ac.at, process 1, thread 0 by querying identified
overhead (denoted by oall ident) and wall-clock time (denoted by wtime) as
follows:

CodeRegion cr = new CodeRegion(‘‘region1’’);

Experiment e = new Experiment(‘‘experiment1’’);

ProcessingUnit pu = new ProcessingUnit(‘‘gsr1.vcpc.ac.at’’,1,0);

ExperimentData ed = new ExperimentData(new DatabaseConnection(...));

RegionSummary rs = ed.getRegionSummary (cr,pu,e);

PerformanceMetric overhead=rs.getMetricOfSummary(’’oall_ident’’);

PerformanceMetric wtime =rs.getMetricOfSummary(‘‘wtime’’);

double overheadRatio=((Double)overhead.metricValue).doubleValue()/

((Double)wtime.metricValue).doubleValue();

We found that providing standard APIs is one of the keys bringing to the
success of the collaboration among tools. Even though different performance
tools use different internal data representations, with well-defined APIs for
acquiring performance data, the collaboration among tools will be more simple
and efficient.

5.5.2.4 Exporting Performance Data to XML

Most data in the repository can be exported into XML format so that it can
be easily accessed by other tools. For example, performance data of a code
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public class PerformanceMetric {
public String metricName;

public Object metricValue;

...

}
public class ProcessingUnit {
...

public ProcessingUnit(String node,int process, int thread) {...}
...

}
public class RegionSummary {
...

//get values of metrics measured/computed for regionsummary rs

public PerformanceMetric getMetricsOfSummary(){...}
//get value of metric metricName in region summary rs

public PerformanceMetric getMetric(String metricName){...}
...

}
public class ExperimentData {
DatabaseConnection connection;

...

//get list of processing units of Experiment e.

public ProcessingUnit[] getProcessingUnit(Experiment e){...}
//get list of summaries of code region cr in experiment e.

public RegionSummary[] getRegionSummaries(CodeRegion cr, Experiment e){
...}
//get list of region summaries of code region cr in experiment e and

//associates with proces sing unit pu.

public RegionSummary[] getRegionSummaries(CodeRegion cr, Experiment e,

ProcessingUnit pu, RegionSummary parent) {...}
//get list of region summaries called inside the input region summary

public RegionSummary[] getChildOfRegionSummary(RegionSummary rs){...}
//get the region summary which calls the input region summary rs.
public RegionSummary getParentOfRegionSummary(RegionSummary rs){...}
...

}

Fig. 5.5. Generated classes for accessing experiment data.
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region can be expressed in XML format, as shown in Figure 5.6. The tool
which is processing the XML-based performance data can easily parse and
use the data by using an XML parser and information in the performance
metrics catalog.

<coderegion>

...

<metrics>

<metric name=’’wtime’’ value=’’1.09039995E8’’ />

<metric name=’’odata_send’’ value=’’2986000.0’’ />

<metric name=’’odata_recv’’ value=’’5.6923546E7’’ />

<metric name=’’octrp_infl’’ value=’’4708181.0’’ />

</metrics>

</coderegion>

Fig. 5.6. Example of extracted performance data in XML.

5.5.3 Performance Analysis and Tool Integration based on
Experiment Data Repository

In this section, we present three main achievements gained from the use of
the experiment data repository named: search and filter capabilities, multi-
experiment analysis, and data sharing and tool integration.

5.5.3.1 Search and Filter Capabilities

Most existing performance tools lack basic search and filter capabilities. Com-
monly, existing tools allow the user to browse code regions and their related
performance metrics through various views of performance data. For exam-
ple, tools such as [279, 179, 258] provide numerous displays including process
time-lines with zooming and scrolling, histograms of state durations and mes-
sage data. Those displays are crucial but they require all data to be loaded
into the memory so that the system turns to be in-scalable. Moreover, too
much information provided so that the user is difficulty to find out the oc-
currence of events with criteria performance metrics, e.g. code regions with
wall-clock time larger than 20% of the wall-clock time of the program. Search
of performance data will allow the user to quickly identify interesting code
regions. Filtering performance data being visualized will increase the scala-
bility of performance tools. However, search and filter data on files are not
efficient, robust and fast. They require high implementation cost. To employ
a relational-based data repository allows us to archive, search and filter data
with a great flexibility and robustness based on database management utilities
and SQL language, and to minimize the implementation cost.
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Fig. 5.7. Interface for search and filter of performance data in SCALEA

Fig. 5.8. Specify complex performance conditions.

Figure 5.7 presents the interface for search and filter in SCALEA. The
user can select any experiment for searching code regions under selection
criteria. For each experiment, the user can choose code region types (e.g.
send/receive,OpenMP loop), specify metric constraints based on performance
metrics (timing, hardware parameter, overhead), and opt the processing unit
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Fig. 5.9. Results of performance search.

(computational nodes, processes, threads) on which the code regions are exe-
cuted. Metric constraints can be defined in simple way such as defining ranges
of values of performance metrics. They also can be constructed by selecting
quantitative characteristics (see Figure 5.8). For instance, the user may define
constraints for L2 cache miss ratio by expressing the L2 cache miss ratio as

L2CacheMissRatio =
L2 TCM

L2 TCA
(5.10)

and then discretizing the L2 cache miss ratio:

• good if L2CacheMissRatio ≤ 0.3
• average if 0.3 < L2CacheMissRatio ≤ 0.7, and
• poor if L2CacheMissRatio > 0.7.

These quantitative characteristics can be stored into the experiment data
repository for later use.

User-specified conditions will be transfered into queries in SQL language.
SCALEA uses these queries to perform the search. For example, the result of
the above-mentioned example is shown in Fig. 5.9. In the top-left window, the
list of resulting code regions fulfilled the search conditions is visualized. By
clicking into a code region, the source code and corresponding performance
metrics of the code region will be shown in the top-right and bottom window,
respectively.

5.5.3.2 Multi-Experiment Analysis

Most existing performance tools [172, 167, 179, 204, 258, 82] investigate the
performance for individual experiments one at a time. To employ the repos-
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itory to archive data of experiments, SCALEA goes beyond this limitation
by supporting multiple experiments. The user can select several experiments,
code regions and performance metrics of interest whose associated data are
stored in the data repository (see Figure 5.10). The outcome of every selected
code region and metric is then analyzed and visualized for all experiments.

Fig. 5.10. Multiple experiment analysis GUI.

Our multi-experiment analysis supports:

• performance comparison for different sets of experiments : The user can
analyze the overall execution of the application across different sets of ex-
periments; experiments are grouped based on their properties (e.g. problem
sizes, communication libraries, platforms).

• overhead analysis for multiple experiments : Various sources of performance
overheads across experiments can be examined.

• study parallel speedup and parallel efficiency at both program and code re-
gion level : Commonly, these performance metrics are investigated only at
the level of the entire program. SCALEA, however, supports to examine
the scalability at two levels: program and code region level.

We believe that multi-experiment analysis feature is very useful for scalability
analysis of individual metrics and code regions for changing problem and
machine sizes and underlying computing resources.
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5.5.3.3 Data Sharing and Tool Integration

A key reason for utilizing the data repository is the need to support data
sharing and tool integration. With the complexity of current applications and
architectures, it is unlikely that a single tool can provide enough functionality
to fulfill the user’s need. Data sharing and tool integration will allow the user
to utilize facilities provided by different tools with available performance data.
Data collected and analyzed by SCALEA is stored into the experiment data
repository. Via well-defined interfaces, other tools can retrieve data from the
experiment data repository and perform their own analysis.

In the framework of ASKALON, SCALEA provides basic components
which are utilized by other tools. For example, performance metrics of code
regions provided by SCALEA is used to compute the performance properties
[83]. AKSUM [87] which is a high-level semi-automatic performance bottle-
neck analysis depends on SCALEA for instrumentation and measurement of
code regions, and for analysis of performance overheads of user’s programs.
Based on performance metrics (overheads, timing, hardware parameters), AK-
SUM computes performance properties and conducts the high-level bottleneck
analysis by performing the search for performance bottlenecks by evaluating
these properties.

The PerformanceProphet [195] which supports for performance modeling
and prediction on cluster architectures uses measured data stored in the ex-
periment data repository to build the cost function for the application model
which is represented in UML forms. The model is then simulated in order to
predict the execution behavior of parallel programs.

ZENTURIO [201] is a tool purposely designed to support the manage-
ment and control of performance experiments, parameter studies, and soft-
ware testing. ZENTURIO uses the ZEN macro language (based on directives)
to specify a possibly large set of interesting experiments for an application.
ZENTURIO depends on SCALEA for automatically instrumentation of appli-
cation sources. Thereafter, these sources are compiled and executed on target
machines. After the experiments have been completed, SCALEA stores per-
formance data into the experiment data repository. By using performance
results analyzed by SCALEA, ZENTURIO visualizes performance data along
with output data across multiple experiments.

Through integrating tools and leveraging performance data, various tools
will provide flexible ways for the user to conduct performance analysis. The
user can start with one analysis. If this analysis is not enough for his purpose,
the user can launch other (high-level) analyses.

5.6 A Soft Computing-based Approach to Performance
Analysis of Parallel and Distributed Programs

The development of high performance computers and the advances in com-
munication have fostered the development of large-scale and complex appli-



86 Performance Analysis for Parallel Programs

cations. When tuning and optimizing the performance of such large-scale and
complex applications, a large amount of performance measurements collected
needs to be analyzed. This results in many challenges to be solved by cur-
rent performance analysis tools for parallel and distributed programs because
most of them support performance analysis via interactive statistical graphics
which do not work well with large amount of data. Performance analysis tools
have to exploit and develop new scalable and intelligent methods to examine
that huge amount of performance measurements.

In response to these challenges, recently performance analysis commu-
nity has focused on developing performance tools for parallel and distributed
programs that are capable of supporting automatic performance analysis
[261, 268, 87], dealing with large performance data sets [22], and analyz-
ing multiple experiments [246]. However the development of automatic and
intelligent performance analysis is still at an early stage. Currently, exist-
ing performance analysis tools use exact analysis methods that result in exact
conclusions about performance characteristics of applications. Also these tools
present the user with the performance data in the form of precise and com-
plex numerical values. However, performance measurements collected may
have limited accuracy or missing data, in other words, performance mea-
surements may be incomplete and uncertain data. Therefore, exact analysis
methods might not be appropriate for processing uncertainty data. Secondly,
performance tools based on numerical analysis interact with the user through
complex numerical values which are not easily understood by human beings.
Moreover, in real world we largely rely on domain expertise and user-provided
inputs as parameters to control the performance analysis and tuning. Such
expertise and inputs may be inexact and uncertainty. However, there is no
mechanism to specify and control approximate and inexact parameters in ex-
isting performance analysis tools, in other words, these tools do not provide
a mechanism for making soft decisions.

We present a new approach to automatic performance analysis that we call
the soft performance analysis. In this approach, soft computing techniques
such as fuzzy logic (FL), machine learning (ML) concept, and the combina-
tion of FL and ML are studied and developed for performance analysis of
parallel and distributed programs. We use FL to represent performance char-
acteristics and introduce the concepts of performance score and performance
similarity based on fuzzy logic and similarity theory. Employing these con-
cepts, we develop several techniques and methods for performance analysis
such as fuzzy-based performance classification, ranking analysis and bottle-
neck search, and similarity analysis for single- and multi-experiment. A fuzzy-
based query language is proposed that enables the search of performance data
by using linguistic expressions, not complex numerical expressions as usual.
Furthermore, we develop and implement a fuzzy C-means clustering for clas-
sifying the performance of code regions into classes of similar performance,
and propose fuzzy rules for filtering performance data.
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5.6.1 Hard Computing and Soft Computing

Hard computing applies exact methods which are based on binary logic,
crisp system and numerical analysis. Thus hard computing requires a pre-
cise model. For example, if we measure the communication/computation ra-
tio Tcomm/Tcomp for a set of code regions CR = {r1, r2, · · · , rn}, we might
want to ask “does ri have high Tcomm/Tcomp?”. With hard computing, we
can use Boolean logic to define a condition as follows: any code region whose
Tcomm/Tcomp ≥ 0.7 has high Tcomm/Tcomp. However, that condition is very
exact, for example why Tcomm/Tcomp = 0.7 is high and Tcomm/Tcomp = 0.6999
is not? In real world such condition is not exact but approximate. Also the
knowledge used to define the condition seems to be uncertainty. Therefore,
with hard computing, we may need a lot of computation in order to find the
suitable solution for a problem.

Unlike hard computing, soft computing [278, 45, 202] is “tolerant of impre-
cision, uncertainty, partial truth” and approximation [278]. With the example
above, we can represent high Tcomm/Tcomp as a subset and a code region ri

can be associated with a value which indicates the degree of membership of
its Tcomm/Tcomp value in subset high. For example, Figure 5.11 illustrates the
function used to determine the degree of Tcomm/Tcomp value in the subset
high. Hence, with Tcomm/Tcomp = 0.6999 we know that the Tcomm/Tcomp of
the code region is almost high.

Degree

1

0

0.6 T
comm

/T
comp

1

high

0.7

Fig. 5.11. Example of representing high Tcomm/Tcomp.

The main objective of soft computing is to “exploit the tolerance for im-
precision, uncertainty, partial truth, and approximation to achieve tractability,
robustness and low solution cost” [278, 45]. The basic principles underlying
soft computing are inspired by fuzzy sets [273], the analysis of complex sys-
tems and decision processes [274], possibility theory and soft data analysis
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[275]. The main techniques and tools of soft computing that we are exploiting
are fuzzy logic (FL) and machine learning (ML).

5.6.2 Soft Performance Analysis

The current techniques in existing performance analysis tools are based on
hard computing that is based on binary logic, crisp system and numerical
analysis. For example, to classify the performance of parallel programs into
performance classes performance analysis tools normally use a characteristic
function. That is, given a performance metric and a set of performance char-
acteristic terms, e.g. poor, medium and good, each term is associated with a
data set, the performance of a code region is mapped into a member of the
set of performance characteristic terms with respect to the given metric. Such
classification is exact, e.g., with respect to the given metric, the code region is
classified as good or poor. The characteristic function µ(x) can be represented
as follows:

µ(x) : X → {0, 1} (5.11)

where X is the data set associated with a performance characteristic term
and x is the value of a performance metric. There is no common way to define
µ(x) and X which are dependent on specific analyses for specific applications.
For example, in our previous work, presented in Section 5.5.3.1, µ(x) and X
are manually defined by users whereas in [261], when building the decision
tree, they are automatically defined based on training data.

Currently, performance analysis tools are based on numerical analysis
in which imprecision and uncertainty are not accepted. Since approximate
search, classification and reasoning are not possible, the cycle of finding per-
formance patterns in a large set of performance data has been lengthened be-
cause, in real world, various factors, e.g., the boundaries between performance
classes, the performance search constraints, etc., might be fuzzy. These fuzzy
factors possibly make exact methods not yield the expected results. Moreover,
current tools focus on supporting the performance analysis through statistical
graphics which are not well suited for processing large performance datasets.

In real world, performance data may be uncertainty and expertise used in
performance analysis domain can be imprecision and uncertainty. For exam-
ple, in the case of performance classification, the performance of a code region
is classified into good but we do not know how grade of good is? It is possible
that the performance of the code region is a little good, fairly good or very
good. In many cases, the performance measurements collected are imprecision
and uncertainty because we have limited measured instruments, imperfect
performance models, etc. Because we may not be certain of performance data
and expertise, we may accept some degree of tolerance about imprecision, un-
certainty and approximate in our analysis techniques. Moreover, performance
analysis tools have to replace large and complex numerical performance data
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which cannot be grasped by the end user by lower dimensional and summa-
rized information, notations and concepts that can be easily understood by
the end user.

To address the above-mentioned issues, we investigate the performance
analysis techniques that are based on soft computing model. FL and ML,
widely used in soft computing, are useful tools for processing and analyzing
uncertainty and large-volume data. The soft performance analysis we pro-
pose aims to develop techniques for performance tools that can (i) extract
useful performance information from large, dynamic and multi-relational per-
formance measurement sources, (ii) support the specification and control of
approximate and inexact parameters, commands and requests in existing per-
formance analysis tools, and (iii) interact with the user through high level
notions and concepts expressed in linguistic expressions. Soft computing plays
a major role in achieving that aim.

We outline the soft performance analysis approach as follows. Firstly, FL
theory can be used to represent and normalize performance data and to reduce
the data volume. We can represent a grade (score) of a metric value by using
a fuzzy set. Let x be a metric value in the universe of discourse U . The grade
of performance of x in U is measured by an extension of the characteristic
function called membership function as follows:

µ(x) : U → [0, 1] (5.12)

Here the membership function maps each x ∈ U into a real number in the
range from 0 to 1. That is

0 ≤ µ(x) ≤ 1 (5.13)

with 0 meaning that x has the lowest grade, 1 meaning that x has the highest
grade.

The application of fuzzy logic theory also involves the concept of linguistic
variables. The use of linguistic variables is particular useful to the end-user
as humans employ mostly words in computing. This has been realized by the
concept of computing with words [277]. By using fuzzy logic, performance
tools can provide a way to perform analysis and to interpret performance
results with linguistic terms that is close to the way in which humans interpret
linguistic variables.

Secondly, when processing large and diverse performance data, informa-
tion about performance summaries, similarities and differences among data
items become more important as we cannot examine each data items in detail.
Similarity measure techniques can be exploited to reveal the performance sim-
ilarities and differences. Machine learning techniques [174] which are widely
used in data mining [121] can be utilized to discover patterns in very large
performance datasets. For example, machine learning is combined with fuzzy
computing to provide fuzzy clustering of performance data that can be used
to classify the multi-dimensional performance measurements into relatively
small groups of similar objects.
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5.6.3 Representing Performance Characteristics with Fuzzy Logic

In this section, we outline the representation of performance characteristics by
using concepts of fuzzy logic such as fuzzy set, membership function, and mod-
ifier. An outline of fuzzy sets, common membership functions and modifiers
can be found in Appendix F.

A fuzzy set FS is used to map metric values onto membership values
that lie in the range [0, 1]. An FS is expressed as a set of ordered pairs
FS = {(x, µ(x))|x ∈ U} where µ(x) is the membership function that gives
the degree of membership of x in U , and U is the universe of discourse of x.
Each fuzzy set is represented by a performance characteristic term.

Let v be a metric value with the universal of discourse U . U is character-
ized by a given set of performance characteristic terms T = {t1, t2, · · · , tn};
performance characteristic terms are linguistic terms such as poor, medium
and high. Each characteristic term ti is associated with a membership func-
tion µi(x) which determines the membership of x in ti. v can be classified
according to these terms.

A modifier is used to enhance the use of performance characteristic terms.
A modifier (e.g. very or slightly) is an operation that modifies a performance
characteristic term (e.g. poor or bottleneck) (this also means to modify the
shape of the fuzzy set representing the term). The modification results in a new
fuzzy set represented by a new phrase (e.g., very poor or slightly bottleneck):
the new fuzzy set fits the meaning of the new phrase. These modifiers are also
commonly referred to as hedges.

5.6.4 Performance Score

When evaluating and comparing performance of code regions most existing
performance tools use quantitative measurement values and do not employ
quantization or normalization techniques to evaluate the performance based
on multiple metrics. As a result, it is difficult to evaluate and compare the per-
formance of code regions with multiple metrics whose scales and data ranges
are different.

We present the concept of performance score which is used to evaluate the
performance of a code region within a base, e.g. the parent code region or
the whole program. The concept is based on (i) a set of selected performance
metrics representing the performance of the code region, and (ii) a weight
set representing the significance of performance metrics. Given a code region
r, let rs be the region summary of r with a set of n performance metrics
{m1, m2, · · · , mn}. Suppose the number of performance metrics measured is
the same for every code regions. The region summary rs can be represented
in n dimensional space. Let vi = rs(mi) be the value of metric mi in region
summary rs and let si be a score that represents the performance of region
summary rs with respect to metric mi. We compute si as follows

si = µ(vi), µ(x) : [0, Vmi
] → [0, 1] (5.14)
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where µ(x) is the membership function that determines the performance score,
and Vmi

is the maximum value of metric mi observed. The observed Vmi
is

dependent on the level of code region analysis. For example, if we analyze per-
formance scores of rs with its parent rsparent as the base, Vmi

= rsparent(mi).
However, if the entire program is selected as the base, Vmi

= rsprogram(mi)
where rsprogram is the region summary of the code region representing the
entire program.

The value of si is in the range [0, 1] with 0 means the lowest score, 1 means
the highest score. A higher performance score might imply a higher perfor-
mance (higher is better class, see Section 3.7) but it may be used to indicate a
lower performance (lower is better class, see Section 3.7). The exact semantics
of the value of the performance score is defined by specific implementations.
As a result, performance scores can be used in various contexts such as

• to represent a significant impact level: the higher a performance score is,
the higher impact the code region has

• to represent a severity: the higher a performance score is, the more severe
the core region is.

There are several ways to select µ(x), depending on the specific analysis and
approximate model used. The most simple way is to define the membership
function µ as µ(vi) = vi

Vmi

which assumes that the score is based on linear

model. For performance metrics with non-linear model we can choose trape-
zoid, S-function, Z-function, triangle, or user-defined function as µ(x) (see
Appendix F for common membership functions).

Each region summary rs is associated with a vector of performance scores
~s. However, depending on the purpose of the performance analysis, we may
only select a subset of performance scores of the vector as metrics for analyzing
the performance of the code region. Like quantitative measurement values,
we can compare two performance scores of two different metrics. However,
as performance scores are normalized values, we can aggregate performance
scores ~s of a region summary into a single score by using the overall weighted
average (OWA) operator.

Given a set of performance metrics M = {m1, m2, · · · , mn}, let {s1, s2, · · · ,
sn} be performance scores of rs. Let W = {w1, w2, · · · , wn} be the set of
weights; wi is a weight factor associated with metric mi. The aggregation
performance score for a score set ~s, OWA(~s), may be computed as follows

OWA(~s) =

∑n
i=1 (|siwi|)
∑n

i=1 wi

(5.15)

For the sake of simplicity, normally wi ∈ (0, 1) and
∑n

i=1 wi = 1. OWA score
is particular useful for support of decision making in performance analysis and
tuning because very often in performance analysis we have to decide where
and what to optimize: which are the focused metrics of which code regions that
should be tuned and optimized in order to achieve a better performance. With
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code regions having odata send or odata recv or both, we optimize the per-
formance of the code region having highest odata send or odata recv score or
we want to balance between the two. OWA allows specifying our preferences.
Hence we use the notation (mi,wi) to denote a metric mi with its associated
weight wi, for example (odata send,0.75) means metric odata send with
weight 0.75.

We can use a single performance score or a set of performance scores with
or without weight set as metrics in evaluating the performance of code regions.
Using OWA we can provide a single metric representing for multiple perfor-
mance metrics. Not only that provides comfortable methods to normalize and
characterize the performance metrics of code regions but also it reduces the
computation as data has been transformed from n-dimensional data points
to a small set of performance scores. Table 5.8 presents an example in which
we use different membership functions and weight sets to compute perfor-
mance scores for a set of selected code regions in an experiment. The resulting
performance scores are dependent on the selection of membership functions,
performance metrics and weight set. As performance data and model contain
sources of uncertainty, we can try to use various membership functions to
compute the performance score under various uncertain conditions.

Code Region Linear S-function Linear S-function
{(wtime,1)} {(wtime,1)} {(utime,0.5), {(utime,0.5),

(stime,0.5)} (stime,0.5)}

CAL POWER 0.014775 0.00369 0.0522 0.013
IONIZE MOVE 0.48712 0.4774 0.269 0.274
SR E FIELD 0.01362 0.0034 0.0677 0.018

PARTICLE LOAD 1.0325E-4 2.581E-5 4.543E-5 1.135E-5

Table 5.8. Example of performance scores with various membership functions,
performance metrics and weight sets. The performance scores of code regions are
computed relatively to the whole program.

5.6.4.1 Performance Scores versus Performance Properties

APART working group proposes performance properties which can be seen
as indices used to determine the severity of the performance [83]. The basic
tenet of performance score and performance property is to normalize value
of a performance metric into the range [0, 1]. However, the two concepts are
different.

Firstly, the membership function of a performance score is not predefined
and fixed during the analysis. Rather, the membership function should be
selected by the performance tools, maybe under user preferences, during the
analysis. In contrast, a performance property is computed by a fixed and
predefined function. Performance severity is computed based on single metric
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whereas performance of a code region normally is characterized by a set of
performance metrics. In addition, the performance severity is computed based
on linear model which normally is not suitable for all performance metrics.
Another aspect is the utility of a performance metric. Performance severities
are metrics that belong lower is better class (see Section 3.7) only. However, a
performance tool needs to provide a wide range of performance metrics, which
belong to different utility classes, because the user is not always interested in
examining a single class of utility function.

A performance property cannot represent a set of performance metrics.
Instead, performance properties can be grouped into a collection, as discussed
in [87]. However, there is no concept of weight operator associated with per-
formance properties. A set of performance properties is just a collection with
simple operators, e.g. min and max. Our performance score is based on the-
ory of fuzzy logic. Fuzzy logic also allows the representation of fuzzy concepts,
such as near and very, which cannot be found in performance properties. In
fact, performance property can be considered a special case of performance
score.

5.6.5 Performance Similarity

Most existing performance tools examine executions of code regions by vi-
sualizing performance measurements on numerous displays including process
time-lines with zooming and scrolling, histograms of state durations and mes-
sage data. Those displays are crucial but they do not measure the similarity
among executions, not to mention that they mostly require all data to be
loaded into the memory, eventually making the tools in-scalable. The user
has to observe the displays and perceive the similarity and the difference
among these values. Moreover, it is difficult to compare multivariate data
through visualization. Similarity measure can help uncovering similar perfor-
mance patterns among code regions. That performance patterns are not easily
perceived through complex numerical numbers and displays, or by examining
a large data set. Performance similarity can be measured for executions of
code regions in a single experiment or across multiple experiments. By mea-
suring similarity between executions of a code region, we can examine whether
the performance pattern of a code region is regular or not when the code re-
gion is executed on different processing units of experiment(s). Analyzing the
similarity among different versions of a code region, e.g., different implementa-
tions of a function, helps to discover the similarity between their performance
patterns.

We propose methods to compute the performance similarity measure which
can be used as a metric to indicate the performance similarity among execu-
tions of code regions and among experiment factors. Intuitively, a similarity
measure between two region summaries rsi and rsj can be defined as a func-
tion which maps region summaries presented by performance score vectors
into numbers which indicate the degree of similarity between the performance
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of code regions. Formally, let oi and oj be objects (e.g. region summaries, ex-
periment factors), a similarity measure is a function sim(oi, oj) → [0, 1] that
compares oi with oj . The result of sim is in the range of [0, 1] where 0 denotes
complete dissimilarity and 1 denotes complete similarity3.

5.6.5.1 Performance Similarity Measure for Code Regions

Let rsi and rsj be region summaries of r in experiment e, respectively. Let
sil and sjl be performance scores of rsi and rsj with respect to metric ml,
respectively. We use Equation 5.14 to compute sil and sjl as follows

sij = µl(vil), µl(x) : [0, Vml
] → [0, 1] (5.16)

sjl = µl(vjl), µl(x) : [0, Vml
] → [0, 1] (5.17)

where Vml
is the maximum observed value of metric ml. Vml

depends on
the base on which the similarity analysis is conducted. For example, if we
measure similarity of rsi and rsj with their parent rsparent as the base then
Vml

= rsparent(ml).
We then define similarity measure simij between two region summaries

rsi, rsj as follows

dij =

√

√

√

√

n
∑

l=1

(|sil − sjl|2wl) (5.18)

simij(rsi, rsj) = 1 − dij (5.19)

where wl is a weight factor for metric ml. dij is the distance measure be-
tween rsi and rsj that is computed by using Euclidean function. Note that
a variety of distance functions is available such as Minkowski, Manhattan,
Correlation and Chi-square. Instead of using performance scores as metrics
used to compute the distance, we can also use measurement data. However, as
measurement data have different scales (non-normalized values), the resulting
distance measure can significantly be impacted.

To determine the performance similarity among executions of code regions
across a set of experiments, we also use Equation 5.19 to measure the perfor-
mance similarity. However, given a performance metric mi, when determining
performance score the maximum observed value Vmi

is the maximum value
obtained from a base experiment (e.g. the experiment with the highest exe-
cution time, the experiment of sequential version). Given a code region r and
a set of experiments {e1, e2, · · · , en}. Let rsi be region summary of r in ex-
periment ei. We compute similarity measure sim(rs1, rsi), i : 2 → n by using
various membership and distance functions.

3 Although the similarity measure and fuzzy membership degree are in the same
range [0, 1], they are based on two different concepts. The similarity measure may
be computed based on fuzzy metrics, but not necessarily.
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5.6.5.2 Performance Similarity Measure for Experiment Factors

The similarity analysis presented in Section 5.6.5.1 allows us to examine the
similarity between executions of code regions across a set of experiments, in
other words, it provides similarity between the performance of code regions
of experiments. It, however, does not take into account the similarity among
factors of experiments. Experiment factors which can be controllable, e.g.
problem size, number of CPUs and communication libraries, or uncontrol-
lable, such as system load and OS processes, have significant impact on the
performance of the applications. Without considering similarity between ex-
periment factors, it is difficult to explain cases in which the performance of
code regions is not similar because the experiment factors can be different.
Therefore, initially we try to address this problem by measuring similarity
between controllable factors.

Let simf (ei, ej) be similarity measure for factor f between experiments
ei and ej . Given a set of controllable factors F = {f1, f2, · · · , fn}, similarity
measure is computed for each factor fi ∈ F . There is no common way to
compute simf as a controllable factor and its role are dependent on each
experiment and are different from experiment to experiment. The objective
of our analysis is to find out the relationship between the similarity of the
performance of code regions (outputs of performance experiments), simo (e.g.
sim(rsi, rsj)), and simfi

. Assume we know the similarity degree between
controllable factors and between the performance of code regions, we can
establish the model among them. Naturally we expect the similarity measures
of the controllable factors of two experiments and of the performance of these
experiments behave in a similar fashion, e.g. if the controllable factors are
very similar then the performance of experiments should be very similar.

5.6.6 Fuzzy-based Performance Classification

Performance classification uses prior knowledge to classify performance of code
regions according to performance characteristic terms. Formally, given a met-
ric value v and a set of performance characteristic terms T = {t1, t2, · · · , tn},
v are classified according to that terms. In existing performance tools, the
classification gives exact result, that is, v belongs to only one ti ∈ T , with
no degree of membership, e.g. in [261]. The advantage of fuzzy-based perfor-
mance classification is that it provides a soft decision by giving a value that
describes the degree to which a code region fits into a performance class, rather
than only a hard decision which indicates whether a code region belongs to a
performance class or not.

To classify performance of code regions, we firstly define membership func-
tions for performance metric m by partitioning the range of the value of metric
m into segments. Each segment is described by a performance characteristic
term which is associated with a fuzzy set. This process can be done auto-
matically. Once membership functions are determined, the fuzzification that
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takes quantitative value v of m and determines membership degree of v to
membership functions is conducted.
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Fig. 5.12. Performance characteristic terms T = {low, medium, high} with their
associated fuzzy sets.

To demonstrate this analysis, we classify code regions of 3DPIC ap-
plication (see Section 7.3.4 for more information about 3DPIC) executed
with 4 processes according to a set of performance characteristic terms
T = {low, medium, high} representing the L2 cache miss ratio. Three dif-
ferent fuzzy sets Z-function, trapezoid and S-funtion are associtated with low,
medium, high term, respectively, as shown in Figure 5.12. We then conduct
the classification for some selected code regions. Figure 5.13 presents the re-
sult with five selected code regions. As shown in Figure 5.13, the code region
PARTICLE LOAD is high L2 cache miss ratio. However, code region CAL POWER

is member of both low and medium.

Fig. 5.13. Membership in {low, medium, high} L2 cache miss ratio for selected
code regions of 3DPIC.

We can also build new characteristic terms by combining existing ones
with modifiers. For example, we can classify code regions according to very
low L2 cache miss ratio; the term very is a fuzzy modifier. Let µlow(x) be
the fuzzy set associated with term low and µvery−low(x) be the fuzzy set
associated with term very low. Formally µvery−low(x) is a function that map
µlow(x) onto [0, 1]

µvery−low(x) = f(µlow(x)), f ∈ [0, 1] (5.20)
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In practice, the term very is often approximated by f(x)2, for example
µvery−low(x) = (µlow(x))2. The use of modifiers allows us to extend the set
of characteristic terms, enhancing the ability to describe performance charac-
teristic terms.

In the current prototype, as many available fuzzy sets can be used to repre-
sent a term, we base on the most popular fuzzy sets for describing membership
of continuous data such as triangle, trapezoid, S-function and Z-function (see
Appendix F).

5.6.7 Fuzzy-based Query for Searching Performance Data

Most existing performance analysis tools lack a query language that can be
used to search performance data. A search language that is in the form of
human notions or closer to what people use to think is a useful tool to support
the end users in conducting performance analysis.

The fuzzy-based approach offers the possibility of searching performance
data with words. Fuzzy-based search by using linguistic expressions has been
widely employed in database systems, information retrieval, etc., [48, 206, 67].
For searching performance data with words, a fuzzy-based query language can
be built based on performance characteristic terms along with a set of fuzzy
modifiers, and AND and OR operators.

〈PERFQL Statement〉 ::= 〈PERFQL Expr〉 | 〈PERFQL Statement〉
OR 〈PERFQL Expr〉

〈PERFQL Expr〉 ::= 〈PERFQL Term〉 | 〈PERFQL Expr〉
AND 〈PERFQL Term〉

〈PERFQL Term〉 ::= (〈METRIC〉 is 〈F Expr〉)
〈F Expr〉 ::= 〈F Term〉 | 〈F Expr〉 OR 〈F Term〉
〈F Term〉 ::= 〈M Expr〉 | 〈F Term〉 AND 〈M Expr〉
〈M Expr〉 ::= MODIFIER 〈M Expr〉 | 〈P Term〉
〈P Term〉 ::= PERF-TERM | 〈(F Expr)〉

Fig. 5.14. BNF description of the top-level syntax of PERFQL.

We propose a fuzzy-based query language for searching performance data.
Figure 5.14 presents our PERFQL (performance query language based on
fuzzy logic). METRIC is a metric name or a metric expression. A metric
expression consists of operands and +, -, *, / arithmetic operators; operands
are metric names. PERF-TERM is a performance characteristic term, each asso-
ciates with a fuzzy set. MODIFIER is a modifier for performance characteristic
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terms. F Expr describes the syntax of generic linguistic expressions repre-
senting performance characteristic terms4.

For example, the following query can be used to find code regions which
have high wall-clock time and poor L2 cache miss ratio

(wtime is HIGH_EXECUTION_TIME) AND (L2_TCM/L2_TCA is

POOR_CACHE_MISS)

where wtime and L2 TCM/L2 TCA denote wall-clock time and L2 cache miss
ratio, respectively. HIGH EXECUTION TIME and POOR CACHE MISS are perfor-
mance characteristic terms, each is represented by a fuzzy set.

PERFQL allows the user to easily define queries for searching performance
data by using words, not numerical expressions. Thus, it is easy to be un-
derstood and interpreted by the user. Moreover, fuzzy-based queries enable
approximate search. When using crisp condition, performance data which is
outside the selected range is totally excluded. However, in real world, perfor-
mance data slightly less or greater than the crisp condition might be of interest
as the selected range may not be the right choice. With soft approach, we can
easily obtain that data by using modifiers along with performance character-
istic terms.

5.6.8 Fuzzy Ranking Analysis

Ranking analysis has been used widely in evaluating systems and resources.
Most existing performance tools provide a simple type of ranking analysis in
which performance of code regions is sorted based on measurement value of
a selected metric. A performance property [83] can also be seen as a simple
metric that can be used to rank the performance of code regions (the higher
value of a performance property is, the more severe the code region is). How-
ever, all mentioned ranking schemes are based on single metric whereas the
user may wish to rank the performance of code regions based on set of per-
formance metrics, not on a single one. With ranking analysis that uses raw
measurement value it is difficult to interpret and compare the significance of
the performance of code regions. An index like performance property is mostly
computed based on linear model.

We propose a fuzzy ranking algorithm, based on fuzzy logic and OWA
operators, which can be used to rank the significant level of performance of
code regions compared to another code region called the base. Let RS =
{rs1, rs2, · · · , rsn} be the set of region summaries to be ranked, rsi contains
performance values of n metrics {m1, m2, · · · , mn}. For mi, we select a mem-
bership function µi. The membership functions can be linear or non-linear,

4 In [187, 101], a BNF (Backus Naur Form) that describes the syntax of generic
fuzzy linguistic expressions (e.g. very low or medium) is introduced. PERFQL
reuses that BNF. That BNF is equivalent to our BNF describing 〈F Expr〉 of
PERFQL.
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depending on the model of the performance metric. For each rsi, by using
membership functions, we measure performance score vector ~si with the par-
ent code region or the whole program as the base. We then apply OWA oper-
ator to compute an OWA score from ~si. This OWA score is used to rank code
regions in an experiment. We apply our performance rank for various types
of performance metrics such as measured timing, measured counter, ratio and
overhead metrics.

Fig. 5.15. Performance rank for 3DPIC, executed on 4 processors, using
{(wtime,1)}.

Figure 5.15 presents the performance rank for 3DPIC application executed
on 4 processors. Ranking is based on the performance score which indicates
the significant impact of the performance, the higher value a score has, the
higher significant impact it indicates. For each code region, we evaluate its
rank with its parent code region as the base. For example, in Figure 5.15 the
code region MAIN has rank about 0.99, suggesting it dominates performance
of the program. Inside MAIN, INONIZE MOVE is the top in performance rank of
code regions of MAIN with the score approximate to 0.49. However, code re-
gion CAL POWER has the score approximate to 0.003 even it is the second of the
list. This suggests that most instrumented code regions have little impact on
the total execution time. Figure 5.16 shows another example of using rank-
ing analysis to investigate the severity of the overhead due to sending and
receiving data (data movement overhead). The performance score indicates
the overhead severity, the higher value a score has, the more severe overhead
the code region has. Although INONIZE MOVE has significant impact on the
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execution of MAIN, it does not contribute to data movement overhead. Also no
code region has significant impact on the data movement overhead because all
performance scores have small values. However, there are many code regions
which are sources of data movement overhead.

Fig. 5.16. Performance rank for 3DPIC, executed on 4 processors, using
{(odata recv,0.5), (odata recv, 0.5)}.

With our fuzzy ranking analysis, the user can rank the performance of
code regions based on multiple metrics and weight set. Ranking analysis can
be customized to examine the performance from different angles, such as the
level of performance impact with respect to specific metrics, the severity of
overhead, etc.

5.6.9 Fuzzy Approach to Bottleneck Search

There are several tools supporting bottleneck search, e.g. in [55, 87]. These
tools, however, support crisp-based searching as the search conducts based
on checking crisp threshold. Given a performance metric, a threshold is pre-
defined. During the search, the performance metric is evaluated against the
threshold, and when the performance metric exceeds the threshold, a bottle-
neck is assumed to exist in the code region. The base metric used in the search
can be performance measurements or performance properties [87]. There are
two drawbacks of current crisp search strategy. Firstly, the search does not
give the degree of severity of the bottleneck, e.g. extremely bottleneck or slightly
bottleneck (performance property represents the severity of the performance,
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not of the bottleneck). Secondly, there is no support to specify in-exact bot-
tleneck search statements such as negligible bottleneck. These statements are
important as bottleneck threshold, by itself, is not exact value.

Degree

1

0

Bottleneck
threshold

Metric ValueUpper bound

Crisp bottleneck membership function
 Fuzzy “severe bottleneck“ membership function

Fuzzy “negligible bottleneck“ membership function

Fig. 5.17. Fuzzy versus crisp bottleneck search.

We propose fuzzy-based bottleneck search that addresses the drawbacks
mentioned above. Figure 5.17 outlines the fuzzy-based bottleneck search.
Given a threshold, we can use fuzzy sets to represent the severity of bot-
tleneck and the negligible bottleneck range besides the fuzzy set representing
the bottleneck threshold. For example, in Figure 5.17 we define a Pi-function
fuzzy set used to check the negligible (close to) bottleneck points and S-
function fuzzy set used to check the severity of bottleneck. When searching
the bottleneck points, the value of metric used in bottleneck search is evalu-
ated against these fuzzy sets. Not only we can locate which code region is a
bottleneck point as usual but also we can provide the severity of bottleneck
and determine negligible bottleneck points.

Very simply, to demonstrate the advantage of fuzzy-based bottleneck
search, we experience with 3DPIC code to find code regions that may have
L2 cache access problems. Suppose a code region whose L2 cache miss ratio
exceeds 0.7 is a bottleneck. In the first case we use a set of performance char-
acteristic terms T = {low, medium, high} representing the severity of the bot-
tleneck. Three different fuzzy sets Z-function with range [0.7, 0.8], Pi-function
with range [0.75, 0.95] and S-function with range [0.9, 1] are associated with
low, medium, high term, respectively. We apply this search with 3DPIC code
executed with 4 processes and we find that there is only one bottleneck as
shown in Figure 5.18(a). The bottleneck falls into both classes medium and
high, as shown in Figure 5.18(a). Without using fuzzy-based, we do not have
information about the severity of the bottleneck. Since we are not certain
about the threshold, we decided to use another triangle fuzzy set with pa-
rameter (0.65, 0.7, 0.75) to describe close area of the pre-defined bottleneck
threshold. Consequently, we find another code region as presented in Figure
5.18(b).
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(a) Without negligible bottleneck search

(b) With negligible bottleneck search

Fig. 5.18. Results of bottleneck search based on fuzzy sets.

Given fuzzy sets and performance thresholds, tools can employ several
searching methods to find the performance problems such as tree-based and
tabu search. Currently, the main focus of our fuzzy-based bottleneck search
is to describe and represent bottleneck conditions by using fuzzy sets, not to
develop search engine. We are planning to adapt AKSUM search engine [87]
to support our fuzzy-based bottleneck search.

5.6.10 Similarity Analysis

When processing large and diverse performance data, information about per-
formance similarities and differences in that data become more important
because examining each data item in details is a time-consuming effort. How-
ever, existing performance tools lack support of similarity analysis.

5.6.10.1 Similarity Analysis for Code Regions

We use similarity measure to compare performance similarity of code re-
gions for single and multiple experiment(s). We implement two analysis tasks.
Firstly, given a selected code region in one experiment, similarity measure
is analyzed for all region summaries of the code region in processing units.
Secondly, given a set of selected code regions and a set of experiments, we eval-
uate the similarity of selected code regions across experiments. The similarity
measure is described in Section 5.6.5.1.

Figure 5.19 shows an example of similarity analysis for code region
DO JACOBI of Stommel with 2 processes (see Section 7.3.3 for more information
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Fig. 5.19. Cache accesses similarity analysis for DO JACOBI of Stommel executed
on two 4-CPU SMP nodes. Similarity is measured with {(L2 TCA,1)}, member-
ship function is S-function, and distance measure is based on Euclidean function.
gsr411->1-0 means thread 0 in process 1 in computational node gsr411.

about Stommel), each has 4 threads. This figure shows that the executions
of DO JACOBI in thread 2 and 3 of two processes are very similar. The execu-
tions in thread 0 and 1 are similar in process 0, but not in process 1. In all
cases, the executions in thread 0 and 1 is quite different from that in thread
2 and 3. It suggests that there is a highly load imbalance between executions
of DO JACOBI in the same process. The load imbalance analysis confirmed this
hypothesis.

Fig. 5.20. Similarity analysis for LAWP0 with 6 experiments and 7 code regions.
We used (wtime, 1.0) to compute similarity measure, and distance measure is
based on Euclidean function. Experiment 2Nx4P,P4,36 is selected as the base. 1Nx4P
means 1 SMP node with 4 processors. P4 and GM correspond to MPICH CH P4 and
Myrinet, respectively. The problem size is either 36 or 72 atoms.

Figure 5.20 presents an example of using similarity analysis to examine
selected code regions in 6 experiments. The first observation is that the perfor-
mance of code region FFT REAN0 in the last 5 experiments is almost complete
similar to the first experiment. The performance of FFT REAN3, FFT REAN4 is
almost similar in the first 4 experiments. This suggests that the performance
of these code regions is not affected by changes of number of processors,
communication libraries, even problem sizes (in case of FFT REAN0). All code
regions have similar performance in the first two experiments, suggesting the
use of Myrinet does not help to increase much performance. This is confirmed
by many cases in which communication libraries are very dissimilar but the
performance is very similar.
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Factor Fuzzy Set Range Factor Category

atoms linear [0,72] problem size
CPU S-function [0,64] machine
network S-function [0,158.20] communication

Table 5.9. Parameters for measuring similarity between controllable factors. In
all test cases, maximum atoms is 72, maximum number of CPUs is 64, maximum
network bandwidth benchmarked is 158.20 Mbytes/s.

Experiments 2Nx4P, 2Nx4P, 3Nx4P, 3Nx4P, 3Nx4P, 3Nx4P,
P4,36 GM,36 P4,36 GM,36 P4,72 GM,72

simfatoms ({atoms,1}) 1 1 1 1 0.5 0.5
simfCP U

({(CPU,1)}) 1 1 0.9531 0.9531 0.9531 0.9531
simfnetwork

({(network,1)}) 1 0.1519 1 0.1519 1 0.1519

simo ({(wtime,1)}) 1 0.996 0.638 0.635 0.625 0.625

Table 5.10. Example of similarity analysis with experiment factors for code region
CA MULTIPOLMENTS in 6 experiments. The similarity is measured with the first exper-
iment as the base. The performance score of the code region is based on S-function.
Distance measure is based on Euclidean function.

5.6.10.2 Similarity Analysis for Experiment Factors

Our first step is to examine the similarity among various experiment factors
and the performance of code regions. Table 5.9 shows an example of param-
eters of controllable factors including problem size, machine size, network.
Table 5.10 presents the result of an example in which similarity is measured
for for code region CA MULTIPOLMENTS in 6 experiments of LAPW0 (see Sec-
tion 7.3.5 for information about LAPW0) by using parameters in Table 5.9. In
some cases, communication factor has very little impact on the performance.
For example, the network between the first and the second experiment is quite
dissimilar and other factors are very similar, but the performance of the code
region is very similar. A similar result if we examine the fifth and sixth exper-
iments. The CPU factor has significant impact on some cases. For example,
factors of the third experiment are the same as those of the first experiment,
except the CPU factor which is slightly different. However, the performance
of the code region in the two experiments is quite different.

5.6.10.3 Representing Similarity Measure in Words

Similarity measure, which is in the range [0, 1], indicates the similarity de-
gree. We can represent similarity measure by using fuzzy terms such as com-
plete dissimilar, very dissimilar, dissimilar, medium, similar, very similar and
complete similar. Each fuzzy term is associated with a fuzzy set describing a
class of the similarity measure. For example, Table 5.11 presents the similar
measures between the last 5 experiments with the first one in Table 5.10 by



5.6 A Soft Computing-based Approach to Performance Analysis of Parallel
and Distributed Programs 105
Experiments 2Nx4P, 3Nx4P, 3Nx4P, 3Nx4P, 3Nx4P,

GM,36 P4,36 GM,36 P4,72 GM,72

simfatoms
complete similar complete similar complete similar medium medium

simfCP U
complete similar very similar very similar very similar very similar

simfnetwork
dissimilar complete similar dissimilar complete similar very dissimilar

simo very similar medium medium medium medium

Table 5.11. Example of using linguistic terms representing similarity measures.

using linguistic terms. The linguistic terms with their associated fuzzy sets
are shown in Figure 5.21.
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Fig. 5.21. Fuzzy sets describing similarity measure.

By using linguistic terms to describe the similarity measure, the perfor-
mance analysis tool provides a high level abstraction of similarity measure to
the end user, presenting a more friendly user interface with resulting similarity
measure described in linguistic expressions.

5.6.11 Fuzzy Cluster Analysis

Cluster analysis [136, 2] is a core task in data mining [121] that is used to build
or discover groups (clusters) in a data set. Group members are similar objects
that share certain common properties thus the resulting classification may
provide insightful information for discovering structures in the data clustered
[136, 2]. Clustering is unsupervised process that does not use prior knowledge
in the classification.

Recently, cluster techniques have been used to determine the performance
characteristics, such as in [22]. Code regions are clustered into groups, and
then tools or users can focus on analyzing and tuning code regions in inter-
esting groups. However, current cluster techniques used in these tools have
some limitations. Firstly, the classification of code regions normally is based
on a single metric or a set of performance metrics without normalizing the
metrics. Secondly, the clusters, e.g. produced by the k-means procedure, are
crisp clusters, since any code region either is or is not a member of a particular
cluster.
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To overcome these limitations and to complement existing work on ex-
ploiting cluster techniques for performance analysis of distributed and paral-
lel programs, firstly we employ the concept of performance score to represent
the performance of code regions whose performance metrics may have different
scales. Secondly, we introduce fuzzy C-means clustering that uses performance
scores as metrics to build groups of code regions with similar performance and
to determine the degree of membership of code regions in each cluster.

5.6.11.1 Fuzzy C-Means Clustering

Given an experiment e with region summary set RS = {rs1, rs2, · · · , rsn},

rsj ∈ ~Rp, p is the number of performance metrics collected for rsj , we can

compute a set of performance score vectors S of n data points ~sj ∈ ~Rp. Each
~sj represents performance scores of a rsj . The clustering algorithm aims to
group RS into c clusters.

The detailed fuzzy C-means clustering algorithm is introduced in [42, 128].
In our implementation of the fuzzy C-means clustering, the clustering result
is obtained by minimizing the following objective function

J(S, U, C) =

c
∑

i=1

n
∑

j=1

um
ij d

2(ci, ~sj) (5.21)

subject to

∀i ∈ {1, · · · , c} :
∑n

j=1 uij > 0, and

∀j ∈ {1, · · · , n} :
∑c

i=1 uij = 1

where uij ∈ [0, 1] is the membership degree of the performance score vector ~sj

to the i− th cluster, ci is the cluster center of the i− th cluster, and d(ci, ~sj)
is the distance between ~sj and ci. C denotes the set of all c cluster centers
C = {c1, · · · , cc}. The matrix Uc × n = [uij ] is called fuzzy partition matrix
and the parameter m, m > 1, determines the degree of fuzziness. The distance
function is

d2(ci, ~sj) = (~sj − ~ci)
T (~sj − ~ci) (5.22)

The algorithm repeatedly calculates fuzzy cluster centers and updates U . The
calculation and update will be terminated when a partition matrix δ satisfies
the condition δ ≤ ε where

δ =‖ U l+1 − U l ‖= maxij |u
l+1
ij − ul

ij | (5.23)

and ε is a pre-defined threshold and l indicates the computation step.

5.6.12 The Use of Fuzzy Rules for Data Reduction

When analyzing a large performance datasets, e.g. classifying or clustering
code regions, we need to conduct data reduction because many computations
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are required in order to process a large set of performance measurements of
multiple metrics.

Current performance tools do not focus on filtering the data to be pro-
cessed. In many cases, we may detect code regions with poor performance but
these code regions do not have a significant impact on the performance of the
whole program. For instance, an MPI code region would be classified as poor
communication because it has low transfer rate, but it may not be important
if it takes only 0.0001% of the wall-clock time of the program. Thus, if we take
into account how important the code region is, we can reduce the size of data
to be processed, making analysis process faster and more scalable. Another
example is the use rules, which are established based on previous performance
data, to control the instrumentation of the next experiment. However, crisp
conditions like those implemented in [166] do not deal with the uncertainty
(of data and control).

We develop a method for reducing data collected that uses fuzzy-based
rules. To utilize fuzzy rules to reduce data, we define performance character-
istic terms representing filter conditions.

Definition 5.3 (Data filter proposition). Let s be the performance score
of region summary rs with respect to metric m, τ be a performance charac-
teristic term representing the data filter condition. Region summary rs should
be excluded with respect to metric m if fuzzy proposition (s is τ) yields true.

Definition 5.4 (Fuzzy-based rule for data reduction). Let ~s be perfor-
mance scores of rs, {τ1, τ2, · · · , τp} be performance characteristic terms for
metrics {m1, m2, · · · , mp}, τi is the filter term for mi. A fuzzy-based rule
used to filter data can be defined based on fuzzy propositions built from si, τi

as follows

IF (s1 is τ1) AND (s2 is τ2) ... AND ... THEN (consequent)

where consequent is to exclude the region summary.
For example, we can define a rule as

IF (ncalls is very small) AND (wtime is very low) THEN filter

to exclude any code regions whose the number of calls (denoted by ncalls) is
very small, and the wall-clock time (denoted by wtime) is very low from the
clustering process.

The fuzzy rules can be used by any performance tasks that need to reduce
irrelevant data from a large performance datasets. For example, we can use
the rules to reduce data from trace files, data for performance classification,
or to disable the instrumentation of code regions in one experiment based on
performance data obtained in previous experiments.
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5.7 Summary

In this chapter, we have presented a novel classification of temporal overhead
which can be used to explain the performance problems occurring in parallel
programs. We have discussed how overhead analysis for code regions is con-
ducted. The use of the dynamic code region call graph (DRG) enables detailed
overhead analysis for any code regions. We present a flexible instrumentation
system which allows the user to customize the code regions and performance
metrics of interest that should be measured. The overhead classification is the
key tool which helps the instrumentation system to determine code regions
which should be instrumented in order to measure performance overheads of
interest.

We have described a novel design of SCALEA’s experiment data reposi-
tory which holds all relevant experiment information including source code,
experiment description, performance information, system-specific data, etc.,
and presented capabilities to support search and filter of performance data,
and multi-experiment performance analysis, and to facilitate the data sharing
and tool integration. However, employing the data repository introduces ex-
tra overheads in comparison with other non-employing-data-repository tools;
the overheads occur in filtering and storing raw data to and retrieving data
from the database. In the current implementation, we observed the bottleneck
when accessing the data repository with a large volume of data. We are going
to enhance our access methods and database structure to solve this problem.

We present the soft performance analysis. Soft performance analysis tech-
niques proposed exploit and combine the fuzzy logic and similarity theory,
and machine learning algorithms to provide soft, scalable and intelligent tech-
niques for analyzing and comparing the performance of large and complex
parallel and distributed applications. We discuss several flexible and conve-
nient methods to deal with uncertainty in performance analysis, e.g. fuzzy-
based bottleneck search, and means for conducting performance analysis in
the form closer to human notions, e.g. fuzzy-based search query.
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Performance Monitoring and Analysis for the
Grid

6.1 Introduction

This chapter describes our methods and techniques for performance monitor-
ing, instrumentation, measurement and analysis in the Grid. First, we present
the design and implementation of a unified monitoring and performance anal-
ysis system for the Grid. We introduce a novel sensor-based middleware for
performance monitoring and data integration in the Grid that is capable of
self-management. The middleware unifies both system and application moni-
toring in a single system, stores various types of monitoring and performance
data in decentralized storages, and provides a uniform interface to access that
data. We have developed event-driven and demand-driven sensors to sup-
port rule-based monitoring and data integration. Grid service-based opera-
tions and TCP-based data delivery are exploited to balance tradeoffs between
interoperability, flexibility and performance. Peer-to-peer features have been
integrated into the middleware, enabling self-managing capabilities and sup-
porting group-based and automatic data discovery, query and subscription of
performance and monitoring data. The middleware is implemented as a set
of Grid services based on the Open Grid Services Architecture (OGSA), pro-
viding an infrastructure for conducting online monitoring and performance
analysis of a variety of Grid services including computational and network
resources and Grid applications.

Second, we present a Grid service to support the dynamic instrumenta-
tion of Grid applications. The Grid dynamic instrumentation service provides
a widely accessible interface to other services/users to control the instrumen-
tation of Grid applications. The instrumentation service leverages an XML-
based Standardized Intermediate Representation for Binary Code (SIRBC)
for describing the program structure of executables, and an Instrumentation
Request Language (IRL) for specifying code regions and performance metrics
to be measured and for controlling the instrumentation task.

Third, we introduce a Grid service for online monitoring and performance
analysis of scientific workflows in the Grid. The service collects resources mon-
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itoring data from Grid infrastructure monitoring, workflow execution status
from the workflow control and invocation services, and performance mea-
surements obtained through the dynamic instrumentation service. It then
conducts the online analysis of these data along with the workflow graph.
Relevant data to workflows including workflow graphs and performance data
are stored. Novel techniques are developed to support multi-workflow analy-
sis. Refinement constructs of workflows can be specified, and performance of
refinement constructs of different workflows can be compared and evaluated
for multiple experiments.

Finally, we propose a new approach to performance analysis, data sharing
and tool integration in Grids that is based on ontology. We devise a novel
ontology for describing the semantics of monitoring and performance data that
can be used by performance monitoring and measurement tools. We introduce
an architecture for an ontology-based model for performance analysis, data
sharing and tool integration. At the core of this architecture is a Grid service
which offers facilities for other services to archive and access ontology models
along with collected performance data, and to conduct searches and to perform
reasoning on that data.

This chapter is based on the work the presented in [253, 251, 248, 250,
249, 252].

6.2 A Unified System for Monitoring and Performance
Performance Analysis in the Grid

Most existing Grid monitoring tools are separated into two distinct domains
based on what they are monitoring: Grid infrastructure monitoring and Grid
application monitoring. The lack of combination of two domains in a single
system has hindered the user from correlating performance metrics of various
sources at different levels when conducting the monitoring and performance
analysis. Grid monitoring tools that are able to combine application and sys-
tem monitoring and performance analysis are crucial as these tools will pro-
vide the user a unified view and support the correlation between performance
metrics from various sources.

Most existing Grid monitoring tools focus on the monitoring and analysis
of Grid infrastructure; yet little effort has been concentrated on performance
analysis for Grid applications, especially for Grid scientific workflows. To date,
application performance analysis tools are mostly targeted to conventional
parallel and distributed systems (e.g. clusters and SMP machines). As a re-
sult, these performance analysis tools do not well address challenges in the
Grid environment such as scalability, diversity, dynamics and security. Perfor-
mance measurement, instrumentation and analysis for Grid applications re-
quire different approaches from those for conventional parallel and distributed
systems. Moreover, Grid monitoring not only supports the end-user to moni-
tor the Grid but also provides useful information for several functions such as



6.2 A Unified System for Monitoring and Performance Performance Analysis
in the Grid 111

performance analysis and tuning, performance prediction, fault detection and
scheduling. Consequently, in order to support the interoperability among dif-
ferent Grid services, the performance monitoring and analysis service should
be based on Grid service standards, e.g. OGSA.

6.2.1 Self-Managing Sensor-based Middleware

To monitor various resources in Grids, a large number of monitoring sensors
needs to be developed and deployed in different domains. In our view, such
sensors are very similar to those in sensor networks [23, 257] in which the sen-
sor follows resource constraints such as communication (networks connecting
sensors usually vary, having latency with high variance and sensors have to
use limited bandwidth), computation (sensors have to use limited computing
power and memory sizes, otherwise the monitoring may change the state of
the monitored resources). These constraints limit data processing capability
of a sensor thus normally the sensor sends collected data to a sink node which
stores the data. In many cases the sink node also controls or requests data
from sensors; we call such sink node a sensor manager. In Grids, it is im-
possible for all sensors to communicate with a central sensor manager. Also
because resources on which sensors execute and resources sensors monitor may
join and leave, the structure of sensor networks frequently changes. Therefore,
sensors and sensor managers must operate in self-managed and decentralized
manner.

Most existing Grid monitoring tools have monitoring sensors operating in
distributed manner and the network connecting sensors to sensor managers
exploits the various types of communication such as shared memory [32], TCP
[269], UDP [36] and multicast [168]. However, these tools do not focus on the
interoperability among sensor networks and the self-organization within them,
and only support limited types of sensors. Mostly they support event-driven
sensors (e.g. in [32, 168, 269]). Sensor managers are configured into tree of
point-to-point connections (e.g. in [32, 168]); or directory services, supporting
discovery of data and sensor managers, do not interact with each other (e.g. in
[269]). Thus they do not cope well with Grid networks topology which changes
frequently.

Lack of interoperability among sensor networks and lack of self-organization
within them have hindered distributed data discovery, data query and sub-
scription (DQS) in Grid monitoring tools, not to mention fault-tolerance. Cur-
rently data discovery and DQS are mostly based on hierarchical or centralized
models, as surveyed in [104]. But such models do not work well with more
dynamic and large-scale distributed environments in which useful information
services are not known in advance. As it has been suggested, e.g. in [98, 231],
and demonstrated, e.g. in [129, 232, 133], the super-peer model and service
group, which are powered by peer-to-peer (P2P) computing [173], have the ad-
vantages in solving the above-mentioned issues, but have not been exploited in
Grid monitoring middleware. Moreover, most Grid monitoring tools are not
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capable of self-configuration and -reconfiguration under varying conditions
which occur frequently in the Grid. Autonomic computing [146] which aims
to deal with the unpredictable conditions of systems should be exploited.

Integrating performance and monitoring data in Grids is crucial because
it is likely that no single tool will be deployed to provide performance data
for all Grid sites, while there is a need of utilizing and analyzing monitoring
data across multiple Grid sites at the same time. Each Grid site is equipped
with different computing capabilities, platforms, libraries that require various
performance monitoring and measurement tools. However, Grid users should
not be forced, when possible, to access monitoring data in Grids by using
different mechanisms. Instead, the users should be able to utilize that diverse
monitoring data by using the same mechanism.

Seamless integration and high interoperability require well-defined inter-
faces, rich expressive customized data representations, and more power to
process and store data. However, the involvement of more functions and pro-
cessing results in slower performance. Therefore, we need to balance tradeoffs
between interoperability and performance. On the one hand, using Grid/Web
service-based operations and XML data supports high interoperability among
different tools, easily customizing collected data. However, the performance
considerably suffers when data is delivered via Web service operations with
SOAP [79]. On the other hand, (parallel) TCP-based data streams can be uti-
lized to achieve higher performance in delivering data in Grids [24]. Current
Grid monitoring tools exploit either purely Grid service-based operations or
TCP-based data streams.

6.2.2 Sensor-based Middleware Overview

Figure 4.2 depicts the architecture of sensor-based middleware implemented
in SCALEA-G with the main Grid services named Directory Service, Sensor
Manager Service, Client Service. These services, based on OGSA [93] and
organized into service groups, manage, store and provide various types of
performance and monitoring data measured and gathered by an extensive set
of distributed sensors. They are capable of self-management and they can
collaborate in serving the requests from clients.

Directory Service (DS) stores information (e.g. schema and availabil-
ity) about performance and monitoring data, Sensor Manager Service and
other services of the middleware. Sensor Manager Service (SM) manages
sensors and data collected and gathered by sensors, and provides these data
to consumers via DQS operations. An SM can interact with several sensor
instances executed on distributed machines; sensor instances will send their
collected data to SMs. SM uses XML containers to store performance and
monitoring data. Client Service (CS) provides interfaces for administrating
activities of SMs, querying data registered in DS, subscribing and/or query-
ing data stored in SMs, etc. Other services (e.g. scheduling service) access
performance data by exploiting facilities provided by CS.
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Fig. 6.1. High-level view of self-managing sensor-based middleware

SM and DS are organized into two types of groups (communities): SM
Group and DS group. Within a Virtual Organization (VO) [95] there could
be several SM groups. A DS group is deployed for multiple VOs; each VO
provides a number of DSs which form the DS group. DSs register their in-
formation with a set of Registry Services. By using CS, the client of the
monitoring middleware, which explores the monitoring service through exist-
ing Registry Services, can find DSs and SMs and then access performance and
monitoring data. In our framework, we use existing implementations of Reg-
istry Service. However, DS and SM are specially designed for the performance
and monitoring purpose.

6.2.3 Sensor Model for Performance Monitoring and Data
Integration

In what follows, we present the concept of various types of sensors, execution
models of sensors, Sensor Manager Service and interactions between sensors
and Sensor Manager Services.

6.2.3.1 Conceptualization of Monitoring Sensors

Figure 6.2 presents the underlying concept of our monitoring sensors. Sensors
are used to capture performance data and to monitor monitored resources in-
cluding computational and network resources, and Grid applications1. Every
sensor monitors one or more resources and provides monitoring data (e.g.,

1 a monitored resource is any object that can be monitored.
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Fig. 6.2. Conceptualization of monitoring sensors.

events and performance measurements) of the monitored resources; each re-
source is determined by a unique resource identifier (ResourceID) and moni-
toring data is described in XML (each type of monitoring data is determined
by an XML schema.). Each sensor presents a sensor profile which describes
the sensor, e.g. unique sensor identifier (SensorID), sensor description and
lifetime, how to control the sensor (e.g. calling parameters) and informa-
tion about the sensor. How a sensor works is described by the sensor model,
e.g. event-driven or demand-driven, or rule-based monitoring. A unique tuple
(SensorID, ResourceID) is used to determine a type of monitoring data of a
monitored resource.

A sensor can be invoked at different times with different parameters. Each
invocation of a sensor is called a sensor instance referring to a particular
instantiation of a sensor at run-time. Sensor instance delivers its collected
data described in XML format to designated SMs. Each sensor instance has
its own lifetime which is the period of time that the sensor instance is running.
Different instances of a sensor can be used to monitor different objects and
they might require different parameters. For example, a sensor which is used
to measure the available bandwidth of a network path2 in the Grid can have
two instances: one used to monitor the bandwidth between host A and B and
the other for host C and D.

6.2.3.2 Event-driven and Demand-driven sensors

Sensors in most existing Grid monitoring tools are based on event-driven
model: a sensor measures and collects data based on events, mostly time-
based event. Event-driven sensors collect the data and store the collected data
when an event happens at a time, without consideration at a time when an
event happens the data is needed. Demand-driven sensors collect and provide
data only when receiving requests. Demand-driven sensors are particularly
useful for integrating data provided by other sources. To realize the impor-
tance of both types of sensors, our middleware supports both event-driven
and demand-driven sensors.

2 Network path is the network-level abstraction of a ”virtual link”from/between
host A to/and host B [192].
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6.2.3.3 System Sensors and Application Sensors

In our framework, we distinguish two types of sensors: system sensors and
application sensors. System sensors are used to monitor and measure the per-
formance of Grid computational resources and networks. Application sensors
embedded in applications are used to measure execution behaviour of code
regions and to monitor events in these services. This distinction allows us to
simplify the management of two different types of sensors. For example, the
security model applied to the access of data provided by system sensors is
looser than that provided by application sensors.

Our system sensors are used to monitor computational resources and net-
works, and provide a set of predefined metrics of monitored objects. A sys-
tem sensor may not really perform the measurement and monitoring; it can
just query or collect data from others that perform the real measurement.
Most system sensors provide dynamic information, for example the available
bandwidth of a link, CPU time usage of a host, but some can provide static
information, for example information of computational node. Our framework
provides system sensors for monitoring the most commonly needed types of
performance information on the Grid investigated by GGF DAMED-WG [77].

For instance, Figure 6.3 presents an excerpt of XML schema of the data
provided by a sensor namely path.bandwidth.capacity.TCP. This sensor is
used to measure the bandwidth capacity between two hosts in the Grid.

<xsd:complexType name="SensorData">

<xsd:sequence>

<xsd:element name="source" type="xsd:string"/>

<xsd:element name="destination" type="xsd:string"/>

<xsd:element name="eventtime" type="xsd:long"/>

<xsd:element name="bandwidth" type="xsd:double"/>

</xsd:sequence>

<xsd:attribute name="SensorID" type="xsd:NMTOKEN"

fixed="path.bandwidth.capacity.TCP"/>

<xsd:attribute name="ResourceID" type="xsd:string"/>

</xsd:complexType>

Fig. 6.3. XML schema of data provided by path.bandwidth.capacity.TCP sensor.

Application sensors are embedded in user’s programs via source code
instrumentation prior to application execution or in application processes
through dynamic instrumentation at the application runtime. Application
sensors provide profiling and user-defined event data. Profiling sensors col-
lect user-selective performance metrics (e.g. timing and hardware counters)
of code regions in applications whereas user-defined event sensors generate
specific events at selected points in programs when given conditions occur.
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Application sensor instances are automatically invoked each time the appli-
cation control flow reaches the relevant sensor code.

<xsd:complexType name="SensorData">

<xsd:sequence>

<xsd:element name="exp" type="xsd:string"/>

<xsd:element name="pu" type="PU" minOccurs="0" maxOccurs="1"/>

<xsd:element name="cr" type="CR" minOccurs="0" maxOccurs="1"/>

<xsd:element name="metrics" type="MetricList"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="SensorID" type="xsd:NMTOKEN" fixed="app.prof"/>

<xsd:attribute name="ResourceID" type="xsd:string"/>

</xsd:complexType>

Fig. 6.4. Top-level XML schema of application profiling data.

Similar to system sensors, application sensor data is represented in XML
format. For example, Figure 6.4 shows an excerpt of XML schema of appli-
cation profiling data. The SensorID element specifies the name of the sensor,
The exp element is a unique identifier determining the experiment. The identi-
fier is used to distinguish data between different experiments. The pu element
specifies the information about the processing unit on which the code region is
executed. The cr element refers to information of the source of the code region
(e.g. line and column). A profiling data message contains a list of performance
metrics, each of which is represented in a tuple of (name=value).

6.2.3.4 Sensor Repository

Normally, system sensors are shared by various users. To help the user to
simplify the management and deployment of system sensors in SCALEA-G,
we provide a system sensor repository and a framework for developing and
deploying sensors in the repository. A developer writes a system sensor based
on the system sensor template, describes properties of the sensor and speci-
fies parameters needed to invoke the sensor. All of these information is then
stored into the sensor repository managed by SMs which make sensors in the
repository available for use when requested. A sensor repository then can be
attached to a sensor hosting environment, for example a sensor manager that
can make use of the sensors in the repository. By using reflection mechanism,
the sensor manager can activate a sensor on-demand. The user makes requests
create sensor instance by invoking a service operation of SMs or directly in-
vokes system sensor to create a new instance of a system sensor. The lifetime
of an instance can be specified when the sensor instance is activated.

Figure 6.5 presents an excerpt of XML schema used to express sensors
in the sensor repository. We can specify static information of sensor profile
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such as SensorID, implementation class of the sensor (by the measureclass

element), XML schema of data provided by the sensor (schemafile element),
parameters needed to invoke the sensor (params element), etc. With enough
information about the sensor described in the repository, a sensor can be easily
activated by using Java reflection mechanism.

<xsd:element name="sensor" type="SensorDescription" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:complexType name="SensorDescription">

<xsd:sequence>

<xsd:element name="measureclass" type="xsd:string"/>

<xsd:element name="desc" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="schemafile" type="xsd:string"/>

<xsd:element name="params" type="ParamsEntry"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="SensorID" type="xsd:NMTOKEN"/>

<xsd:attribute name="ondemand" type="xsd:boolean"/>

</xsd:complexType>

<xsd:complexType name="ParamsEntry">

<xsd:sequence>

<xsd:element name="param" type="ParamEntry" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ParamEntry">

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="desc" type="xsd:string"/>

<xsd:attribute name="dataType" type="xsd:string"/>

</xsd:complexType>

Fig. 6.5. Excerpt of XML schema used to describe sensors in the sensor repository.

6.2.3.5 Sensor Manager Service

The main tasks of Sensor Manager Service (SM) are to control and manage
activities of sensors in the sensor repository, to publish information about
data collected by sensors to DSs, to receive and buffer monitoring data sen-
sors produce, and to provide monitoring data to consumers via data query
and subscription (DQS). SM includes the following components: Service Ad-
ministration, Data Query and Subscription, Data Receiving and Publishing,
as shown in Figure 6.6. SM provides control and DQS tasks, data receiving
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Fig. 6.6. Sensor Manager Service Implementation

and delivery over both Grid-based service operations and TCP-based data
streams.

The Service Administration component receives requests from the SCALEA-
G administrator3 and controls activities of SMs and their sensors in the sen-
sor repository. The administrator can activate any sensor (thus making a new
sensor instance) or deactivate an existing sensor instance. When a new sen-
sor instance is activated, it will be added into the list of sensor instances.
Conversely, a sensor instance will be removed from this list when it is deacti-
vated. The administrator can perform the registration of (adding, updating or
removing) information about the SM, properties of data provided by sensor
instances with selected DSs. All the interactions in this component are carried
out through invocations of Grid-based service operations.

The Data Query and Subscription component is responsible for processing
DQS requests from consumers. DQS tasks are implemented as service oper-
ations but monitoring data is delivered via TCP-based data streams. Based
on the information published in the DS, consumers can subscribe monitor-
ing data provided by sensor instances that is archived in SMs. The resulting
data will be pushed to consumers via TCP-based data channels. When a con-
sumer unsubscribes a data type, the DQS component will stop sending that
data to the consumer. To support the pull mode, this component processes
queries with constraints (produced by consumers) to filter data of interest.
The resulting data satisfying the requested constraints will be sent back to

3 Hence, administrator refers to SCALEA-G administrator who administers the
SCALEA-G services.
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the consumer. DQS requests can be represented in XPath based on the pub-
lished XML schema.

The Data Receiving and Publishing component conducts two tasks. First,
it receives data collected by sensor instances. A data receiver is used to re-
ceive data from sensors. It then processes and stores the received data into
data containers. The data receiver is a thread binding a well-known port and
interacts with sensors via TCP connections. Data is stored in XML data con-
tainers. Second, it implements functionality that publishes (adding, updating,
removing) information about SM and properties of monitoring data to DS.

6.2.3.6 Interaction between Sensor and Sensor Manager Service

In order to allow sensors to freely customize their provided data, SM must
receive, process and store multiple data types with unknown (XML) structures
into its data containers. To do so, we design a generic three-phase protocol
for exchanging data between sensors and SMs.

In this protocol, the interactions between sensors and SMs involve the
exchange of three XML messages: sensorinit message in the initialization
phase, sensordataentrymessage in the measurement phase, and sensorfinal

message in the final phase. Measurement data is encapsulated into sensordata
entry message. The measurement data is enclosed by <![CDATA[ ... ]]>
tag. Thus, sensors can customize the structure of their collected data. Be-
fore it stops sending collected data, the sensor instance sends a sensorfinal

XML message to notify the SM. The three XML messages that always contain
SensorID and ResourceID with other information (e.g., XML schema of data
which sensor produces, lifetime and description information about the sensor)
are self-explained. Based on (SensorID, ResourceID), SM can setup appro-
priate buffers and store data into the buffers. Therefore, multiple types of
monitoring data can be delivered via a transient connection, not just through
a persistent one.

Sensors can send XML schemas to SM even though SM does not need the
schemas in order to process the received data. SM will publish these schemas
to DS so that other services consuming collected data can get schemas in order
to make use of the data. Instead of sending XML schema to SM, the schemas
can be stored at SM. Our approach allows any sensor that implements the
above-mentioned protocol to send the data to SM while SM is not necessarily
aware of the structure of the measurement data.

6.2.3.7 Rule-based Monitoring

Different from event-driven sensors in existing Grid monitoring tools, our
event-driven sensors can support rule-based monitoring. Instead of sending
monitoring data it collects, the sensor uses rules to analyze monitoring data
and reacts with appropriate functions.
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Because different resources have different characteristics, we need to setup
different rule sets for monitoring different resources. For example, with two
different instances of a sensor used to monitor the bandwidth of two net-
work paths which have different characteristics, e.g. one with maximum 100
MBytes/s, the other with 10 MBytes/s, the rules used to detect whether the
bandwidth is low or high must be different even though the way to monitor
these paths is the same. Therefore, a rule set is normally associated with each
sensor instance. However, multiple sensor instances can share the same rule
set, e.g. when their monitored resources have the same characteristics.

We use ABLE Rule Language (ARL) [60], which supports if-then-else rules,
when-do pattern match rules, etc., to define rule sets for sensors. ABLE toolkit
[44] provides a wide range of inference engines to process the ARL rule sets,
e.g. boolean forward/backward chaining, fuzzy forward chaining and pattern
match engine. For example, to define a fuzzy variable for monitoring band-
width of a network path in the Austrian Grid [28], we used Iperf [134] to test
the bandwidth, and obtained the maximum observed bandwidth which never
exceeds 5 MBytes/s. We divided the bandwidth into 5 states by using fuzzy
logic, as shown in Figure 6.7. Based on this fuzzy variable, we define a rule
set, presented in Figure 6.8. With this rule set, depending on the status of
bandwidth of the network path, e.g. very low, low or very high, the sensor will
react with appropriate functions, e.g. sending events to SM.

Fuzzy bandwidth= new Fuzzy( 0,5) {

Shoulder VERYLOW = new Shoulder(0, 1, ARL.Left);

Triangle LOW = new Triangle(1, 1.5, 2);

Trapezoid MEDIUM = new Trapezoid(2,2.2,2.8 ,3);

Triangle HIGH = new Triangle(3, 3.5, 4);

Shoulder VERYHIGH = new Shoulder(4, 5, ARL.Right);

};

Fig. 6.7. A fuzzy variable describing status of the bandwidth of a network path.

In the case where rules are not specified when a sensor is instantiated, the
sensor instance will work as in the normal model (e.g. sending monitoring data
when the event happens). Rule-based monitoring approach has many advan-
tages as it allows us to easily control and customize the monitoring actions. In
addition, we can implement autonomic features that consider changing sys-
tems as an effect of the monitoring behavior. However, there is no common
rule set for all resources even those monitored by a single sensor. Rules have
to be built for each resources based on best practices.
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S1: bandwidth = getBandwidth();

R_VERYLOW: if (bandwidth is VERYLOW) {

doReactionWhenBandwidthVeryLow();

}

R_LOW: if (bandwidth is LOW) {

doReactionWhenBandwidthLow();

}

R_VERYHIGH: if (bandwidth is VERYHIGH) {

doReactionWhenBandwidthVeryHigh();

}

R_OTHER: doNormalReaction();

Fig. 6.8. Example of rule set for bandwidth of a network path.

Demand-driven sensor

Parsing
Query

Querying
Data

Provider-
specific queryQuery in

XPath

Provider-
specific data

Information
Provider

XML Data
Building

XML Data

Requester

Parsing
Results

XML
Schema

Fig. 6.9. Using a demand-driven sensor to integrate performance data.

6.2.3.8 Performance and Monitoring Data Integration by Using
On-demand Sensor

Besides using demand-driven sensors to monitor resources, we also exploit
them for data integration. Figure 6.9 presents the model of using demand-
driven sensor for integrating performance and monitoring data from other
providers, e.g. MDS (Monitoring and Discovery System) [70], NWS (Network
Weather Service) [269] and Ganglia [168]. To access different providers, we
develop different demand-driven sensors taking the role of data mediators. As
shown in Figure 6.9, when the sensor receives an XPath-based request from a
requester, based on XML schema, it parses the request, extracting information
of the request such as tag names with their associated attributes. The sensor
then constructs a provider-specific request, calling the information provider
with that request, and obtaining the result in provider-specific format. The
sensor then parses this result and builds a new result described in XML. The
XML-based result will be sent back to the requester. With this approach,
other services use the same mechanism to access data in other providers as in
our service.

When a demand-driven sensor is activated, the sensor returns infor-
mation about resources whose monitoring data it can collect to the SM
which in turn publishes the information to DSs. With that information,
consumers can create requests for monitoring data. For instance, consider
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the path.predict.bandwidth.capacity.TCP sensor which obtains predicted
network bandwidth from NWS. The startup information for an instance of
this sensor is configured as follows:

<startupsensor name="path.predict.bandwidth.capacity.TCP">

<startupparam name="NWSNameServer"

value="olperer.dps.uibk.ac.at:8090"/>

</startupsensor>

When this sensor starts it queries the NWS NameServer and returns net-
work paths whose predicted bandwidth values it can collect to the SM. A
consumer specifies an XPath-based request as follows

/sensordata[@SensorID="path.predict.bandwidth.capacity.TCP"]

[source="blindis.dps.uibk.ac.at:8060"][destination="olperer.

dps.uibk.ac.at:8060"]

in order to obtain the predicted bandwidth of network path (blindis.dps.

uibk.ac.at:8060, olperer.dps.uibk.ac.at:8060). This request is then
translated into an nws extract command as follows

nws_extract -f,time,mae_forecast -N olperer.dps.uibk.ac.

at:8090 bandwidthTcp blindis.dps.uibk.ac.at:8060 olperer.

dps.uibk.ac.at:8060

which is used to obtain predicted bandwidth values from NWS. The output of
nws extract is then translated into XML that is sent back to the requester.
The requester only knows the XML schema of requested data in order to
specify the request. The rest, where the requested data locates and how to
get the requested data, are done by the middleware. Our integration approach
aims at providing a uniform, flexible interface for accessing data collected by
lower-level, domain-specific information providers.

6.2.4 Self-Organizing Services

6.2.4.1 Service Group

Each SM or DS group has a set of operations associated with the group. These
operations address (i) how the requests for performance data are handled, and
(ii) how the requested data are delivered. The real number of members of a
group is dependent on the actual deployment that can dynamically change.
In the whole system, many different groups could exist.

The group operations associated with SM group are group-based DQS.
One member of the group can act as a mediator for other members. Given a
DQS request, an SM can provide requested data even though its storage does
not contain the requested data by collaborating with other SMs in the same
SM group. For a DS group, the group-based operation supports the discovery
of data providers. Given a request for finding the provider of a needed data
type, DSs in a DS group can cooperate in determining the data provider.
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6.2.4.2 Data Dissemination and Maintenance

Instances of sensors are executed in monitored nodes and send data collected
to SM which in turn stores the data into its data container. SM automatically
publishes characteristics of received data to a set of DSs, not to a single
DS. Each SM keeps its group name and a list of DSs to which it publishes
data. The list of DSs can dynamically change over the time. Each SM keeps
a list of Registries through which it can search for information about DSs.
When an SM is created, the SM gets a maximum number p of DSs it should
register with and a pre-defined updated interval t seconds. In the cycle of
t, SM lookups Registries to get n DSs. The SM then selects min(n,p) DSs
from n ones. A DS is chosen based on the following procedures. DS is selected
firstly based on domain-name approximation, and then based on the latency of
ping operation, and finally based on random selection. SM then disseminates
information about data it stores to its selected DSs.

A DS can publish information about itself to multiple Registries. In the
current implementation, one DS belongs to a DS group. A DS keeps a list
of Registries with which it registers its information. A DS maintains a list of
DSs in its groups; these DSs are its edge peers. Repeatedly with predefined tr

seconds, the DS searches Registries for up-to-date information about its edge
peers. DS also performs ping test to its edge peers to check whether its edge
peers are alive. To make sure that it provides the updated information, the DS
checks its data in the database periodically based on a pre-defined td seconds.
During the checking procedure, DS invokes ping operation of registered SMs.
If a ping to an SM failed, DS assumes the SM to be out of service and then DS
removes all information associated with that SM. In the cycle of tu seconds,
DS publishes its information to Registries. Before DS finishes its execution, it
unregisters its information from the Registries.

As commonly in service-oriented computing, the availability of Registries,
DSs and SMs is the key issue to the fault-tolerance of the middleware. Instead
of storing data into a centralized SM, collected data are stored over a set of
distributed SMs, thus guaranteeing that a failure of one or many SMs does not
bring the whole service down. Differing from existing monitoring tools whose
SM mostly publishes data to a single DS, our SM publishes its information to
multiple DSs. Thus, not only data is widely disseminated and highly available
but also it guarantees that if a DS is failed to serve requests from clients, still
other DSs can do.

6.2.4.3 Discovery of Data Providers

Any client that wants to subscribe or query performance data of a resource has
to locate a corresponding SM which provides the data. The discovery of data
providers is based on requests containing tuples of (SensorID, ResourceID). A
tuple (SensorID, ResourceID) is unique that determines monitoring data of a
resource. Each DS provides a set of operations for other services to retrieve and
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search its registered data. Based on a tuple (SensorID, ResourceID), a client
can call operations of a DS in order to discover data providers registered with
that DS. (SensorID, ResourceID) can also be specified in the data content
filters of DQS requests.

Data discovery can also be done automatically by CS thus a client does not
need to interact with DSs. CS parses client requests to get detailed elements
such as SensorID and ResourceID. A list of DSs will be obtained from given
Registries. The request is then sent to DSs which in turn cooperate to locate
SMs by using group-based operations. When a DS cannot locate the provider
of the requested data, it forwards the request to all its edge peers, otherwise
it just sends back the results. These edge peers conduct the search and return
the result to the caller. The DS then sends back the result to the requester.
A parameter is used to control the request forwarding policy.

6.2.5 Data Query and Subscription

6.2.5.1 Query and Subscription Operations

SM provides a set of service operations for other services to subscribe and
query data available in the SM. Below, we just outline main operations.

• subscribeData(consumer dr, SensorID, ResourceID, content filter, Resul-
tID, duration, relay): consumer dr specifies the Data Receiver of the con-
sumer; the Data Receiver indicates the endpoint receiving the resulting
data. A consumer performs a subscription of monitoring data of a resource
determined by ResourceID; the data is collected by a sensor determined
by SensorID. Parameter content filter specifies the content filter ap-
plied to the requested data. SensorID and ResourceID are optional as
they can be specified in the content filter. Subscription time is specified by
a duration. ResultID specifies the identifier of the resulting data. If the
subscription operation is successful, a subscription id will be returned to
the caller whereas resulting data is delivered to consumer via TCP-based
streams. relay specifies whether an SM should relay the subscription to
other SMs when it cannot serve the request.

• unsubscribe(subscription id): this operation is used to terminate an exist-
ing subscription.

• renew(subscription id, duration): renew or extend an existing subscription
(determined by subscription id) to new duration.

• queryData(consumer dr, SensorID, ResourceID, content filter, ResultID,
relay): similar to subscribeData operation but for querying data.

Content filters are described in XPath that can be easily written based on
XML schemas of data provided by sensors.

By using operations of SM, CS supports both one-to-one and one-to-many
DQS requests. In one-to-one mode, a subscription or query request is used to
obtain performance data provided by a single SM whereas in one-to-many
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mode a client subscribes or queries data from many SMs by using a single
subscription or query request.

6.2.5.2 Automatic Query and Subscription

Clients can also perform DQS automatically without knowing where the re-
quested data is located. The content filter, specified in DQS requests that
clients pass to CS, can contain characteristics of data such as SensorID and
ResourceID. Given an XPath-based content filter, we can obtain XML tags,
attributes (e.g. SensorID and ResourceID), etc., of the filter by using an
XPath parser. For example, by processing the following content filter

/sensordata[@SensorID=’host.mem.used’][ResourceID=’bridge.

vcpc.univie.ac.at’]/...

, we obtain (host.mem.used, bridge.vcpc.univie.ac.at) as the value of
(SensorID, ResourceID).

When receiving a request from clients, CS processes the content filter and
obtains (SensorID, ResourceID) information. It then searches DSs in order
to find SMs that provide the requested data; the search is mentioned in Section
6.2.4.3. CS then sends requests to SMs which provide the requested data. As a
result, the client does not necessary know where the monitoring data is stored.
If DQS requests contain information about sensors and monitored resources,
the middleware can automatically handle DQS requests.

The middleware provides simplified APIs for clients to conduct automatic
querying and subscribing performance and monitoring data. The APIs hide all
the lower-level details of the middleware. For example, Figure 6.10 presents a
simple code which is used to query available monitoring data of CPU usage of
the machine schareck.dps.uibk.ac.at. The ConsumerService class, a part
of CS, is responsible for processing DQS tasks. The client knows a Registry
Service. It indicates the service handle of Registry Service (variable handle),
specifies the content filter (variable content filter), and calls the CS. CS
returns a DataSensorReader from which the resulting data is retrieved. The
client can call APIs (blocking and non-blocking) or set up a call-back on
DataSensorReader to obtain the data.

6.2.5.3 Group-based Data Query and Subscription

An SM can act as a mediator for other services to access data provided by
other SMs in its group. When a client sends a DQS request to an SM, if the
SM does not provide the requested data, SM will search its registered DSs to
find SMs that can serve the request. If the search is successful, the SM acts as
a super-peer between the data requester and the SM provider by forwarding
the request to the SM provider. The provider first tries to communicate with
the requester. If successful, the provider sends requested data to the requester,
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ConsumerService cs = null ;

cs = new ConsumerService();

cs.activateUpDataService();

String handle="http://bridge.vcpc.univie.ac.at:8765/ogsa/

services/samples/registry/VORegistryService";

String content_filter="/sensordata[@SensorID=\"host.cpu.used\"]

[@ResourceID=\"schareck.dps.uibk.ac.at\"]";

SensorDataReader out =

cs.distributedQueryDataWithRegistry(handle, content_filter);

Fig. 6.10. Example of querying monitoring data by using information from Registry
Service.

otherwise it sends data back to the caller SM. If an SM receives request from
another SM, it will not propagate the request when it cannot serve the request.

In this model, an SM can take the role of the super-peer in either/both
forwarding requests or/and delivering data. Any SM may become a super peer
at runtime.

6.2.5.4 Notifications

In all mentioned DQS, the client conducts DQS based on available informa-
tion about monitoring data published in DS. However, there are many cases
in which the client wishes to subscribe for a notification of interesting data
which is not available at the time of the subscription. For example, the client
may inform the monitoring system that it wishes to receive execution status
of activities of a workflow application being executed by the workflow enact-
ment before it submits the workflow application. We call this type of data
subscription notification subscription.

DS and SM provide two service operations named subscribeNotification,

unsubscribeNotification for subscribing and unsubscribing notification
data. DS and SM use a table to keep existing subscriptions of notifica-
tions. The client can subscribe the notification on a specific SM or on the
whole monitoring system. If the client wishes to receive notification mes-
sage from a specific SM, the client can register with the SM by calling
subscribeNotification operation of that SM. In this case, the client will
not receive notification data collected by other SMs even though that data
satisfies the client’s request.

In our framework, SM gathers and stores performance data collected from
sensors. However, there is no mechanism to determine SMs which are capable
of distributing a specific notification data because SMs and sensors can en-
ter and exit the monitoring system arbitrarily. The client may only be aware
of a few services to which it contacts, e.g. a DS or an SM, but it wishes to
receive a notification without knowing the service which is capable of pro-
viding this notification. We support this type of notification subscription by
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implementing a global notification mechanism. By using the CS, the client
registers with a set of DSs {DS1, DS2, · · · , DSn} that it knows, and indi-
cates information about interesting data which it wishes to be notified. Each
DSi updates the table containing subscriptions of notifications and then calls
subscribeNotification operation of registered {SMi1, SMi2, · · · , SMim} in
its directory with that indicated information. Similarly, when a new SM regis-
ters with a DS, the DS calls that operation of the SM with existing subscrip-
tions in its table. When receiving a subscribeNotification call, the SM
updates a table containing tuples of (ResultID, Subscription). Whenever
SM receives data satisfying notification constraint, SM delivers the data to
CS. If SM cannot deliver a notification to a client, the SM will remove the
subscription of that notification from the table. To unsubscribe a notification,
CS sends unsubscription requests to DSs which in turn pass these requests to
SMs.

As each SM registers its information with multiple DSs, an SM can re-
ceive duplicate subscriptions for a notification. Currently, SM accepts the
duplication because ensuring SM not to receive duplicate subscriptions of a
notification might be at the higher cost than calling subscribeNotification

which just updates the table containing subscriptions of notifications.

6.2.6 Communication, Data Delivery and Aggregation

6.2.6.1 Service-based Operations and TCP-based Data Delivery

Each SM can be viewed as a peer in a P2P network. It, however, also is a
Grid service. In most P2P systems, a peer processes requests and delivers
data via TCP/UDP channels. Our peer is unique as we try to integrate both
concepts, P2P model and Grid service, into a single peer. A peer provides Grid
service operations for other peers and high-level clients to access and control
its service. But, peers use TCP-based streams to deliver monitoring data to
each other, thus relay functions can easily be implemented to support data
delivery among peers. That also offers a higher performance for data delivery.

Figure 6.11 depicts how requests for data and requested data are handled.
CS or SM requests data through Grid service-based invocations whereas re-
quested data is delivered via TCP-based streams. Data Sender, Data Receiver
and Data Relay of SM and CS are responsible for sending, receiving, and re-
laying performance data, respectively. Each Data Receiver or Data Relay is
associated with an endpoint describing the network transport. An endpoint is
described by a unique XML message containing network transport information
such as host name, port, etc. An SM has only one connection to a consumer
for delivering all kinds of subscribed data. The connection is created at the
first subscription and will be freed after pre-defined tδ seconds since the last
subscription finishes. For delivering resulting data of queries, an on-demand
connection will be created and freed when the delivery finishes. A data re-
quest always includes a unique ResultID which is associated with requested
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data that satisfies the subscribed/queried constraints. SM uses ResultID to
route requested data to the destination while CS uses ResultID to aggregate
results of the same request delivered from multiple SMs.

SM1
Data Sender

SM2
Data Sender

SM5
Data Receiver

CS
Data Receiver

SM3
Data Relay

SM5
Data Sender

SM4
Data Receiver

SM4
Data Sender

Data requests through
service-based invocations
Requested data flow via
TCP-based connections

Fig. 6.11. Service-based invocations and TCP-based data streams.

In our middleware, monitoring data is described in XML. While using
XML to describe performance and monitoring data provides a widely acces-
sible interface and simplifies the interoperability among services, XML data
grows in size. In subscription mode, the size of monitoring data delivered
to the consumer each time is small and almost unchanged for a given sub-
scription. However, in data query mode, the size of monitoring data can be
large, depending on the query, for example, the consumer may want to re-
trieve resource monitoring data for the last 10 hours. To reduce the size of
monitoring data transfered, we compress monitoring data before sending it
over the network.

Data compression may increase the throughput and transfer rate. In Table
6.1, we monitored the data size and transfer time of CPU usage data from an
SM in UIBK domain to a client in PAR domain (see Section 7.4.1 for more
detail about the experimental test-bed); transfer time is the average value
of observed values at different times. In our measurement, compression ra-
tio, compression and decompression time are all dependent on the data size
and type of monitoring data. When the data size is small, compressing data
will not reduce transfer time because of the small compression ratio and the
impact of compression and decompression time on the overall transfer time.
However, when the data size is large, compressing data reduces the data size
substantially that eventually improves both data transfer time and throughput
significantly. For most types of monitoring data supported, when the size of
data to be transfered is less than 512 bytes, the compression does not achieve
a better transfer time and throughput because the compression ratio is close
to 1. Moreover, there is an extra overhead due to the compression and de-
compression of data. Therefore, we develop a simple self-adaptive mechanism
for deciding whether the resulting data should be compressed before sending



6.2 A Unified System for Monitoring and Performance Performance Analysis
in the Grid 129

to the requester that is based on the size of delivered data. If the data size is
larger than sδ, the data will be compressed, otherwise data is transfered as
normal. Currently, sδ is set to 512 bytes.

Data size Tf Tfcd r Tc + Td

(bytes) (ms) (ms) (ms)

588 110 109 1.863 2
1560 119.33 115.24 4.537 2.11
3019 120.45 114.85 8.137 2.19
3991 120.68 114.68 10.207 2.44
5449 129.2 116.15 13.257 2.53
6421 130.45 116.05 14.967 2.73
7879 131.63 117.85 17.316 2.76
8851 136.28 117.48 18.712 3.08
10309 141.39 117.68 20.742 3.09
11281 143.25 117.93 21.949 3.22
12739 147.83 117.5 23.548 3.42
13711 149.75 117.25 24.355 3.67

Table 6.1. Example of transfer time without compression (Tf ), transfer
time of compressed data (Tfcd), compression ratio (r), compression and de-
compression time (Tc + Td) for CPU usage data. Time is measured with Java
System.currentTimeMillis() call. Compression and decompression are imple-
mented based on java.util.zip package.

6.2.6.2 Data Aggregation
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Fig. 6.12. Data aggregation model.

Data aggregation uses a simple mechanism as presented in Figure 6.12.
In this protocol, each sensor constructs its XML data messages and sends
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the messages to an SM which stores the messages into appropriate buffers;
each buffer uses a data container to store data. When a client subscribes
and/or queries data by invoking operations of CS, CS calls corresponding
operations of SM and passes a ResultID to the SM. CS returns client a
DataSensorReader. The SM builds XML messages by tagging the ResultID

to the data met the subscribed/queried condition and sends these messages to
CS. At CS side, based on ResultID, the messages are filtered and stored into
DataSensorReader. The ResultID is used to aggregate results of the same
request delivered from multiple SMs. Clients can call operations (blocking and
non-blocking) of or set up a call-back on DataSensorReader in order to get
the resulting data.

6.2.6.3 Buffering and Filtering Data

SM stores monitoring data in its native format; data is stored exactly as
when it is sent to SMs. Data produced by system sensors will be cached in
circular bounded buffers at SM. In the current implementation, for each type
of system sensor, a separate data buffer is allocated for holding data produced
by all instances of that type of sensor. In push model, any new data entry met
the subscribed condition will always be sent to the subscribed consumers. In
pull model, SM only searches current available entries in the data buffer and
entries met conditions of consumer query will be returned to the requested
consumers. Buffering data produced by application sensors is similar to that
for system sensors. However, we assume that there is only one client to perform
the monitoring and analysis for each application and the size of the data buffer
is unbounded.

6.2.7 Security Issues

SCALEA-G requires authentication and authorization in several actions in-
cluding registrations and queries to DSs, data queries and subscriptions to
SMs, controls of activities of SMs and sensors. Each user has a public key
based X.509 identify certificate. The authentication and authorization are
carried out by using Grid Security Infrastructure (GSI) provided by Globus
[100]. Data transfers between various components are performed via sockets
based on GSI. The security employs both message-level and transport-level
security.

6.2.7.1 Access Control List

For some sensor instances, information collected has to be delivered to selected
consumers. For example, the information collected by the application sensor
instances has to be accessed only by the user who invokes the application.
Therefore, SCALEA-G services must control over the user who is allowed to



6.3 Grid Service for Dynamic Instrumentation 131

use the services. In the case SCALEA-G services are started by the admin-
istrator for the use of multiple users, each SCALEA-G service (e.g., DS and
SM) contains an Access Control List (ACL) which maps user’s information to
properties of provided data the user can access. The ACL can statically be set
up by the administrator. The user information obtained from user’s certificate
when the certificate is used in authentication will be compared with entries
in the ACL in the authorization process.

6.2.7.2 Security for Application Monitoring Data

In the case of application monitoring and performance analysis, when the user
invokes the client GUI to subscribe/query data provided by application sen-
sors, user’s information will be recorded. Similarly, before application sensor
instances start sending data to the SM, the SM obtains information of the user
who executes the application (in initialization step). Both sources of informa-
tion will be used for authorizing the user in receiving data from application
sensors. We discuss this topic more details in Section 6.3.4.2.

6.3 Grid Service for Dynamic Instrumentation

While existing Grid toolkits provide core services for job submission, resource
discovery, such similar Grid services for instrumenting Grid applications do
not exist. In most cases, the instrumentation of Grid applications must be
carried out by the end user. For applications that are executed on a sin-
gle Grid site (within a single organization), existing instrumentation systems
may be reused. However, for applications executed across multiple Grid sites,
currently, the user has to manually instrument his code in order to obtain per-
formance measurements of code regions of Grid applications because existing
instrumentation systems are not appropriate. Consider the diversity and dy-
namics of the Grids. On the one hand, if the user wants to instrument his code,
the user has to know in advance the Grids he submits jobs to, and has to select
the right instrumentation tool for each Grid site. As a result, the user has to
do a daunting task in order to instrument his code. Moreover, the selected
instrumentation tool may not work with the monitoring middleware deployed
in the selected Grid system. On the other hand, instrumentation techniques
are typically bound to specific languages and systems. Therefore, it is possible
that we need many different instrumentation systems just for instrumenting
an application executed on Grids. More importantly, Grid workflows (WFs)
tend to be composed from deployed components whose source code is not
available. Without the instrumentation of code regions of workflow activities
themselves, we are only able to monitor at the level of activity, thus signifi-
cantly reducing the ability to detect and correlate performance problems.

We argue that the instrumentation service should be a core service of a
Grid site. This approach gives many advantages. Firstly, an instrumentation



132 Performance Monitoring and Analysis for the Grid

service is bound to a specific Grid site, thus it can be better developed and
can efficiently exploit features on that site. Since instrumentation services are
autonomous, they are better to be coupled with the supportive monitoring
middleware. Secondly, as an instrumentation system is a Grid service, the
user does not need to worry about how to select an appropriate instrumenta-
tion system. Instead, he just discovers the service and uses it. Each Grid site
may provide an instrumentation service that allows the user or the high level
tools to control the instrumentation. The instrumentation service hides all the
low-level details of the instrumentation process while the client of the instru-
mentation service just simply specifies its requests. To this end, the instru-
mentation service must support widely accessible interfaces, e.g. Grid/Web
service operations, and protocols, e.g., SIR [219] and MIR [218] proposed by
APART working group. Nevertheless, with such generic Grid instrumentation
services, we have to accept some losses, e.g. instrumentation of arbitrary code
regions.

6.3.1 Instrumentation and Measurement Techniques for the Grid

One of the key issues of the performance analysis of Grid applications is how
performance data is measured and collected. Firstly, we have to study different
instrumentation mechanisms to efficiently measure different types of perfor-
mance data. Source code instrumentation provides a simple and efficient way
for collecting measurement data, however, it requires the availability of all
the source files. The instrumented sources have to be compiled and linked
with instrumentation libraries for the specific target machines. That is a time
consuming effort as each time the application executes the resources allocated
may be different, not to mention the allocated resources may not be known in
advance. Moreover, instrumentation and measurement metrics could not be
changed during the runtime of the application. Dynamic instrumentation is
complex but well-suited for measuring volatile and long-running applications,
and for applications whose source code is not available. The workflow-based
application (WFA) is normally dynamically composed from deployed appli-
cations whose source code is not available for instrumentation. The dynamic
instrumentation would be an alternative for solving the problems arisen from
the selection of instrumentation and measurement system and from the com-
pilation of instrumented code fitted to the allocated resources.

We believe that instrumentation for the Grid should employ both meth-
ods. We can instrument sources of WF control and invocation service in or-
der to gather execution status of WFs because execution status information
is normally simple and small. However, for instrumentation of Grid applica-
tions, we believe that dynamic instrumentation would be more suitable. While
source code instrumentation for Grid applications is widely supported, e.g., in
[33, 118], little effort has been spent to investigate the dynamic instrumenta-
tion in the Grid, even though supporting dynamic instrumentation of parallel
programs has a long history [172, 75].
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Secondly, we have to carefully select the granularity of the measurement
for Grid applications, namely profiling or tracing mechanism. Although many
tools have support tracing of Grid applications, e.g. [197, 118], because Grid
performance monitoring and analysis have to be conducted in online man-
ner, tracing is not suitable for the Grid due to the fact that it generates a
huge volume of trace data that has been transfered on the fly to the analysis
component. On the other hand, traditional profiling is not suited for online
monitoring and analysis because profiling data can only be obtained at the
end of the execution of applications. Therefore, incremental mechanisms, for
example profiling data is updated or requested and retrieved incrementally at
runtime, would be more suitable.

6.3.2 Standardized Intermediate Representation for Executable
Programs

6.3.2.1 Standardized Intermediate Representation for Fortran,
Java, C and C++ programs

Application performance analysis relies on performance information that is
commonly obtained by executing instrumented applications; application can
be statically instrumented before or dynamically instrumented during the ex-
ecution. Normally the performance tool developers have to build separate
instrumentation engines for different programming languages and for differ-
ent instrumentation strategies such as dynamic and static instrumentation.
This work is a tedious and time consuming effort. The APART working group
has proposed a Standardized Intermediate Representation (SIR) as an ab-
stract program representation for procedural and object-oriented programs
[219]. Basically a SIR contains information about statement and directive
types with very little details on the structure of individual statements and
directives. The idea is that high-level tools would only know the types of
a statement in order to make a decision about code regions that should be
instrumented.

SIR is an XML-based representation that includes information about pro-
gram units (e.g functions, methods), code regions (e.g. function calls, loops,
statements), etc. SIR is designed for describing Fortran, Java, C and C++
in source code format. Therefore, it supports a rich set of information which
is available when parsing a source code programs. However, with dynamic
instrumentation, in which the intended instrumented program is available in
binary code only, the information obtained is substantially reduced.

6.3.2.2 SIR for Binary Code

At the level of binary code, mostly we obtain only information about program
units, function calls and loops. Although we may measure information at
the level of instructions, the information however is almost impossible to be
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mapped to the application. Therefore, by using that information we hardly
reveal performance problems of the applications. As a result, the full SIR is not
suitable as it requires the instrumentation engine to support many features
that cannot be obtained with dynamic instrumentation. We therefore develop
a simplified version of SIR for binary code (SIRBC) generated by C/C++ and
Fortran compilers.

<xsd:element name="sirbc" type="SIR"/>

<xsd:complexType name="SIR">

<xsd:sequence>

<xsd:element name="unit" type="SIRUnit"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SIRUnit">

<xsd:sequence>

<xsd:element name="coderegion" type="SIRCodeRegion"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="type" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

<xsd:attribute name="name" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

<xsd:attribute name="id" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:complexType>

<xsd:complexType name="SIRCodeRegion">

<xsd:sequence>

<xsd:element name="callee" type="SIRCallee"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="type" type="xsd:string"/>

<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="SIRCallee">

<xsd:sequence>

<xsd:element name="linestart" type="xsd:integer"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="lineend" type="xsd:integer"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="sourcefile" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

Fig. 6.13. Excerpt of XML schema of SIRBC.
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Figure 6.13 presents the XML schema of SIRBC which is based on the
idea of SIR. Currently SIRBC supports only level of program units, func-
tion calls. An application process is represented as a set of program units
(element SIRUnit). Each program unit contains a set of code regions (ele-
ment SIRCodeRegion). A code region is a function call that contains infor-
mation (e.g. name, source information) about the calling function (element
SIRCallee). Each program unit, code region is associated with a unique iden-
tifier(element id). The requester uses that identifier to indicate a program unit
or a code region. By using SIRBC, the instrumentation requester can under-
stand the application structure and create instrumentation requests specifying
code regions that should be instrumented.

6.3.3 Instrumentation Request Language (IRL)

The IRL is provided in order to facilitate the interaction between instrumen-
tation requesters (e.g. consumers, users, tools) and the instrumentation ser-
vice. IRL is an XML-based language describing instrumentation requests and
responses. Requesters send requests to instrumentation services and receive
instrumentation responses describing status of the requests.

IRL requests allow specifying: (i) application process to be instrumented
and the experiment identifier associated with performance measurements, and
(ii) instrumentation requests. Figure 6.14 presents the XML schema of the cur-
rent version IRL. The job to be instrumented is specified via experiment ele-
ment. Information about the job includes application process identifier, appli-
cation name, activity name (for workflow activity), and experiment identifier.
The first three parameters are used to determine the application processes
to be instrumented. Experiment identifier is used to associate performance
measurements with the performance experiment.

The element request specifies types of IRL requests. Each request has a
unique name. A request may consist of tasks; each task is associated with a
set of performance metrics and code regions that will be affected by the task.
Current IRL supports requests including attach, getsir, instrument, deinstru-
ment, finalize.

• attach: requests the instrumentation service to attach an application and
to prepare to perform other tasks on that application.

• getsir: requests the instrumentation service to return SIRBC of a given
application.

• instrument: specifies code regions (based on SIR) and performance metrics
should be instrumented and measured.

• deinstrument: specifies requests for deinstrumentation.
• finalize: notifies the instrumentation service that requester will not perform

any request on the given application.

The code region id is used to determine the code region that should be in-
strumented.
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<xsd:complexType name="IRL">

<xsd:sequence>
<xsd:element name="experiment" type="IRLExperiment" minOccurs="0" maxOccurs="1"/>

<xsd:element name="request" type="IRLRequest" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="response" type="IRLResponse" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="IRLRequest">

<xsd:sequence>
<xsd:element name="experiment" type="IRLExperiment" minOccurs="0" maxOccurs="1"/>

<xsd:element name="task" type="IRLTask" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:NMTOKEN"/>

</xsd:complexType>
<xsd:complexType name="IRLExperiment">

<xsd:sequence>
<xsd:element name="applicationName" type="xsd:string"/>
<xsd:element name="jobID" type="xsd:string"/>

<xsd:element name="activityID" type="xsd:string"
minOccurs="0" maxOccurs="1" />

<xsd:element name="experimentID" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="IRLTask">
<xsd:sequence>

<xsd:element name="coderegion" type="CodeRegion" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="metrics" type="MetricList" />

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CodeRegion">

<xsd:attribute name="unit" type="xsd:string"/>
<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="id" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="IRLResponse">
<xsd:sequence>

<xsd:element name="detail" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:NMTOKEN"/>

<xsd:attribute name="status" type="xsd:NMTOKEN"/>
</xsd:complexType>
<xsd:simpleType name="MetricList">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

Fig. 6.14. Excerpt of XML schema of Instrumentation Request Language.

In responding to a request from a requester, the instrumentation service
will reply to the requester by sending an instrumentation response which
contains the name of the request, the status of the request (e.g OK, FAIL)
and possibly a detailed responding information encoded in <![CDATA[ ...

]]> tag.
Figure 6.15 gives an example of IRL requests. The experiment specifies

information about the process being instrumented. The request instrument

demands the instrumentation service to conduct two instrumentation tasks.
The first task specifies the instrumentation of code region f1631 ionization,
which is a function call of ionization in unit mymain. The second task re-
quests to instrument code region f1439 pmpi send, a call of pmpi send in unit
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<?xml version="1.0" ?>

<irl>

<experiment>

<applicationName>/home/truong/projects/rpp3d</applicationName>

<jobID>14322</jobID>

<experimentID>3DPIC-2N-4P</experimentID>

</experiment>

<request name="instrument">

<task>

<coderegion unit="mymain" name="ionization" id="f1631_ionization"/>

<metrics>wtime</metrics>

</task>

<task>

<coderegion unit="mymain" name="pmpi_send" id="f1439_pmpi_send"/>

<coderegion unit="mymain" name="pmpi_recv"/>

<metrics>wtime</metrics>

</task>

</request>

<request name="finalize">

</request>

</irl>

Fig. 6.15. Example of IRL.

mymain, and to instrument all calls of pmpi recv in unit mymain. All code re-
gions are instrumented with wall-clock time (wtime). The finalize request
indicates that the client will not conduct any instrumentation requests on the
application process specified by the experiment element.

6.3.4 Grid Dynamic Instrumentation Service

Figure 6.16 presents the architecture of our dynamic instrumentation service
for Grids. There are four main components residing in different places involv-
ing in the instrumentation process: Instrumentation Requester (IR), Instru-
mentation Mediator (IM), Mutator Service (MS) and Instrumentation For-
warding Service (IFS). The IR controls the instrumentation process. The MS,
executed on the computational node where the application processes run, is
responsible for performing the dynamic instrumentation. It attaches the appli-
cation processes and inserts application sensors into the application processes.
In the middle of IR and MS are the IM and the IFS which bridge and ag-
gregate requests and responses between the IR and the MS. IM and IFS are
needed because the IR cannot always directly communicate with the MS. IR
works at a high-level at which it considers the execution of application as a
whole. Therefore, IR may conduct instrumentation spanning multiple Grid
sites. However, MS works at the lower level at which its monitored objects are
application processes; an MS is executed on a computational node. Therefore,
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Fig. 6.16. Architecture of the Grid service of dynamic instrumentation

IM and IFS are used to transfer and aggregate requests and responses between
the high-level view and the low-level one. An IFS instance is responsible for
forwarding requests to multiple MSs executed on computational nodes. The
above architecture is a service-oriented model built based on two languages:
SIRBC and IRL. SIRBC allows the MS to describe instrumented applications
in a neutral representation and to provide that representation to IR. IRL al-
lows IR to define which portions of an application should be instrumented
and which performance metrics should be collected.

The MS is a Grid service which is implemented based on gSOAP, a C++
Web Service toolkit with GSI-plugin [117]. MS accepts instrumentation re-
quests represented in IRL. Figure 6.17 shows interactions between IR, MI,
IFS, and MS instances when conducting requests for instrumenting an ap-
plication. At the requester side, the IR specifies requests and passes these
requests to IM. Based on the requests, the IM locates existing IFSs which can
forward the requests to MSs executed on the same computational nodes of
application processes; if no such IFSs exist, IM makes a request to create new
IFS instances. IM then sends IRL requests to IFSs. When an IFS receives a
request, it will search MS instances which can fulfill the request. If there is
no MS instance for instrumenting application processes of a user in a com-
putational node, IFS makes a request of creating a new MS instance for the
user on that node. IFS will send the requests to MSs which in turn forward
the requests to corresponding MSs. The MS will parse the IRL request and
then perform the instrumentation of application processes. The MS inserts
application sensors into application processes. The dynamic instrumentation
techniques are facilitated by Dyninst [51]. The application sensors perform
the monitoring and measurement of application processes. Performance mea-
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surement will be sent to Sensor Manager Service (SM), which is a part of the
supportive monitoring middleware, or will be collected through MS.

IR IM IFS MS

Invoke IM with IRL requests

send IRL requests to IFS

send IRL requests to MS

return IRL responses

return IRL responses
return IRL responses

-Parse IRL
- Insert application
sensors

Fig. 6.17. Steps in conducting a request for instrumentation.

The MS provides the application structure to the requester in SIRBC
format. Based on SIRBC, the IR can decide which code regions should be
instrumented. With the high-level encapsulation and highly interoperability,
interfaced through service operations, IRL language and SIRBC, the dynamic
instrumentation service is widely accessible to other services.

6.3.4.1 Service Interface

The design of MS is based on the factory model. The MS consists of a Mutator
Factory (MF) and Mutator Instance (MI). An MF is a persistent service
deployed in each computational node. Figure 6.18 and Figure 6.19 present an
excerpt of interfaces of MF and MI, respectively.

The MF provides a main operation named createMutatorInstance for
creating MIs when requested. The MI is responsible for attaching applica-
tion processes and instrumenting these processes. Information about MF is
published to the supportive monitoring middleware. When IRF receives an
instrumentation request, it finds MIs on corresponding computational nodes
which can instrument application processes of the calling user. If no such an
MI exists, the IFS calls the MF on the corresponding node to create a new
MI. When an MI running, it connects to an SM, notifies its existence to the
SM and waits for control from requesters. MI provides the following main
operations:

• performIRL: to process IRL requests. The MI will react with appropriate
functions such as attaching the application process, instrumenting and
deinstrumenting, or detaching the application process.

• getProfilingData: to return profiling data collected to the requester.
• destroyInstance: to end the execution of this instance. When this opera-

tion is called the MI will free resources it occupies and finish its execution.
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In addition, MF and MI provide two auxiliary operations: ping operation to
support ping service and getUserProcess to obtain user processes executed
on a computational node.

<wsdl:portType name="MutatorFactoryPortType">

<wsdl:operation name="createMutatorInstance" parameterOrder="in0">

<wsdl:input message="intf:createMutatorInstanceRequest"

name="createMutatorInstanceRequest"/>

<wsdl:output message="intf:createMutatorInstanceResponse"

name="createMutatorInstanceResponse"/>

</wsdl:operation>

<wsdl:operation name="getUserProcess" parameterOrder="in0">

<wsdl:input message="intf:getUserProcessRequest"

name="getUserProcessRequest"/>

<wsdl:output message="intf:getUserProcessResponse"

name="getUserProcessResponse"/>

</wsdl:operation>

<wsdl:operation name="ping">

<wsdl:input message="intf:pingRequest" name="pingRequest"/>

<wsdl:output message="intf:pingResponse" name="pingResponse"/>

</wsdl:operation>

</wsdl:portType>

Fig. 6.18. Excerpt of interfaces of Mutator Factory.

6.3.4.2 Security Model

The security in the dynamic instrumentation service is based on GSI [267]
facilities provided by Globus Toolkit (GT) [108]. As shown in Figure 6.16,
the security model employs both transport and message level security, using
delegation, authentication/authorization, and run-as mechanism [4]. Except
that MS uses transport level security, the interactions among the rest compo-
nents are based on message level security. Message level security employs GSI
secure conversation mechanism [4].

IR and IM run with the security identity of the user. IFS service methods
are set to run with the security identity of the client. When IM requests
IFS service to create an instance, the instance will be run with the security
identity of the user. MF runs with the service identity in a none-privilege
account. However, if MF is deployed to be used by multiple users, it must be
able to create its instances running in the account of calling users. The MI
created by MF upon on requests of IFS will be run as user identity. MF uses
a grid-map file to authorize its requesters. As MI executes with the security
identity of the user, it has permission to attach user application processes,
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<wsdl:portType name="MutatorServicePortType">

<wsdl:operation name="performIRL" parameterOrder="in0">

<wsdl:input message="intf:performIRLRequest"

name="performIRLRequest"/>

<wsdl:output message="intf:performIRLResponse"

name="performIRLResponse"/>

</wsdl:operation>

<wsdl:operation name="destroyInstance" parameterOrder="in0">

<wsdl:input message="intf:destroyInstanceRequest"

name="destroyInstanceRequest"/>

<wsdl:output message="intf:destroyInstanceResponse"

name="destroyInstanceResponse"/>

</wsdl:operation>

<wsdl:operation name="getUserProcess" parameterOrder="in0">

<wsdl:input message="intf:getUserProcessRequest"

name="getUserProcessRequest"/>

<wsdl:output message="intf:getUserProcessResponse"

name="getUserProcessResponse"/>

</wsdl:operation>

<wsdl:operation name="getProfilingData" parameterOrder="in0">

<wsdl:input message="intf:getProfilingDataRequest"

name="getProfilingDataRequest"/>

<wsdl:output message="intf:getProfilingDataResponse"

name="getProfilingDataResponse"/>

</wsdl:operation>

<wsdl:operation name="ping">

<wsdl:input message="intf:pingRequest" name="pingRequest"/>

<wsdl:output message="intf:pingResponse" name="pingResponse"/>

</wsdl:operation>

</wsdl:portType>

Fig. 6.19. Excerpt of interfaces of Mutator Instance

and is able to perform the dynamic instrumentation. Delegation is performed
from IM to IFS to MI.

In push mode, application sensors send measurements to SM. When
subscribing and/or querying data provided by application sensors, data re-
quester’s identity will be recorded. Similarly, before application sensor in-
stances start sending data to the SM, the SM obtains the security identity of
the requester who executes the application. Both sources of information will
be used for authorizing the requester which receives data from application
sensors. In pull mode, performance measurements collected by applications
sensors will be returned to the requester by MI. MI uses self-authorization
mechanism to check the requester. Requests for obtaining performance mea-
surements sent by IR will be delegated from IM to IFS to MI. As a result,
only the owner can be able to access performance data.
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6.3.4.3 Practical Issues in Building SIR and Instrumenting
Applications

When processing different binary codes compiled by different compilers, we
observed that depending on specific compilers and architectures, the SIR of an
executable is quite different from that of the other. It contains many internal
functions that the user may not want to instrument. SIR, however, is designed
for C/C++/Fortran/Java sources, thus, it does not define filters that can be
used to exclude these irrelevant information when building the SIR from appli-
cations. We extend IRL to allow the IR to specify filters for getsir requests.
The filters include code region names that the instrumentation service should
exclude and the function scope in which the instrumentation service should
limit its traversal.

Due to the dependence of executable structures on the compilers and plat-
forms, the SIR of different processes of the same program may be different
when the program is compiled and executed on different platforms. Thus,
a SIR is associated with a process, not with a program. In some cases, the
same code region has different identifiers in different SIRs. Thus when using
identifiers to specify selected code regions, the IR has to process each SIR
of a process individually. Consider a large number of processes, it is a time-
consuming task for IR, if IR wants to instrument a code region in all processes.
To avoid that, we can specify only the code region name and the program unit
in instrumentation requests. The instrumentation service will instrument all
functions which have that name within the given program unit.

6.3.5 Incrementally Updating Profiling Data

Traditionally, profiling is performed offline and performance measurements are
summarized and available for being analyzed when the application finishes.
Thus, this approach is not suitable for online profiling as we have complete
summarized measurements only when the application finishes. Online profiling
requires measurement data to be collected and analyzed during runtime of the
application. But if summarized data is sent back to the analysis component
at the instant the measurement data is updated, a huge data volume will be
sent over the network. As a result, the impact of monitoring on the execution
of the application is high.

We develop a mechanism to support online and incrementally updating
profiling data. That is, instead of always updating consecutive measurements
of code regions, the monitoring delivers measurement data to the analysis com-
ponent incrementally. The monitoring system returns only the most-updated
measurements in maximum pre-defined time or upon on a request. To profile
a code region r we put a sensor, composed by a start probe and a stop probe,
as follow:
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sis start(PBr)
r

sis stop(PBr)

where PBr is information used to determine the code region;PBr is associated
with a record storing measurement data of code region r. When an activation
of r finishes, its measurement data will be updated into the record. Each
process keeps a profiling data of all instrumented code regions.

The analysis component can obtain the profiling data through pull or push
mode. In pull mode, profiling data is stored in shared memory. The analysis
component calls the getProfilingData operation of MI in order to obtain
the requested profiling data.

procedure sis start(PBr))
begin

start the measurement of r.
if (it is first execution of r) then

send PBr to DRP component of SM.
end if

end
procedure sis stop(PBr))
begin

stop the measurement of r.
update performance measurements in PBr.
if (PBr is not in bufn) then

add PBr into bufn.
else

update PBr in bufn.
end if
if (bufn is full) then

flush whole bufn to DRP.
reset bufn.

end if

end

Fig. 6.20. Updating profiling data to Sensor Manager.

In push mode, the most recent updated measurements of n code regions
are stored into a flush buffer size n, bufn. Performance measurements are
incrementally sent to Data Receiving and Publishing (DRP) component of
SM (see Figure 6.16 and Section 6.2.3.5). Figure 6.20 presents the algorithm
used to send measurement data to the monitoring middleware. Every t seconds
since the last time the buffer is flushed to DRP, the buffer will be flushed if it is
not empty. With this algorithm, performance measurements of n last executed
code regions are flushed to DRP incrementally in maximum t seconds. As
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a result, we ensure that the requester receives the newly-updated profiling
measurement of a code region no longer than t seconds since the measurement
is updated.

We have already implemented the push mode and are currently implement-
ing the pull mode. In pull mode, application sensors are designed to store mea-
surements in shared memory whereas those in push mode store measurements
into internal buffers and push these measurements through the network. We
are currently investigating to develop our application sensors so that they store
collected data into shared memory. The task to support pushing or pulling
profiling data will be done by MI. Also the getProfilingData operation will
support requests based on MIR [218].

6.4 Performance Monitoring and Analysis of Grid
Workflow-based Applications

Performance monitoring and analysis of Grid workflows (WFs) should sup-
port:

• inter-activity performance monitoring and analysis: to monitor and
analyze the interactions between activities, the impact of an activity on
the performance of the whole workflow or of the workflow construct that
the activity participates. To this end, the monitoring and analysis tool has
to operate at the level of the overall workflow and on the whole resources
on which the workflow activities are executed.

• intra-activity performance monitoring and analysis: to monitor and
analyze the performance of the invoked application of the individual ac-
tivity. To this end, the monitoring and analysis tool has to operate at the
level of the individual activity and on the resource on which the activity
is executed.

Figure 6.21 presents the architecture of the Grid monitoring and perfor-
mance analysis service for WFs. The WF is submitted to the Workflow In-
vocation and Control (WIC) 4 which locates resources and executes the WF.
Events containing execution status of activities, such as queuing and process-
ing, and information about resources on which the activities are executed will
be sent to the monitoring tool. The Event Processing processes these events
and the Analysis Control decides which activities should be instrumented,
monitored and analyzed. Based on information about selected activity in-
stances and their consumed resources, the Analysis Control requests the In-
strumentation and Monitoring Control to perform the instrumentation and
monitoring. Monitoring and measurement data obtained are then analyzed.
Based on the result of the analysis, the Analysis Control can decide what to
do in the next step.

4 WIC is part of the Workflow Management System (WfMS).
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This architecture uses SCALEA-G middleware as its supportive monitor-
ing middleware. Various types of performance data are published to, stored
in, and retrieved from SCALEA-G.

Grid Performance
Analysis Service

SCALEA-G
Middleware

MIS: Monitoring  and Instrumentation Service, AI: Activity Instance

Workflow
Invocation and

Control

Workflow
Applications

Event
Processing

Analysis
Control

Instrumentation
and Monitoring

Control

Computational Node
MIS AI

Computational Node
MIS AI

Computational Node
MIS AI

Computational Node
MIS AI

Fig. 6.21. Model of monitoring and performance analysis of workflow-based appli-
cation.

6.4.1 Supporting Workflow Computing Paradigm

Currently we focus on the workflow modeled as a DAG (Direct Acyclic Graph)
because DAG is widely used in modeling scientific workflows. A WF is repre-
sented as a DAG of which a node represents an activity (task) and an edge
between two nodes represents the dependency between the two activities. An
activity instance may be executed on a single or multiple resources. Meanwhile
we focus on activities whose invoked applications are application executables
(e.g. MPI program).

We particularly concentrate on analyzing (i) fork-join model and (ii) multi-
workflow of an application. Figure 6.22(b) presents the fork-join model of
workflow activities in which an activity is followed by a parallel invocation
of n activities. This model is typical in many scientific WFs. There are sev-
eral interesting metrics that can be obtained from this model, such as load
imbalance, slowdown factor and synchronization delay at the synchroniza-
tion point. These metrics help to uncover the impact of slower activities on
the overall performance of the whole structure. We also focus on fork-join
constructs that contain structured block of activities. A structured block is
a single-entry-single-exit block of activities 5. For example, Figure 6.22(c)
presents structured blocks of activities.

An workflow-based application (WFA) can have different versions, each
represented by a WF. For example, Figure 6.22 presents an application with

5 More details of existing WF constructs can be found in [20].
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Fig. 6.22. Multiple workflows of an workflow-based application: (a) Sequence work-
flow, (b)Fork-join workflow, and (c) Fork-join structured block of activities.

3 different WFs, each may be selected for execution on specific underlying
resources. When developing a WFA, we normally start with a graph describ-
ing the WF. The WFA is gradually developed in a sequence of refinement
steps (stepwise refinement) that creates a better version or an adapted ver-
sion fitted to a particular underlying Grid system6. This refinement can be
done automatically by a workflow construction tool or manually by a WF
developer. In a refinement step, a subgraph may be replaced by another
subgraph of activities, resulting in a set of different constructs of the WF.
For example, the activity a1 in Figure 6.22(a) is replaced by set of activities
{a1(1), a1(2), · · · , a1(n)} in Figure 6.22(b). (Also we can consider a set of ac-
tivities {a1(1), a1(2), · · · , a1(n)} is reduced to a1.) We call such refinement
refinement by replacement. In Grids a WF can yield the best result in one
particular run but not in the next run because the Grid infrastructure may
be different from run after run. The concept of the best solution is now asso-
ciated with a particular run. Moreover, since the underlying system changes
from experiment to experiment a single WF may not be enough. As a result,
different solutions for a WFA, even all of them are just used to conduct the
same problem, may equally be important. The key question is which WF con-
struct is the best for a given collection of resources. Therefore, multi-workflow
analysis, the analysis and comparison of the performance of different WF con-

6 In other words, a refinement step creates another solution for the WFA.
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structs, ranging from the whole WF to a specific construct (e.g. a fork-join, a
sequential construct), is an important feature.

We focus on the case in which a subgraph of a DAG is replaced by a
another subgraph in the refined DAG. This pattern occurs frequently when
developing WFs of an application for different underlying resource topologies.
Let G and H be DAG of workflow WFg and WFh, respectively, of a WFA. G
and H represent different versions of the WFA. H is said to be a refinement
of G if H can be derived by replacing a subgraph SG of G by a subgraph SH
of H . The replacement can be controlled by the following constraints:

• Every edge (a, b) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge (a, c) ∈ H ,
∀c ∈ SH satisfies no d ∈ H such that (d, c) ∈ SH .

• Every edge (b, a) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge (c, a) ∈ H ,
∀c ∈ SH satisfies no d ∈ H such that (c, d) ∈ SH .

SH is said to be a replaced refinement graph of SG. Note that SG and SH
may not be a DAG nor a connected graph. For example, consider the cases
of Figure 6.22(a) and Figure 6.22(b). Subgraph SG = {a1} is replaced by
subgraph SH = {a1(1), a1(2), · · · , a1(n)}; both are not DAG, the first is a
trivial graph and the latter is not a connected graph. Generally, we assume
that there are n components of a subgraph SG. Each component is either a
DAG or a trivial graph. Comparing the performance of different constructs
of a WFA can help to select and map WF constructs to the selected Grid
resources in an optimal way.

Graph refinement is a well-established field and it is not our focus. There-
fore, we do not concentrate on the determination of refinement graphs in work-
flows, rather, the workflow developers and/or workflow construction tools are
assumed to do this task. Our main goal is that given different solutions for a
WFA we study the performance similarity and difference between them.

6.4.2 Activities Execution Model

Each invoked application of an activity instance may be executed on different
resources allocated by the WIC. Let P (a) be an activity execution status graph
modeling the execution of activity a (hence we call the execution graph of an
activity). A P (a) is a directed, acyclic, bipartite graph (S, E, A), in which S
is a set of nodes representing activity states, E is a set of nodes representing
activity events, and A is a set of edges representing ordered pairs of activity
state and event. Simply put, an agent (e.g. WIC, activity instance) causes
an event (e.g. submit) that changes the activity state (e.g. from queuing to
processing), which in turn influences the occurrence and outcome of the future
events (e.g. active, failed). Figure 6.23 presents an example of an activity
execution status graph. Note that the real execution model of a WF is more
complex, depending on the implementation of WIC. For example, an activity
can be re-submitted, aborted and suspended7.

7 Detailed possible states of a workflow can be found in [16].
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initializing submitted queuing active processing completed

Fig. 6.23. Example of an activity execution status graph. � represents a state, ©
represents an event.

Event Name Description

active indicate the activity instance has been started to process its work.

completed indicate the execution of the activity instance has completed.

failed indicate the execution of the activity instance has been stopped
before its normal completion.

submitted indicate the activity has been submitted to the scheduling system.

Table 6.2. Example of event names.

Each state s of an activity a is determined by two events: leading event
ei, and ending event ej such that ei, ej ∈ E, s ∈ S, and (ei, s), (s, ej) ∈ A of
P (a). To denote an event name of P (a) we use ename(a). Table 6.2 presents
an example of a few event names used to describe activity events8. We use
t(e) to refer to the timestamp of an event e and tnow to denote the timestamp
at which the analysis is conducted. Because the monitoring and analysis is
conducted at the runtime, it is possible that an activity a is on a state s but
there is no such (s, e) ∈ A of P (a). When analyzing such state s, we use tnow

as a timestamp to determine the time spent on state s. We use → to denote
the happened before relation between events.

The monitoring system collects states and events of each activity instance,
and builds the execution graph of that activity instance. Currently, to get
execution status of activities from WIC we manually instrument the WIC
because WIC does not provide interface for the monitoring tool to obtain
that information.

6.4.3 Intra-activity and Inter-activity Performance Metrics

Performance measurements for a Grid WF are collected at two levels: activity
and workflow level. Based on monitoring data, performance measurements
and WF graphs, the performance of WF is analyzed.

6.4.3.1 Activity Level

At activity level, several performance metrics that characterize an activity
are provided. We capture performance metrics of the activity, for example its
execution status, performance measurements of code regions (e.g. wall-clock
time, hardware metrics), etc. Firstly, we dynamically instrument code regions
of the invoked application of the activity. We collect performance metrics such

8 Detailed possible activity events can be found in [13].
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as wall-clock time, CPU time and hardware counters of instrumented code
regions. Performance metrics of code regions are incrementally provided to the
user during the execution of the workflow. Based on these metrics, various data
analysis techniques can be employed, e.g. load imbalance and metric ratio. We
extend our overhead analysis for parallel programs (see Chapter 5) to WFAs.
For each activity, we analyze activity overhead. Activity overhead contains
various types of overhead, e.g. communication, synchronization, that occur in
an activity instance.

Secondly, we focus on analyzing response-time of activities. Activity re-
sponse time corresponds to the time an activity takes to be finished. The
response time consists of waiting time and processing time. Waiting time can
be queuing time, suspending/resuming time and processing time can consist
of communication and computation time. For each activity a, its execution
graph, P (a), is used as the input for analyzing activity response time. More-
over, we analyze synchronization delay between activities. Let consider a de-
pendency between two activities (ai, aj) where ai ∈ pred(aj). ∀ai ∈ pred(aj),
when ecompleted(ai) → esubmitted(aj), the synchronization delay from ai to aj ,
Tsd(ai, aj), is defined as

Tsd(ai, aj) = t(esubmitted(aj)) − t(ecompleted(ai)) (6.1)

If at the time of the analysis esubmitted(aj) has not occurred, Tsd(ai, aj) is
computed as

Tsd(ai, aj) = tnow − t(ecompleted(ai)) (6.2)

Each activity aj associates with a set of the synchronization delays. From that
set, we compute maximum, average and minimum synchronization delay at
aj . Note that synchronization delay can be analyzed for any activity which is
dependent on other activities. This metric is particularly useful for analyzing
synchronization points in a workflow.

6.4.3.2 Workflow level

We analyze performance metrics that characterize the interaction and the
performance impact among activities. There are various metrics of interest
such as average response time, waiting time, queuing time and synchroniza-
tion delay of activities, load imbalance, computation to communication ratio,
service requests per activities, activity usage, and success rate of activity invo-
cation. Correlation metrics, such as number of activities per resource, resource
utilization, etc., are also important.

We combine WF graph, execution status information, and performance
data to analyze load imbalance for fork-join model. Let a0 be the activity at
the fork point. ∀ai, i = 1 : n, ai ∈ succ(a0), load imbalance Tli(ai, s) in state
s is computed as

Tli(ai, s) = T (ai, s) −

∑n

i=1 T (ai, s)

n
(6.3)
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We also apply load imbalance analysis to a set of selected activities. In a
workflow, there could be several activities whose functions are the same, but
are not in fork-join model. Load imbalance analysis is useful technique to
reveal the work distribution.

6.4.4 Multi-workflow Analysis

We analyze slowdown factor for fork-join model. Slowdown factor, sf , is de-
fined as

sf = n ×
maxn

i=1(Tn(ai))

T1(ai)
(6.4)

where Tn(ai) is the processing time of activity ai in fork-join version with
n activities and T1(ai) is the processing time of activity ai in the version
with single activity. We also extend the slowdown factor analysis to fork-join
structures that contain structured block of activities. In this case, Tn(ai) will
be the processing time of a structured block of activities in a version with n
blocks.

For different replaced refinement graphs of WFs of the same WFA, we
compute speedup factor between them. Let SG be a subgraph of workflow
WFg of a WFA; SG has ng components. Let Pi =< ai1, ai2, · · · , ain > be a
critical path from starting node to the ending node of the component i, Ci,
of SG. The processing time of SG, Tcp(SG), is defined as

Tcp(SG) = max
ng

i=1(Tcp(Ci)), Tcp(Ci) =
n

∑

k=1

T (aik) (6.5)

where T (aik) is the processing time of activity aik. Now, let SH be the re-
placed refinement graph of SG; SG and SH are subgraphs of workflow WFg

and WFh, respectively, of a WFA. Speedup factor sp of SG over SH is defined
as follows:

sp =
Tcp(SG)

Tcp(SH)
(6.6)

The same technique is used when comparing the speedup factor between two
workflow WFg and WFh.

In order to support multi-workflow analysis of WFs, we collect and store
different DAGs, subgraphs of the WFA, performance data and machine infor-
mation into an experiment repository powered by PostgreSQL. Each graph is
stored with its associated performance metrics; graphs can be DAG of the WF
or a subgraph. We use a table to represent refinement relationship between
subgraphs. Currently, for each experiment, the user can select subgraphs,
specifying refinement relation between two subgraphs of two WFs. The anal-
ysis service uses data in the experiment repository to conduct multi-workflow
analysis.
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6.5 Ontology-based Approach to Performance Analysis,
Data Sharing and Tool Integration

The recent emerging Grid computing raises many challenges in the domain of
performance analysis. One of these challenges is how to understand and utilize
performance data where the data is diversely collected and no central com-
ponent manages and provides semantics of the data. Performance monitoring
and analysis on Grids differ from that in conventional parallel and distributed
systems in terms of no single tool providing performance data for all Grid sites
and the need of conducting monitoring, measurement and analysis across mul-
tiple Grid sites at the same time. Normally users execute their applications
on multiple Grid sites, each is equipped with different computing capabilities,
platforms and libraries, that require various tools to conduct performance
monitoring and measurement. Without the central component, performance
monitoring and measurement tools have to provide means for seamlessly uti-
lizing the data they collect and provide because many other tools and services
atop them need the data for specific purposes such as performance analysis,
scheduling and resource matching. Current Grid performance tools focus on
the monitoring and measurement, but neglecting the data sharing and tool
integration.

In previous work, presented in Section 6.2, we have introduced a mid-
dleware for performance monitoring and data integration in Grids. In that
middleware, we use XML to describe various types of performance data. It,
however, turns out that XML does not provide mechanism to represent the
semantics of such diverse performance monitoring in Grids. Encouraged by
the Semantic Grid approach [72, 234], in order to overcome the limitation of
XML we take a new direction in describing the semantics of performance data
and establishing performance data sharing and tool integration by investigat-
ing the use of ontology in performance analysis domain. Basically, ontologies
provide a “shared and common understanding of a domain” that can be used
in the communication between people and application systems [116, 90]; on-
tology is developed to “facilitate knowledge sharing and reuse” [116, 90, 171].
Based on sharable and extensible ontologies in the domain of performance
analysis, an analysis tool, service or user is able to access multiple sources of
performance and monitoring data provided by a variety of performance mon-
itoring and measurement tools, understanding the data and making use of
that data. With the expressive power provided by ontology that can describe
concepts, resources in sufficient detail, the chance of supporting automated
performance analysis will also be increased.

6.5.1 Semantics of Performance Data

Most monitoring and measurement tools collect raw data (e.g. performance
metrics) of monitored objects but they do not directly model and clarify the
relevant aspects of monitored objects. As a result, the collected data lacks



152 Performance Monitoring and Analysis for the Grid

semantics and it is difficult to correlate the data with the appropriate domain
knowledge. The software program hardly understands and handles that data,
thus not fostering to automatically detect, correct and predict behavior of
applications and computing systems at runtime. Lack of detailed model of
monitored resources also prevents us from moving performance analyzers as
close to the monitored source as possible. As a result, the performance analysis
for the Grid is still conducted in the centralized manner even though the
monitoring and measurement are conducted in the distributed manner.

Currently, several data representations with different capabilities and ex-
pressiveness are employed by Grid performance monitoring and measurement
tools such as XML [270], XML schema [271] and relational database schema.
However, little effort has been done to standardize the semantics of perfor-
mance data as well as the way the performance tools collaborate each other.
In the Grid, data is diversely collected and no central component manages and
provides its semantics. Each Grid site may be equipped with its own perfor-
mance monitoring and measurement tool. Thus, the end user or the high level
tool in Grids has to interact with a variety of tools offering monitoring and
measurement service. Performance monitoring and measurement tools should
not simply offer well-defined operations for other services to call them (e.g.
based on OGSA [93, 94]) but they have to provide means for adding seman-
tics to the data as Grid users and services require seamless integration and
utilization (performance) data provided by different tools.

Existing approaches for performance data sharing and tool integration
which mostly focus on building wrapper libraries for directly converting data
between different formats, storing data in relational database with specific
data schema, or exporting data into XML, have several limitations. For ex-
ample, based on our experiences on developing data integration (see Section
6.2.3.8), building a wrapper requires high implementation and maintenance
costs; wrappers convert data between representations but not always between
semantics.

Although XML and XML schemas are sufficient for exchanging data be-
tween parties that have agreed in advance on definitions, use and meaning of
XML vocabularies, they mostly are suitable for one-to-one communication.
XML only provides a syntax for encoding structured documents and imposes
no semantic constraints on the meaning of these documents. XML schema
imposes constraints and restrictions on the structure of XML documents, but
not on the semantics, and extends XML with data types. Everyone can cre-
ate his own XML vocabularies with his own definitions for describing his
data. However, such vocabularies and definitions are not sharable and do not
establish a common understanding about the data, thus preventing seman-
tic interoperability between various parties which is an important issue that
Grid monitoring and measurement tools have to support. Utilizing relational
databases to store performance data [245, 235] makes data more sharable and
accessible. However, the data models represented by relational database are
still very tool-specific and inextensible. Integrating different relational tables
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by using SQL join statements may generate nonsense information as relational
database checks the data type, instead of the semantics, of the data. More-
over, relational database is not extensible. Extending these database schemas
to cover new performance metrics or monitored objects would result in daunt-
ing tasks of redesigning relations and attributes. Notably, XML and relational
database schemas do not explicitly express meanings of data they encode.
Since all above-mentioned techniques do not provide enough capability to ex-
press the semantics of performance data and to support tool integration, they
might not be suitable for describing performance data in the Grid due to the
autonomy and diversity of performance monitoring and measurement tools.

We investigate whether the use of ontology can help to solve the above-
mentioned issues. Ontologies are a popular research topic in various com-
munities such as representation and reasoning, information integration and
cooperative information systems [90]. Ontologies were originally introduced
by the artificial intelligence community to “facilitate knowledge sharing and
reuse” [116, 90, 171] and recently ontology has been considered as the main
tool that can be used to achieve the semantic interoperability in the Grid
[72, 234]. A short overview of ontology and ontology languages can be found
in Appendix G.

6.5.2 Using Ontology to Describe Performance Data

There are many ways of using ontology for addressing the issues mentioned
in Section 6.5.1. Firstly, ontology can be used to directly describe and model
the data collected, thus allows performance tools to share a common under-
standing of performance data and to correlate the data with the knowledge
domain. Secondly, ontology can be used to define mappings between differ-
ent representations employed by different Grid monitoring and measurement
tools. In both cases, we can utilize the single ontology or hybrid ontology
approach [214]. In the single ontology approach, we define a single ontology
for performance analysis domain. In the latter approach, each performance
tool can define its own ontology based on a shared ontology. This would al-
low a high level service to transparently access different types of data in a
homogeneous way.

6.5.3 PERFONTO: Ontology for Describing Performance Data

While ontology has widely been applied successfully to represent data in many
fields such as AI, Semantic Web, Health and Biology 9, before starting work-
ing on this topic, we were not aware of such an ontology for performance
data in the field performance analysis. Our initial effort is that we propose
an ontology for representing performance data in the Grid with the hope that
the proposed ontology will not only serve for data sharing and reuse between

9 For example, refer to http://www.daml.org/ontologies/category.html
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performance analysis tools but also increase the automation of performance
analysis process. In this section, we describe PERFONTO, an ontology for
describing performance data that can be used by various performance moni-
toring and measurement tools.

6.5.3.1 Selecting Ontology Language

Although various languages can be used to represent ontology such as RDFS
[213], DAML [158], OIL [161], DAML+OIL [71], we choose OWL (WebOnt)
[188] for describing performance ontology due to several reasons. OWL is
developed as a vocabulary extension of RDF [205] and is derived from
DAML+OIL. OWL can describe classes and properties in more complex ways
than RDFS. For example, properties in RDFS can be organized into a prop-
erty hierarchy (one property may be a subproperty of another). In OWL,
properties can be denoted as transitive, symmetric or functional, and one
property can be defined as an inverse of as well as a subproperty of another.
OWL distinguishes two types of properties: Data Property and Object Prop-
erty. Data properties have data-values as their range whereas object properties
have individual-values as their range. OWL is currently being standardized
by W3C [239].

OWL follows the object-oriented approach, with the structure of the do-
main being described as a set of definitions of classes and properties. OWL
consists of a set of axioms including class axioms and property axioms that
assert subsumption relationships between classes and properties. Class ax-
ioms specify necessary and/or sufficient characteristics of a class, e.g., sub
class and equivalent class, whereas a property axiom defines characteristics of
a property such as range, domain and relations to other properties.

6.5.3.2 PERFONTO Design

PERFONTO comprises two parts that describe experiment-related concepts
and resource-related concepts. Here we briefly discuss main classes in current
version of PERFONTO.

Experiment-related concepts describe experiments and their associated
performance data of applications. The structure of the concepts is described
as a set of definitions of classes and properties. Figure 6.24 presents de-
scriptions of part of experiment-related classes in PERFONTO. Application
describes information about the application. Version describes information
about versions of an application. SourceFile describes source file of a ver-
sion. CodeRegion describes a static (instrumented) code region. Code regions
are classified into sub-classes that are programming paradigm-dependent (e.g.
message passing and shared memory code regions) and paradigm-independent
(e.g. loops and arbitrary code regions).

Experiment describes an experiment which refers to a sequential or paral-
lel execution of a program. RegionInstance describes a region instance which
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Fig. 6.24. Illustrative classes and properties of experiment-related concepts.

is an execution of a static (instrumented) code region at runtime. A dynamic
code region instance is associated with its calling context in a processing unit
(property inProcessingUnit) and has events (hasEvent) and sub region in-
stances (hasChildRI). RegionSummary describes the summary of dynamic
code region instances of a static (instrumented) code region in a processing
unit. A region summary has performance metrics (hasMetric) and sub region
summaries (hasChildRS). PerformanceMetric describes a performance met-
ric, each metric has a name and value (hasMetricName, hasMetricValue).
Event describes an event record. Sub classes of Event are EnterEvent and
ExitEvent that describe enter and exit event of a region instance, respec-
tively. An event happens at a time (atEventTime) and has event attributes
(hasEventAttr). EventAttribute describes an attribute of an event which
has an attribute name and value (hasAttrName, hasAttrValue). An excerpt
of OWL for RegionSummary is shown in Figure 6.25.

Resource-related concepts describe static, benchmarked, and dynamic
(performance) information of computational nodes and networks. In the cur-
rent version, resource-related concepts provide classes to describe static and
benchmarked data of computational and network resources. For example,
Site describes information of a Grid site. Cluster describes a set of phys-
ical machines (computational nodes). Cluster may have further subclasses
such as SMPCluster represented a cluster of SMP. ComputationalNode de-
scribes information about physical machine. ComputationalNode may have
other subclasses such as SMPComputationalNode represented an SMP ma-
chine. Network describes an available network. Further sub classes of Network
can be EthernetNetwork, MyrinetNetwork, etc. NodeSharedMemoryPerf de-
scribes performance characteristics of shared memory operations of a com-
putational node. NetworkMPColPef and NetworkMPP2PPerf describe perfor-
mance characteristics of message passing collective and point-to-point opera-
tions of a network, respectively. Other classes describing performance of high
level protocols (e.g., HTTP) are currently being investigated.
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<owl:Class rdf:ID="RegionSummary">

<rdfs:label>RegionSummary</rdfs:label>

<rdfs:comment>Class represents for RegionSummary</rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="inProcessingUnit">

<rdfs:label>inProcessingUnit</rdfs:label>

<rdfs:comment>information about processing unit</rdfs:comment>

<rdfs:domain rdf:resource="#RegionSummary"/>

<rdfs:range rdf:resource="#ProcessingUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="ofCodeRegion">

<rdfs:label>ofCodeRegion</rdfs:label>

<rdfs:comment>represents code region information</rdfs:comment>

<rdfs:range rdf:resource="#CodeRegion"/>

<rdfs:domain rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasChildRS">

<rdfs:label>hasChildRS</rdfs:label>

<rdfs:comment>list of child region summaries</rdfs:comment>

<rdfs:domain rdf:resource="#RegionSummary"/>

<rdfs:range rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasMetric">

<rdfs:label>hasMetric</rdfs:label>

<rdfs:comment>list of performance metrics</rdfs:comment>

<rdfs:range rdf:resource="#PerformanceMetric"/>

<rdfs:domain rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

Fig. 6.25. Description of RegionSummary has four object properties namely
inProcessingUnit, ofCodeRegion, hasChildRS, hasMetric that specify associ-
ated processing unit, code region, sub region summary and performance metric of
the region summary, respectively.

The proposed ontology is largely based on our previous work on developing
data schema for expressing experiment data in relational database (presented
in Section 5.5) and monitoring data in XML (presented in Section 6.2), and on
APART experiment model [83]. Our proposal cannot cover all current repre-
sentations of existing performance tools. Rather, it is the first step to establish
an ontology for performance data that tries to describe semantics of perfor-
mance data currently supported by most existing performance monitoring and
measurement tools.

6.5.3.3 PERFONTO for Information Integration

One of the main key advantages of ontology is that the semantics is explicitly
defined and different ontologies can be reconciled [169, 183]. In fact, PER-
FONTO can be considered as a merging of two different ontologies. Suppose
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RegionInstance

Experiment

CodeRegion

ofCodeRegion

hasRegionInstance

RegionSummary

Experiment

CodeRegion

ofCodeRegion

hasRegionSummary

Experiment

RegionSummaryRegionInstance

CodeRegion

hasRegionSummaryhasRegionInstance

ofCodeRegion ofCodeRegion

a) merging two ontologies b) resulting ontology

Fig. 6.26. An example of merging two ontologies. Two ontologies share the same
concepts of Experiment and CodeRegion which can be merged.

a monitoring tool A provide only tracing information. Therefore, tool A does
not employ RegionSummary concept, which mostly is used to describe profiling
data. On the other hand, a monitoring tool B supports profiling measurement
thus B does not use RegionInstance concept, which mostly is used to describe
trace events. However, both A and B employ other concepts in PERFONTO
such as Experiment, CodeRegion. Another tool C and a performance analysis
service S want to deal with both profiling and tracing provided by A and B.
C and S can employ PERFONTO which is a result from a merging of the
two ontologies developed by A and B. Figure 6.26 presents the above merging
example.

The development of PERFONTO should be considered as the investigation
of using ontology for describing performance data, not establishing a standard
for all tools. PERFONTO is designed not only for describing performance
data but also for serving as a shared ontology for developing other tool-specific
ontologies. Therefore, one can employ or extend PERFONTO for representing
his performance data. Others may develop their own ontologies. However, all
proposed ontologies can be merged. As a result, the way to share and reuse
performance data will not be hampered.

6.5.4 Architecture of Ontology-based Performance Analysis, Data
Sharing and Tool Integration

Based on PERFONTO, we can share common understanding of the perfor-
mance data structures among performance tools and high-level tools. There-
fore, performance data can easily be understood and reused by various ser-
vices. Figure 6.27 presents a three layers architecture of ontology-based perfor-
mance analysis, data sharing and tool integration. The core of this architecture
is an ontology-based performance data repository service which includes:
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• PERFONTO is the ontology for describing performance data discussed in
Section 6.5.3.

• Ontological database is a relational database used to hold ontologies (e.g
PERFONTO) and performance data (instance data).

• PERFONTO APIs are interfaces used to store and access data in onto-
logical database.

• Query Engine provides searching and querying functions on ontological
data.

• Inference Engine provides reasoning facilities to infer, discover and extract
knowledge on ontological performance data.

Ontology-based
Performance Analysis

Service (OPAS)

ONTO APIs

Ontology for
Performance Data

(PERFONTO)

Query  Engine

User Client High-level Service

Performance Data
Wrapper

 Database

File system

Performance Data
Collector

 Ontological
Database

Inference  Engine

 Ontology-based
Performance Data
Repository Service

Performance Monitoring
and Measurement Tool

Fig. 6.27. Three layers architecture for ontology-based performance analysis, data
sharing and tool integration

The ontology-based repository is designed as a Grid service. The Perfor-
mance Data Collector of performance monitoring and measurement tools can
store collected data (instance data) along with corresponding ontology model
(e.g. PERFONTO) into the ontological repository. Via service operations, any
clients which need performance data such as performance analysis tools, sched-
ulers or users can easily request and retrieve the ontology model and instance
data from ontological database. The key difference from approaches of using
XML or relational database is that performance data is either described by
a common ontology (e.g. PERFONTO) or by a tool-defined ontology. There-
fore, with the presence of ontology model, these clients can easily understand
and automatically process the retrieved data. Through Performance Data
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Wrapper, data in tool-defined non-ontology format can also be extracted and
transformed into ontological representation and vice versa.

Figure 6.28 presents client-server interaction model between the ontology-
based performance data repository service and its client in which clients con-
nect to instances of the service in sites, retrieving data from these instances
and making use of that data locally. Moreover, clients can invoke search and
inference operations on remote data repository.

Performance data of experiments in distributed systems generally, Grid
systems particularly, may be stored in different repository services, for in-
stance in three sites V OA, V OB and V OC shown in Figure 6.28. The ontolog-
ical repository service discussed above does not deal with the issue of managing
that distributed data as it just provides a storage for archiving data. That is-
sue is well-known in distributed database management [184]. At the meantime,
we employ a simple scheme assuming that the experiment planer (e.g., OPAS
and user) which runs experiments controls and manages information about
experiments in the Global Experiment Metadata (GEM). Information about
an experiment includes a unique experiment identifier, location of repository
services that hold performance data, etc. Clients use information in GEM to
access application performance data stored in multiple repository services.

VOC

VOB

VOA

Ontology-based
Performance Data

Repository Service

Ontology-based
Performance Data

Repository Service

Ontology-based
Performance Data

Repository Service

Client Service
(OPAS, Users, etc.)

Global Experiment
Metadata

(GEM)

Fig. 6.28. Model of interactions between clients and ontology-based performance
data repository service.

To implement this architecture we select Jena [138] for processing ontology-
related tasks. Jena is an open source and grown out of work with the HP Labs
Semantic Web [130]. It is an Java framework for building Semantic Web appli-
cations and provides a programming environment for RDF, RDFS and OWL,
including a rule-based inference engine. The ontology-based performance data
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repository service is developed based on OGSA [93, 94]. In the following we
detail components of ontology-based performance data repository.

6.5.4.1 Ontological Database

Ontological database is used as a persistent storage for ontology descriptions
and instance data. Given an application, for each experiment, performance
data is a set of instances (individuals) following a specific ontology model
(e.g. PERFONTO). Similarly, for each Grid site system performance data
are collected and archived. We can store both ontology model and instance
data in persistent storage. Note that the ontological database is used as a
storage. The task of storing and retrieving ontological data is done by other
components (e.g., sensors and consumers)

We use a table named ExperimentData (experimentName, description

ModelName, instanceModelName) to keep relation between experiments, on-
tology model and instance data of experiments locally stored in this database.
To store ontology model and instance data into persistent storage we use
Jena API for persistent database models. The ontology model and associ-
ated instance data are kept separately although this is not required. By doing
so, one ontology model can efficiently be applied to several sets of instance
data. By connecting to the service, clients can obtain information in table
ExperimentData. Based on that information, clients can retrieve entirely or
partially any available ontology models, instance data and/or perform opera-
tions on these models such as search and reasoning.

6.5.4.2 Search on Ontological Data

A search engine can be developed to support the user on finding interesting
data in the ontological database. At the initial step, we use a search engine
provided by Jena. The search engine supports RDQL query language [159, 216]
which is an implementation of an SQL-like query language for RDF. Jena
search engine [138] treats RDF as data, provides query with triple patterns
and constraints and returns a list of bindings; each binding is a set of name-
value pairs for the values of the variables.

RDQL syntax is similar to SQL. In RDQL, the SELECT clause identifies
the variables to be returned to the application; variables are introduced with
a leading ’?’. The FROM clause specifies the model by URI whereas the WHERE

clause specifies the graph pattern as a list of triple patterns. The AND clause
specifies the Boolean expressions. RDQL introduces USING clause providing a
way to shorten the length of URIs.

The use of RDQL in combining with ontology can simplify and provide
a high level model of search in performance analysis in which search queries
can be easily understood and defined by end-user, not only by the tool de-
veloper. Let us show a simple example: a client wants to find any region
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l1: SELECT ?regionsummary

WHERE

l2: (?regionsummary perfonto:inProcessingUnit ?processingunit)

l3: (?processingunit perfonto:inNode "gsr410")

l4: (?regionsummary perfonto:hasMetric ?metric)

l5: (?metric perfonto:hasMetricName "wtime")

l6: (?metric perfonto:hasMetricValue ?value)

l7: AND (?value >=3E8)

l8: USING perfonto

FOR <http://www.par.univie.ac.at/project/scalea/perfonto#>

Fig. 6.29. An example of RDQL query based on PERFONTO.

summary executed in computational node gsr410 with wall-clock time (de-
noted by metric name wtime) greater than or equal to 3E8 microseconds.
The corresponding RDQL query based on PERFONTO is presented in Fig-
ure 6.29. Line l1 selects variable regionsummary via SELECT clause. In line l2
information about processing unit of regionsummary, determined by prop-
erty perfonto:inProcessingUnit, is stored in variable processingunit.
The computational node of processingunitmust be ‘‘gsr410’’ as stated in
line l3. In line l4, performance metric of regionsummary is stored in variable
metric and line l5 states that the name of metric must be ‘‘wtime’’. In
line l6, the value of metric is stored in variable value which must be greater
than or equal to 3E8 as specified in line l7. Line l8 specifies the URI for the
shortened name perfonto.

6.5.4.3 Reasoning on Ontological Data

The use of ontology for representing performance data allows additional facts
to be inferred from instance data and ontology model by using axioms or rules.
Based on ontology, we can employ inference engine to capture knowledge via
rules.

Let us analyze a simple rule for detecting all MPI point-to-point com-
munication code regions whose the average message length is greater than a
predefined threshold [83]. As presented in Figure 6.30, line l1 defines the name
of the rule. In line l2, a term of triple pattern specifies link between a region
summary and its associated code region. Line l3 states that the code region
is an instance of MPCodeRegion (message passing code region) and is an MPI
point-to-point communication region (denoted by mnemonic CR MPIP2P) as
specified in line l4. Line l5, l6 and l7 are used to access the average message
length of the region summary. Line l8 checks whether the average message
length is greater than a predefined threshold BIG MESSAGES THRESHOLD by
using a built-in function. In line l9, the action of this rule concludes and
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prints the region summary having big message. This example shows how us-
ing ontology helps simplifying the reasoning on performance data.

l1: [rule detect bigmessages:

l2: (?regionsummary perfonto:ofCodeRegion ?codeRegion),

l3: (?codeRegion rdf:type perfonto:MPCodeRegion),

l4: (?codeRegion perfonto:hasCrType "CR MPIP2P"),

l5: (?regionsummary perfonto:hasMetric ?metric),

l6: (?metric perfonto:hasMetricName "AvgMessageLength"),

l7: (?metric perfonto:hasMetricValue ?length),

l8: greaterThan(?length, BIG MESSAGES THREADHOLD)

l9: -> print(?regionsummary,"Big message hold!")]

Fig. 6.30. An example of Rule-based Reasoning based on PERFONTO.

6.5.4.4 Converting Performance Data

Even with the presence of an ontology for performance data, it does not mean
that existing tools will always store their data into ontological representation.
Firstly, not all data needs to be shared. Secondly, expressing performance
data in ontological representation requires more space to store. To minimize
archival space, tools may only store portion of performance data on ontological
representation when needed.

Existing tools can convert performance data into ontology-based repre-
sentation. This data can be stored into files, relational-database and easily be
accessed via PERFONTO APIs as well as Query Engine. A wrapper needs
to be developed in order to extract/transform performance data between two
representations: the tool internal representation and the ontological represen-
tation.

6.5.5 Discussion on Enhanching Automatic Performance Analysis

An automatic performance analysis system consists of a large components
based on different tools and specifications [105]. The use of PERFONTO par-
ticularly and ontology generally can help increasing the automation of perfor-
mance analysis. For example, to automate basic performance analysis experi-
ments, performance analyzers must be able to process information (including
static and dynamic) about the application collected, mostly, by different tools.
The idea of using ontology (e.g. PERFONTO) fits well for that purpose as
ontology can semantically describe the information about applications. More-
over, by using ontology, high-level components such as analysis agents [103]
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are able to understand data provided by many sources in heterogeneous en-
vironment even if they do not know the exact type of that data in advance.
Another potential of ontology that can be applied in automatic performance
analysis is reasoning capability. As simply demonstrated in Section 6.5.4.3,
we can define rules for automatic performance analysis. Based on predefined
patterns, the action of rules can automatically determine and perform appro-
priate tasks without or with little any human intervention. By doing so, we
can also move analysis components as close to analyzed resources as possible.

Ontology can also be used for ensuring semantically interactions between
tools of an automatic performance analysis system such as instrumentation
systems, moniotoring services and performance analysis services. The ontology
can represent features of available tools by classifying their main components
and specifying the relationships and contraints among them, thus allowing
users/services to select and configure the most suitable solution for automat-
ically executing a performance analysis process.

6.6 Summary

For monitoring and analyzing performance of applications in the Grid, we
need to collect and process a variety of types of performance data from many
sources in a uniform way. The sensor-based middleware for performance moni-
toring and data integration in Grids is developed for that purpose. The middle-
ware unifies different types of sensors for monitoring and performance analysis
in a single system and integrates various types of data from many sources. To
cope with the diversity and dynamics of the Grid, Grid-based service opera-
tions and TCP-based data stream are employed in order to balance the trade-
offs between the interoperability and manageability and the performance. Our
middleware stores collected data in decentralized locations and provides the
same mechanism for accessing that distributed data. By incorporating P2P
and autonomic technologies, the middleware is capable of self-management.

We have described a novel Grid service for supporting dynamic instru-
mentation of Grid applications. The dynamic instrumentation service offers a
widely accessible interface, through Web/Grid services, and highly interoper-
able protocols named IRL and SIRBC, for other services to conduct the in-
strumentation. A Grid service for performance analysis of scientific workflows
in the Grid has been developed. The analysis service employs the monitoring
middleware and the dynamic instrumentation service, utilizes various types of
performance data including resource monitoring, execution status of activities,
and performance measurement collected from instrumented applications, and
supports online monitoring and performance analysis of scientific workflows.
Novel techniques to support multi-workflow analysis are introduced.

A new approach to performance monitoring, data integration and analysis
that is based on ontology is introduced. Ontology is used to represent per-
formance data in order to make sure that different services have a common
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understanding of performance data provided by diverse sources. Using the
approach based on ontology, we can overcome the lack of semantics in current
data representations. Performance data will be easily shared and processed by
automated tools, services and human users, thus leveraging the data sharing
and tool integration, and enhancing the automatic performance analysis.
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Experiments

7.1 Introduction

In this chapter we give an overview of the current implementation of our
performance measurement, instrumentation and analysis systems. We then
present experiments with our techniques and methods. First, we present per-
formance analysis experiments of a variety of parallel applications, covering
OpenMP, MPI, HPF and mixed parallel programs, for the cluster architecture.
Second, we present experiments of monitoring, instrumentation and perfor-
mance analysis conducted on the Grid.

7.2 Implementation Overview

7.2.1 SCALEA

SCALEA as shown in Fig. 4.1 has been fully implemented. However, some
performance overheads (see Fig. 5.1) which include replicated code, algorithm
change, compiler change, implicit barrier operations, scheduling, and commu-
nication overhead of reduction operation, are not yet supported.

SIS is implemented based on VFC compiler. Currently, SIS can be run on
Sun Solaris platforms only. SISPROFLING provides libraries for measuring
C/C++ and Fortran programs executed on various Unix and Linux platforms,
but not on Windows. The experiment data repository is implemented with
PostgreSQL [10] which is a relational database system supported on many
platforms. All components interacting with the data repository are written in
Java and the connection between these components with the database is pow-
ered by JDBC. This approach has the advantages of portability and network
capability. For instance, analysis components can be run on Window machines
supporting Java while the data repository can be setup on a different UNIX
machine.
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We implement soft performance analysis techniques in SCALEA frame-
work. We use the NRC-IIT FuzzyJ Toolkit [101] from the National Research
Council of Canada’s Institute for Information Technology as the base library
for fuzzy computing.

7.2.2 SCALEA-G

Most components of SCALEA-G are written in Java except the application
sensor library and the Mutator Service are written in C/C++. Globus Toolkit
(GT) [108] and JavaCog [160] are used as base libraries for implementing
OGSA-enabled services, communication and security in SCALEA-G services.
Currently we use GT version 3.2.

The library of application sensors utilizes Globus IO library for imple-
menting communication and security tasks between the sensors and Sensor
Manager Service. The facilities for dynamic instrumentation of applications
at runtime are provided by Dyninst [51]. The Grid dynamic instrumentation
service is implemented based on gSOAP, a C++ Web Service toolkit with
GSI-plugin [117].

PostgreSQL [10] has been used for archiving information in the directory
service. To buffer the data at Sensor Manager Services, we use Berkeley DB
provided by Sleepycat [11].

The workflow invocation and control (WIC) service in our experiment is
currently implemented based on JavaCog [160]. JGraph [140] is used to visual-
ize workflow DAGs. To visualize performance monitoring data and results we
use JFreeChart [139] and ASKALON Visualization [27]. We store performance
data of workflows into a repository based on PostgreSQL.

7.2.3 Ontology-based Performance Analysis

We have implemented a prototype of the proposed ontology and ontology-
based service discussed in Section G. At each Grid site, we use SCALEA/
SCALEA-G to instrument applications. Performance measurements collected
from instrumented programs are stored into a ontological database. We use
existing benchmarks to obtain reference values of system performance for
message passing (e.g. blocking send/receive, collective) and shared memory
operations (e.g. lock, barrier) of computational nodes and networks. These
values are then stored into ontological database. The ontological database has
been developed based on PostgreSQL and accessed by libraries based on Jena
[138]. Moreover, we developed a wrapper to convert existing performance data
in SCALEA experiment database to the ontology-based representation.

The ontology-based performance data repository is implemented as an
OGSA service and deployed at each Grid site. However, in current prototype
this service supports only operations for retrieving and storing ontology de-
scriptions and instance data; search and reasoning have to be done at the
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client side. We are working on providing service operations for search and
reasoning.

We develop OPAS (Ontology-based Performance Analysis Service) to sup-
port ontology-based search and reasoning; OPAS which is a client of the
repository service is based on client-server model presented in Figure 6.28.
The result of RDQL returned by Jena is stored in triple forms. We have fur-
ther developed visualization components to process triple forms, displaying
the result in various forms such as tree, table. However, ontology rule-based
inference for performance analysis has not been implemented. Meanwhile, to
support rule-based inference, we focus on developing a set of analysis rules for
discovering knowledge in ontological performance data.

7.3 Performance Analysis of Parallel Programs

In this section, we present experiments with SCALEA. Unless stated other-
wise, experiments are conducted on an SMP cluster named Gescher [230]. The
cluster consists of 16 nodes; each comprises 4 Intel Pentium III Xeon 700 MHz
CPUs with 1MB full-speed L2 cache, 2Gbyte ECC RAM, Intel Pro/100+Fast
Ethernet, Ultra160 36GB hard disk is run with Linux. We use pgf90 compiler
from the Portland Group Inc. We use MPICH [114]. Over the course of exper-
iments, the operating system and software versions are frequently updated.

7.3.1 Molecular Dynamics (MD) Application

The MD program implements a simple molecular dynamics simulation in con-
tinuous real space. This program, obtained from [266], has been implemented
as an OpenMP program.

Our experiments have been conducted on a SMP node which is run with
Linux 2.2.18-SMP patched with perfctr for hardware counters performance.
We use pgf90 compiler version 3.2 from the Portland Group Inc.

Overhead 2CPUs 3CPUs 4CPUs

Loss of parallelism 0.025 0.059 0.066

Control of parallelism 1.013 0.676 0.517

Synchronization 1.572 1.27 0.942

Ti 2.61 2.009 1.527

Tu 0.855 0.903 0.908

To 3.466 2.913 2.435

Total execution time 146.754 98.438 74.079

Table 7.1. Overheads (s) of the MD application. Ti, Tu, To are identified, uniden-
tified and total overhead, respectively.
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Fig. 7.1. Execution time of the MD application

The performance of the MD application has been measured on a single
SMP node of Gescher. Figure 7.1 and Table 7.1 show the execution time be-
havior and measured overheads, respectively. The results demonstrate a good
speedup behavior (nearly linear). As shown in Table 7.1, the total overhead
is very small and large portions of the temporal overhead can be identified.

The time of the sequential code regions (unparallelized) does not change
as it is always executed by only one processor. By increasing p it can be easily
shown that the loss of parallelism increases as well (see Remark 1, Section
5.2.5.1), which is also confirmed by the analysis results shown in Table 7.1.

Control of parallelism – mostly caused by loop scheduling – actually de-
creases when increasing the number of processors. A possible explanation for
this effect can be that, for larger number of processors, the master thread
processes less loop scheduling phases than for a smaller number of processors.
The load balancing improves by increasing the number of processors/threads
in one SMP node, which at the same time decreases synchronization time.

We then examine the cache miss ratio – defined by the number of L2 cache
misses divided by the number of L2 cache accesses – of the two most important
OMP DO code regions namely OMP DO COMPUTE and OMP DO UPDATE as shown
in Figure 7.2. This ratio is nearly 0 when using only a single processor which
implies very good cache behavior for the sequential execution of this code. All
data seem to fit in the L2 cache for this case. However, in a parallel version, the
cache miss ratio increases substantially as all threads process data of global
arrays that are kept in private L2 caches. The cache coherency protocol causes
many cache lines to be exchanged between these private caches which induces
cache misses. It is unclear, however, why the master thread has a considerably
higher cache miss ratio then all other threads. Overall, the cache behavior has
very little impact on the speedup of this code.
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Fig. 7.2. The L2 cache misses/cache accesses ratio of OMP DO regions in the MD
application.

Fig. 7.3. Execution times of the HPF+ and OpenMP/MPI version for the backward
pricing application

7.3.2 Backward Pricing Application

The backward pricing code [78] implements the backward induction algorithm
to compute the price of an interest rate dependent financial product, such
as a variable coupon bond. Two parallel code versions have been created.
First, an HPF+ version that exploits only data parallelism and is compiled
to an MPI program, and second, a mixed version that combines HPF+ with
OpenMP. For the latter version, VFC generates an OpenMP/MPI program.
HPF+ directives are used to distribute data onto a set of SMP nodes. Within
each node an OpenMP program is executed. Communication among SMP
nodes is realized by MPI calls. Our experiments have been conducted on SMP
nodes of Gescher; node is run with Linux 2.2.18-SMP patched with perfctr

for hardware counters measurement. We use MPICH 1.2.1 and pgf90 compiler
version 3.2 from the Portland Group Inc.
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The execution times for both versions are shown in Figure 7.3. The term
all in the legend denotes the entire program, whereas loop refers to the main
computational loops (HPF INDEPENDENT loop and an OpenMP parallel
loop for version 1 and 2, respectively). The HPF+ version performs worse
than the OpenMP/MPI version which shows almost linear speedup for up
to 2 nodes (overall 8 processors). Tables 7.2 and 7.4 display the overheads
for the HPF+ and mixed OpenMP/MPI version, respectively. In both cases
the largest overhead is caused by the control of parallelism overhead which
rises significantly for the HPF+ version with increasing number of nodes. This
effect is less severe for the OpenMP/MPI version. In order to find the cause
for the high control of parallelism overhead we use SCALEA to determine
the individual components of this overhead (see Tables 7.3 and 7.5). Two
routines (Update HALO and MPI Init) are mainly responsible for the high
control of parallelism overhead of the HPF+ version. Update HALO updates the
overlap areas of distributed arrays which causes communication if one process
requires data that is owned by another process in a different node. MPI Init

initializes the MPI runtime system which also involves communication. The
HPF+ version implies a much higher overhead for these two routines compared
to the OpenMP/MPI version because it employs a separate process on every
CPU of each SMP node, whereas the OpenMP/MPI version uses one process
per node.

Processors 1N, 1P 1N, 4P 2N, 4P 3N, 4P 4N,4P 5N,4P 6N,4P

Todata 0 0.012 0.03 0.0207 0.0233 0.03028 0.0353

Toctrl 0.244258 6.59928 17.2419 28.9781 41.4966 56.4554 70.7302

Ti 0.244258 6.611285 17.2719 28.9988 41.5199 56.48576 70.76559

Tu 3.139742 1.726465 1.835957 2.047059 2.3549 2.99739 2.5173

To 3.384 8.33775 19.10787 31.0459 43.8749 59.48315 73.2829

Tp 319.801 87.442 58.66 57.414 63.651 75.304 86.467

Table 7.2. Overheads (s) of the HPF+ version for the backward pricing application.
Todata and Toctrl are data movement overhead and control of parallelism overhead,
respectively. Ti, Tu, To are identified, unidentified and total overhead, respectively.
Tp is total execution time. The execution time of the sequential version, Ts, is 316.417
(s). 1N, 4P means 1 SMP node with 4 processors.

7.3.3 Stommel Model of Ocean Circulation Application

Our experimental code represents a mixed OpenMP/MPI Fortran program
that solves the 2d Stommel Model of Ocean Circulation using a Five-point
stencil and Jacobi iteration. This code has been automatically instrumented,
executed, measured, and analyzed for several problem and machine sizes based
on user-provided SIS directives inserted in the source code. Our experiments
have been conducted on Gescher but nodes are run with Linux 2.4.17-SMP
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Processors 1N, 1P 1N, 4P 2N, 4P 3N, 4P 4N,4P 5N,4P 6N,4P

Inspector 0.089 0.022 0.0116 0.00798 0.00643 0.00489 0.00415
Work distribution 0.000258 0.000285 0.000318 0.000161 0.000204 0.01059 0.000142

Update HALO 0.149 3.114 9.110 16.170 24.060 33.868 43.830
MPI Init 0.005 3.462 8.113 12.784 17.420 22.568 26.860
Other 0 0.001 0.007 0.016 0.010 0.004 0.036

Table 7.3. Control of parallelism overheads (s) for the HPF+ version for the
backward pricing application.

Processors 1N, 1P 1N,4P 2N, 4P 3N, 4P 4N, 4P 5N,4P 6N,4P

Todata 0 0 0.01352 0.01432 0.01618 0.01753 0.01938

Toctrl 0.1914 0.2457 1.8481 3.5198 4.8865 6.5339 7.9698

Tolopa 0 2.413 1.535 1.215 1.055 0.9432 0.9175

Tosyn 0.00401 0.7355 0.2878 0.224 0.1379 0.217 0.1025

Ti 0.19541 3.39422 3.68448 4.97318 6.09565 7.71163 9.0091

Tu 3.87599 1.30753 0.87239 0.65773 0.57228 0.48251 0.51576

To 4.071 3.98175 4.556875 5.63091 6.66793 8.19415 9.525958

Tp 320.488 83.086 44.109 31.999 26.444 24.015 22.71

Table 7.4. Overheads (s) of the OpenMP/MPI version for the backward pricing
application. Todata, Tolopa, Toctrl and Tosyn are data movement, loss of parallelism,
control of parallelism, and synchronization overhead, respectively. Ti, Tu, To are
identified, unidentified and total overhead, respectively. Tp is total execution time.

Processors 1N, 1P 1N,4P 2N, 4P 3N, 4P 4N, 4P 5N,4P 6N,4P

Inspector 0.00895 0.00891 0.051 0.0303 0.0228 0.018 0.0157
Work distribution 0.00614 0.000245 0.00599 0.00598 0.00594 0.000122 0.00593

Update HALO 0.142 0.140 0.594 1.122 1.349 1.783 2.136
MPI Init 0.02874 0.005207 1.185 2.35 3.497 4.721 5.799
Fork/join 0.00559 0.0107 0.0116 0.0113 0.0104 0.0115 0.0129

Other 0.000005 0.000008 0.000226 0.000217 0.000234 0.000253 0.000249

Table 7.5. Control of parallelism overheads of the OpenMP/MPI version for the
backward pricing application.

patched with perfctr for hardware counters measurement. We use MPICH
1.2.3 and pgf90 compiler version 3.3 from the Portland Group Inc. The prob-
lem size is set to 200x200 points.

Load imbalance is applied for a given performance metric such as wall-
clock time, cache accesses, etc., and analyzed in three modes: within a process
which has multiple threads, within a node which has several processes, and
among nodes. Figure 7.4 presents an example of load imbalance analysis of an
OMP DO code region in subroutine DO JACOBI (region numbered 28). This code
region is not well load balance as wall-clock times spent in thread number 0
and 1 are significantly larger than that in thread 2 and 3.

Figure 7.5 displays the execution time summary for a single experiment
with 4 SMP nodes and 1 process per node. For each SMP node a break-down
of time spent in executing MPI statements, OpenMP parallel regions, and the
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Fig. 7.4. Load imbalance analysis of an OMP DO code region in the subroutine
DO JACOBI executed with 4SMP nodes.

rest regions, is shown. A mouse click to an SMP-pie will make SCALEA to
visualize detailed summary for processes in the SMP-pie. From this diagram
it can be easily observed that the Stommel application is very communication
intensive.

Fig. 7.5. Execution summary of Stommel executed with 4 SMP nodes.

SCALEA supports the programmer in the effort to examine detailed per-
formance overheads for an experiment of a given program. Two modes are
provided for this analysis. First, Region-to-Overhead mode (see Fig. 7.6) al-
lows the programmer to select any code region instance in the DRG for which
all detected performance overheads are displayed. Second, the Overhead-to-
Region mode (see Fig. 7.7) enables the programmer to select the performance
overhead of interest, based on which SCALEA displays the corresponding code
region(s) in which the selected overhead occurs. This selection can be limited
to a specific code region instance, thread or process. For both modi the source
code of a region is only shown if the code region instance is selected in the
DRG by a mouse click.

In Fig. 7.8 presents the execution time of Stommel in 6 experiments. Over-
all, Stomel does not scale well. The reason is mostly due to the high overhead,
especially the communication, as presented in Figure 7.9.
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Fig. 7.6. Region to Overhead mode for Stommel executed on 4 SMP nodes.

Fig. 7.7. Overhead to Region mode for Stommel executed on 4 SMP nodes.

7.3.4 3D Particle-In-Cell (3DPIC)

The 3D Particle-In-Cell application [102] simulates the interaction of high
intensity ultrashort laser pulses with plasma in three dimensional geometry.
This application (3DPIC) has been implemented as a Fortran90/MPI code.

We conducted several experiments by varying the machine size and by
selecting the MPICH (version 1.2.3) communication library for Fast-Ethernet
100Mbps. The problem size (3D geometry) has been fixed with 30 cells in x-
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Fig. 7.8. Execution time of Stommel in 6 experiments. 1Nx4P means 1 SMP node
with 4 processors.

Fig. 7.9. Performance overheads of Stommel in 6 experiments.

direction (nnx glob=30), 30 cells in y-direction (nny glob=30), and 100 cells
in z-direction (nnz glob=100 ). The simulation has been done for 800 time
steps (itmax=800).

7.3.4.1 Single Experiment Analysis Mode

SCALEA provides several analyses (e.g. Load Imbalance Analysis, Inclu-
sive/Exclusive Analysis, Metric Ratio Analysis, Overhead Analysis, Summary
Analysis) and diagrams to support performance evaluation based on a single
execution of a program. In the following we just highlight some interesting
results for a single experiment of the 3DPIC code with 3 SMP nodes and 4
CPUs per node.

The Inclusive/Exclusive Analysis is used to determine the execution
time or overhead intensive code regions. The two lower-windows in Fig. 7.10
present the inclusive wall-clock times and the number of L2 cache accesses for
sub-regions of the subroutine MAIN executed by thread 0 in process 0 of SMP
node gsr405. The most time consuming region is IONIZE MOVE because it is
the most computation intensive region in 3DPIC which modifies the position
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of the particles by solving the equation of motion d
dt

(mv) = q(E + v
c
× B)

with a forth order Runge-Kutta routine. The related source code of region
IONIZE MOVE is shown in the upper-right window.

Fig. 7.10. Inclusive/Exclusive analysis for sub-regions of the MAIN program.

Fig. 7.11. Metric ratios for important code regions.

The Metric Ratio Analysis of SCALEA is then used to examine var-
ious important metric ratios (e.g., cache miss ratio, system time/wall-clock
time, MFLOPS) of code regions in one experiment. Figure 7.11 shows the
most critical system time/wall-clock time and L2 cache misses/L2 cache
accesses ratios together with the corresponding code regions. The code re-
gions CAL POWER,SET FIELD PAR BACK, SR E FIELD, and PARTICLE LOAD im-
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ply a high system time/wall-clock time ratio due to expensive MPI constructs
(included in system time). Both ratios are rather low for region IONIZE MOVE

because this region represents the computational part without any communi-
cation (mostly user time). The code region PARTICLE LOAD shows a very high
L2 cache misses/L2 cache accesses ratio because it initializes all particles in
the 3D volume without accessing it again (little cache reuse).

The Overhead Analysis is used to investigate performance overheads for
an experiment based on the overhead classification. In Fig. 7.12, SCALEA’s
Region-To-Overhead analysis (see the left-most window) examines the over-
heads of the code region instance numbered 1 (thread 0, process 0, node
gsr405) which corresponds to the main program. The main program is domi-
nated by the data movement overhead (see the lower-left window) which can
be further refined to the overhead associated with send and receive operations.
We then use the Overhead-To-Region analysis to inspect regions that cause
receive overhead for thread 0, process 0, and node gsr405 (see the Overhead-
To-Region window in Fig. 7.12). The largest portion of the receive overhead
in subroutine MAIN is found in region CAL POWER (7.11 seconds out of 43.85
seconds execution time).

Fig. 7.12. Overhead-To-Region and Region-To-Overhead analysis

An Execution Summary Analysis has been employed to examine the
impact of communication on the execution time of the entire program. Figure
7.13 and 7.14 depict the execution time summary for the experiment executed
with 3 SMP nodes and with 1 SMP node (4 processors per node), respectively.
In the top window of Fig. 7.13 each pie represents one SMP node and each
pie slice value corresponds to the average value across all processes of an SMP
node (min/max/average values can be selected). By clicking onto an SMP
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pie, SCALEA displays a detailed summary for all processes in this node in
the three lower windows of Fig. 7.13. Each pie is broken down into time spent
in MPI routines and the remainder. Clearly, SCALEA indicates the dramatic
increase of communication time when increasing number of SMP nodes. The
MPI portion of the overall execution time corresponds approximately to 8.5%
for the single S MP node version which raises to approximately 46% for 3
SMP-nodes. The experiments are based on a smaller problem size. Therefore,
the communication to execution time ratio is rather high.

7.3.4.2 Multiple Experiment Analysis Mode

SCALEA provides various features to support multi-experiment analysis that
can be applied to single or multiple region(s). Figure 7.15 visualizes the ex-
ecution time and speedup/improvement of the entire 3DPIC application, re-
spectively. With increasing machine sizes, also the system time raises (close
to the user time for 25 CPUs) due to the extensive communication.

Overall, 3DPIC doesn’t scale well for the problem size considered because
of the poor communication behavior (see Fig. 7.16) and also due to control of
parallelism (for instance, initialization and finalization MPI operations).

7.3.5 LAPW0

LAPW0, which is part of the Wien2K package [46], is a material science
program that calculates the effective potential of the Kohn-Sham eigen-value
problem. LAPW0 has been implemented as a Fortran90 MPI code.

7.3.5.1 First Series of Experiments

We first conduct experiments based on a single problem size and a fixed com-
munication library and target machine network. Our experiments have been
executed on Gescher with node is run with Linux 2.2.18-SMP patched with
perfctr for hardware counters performance. We use MPICH 1.2.1 and pgf90

compiler version 3.2 from the Portland Group Inc.
We use SCALEA to localize the most important code regions of LAPW0

which can be further subdivided into

• sequentialized code regions: FFT REAN0, FFT REAN3, FFT REAN4

• parallelized code regions: Interstitial Potential, Loop 50, ENERGY,
OUTPUT

The execution time behavior and speedups (based on the sequential execu-
tion time of each code region) for each of these code regions are shown in
Figures 7.17 and 7.18, respectively. LAPW0 has been examined for a problem
size of 36 atoms which are distributed onto the processors of a set of SMP
nodes. Clearly when using 8, 16, and 24 processors we can’t reach optimal
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Fig. 7.13. Execution time summary for an experiment with 3 SMP-nodes

Fig. 7.14. Execution time summary for an experiment with 1 SMP-node
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Fig. 7.15. Overall execution time and speedup/improvement for 3DPIC. 1Nx4P
means 1 SMP node with 4 processors (in case of 7Nx4P only 25 processors are used)

Fig. 7.16. Performance overheads of the 3DPIC application. Note that total and
unidentified overhead are missing as no sequential code version is available for the
3DPIC.

load balance, whereas 1, 2, 4, 6, 12 and 18 processors display a much better
load imbalance. This effect is confirmed by SCALEA (see Figure 7.18) for
the the most computationally intensive routines of LAPW0 (Interstitial
Potential and Loop 50).

Fig. 7.17. Execution times for LAPW0 code regions.
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Processors Seq 1 4 8 12 16 20 24

Tolopa 0 12.047 14.222 14.83258 15.356 15.8289 15.9179

Todata 0.000015 1.267 1.361 1.594 2.677 3.298 7.993

Toctrp 0.00248 6.58 12.99 18.15 21.39 26.62 31.56

Ti 0.002495 19.894 28.573 34.576 39.423 45.7469 55.4709

Tu 2.601505 13.004 23.043 23.388 31.328 41.811 41.633

To 2.604 32.898 51.617 57.965 70.751 87.558 97.104

Tp 425.207 427.811 139.2 104.768 93.399 97.327 108.819 114.821

Table 7.6. Overheads (s) of LAWP0. Todata, Tolopa and Toctrl are data movement,
loss of parallelism, and control of parallelism overhead, respectively. Ti, Tu, To are
identified, unidentified and total overhead, respectively. Tp is total execution time.

Fig. 7.18. Speedup values for LAPW0 code regions.

Overall, LAPW0 scales poorly due to load imbalances and large overheads
due to loss of parallelism, data movement, and synchronization (see Table
7.6). LAPW0 uses many BLAS and SCALAPACK library calls that are cur-
rently not instrumented by SCALEA which is the reason for the large fraction
of unidentified overhead (see Table 7.6). The main sources of the control of
parallelism overhead is caused by MPI Init (see Figure 7.19). SCALEA also
discovered the main subroutines that cause the loss of parallelism overhead:
FFT REAN0, FFT REAN3, and FFT REAN4 all of which are sequentialized.
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Fig. 7.19. Sources of control of parallelism overhead for LAPW0.

Fig. 7.20. Execution time of LAPW0 with 36 and 72 atoms. CH P4, GM means
that MPICH 1.2.3 has been used for CH P4 (for Fast-Ethernet 100Mbps) and
Myrinet, respectively.

7.3.5.2 Second Series of Experiments

In the first series of experiments, we conducted experiments with single prob-
lem size. Upon that analysis, both LAPW0 and the cluster has been updated.
In this section, we outline some additional performance analyses for different
machine and problem sizes (36 and 72 atoms) with two different networks. We
refined the instrumentation and measurement of code regions Interstitial
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Potential and Loop 50. The code region Interstitial Potential is di-
vided into CA COULOMB INTERSTITIAL POTENTIAL and CA MULTIPOLMENTS. The
code region Loop 50 is divided into CAL CP INSIDE SPHERES and CAL COULOMB

RMT. SMP nodes are connected by Ethernet 100MB and Myrinet. Node is run
with Linux 2.4 .17-SMP.

The overall execution times provided by SCALEA’s Multi-Set Experi-
ment Analysis are shown in Fig. 7.20. The first observation is that changing
the communication library and communication network from MPICH CH P4
to MPICH GM does not lead to a performance improvement of the parallel
LAPWO version. The second observation is that we cannot achieve better
performance by varying the number of processors from 12 to 16 and 20 to
24 processors for the experiments with 36 atoms, or by varying the processor
number from 20 to 24 processors for the 72 atom experiment. In order to ex-
plain this behavior we concentrate on the experiment with 36 atoms. Figure
7.21 visualizes the execution times for the most computational intensive code
regions of LAPW0 supported by Multiple Region Analysis. The execution
times of these code regions remain almost constant although the number of
processors is increased from 12 to 24 and from 20 to 24. The LAPW0 code ex-
poses a load balancing problem for 16, 20, an d 24 processors. Moreover, code
regions FFT REAN0, FFT REAN3, and FFT REAN4 are executed sequentially, as
shown in Fig. 7.21. These code regions cause a large of loss of parallelism
overhead (see Fig. 7.22).

Fig. 7.21. Execution time of computationally intensive code regions. 1 Nx4P,P4,36
means 1 SMP node with 4 processors using MPICH CH P4 and the problem size is
36 atoms.

In summary, LAPW0 scales poorly due to load imbalances and a large
loss of parallelism overhead caused by the lack of parallelizing the FFT REAN0,

FFT REAN3, and FFT REAN4 code regions. In order to improve the performance
of this application, these code regions must be parallelized as well.
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Fig. 7.22. Performance overheads for LAPW0.
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Fig. 7.23. Execution time for fuzzy C-means clustering with 4 clusters, algorithm
terminating criteria ε = 0.01, and degree of fuzziness of the clustering m = 2.

7.3.6 Fuzzy C-Mean Clustering Experiments

7.3.6.1 Performance Analysis of the Fuzzy C-means Algorithm

Figure 7.23 displays execution times of the our fuzzy C-means clustering for
some experiments. The clustering analysis is executed on a Sun Blade 150
(UltraSPARC-IIe 550MHz) workstation with 768MB. Time is measured by
using Java System.currentTimeMillis() call. When the number of region
summaries and the number of performance metrics increase, the execution
time quickly increases. Therefore, with a large dataset of multiple performance
metrics, we may need to filter data to be clustered.

7.3.7 Clustering Analysis of Performance Experiments

Figure 7.24 presents an example of fuzzy C-means clustering for LAPW0
with a single metric wtime. The resulting clusters reveal that there are few
code regions that have high execution time when compared to the execution
time of the whole application; these regions have high graded membership
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Fig. 7.24. Fuzzy C-means clustering (4 clusters, algorithm terminating criteria
ε = 0.01, degree of fuzziness of the clustering m = 2) for an experiment of LAPW0
(executed with 4 CPUs, MPICH CH P4). Problem size is set to 36 atoms.

Fig. 7.25. Fuzzy C-means clustering (4 clusters, algorithm terminating criteria
ε = 0.01, degree of fuzziness of the clustering m = 2.) for an experiment of 3DPIC
(executed with 4 CPUs, MPICH CH P4).
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in cluster-4. Most code regions measured have high membership degree in
cluster-1, cluster-2 and cluster-3. However, these three clusters have
low centroid values, suggesting that the code regions having high graded mem-
bership in these clusters have little impact on the whole performance of the
program.

Figure 7.25 displays the result of the fuzzy C-means clustering for instru-
mented code regions of 3DPIC with two performance metrics {odata recv,

odata send}. Figure 7.25 shows that there are many code regions caused both
send and receive overhead. The membership indicates the degree of overhead
compared with the total overhead in a process of the experiment. Cluster
cluster-1 classifies many code regions which contribute very little send and
receive overheads. Few code regions that have high send overhead but low
receive overhead are in cluster cluster-2. Code regions with high graded
membership in cluster-3 indicate both high send and receive overheads. In
cluster-4, just few code regions have very high receive overheads but low
send overheads. Code regions in cluster-3, cluster-4 are not MPI Send

calls and MPI Recv but those contain MPI Send and MPI Recv calls. Most in-
strumented MPI Send and MPI Recv code regions contribute little overhead;
these code regions are clustered into cluster-1. However many such code
regions make total send and receive overhead high.

7.4 Performance Monitoring and Analysis for the Grid

In this section we present a few experiments of SCALEA-G in the Grid. Unless
stated otherwise, experiments are conducted on the Grid test-bed mentioned
below.

7.4.1 Grid Test-bed

We have deployed our sensor-based monitoring infrastructure on three do-
mains: VCPC (University of Vienna), UIBK (University of Innsbruck) and
GUP (Linz University) in the Austrian Grid [28]. Figure 7.26 presents our
experimental test-bed. We set up three SM groups named SM-VCPC, SM-
UIBK and SM-GUP in VCPC, UIBK, GUP, respectively. We establish a DS
group that includes one DS in VCPC (DS-VCPC) and one in UIBK (DS-
UIBK). Each DS stores data in a PostgreSQL database server which can
be executed on the same domain (e.g. in case of DS-UIBK) or different one
(e.g. DS-VCPC). SM stores collected data into XML containers implemented
atop Berkeley DB XML [11]. There are two Registries in VCPC and UIBK.
A client is deployed in PAR domain (in University of Vienna). All DSs and
Registries can be accessed by all SMs and clients, but only SMs executed on
bridge/VCPC, olperer/UIBK, iris/GUP can directly deliver data to the client
executed on kim/PAR due to the firewall. Most machines in our test-bed are
non dedicated.
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Fig. 7.26. Grid experimental test-bed.

7.4.2 Administrating Sensor Manager Services and Sensors

Figure 7.27 presents the administration GUI which is used to manage activities
of internal sensors of Sensor Manager Services. The administration GUI keeps
a list of Sensor Manager Services to be managed. SCALEA-G administrator
connects to selected Sensor Manager Services and receives a list of available
sensors and a list of sensor instances (active sensors), as presented in the
top-left and top-right window of Fig. 7.27, respectively. The administrator
can make a request creating a new sensor instance by selecting a sensor and
clicking the Activate button. Similarly, an existing sensor instance can be
deactivated (by selecting Deactivate button). The administrator can control
the registration (Add, Update, Remove) information about Sensor Manager
Services, sensor instances and properties of data they provide to directory
service.

The administrator can also activate or deactivate the data receiver in a
Sensor Manager Service. If the data receiver is disable, the Sensor Manager
Service will not receive data sent by sensor instances. This simple method
allows the administrator to control the site/computational node on which
data is collected. When activating the data receiver, the administrator can
specify the port on which the data receiver is binding.

7.4.3 Performance Monitoring and Analysis User GUI

The user can monitor and analyze online performance behavior of Grid sys-
tems and applications at the same time. In the top-left window of Figure 7.28,
the user can examine DSs and information about sensor instances registered
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Fig. 7.27. SCALEA-G Administrator GUI

with these DSs. Under the DS tree, sensor instances are grouped into cate-
gories based on the sensor identifier; each category provides the same data
type but of different resources. For each sensor instance, the user can examine
its properties (e.g. lifetime and XML schema) by choosing the instance from
the list of sensor instances.

The user can perform one-to-one or one-to-many DQS by selecting sensor
instance (for one-to-one mode) or sensor category (for one-to-many mode),
choosing Subscribe or Query (see Figure 7.28) and then editing the request
(e.g. subscription time, XML data filter) if needed. We can subscribe, query
and then examine multiple types of monitoring data at the same time. For
example, we subscribed application data of experiment 3DPIC-2N-4P and
host.cpu.used data of computational nodes on which the application pro-
cesses are executed, and then examined that data online (see Application
Profile Data Viewer and CPU Usage window in Figure 7.28). A list of exist-
ing subscriptions is shown in the Subscriptions tree. A subscription can be
canceled by selecting the subscription and clicking Unsubscribe. Similarly,
an existing subscription can be renewed by clicking Renew.

7.4.4 Performance Analysis of Data Discovery

To evaluate the performance of the discovery of data providers within the
test-bed, we setup two modes. In one-to-one mode, a client sends requests
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Fig. 7.28. Performance monitoring and analysis GUI

directly to DS which in turns finds data providers of the requested data. If
the DS cannot locate the data provider, it will not send the request to other
DSs in the same group. In group mode, if the DS cannot answer the request,
it sends the request to its edge peers in its group asking for the location of
data providers.

At a random time, for each mode we conduct a series of 20 tests with
the interval 60 seconds between two consecutive tests. Each test is repeated
10 times and we select the best timing value as result of the test. In both
modes, a client in PAR domain sends requests to DSs at the same time. We
also measure the latency of ping operation from clients to DSs. The time is
measured by using Java System.currentTimeMillis() call.

Figure 7.29 presents search time in one-to-one and group mode, and la-
tency of ping operation. Overall for both DSs, the ping latency is larger
than a half of the time spent on the search of data providers in one-to-one
mode, suggesting that the time DS spends on searching its database is small
when compared with ping latency. A considerable portion of time spent in the
discovery process is service-operation latency from client to service. In our im-
plementation, for group mode, DS creates a new thread which calls an edge
peer when the DS cannot locate the data provider. Search time in group mode
nearly doubles that in one-to-one mode partially because at the same time a
DS has to fulfill a request from an edge DS and to forward a request to its
edge DS. The latency from client domain (PAR) to DS-UIBK is higher than
that to DS-VCPC, also DS-VCPC is executed on an SMP machine where
DS-UIBK is executed a single CPU machine. Therefore, conducting group-
based and one-to-one discovery through DS-VCPC is considerably faster than
that via DS-UIBK due to the differences of network latency and computation
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Fig. 7.29. Ping latency and search time.

power. Also search times in group mode are high variance partially because
the search now involves different DSs running on different networks.

7.4.5 Monitoring and Performance Data Integration

We have implemented a GUI client which accesses a variety of types of mon-
itoring data provided by the middleware and conducts the analysis of that
data. We present some experiments of using that GUI client to monitor and
analysis the monitoring data.

Figure 7.30 presents an analysis of profiling data collected by application
sensors. Incremental profiling data of Grid applications is sent online to SMs.
The application profile analyzer then conducts DQS on profiling data, analyz-
ing and visualizing the result to the user. The left window of Figure 7.30 shows
code regions associated with their processing units (computational node, pro-
cess, thread). For each code region, performance metrics are incrementally
updated in the right window.

Figure 7.31 presents an example of bandwidth monitoring of a network
path from VCPC to UIBK. We setup a simple rule set based on fuzzy variable
for the bandwidth, as presented in Section 6.2.3.7. Only when the bandwidth
of the network path is very low, low and very high, the sensor sends events to
SM. Events are subscribed and visualized by a simple generic event viewer,
as shown in Figure 7.31.

Figure 7.32 presents a few snapshots of monitoring system load, CPU
usage and network delay roundtrip (monitoring data provided by event-driven
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Fig. 7.30. Analysis of profiling data provided by application sensors.

Fig. 7.31. Events generated from a rule-based sensor monitoring network band-
width.

sensors), and of forecasting CPU usage and TCP bandwidth (forecasted data
provided by demand-driven sensors). For example, data about CPU usage
(waiting time, idle time, system time, user time) is measured per CPU. CPU
monitoring data is periodically collected and the change of CPU usage can be
observed on the fly through data subscription (see window CPU Usage). The
machine gescher almost is idle whereas bridge is not fully utilized as only
one of its four CPUs has high user time. Demand-driven sensors are used to
obtain forecasted CPU usage and TCP bandwidth from NWS.
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Fig. 7.32. Snapshots of online monitoring system load, CPU usage and networks.

7.4.6 Workflow Performance Monitoring and Analysis

In this section, we present experiments of different workflows of the Montage
application in the Austrian Grid [28].

Montage [176] is a software for generating astronomical image mosaics
with background modeling and rectification capabilities. Based on the Mon-
tage tutorial, we develop a set of WFs, each generates a mosaic from 10 im-
ages without applying any background matching. Figure 7.33 presents exper-
imental workflows of the Montage application. In Figure 7.33(a), the activity
tRawImage and tUncorrectedMosaic are used to transfer raw images from
user site to computing site and resulting mosaics from computing site to user
site, respectively. mProject is used to reproject input images to a common
spatial scale. mAdd is used to coadd the reprojected images. mImgtbl is used
to build image table which is accessed by mProject and mAdd.

In workflows executed on multiple resources, we have several subgraphs
tRawImage → mImgtbl1 → mProject1 → tP rojectedImage, each sub-
graph is executed on a resource. The tProjectedImage activity is used to
transfer projected images produced by mProject to the site on which mAdd is
executed. When executed on n resources, the subgraph mImgtbl2 → mAdd →
tUncorrectedMosaic is allocated on one of that n resources. When exe-
cuted on Grid resources using the same NFS (Network File System), the task
mProject can work on fork-join fashion.
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Fig. 7.33. Experimental workflows of the Montage application: (a) workflow exe-
cuted on single resource, (b) workflow executed on two resources, and (c) workflow
executed on n resources.

We conduct experiments on sites named LINZ (Linz University), UIBK
(University of Innsbruck), AURORA6 (University of Vienna) and VCPC (Uni-
versity of Vienna) of the Austrian Grid. The user resides in VCPC and the
workflow invocation and control service (WIC) submits invoked applications
of workflow activities to VCPC, LINZ, UIBK, AURORA6.

7.4.6.1 Monitoring Execution Status of Activities

Before a WF is submitted to WIC, the performance monitoring and analy-
sis service subscribes notifications of workflow executions to the SCALEA-G
middleware. When the WF is executed, events containing execution status
(e.g. submitted, active, etc.) of activities are reported back to the monitoring
and analysis service. Figure 7.34 shows the Execution Status display which
monitors the execution status of activities. The left window shows one of
Montage workflows. The right window displays execution status of activities
of that workflow. We can also examine execution time of states during the
runtime. For example, Figure 7.35 presents the execution time of states of the
experiment presented in Figure 7.34.

7.4.6.2 Dynamic Instrumentation Example

When an activity is executed, its status is shown in the Execution Status di-
agram. The user then can start to instrument activity instances. Figure 7.36
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Fig. 7.34. Monitoring execution status of a Montage workflow executed on 2 re-
sources.

Fig. 7.35. Execution time of states of Montage workflow executed on 2 resources.

depicts the GUI used to control the dynamic instrumentation of activity in-
stances. On the top-left window, the user can choose an activity. For each
computational node on which the selected activity instance executed, active
processes can be examined by invoking GetUserProcesses operation, as shown
in the top-right window of Figure 7.36. For a given process of the invoked ap-
plication of an activity instance, the detailed SIR can be obtained by clicking
GetSIR button, e.g. SIR of invoked application of activity mProject1 is visu-
alized in the bottom-right window in Figure 7.36. In the bottom-left window
is an IRL request used to instrument selected code regions in the main unit
with a metric wtime (wall-clock time).

7.4.6.3 Performance Analysis

When an invoked application of an activity instance is instrumented, the mea-
surement data collected is analyzed by performance analysis component. The
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Fig. 7.36. GUI used to control the instrumentation of activity instances of a
workflow.

performance analysis component retrieves profiling data through data sub-
scription or query. Figure 7.37 presents the performance analysis GUI when
analyzing a Montage workflow executed on two resources in UIBK. The left-
pane shows the DAG of the WF. The middle-pane shows the dynamic code
region call graph (DRG) of invoked applications of activities. We can exam-
ine the profiling data of instrumented code region on the fly. The user can
examine the whole DRG of the application, or DRG of an activity instance
(by choosing the activity in the DAG). By clicking on a code region, detailed
performance metrics will be displayed in the right-pane. Depending on the
invoked application, source code information may be available, thus code re-
gions can be associated with their sources. We can examine historical profiling
data of a code region, for example window Historical Data shows the execution
time of code region computeOverlap executed on hafner.dps.uibk.ac.at.
The user can also monitor resources on which activities are executed. For ex-
ample, the window Forecast CPU Usage shows the forecasted CPU usage of
hafner.dps.uibk.ac.at.

Figure 7.38(a) presents the response time and synchronization delay anal-
ysis for activity mImgtbl2 when the Montage workflow, presented in Figure
7.33(c), is executed on 5 machines, 3 of AURORA6 and 2 of LINZ. The syn-
chronization delays from tProjectedImage3, 4, 5 to tImgtbl2 are very high.
This causes by the high load imbalance between mProject instances, as shown
in Figure 7.38(b). The load imbalance is not due to the inequality of work
distribution between mProject activities, but due to the differences in pro-
cessing capability of resources in the Grid. The two machines in LINZ can
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Fig. 7.37. Performance analysis of workflow activities.

process significantly faster than the rest machines in AURORA6. This de-
tection indicates the workflow composition system and scheduling system do
not take into account the processing capability of resources when constructing
activities and distributing them on Grids.

Over the course of workflow development, subgraph named mProjectedImage

which includes tRawImage → mImgtbl1 → mProject1 in single resource ver-
sion is replaced by subgraphs of tRawImage → mImgtbl1 → mProject1 →
tP rojectedImage in a multi-resource version. These subgraphs basically pro-
vide projected images to the mAdd activity, therefore, we consider they are
equivalent in terms of QoS (to the user point of view); they are replaced
refinement graphs. We collect and store performance of these subgraphs in
different experiments. Figure 7.39 shows the speedup factor for the subgraph
mProjectedImage of Montage workflows executed on several experiments. The
execution of mProjectedImage of the workflow executed on single resource in
LINZ is faster than that of its refinement graph executed on two resources
(in AURORA6, or UIBK). However, the execution of mProjectedImage of
workflow executed on 5 resources, 3 of AURORA6 and 2 of LINZ, is just very
slightly faster than that executed on 5 resources of AURORA6. The reason is
that the slower activities executed on AURORA6 resources have a significant
impact on the overall execution of the whole mProjectedImage, as presented
on Figure 7.38(b).

7.4.7 Searching Example with PERFONTO

In this section, we present an example of using our current prototype to search
ontology-based performance data. We used SCALEA to conduct the instru-
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(a)

(b)

Fig. 7.38. Analysis of Montage executed on 5 machines: (a) response time and
synchronization delay of mImgtbl, and (b) load imbalance of mProject.

Fig. 7.39. Speedup factor for subgraph ProjectedImage of Montage workflows.
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mentation and measurement for the 3D Particle-In-Cell application (3DPIC)
[102] in a cluster of SMPs and stored performance data into the repository
service.

Fig. 7.40. Example of search on ontological data

We use OPAS GUI to connect the repository service to retrieve ontology
models and instance data. Figure 7.40 presents a user interface for conducting
performance search of ontological data. In the top window the user can specify
searching queries whereas the result will be shown in the bottom window. For
example, we conducted a search with the query presented in Section 6.5.4.2.
In the bottom window, under the sub tree of variable regionsummary, a list
of region summaries met the condition will be shown. The user can examine
performance metrics in detail. Also other information such as source code and
machine can be visualized as needed.

7.5 Summary

We have presented a variety of experiments of monitoring, instrumentation,
and performance analysis of real-world applications for cluster and Grid sys-
tems. These experiments presents the novelty and usefulness of our methods
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and techniques for assisting the user to monitor, instrument, measure and
analyze the performance of cluster and Grid applications developed in vari-
ous programming models. Moreover, we have presented other novel features
of SCALEA and SCALEA-G to support the monitoring, instrumentation,
and performance analysis such as self-management monitoring middleware,
rule-based monitoring, dynamic instrumentation for Grid applications, and
ontology-based performance search.

As SCALEA/SCALEA-G provide instrumentation, measurement and per-
formance analysis facilities for other tools in ASKALON toolset, a large set of
experiments that partially illustrates the novelty and usefulness of SCALEA
and SCALEA-G can be found in [200, 217, 87, 85, 84, 119]. Although these
experiments demonstrate functionalities of corresponding tools, e.g., parame-
ter study, bottleneck search, performance prediction, these experiments par-
tially reflect the usefulness of SCALEA/SCALEA-G because the correspond-
ing tools base on SCALEA/SCALEA-G for performance instrumentation,
measurement and analysis of applications.
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Conclusion and Future Work

8.1 Conclusion

The rapid evolution of hardware and underlying system models (e.g. from
cluster SMP to the Grid) and programming paradigms (e.g. from cluster-
based OpenMP/MPI applications to Grid workflow-based applications) for
high performance computing results in many challenges to be solved by the
performance analysis community. On the one hand, performance tools have
to be adjusted, redesigned, and developed for new systems and programming
paradigms. On the other hand, new monitoring, instrumentation and analysis
techniques and methods need to be developed in order to reveal and analyze
new performance metrics, properties and models of the new programming
paradigms and systems. The application appears to be more complex; also
the performance tuning and testing are more intensive, large-scale and long-
running. As a result, performance tools have to collect, store and analyze a
large amount of performance data for the performance analysis and tuning.
New techniques and methods for storing and querying and analyzing such
large amount of data are required.

To address the above-mentioned challenges, one can focus on an isolated
issue, e.g. instrumentation or monitoring or analysis. However, performance
monitoring, instrumentation and analysis are related issues which must be
tackled together because they are interrelated. This dissertation addresses
some of the above-mentioned challenges for cluster and Grid systems. The
research approach we follow is that we consider performance monitoring, in-
strumentation, and analysis as a monolithic system and we always tackle them
in an integrated manner. Another aspect is that we consider storing and shar-
ing performance data and providing a well-defined interface for other tools
and services to utilize the performance tool and data to be key issues for per-
formance analysis tools. These issues are not on the focus of most existing
performance analysis tools.

In the first part of this dissertation, we have presented novel techniques
for execution-driven performance analysis of cluster applications. We have
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described a new classification of performance overheads for shared and dis-
tributed memory parallel programs. The overhead classification provides a de-
tailed analysis of the sources of performance overheads for parallel programs.
A highly flexible instrumentation system can be used to instrument arbitrary
code regions and enables the programmer to request for a large variety of
performance metrics ranging from timing information and hardware (HW)
parameters to performance overheads. The overhead classification is used as
an input for the instrumentation in detecting and selecting code regions which
are likely the causes of performance problems. While in most existing tools
the task of instrumentation is solely targeted to the end-user, we also provide
a high-level instrumentation interface based on an abstract syntax tree and
an unparser provided by an external Fortran90 compiler. The instrumentation
interface can be used by other higher-level tools for instrumenting parallel and
distributed Fortran programs, e.g. by a bottleneck search tool. A novel repre-
sentation for code regions named dynamic code region call graph (DRG) has
been introduced. The DRG reflects the dynamic relationship between code
regions and its subregions and enables a detailed overhead analysis for every
code region. The DRG is not restricted to function calls but covers every code
regions ranging from single statements to entire program units.

We designed and implemented an experiment data repository that holds
all relevant information about experiments including application source in-
formation and performance experiments. The data repository is capable of
exporting experiment data in XML format and simplifies interactions among
performance analysis tools and high-level tools by providing a well-defined
data schema and interface for accessing information stored in the repository.
By utilizing the performance data repository we can go beyond the analysis
of one experiment at a time by supporting performance analysis of multiple
experiments.

The overhead analysis, customizable instrumentation, experiment data
repository, and multi-experiment analysis, have been implemented in SCALEA
framework. SCALEA is among the first performance analysis tools that com-
bines source code and HW profiling in a single system, supporting multiple
parallel program models including OpenMP, MPI, HPF and hybrid paradigms
(e.g., OpenMP/MPI), and providing multi-experiment analysis.

We have presented a novel approach to performance analysis, the soft per-
formance analysis, which is based on soft computing model. Proposed soft
performance analysis techniques exploit and combine fuzzy logic and simi-
larity theory, and machine learning algorithms to provide soft, scalable and
intelligent techniques for analyzing and comparing the performance of large
and complex parallel and distributed applications. We contribute flexible and
convenient methods to deal with uncertainty in performance analysis (e.g.,
fuzzy-based bottleneck search), means for conducting performance analysis in
the form closer to human notions (e.g., fuzzy-based search query). A prototype
of soft performance analysis techniques has been developed and integrated into
the SCALEA framework.
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In the second part of this dissertation, we have presented a unified system
for performance monitoring and analysis for the Grid. We presented a novel
sensor-based middleware for performance monitoring and data integration
in Grids; the middleware is capable of self-management. Our framework has
many novelties. Firstly, the framework unifies different types of sensors includ-
ing system and application sensors for monitoring and performance analysis
in a single system, and integrates various types of data from many sources.
Secondly, the utilization of both Grid service-based operation and TCP-based
data stream communication allows us to take advantages of interoperability
and manageability and to balance tradeoffs between the interoperability and
the performance. Our middleware stores collected data on distributed sites
and provides the same mechanism for accessing that distributed data, thus
increasing not only the scalability but also the fault-tolerance. By incorporat-
ing P2P technologies, our middleware is capable of supporting data discovery
and data relay for service community. As a result, it helps to cope with limi-
tations due to firewall, and increases availability and fault-tolerance.

We have introduced a novel Grid service of dynamic instrumentation for
Grid applications. We present a new Grid performance analysis service that
can be used to monitor and analyze the performance of scientific workflows
in the Grid on the fly. The Grid performance analysis service, which com-
bines dynamic instrumentation, activity execution monitoring, and perfor-
mance analysis of workflows in a single system, has presented a dynamic and
flexible way that supports the user to monitor and analyze their applications.
Moreover, we store workflows and their relevant performance metrics and de-
velop techniques for comparing the performance of subgraphs of workflows,
and for supporting multi-workflow analysis.

The self-managing sensor-based middleware has been implemented in
SCALEA-G. Grid dynamic instrumentation and performance analysis service
have been implemented and integrated into SCALEA-G. SCALEA-G is one
of the first OGSA-based Grid monitoring and analysis systems for the Grid.
SCALEA-G is unique by unifying both infrastructure and application moni-
toring in a single system. To our best knowledge, there is no other Grid dy-
namic instrumentation service that offers a widely accessible interface through
Web/Grid service.

We have described how ontology can help to overcome the lack of seman-
tics possessed by current techniques used in existing performance monitoring
and measurement tools to describe performance data in Grid. We have devel-
oped an ontology for representing performance data along with a Grid service
for archiving and providing ontology models and performance data. Initial
results show that ontology is a promising solution in the domain of perfor-
mance analysis because it not only provides a common understanding about
performance data for tools and services but also increases the automation of
performance analysis.

It is worth mentioning that our techniques and methods presented in this
dissertation are the results of a research curve in an incremental manner. We
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devise a technique to address an existing problem, and when working with this
technique, the solution of the technique raises new problems. Subsequently,
it comes up with a new technique that can address the new problems. For
example, we first developed crisp search of performance data on the relational
database, and then figured out that an approximate search is needed. That
motivated the proposal and development of fuzzy-based search. Or we first
stored performance data of parallel programs into relational databases, but
as the Grid requires widely accessible means to access performance data, it
turned out that performance data should be described in XML. However, we
then realized that XML may not be suitable for Grid performance data. That
motivated the proposed ontological performance data. The new techniques
and methods do not eliminate the old ones, rather they complement each
other. The important rule is that we should use the appropriate technique for
appropriate applications and systems.

8.2 Future Work

8.2.1 Soft Performance Analysis

Although we have extensively studied and applied various membership and
distance functions for performance score and similarity, these functions are
very much dependent on specific metrics on specific systems for specific appli-
cations. Thus, we need to conduct a comprehensive evaluation of membership
functions which are used to measure performance score and of distance func-
tions which are used to measure performance similarity. In our experiments
we employ the most common membership functions, but by utilizing ana-
lytical and simulation techniques, we may obtain more suitable membership
functions.

Still the soft performance analysis approach is just at an early stage, we
believe that it is a promising solution to support the specification and the
control of approximate and inexact parameters in performance analysis, and
to provide soft, scalable and intelligent methods for handling current large
amounts of performance data which may contain sources of uncertainty. We
have just applied our proposed techniques to analyze performance data of
parallel programs in cluster environments, however, these techniques could be
applied to performance analysis of Grid environments. On the Grid, resources
and their usage are unpredictable, and performance data collected tends to
be more imprecision and uncertainty than those collected on cluster environ-
ments. Moreover, performance similarity can be used to analyze and compare
diverse Grid resources. The resultant performance similarities and differences
can be used as inputs to the resource matching and selection in the Grid.

Currently, we compute and compare similarity measures of experiment
factors and the performance of code regions. However, we do not establish any
model to illustrate the interaction between these measures. The future work
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is to study the fuzzy rules among experiment factors and the performance of
code regions.

8.2.2 Middleware for Grid Monitoring and Data Integration

Although P2P and autonomic features give many promising solutions to solve
challenges in Grid monitoring, it is not a simple task to incorporate these fea-
tures into a middleware. We continue to develop and exploit these features as
part of a middleware for Grid monitoring and performance data integration.
To continue our effort on utilizing sensor networks, P2P and autonomic com-
puting features, the set of sensors will be extended, together with effectors, to
support self-healing. We plan to provide adaptive capabilities for services of
our middleware that they can self-adjust their functions under the comput-
ing capabilities of the hosting environment. Besides, we also investigate the
support of monitoring based on ontological performance data.

8.2.3 Grid Workflow Instrumentation and Analysis

In the current implementation, there is a lack of connections between the
workflow management system and our monitoring and performance analysis
middleware. Therefore, we have to manually instrument the concrete workflow
code in order to get information about the execution of activities and their re-
lationship. To avoid that, we can extend workflow specification language with
directives used to obtain these information. These directives will be translated
into code used to publish events into the monitoring middleware.

Currently our supported workflows limit to DAGs. However, there is a
growing trend of developing Grid scientific workflows which contain struc-
tured loops (e.g. do while). The performance analysis for workflows will be
extended to cover the workflows having loops. Moreover, performance analysis
for Grid workflows has to be extended to monitor and analyze other metrics,
e.g. coordination constraints, rather than only timing and hardware metrics
at meanwhile.

Another aspect is that while we focus on invoked applications as executable
programs (each activity instance invokes an executable program), there exist
workflows whose an activity instance invokes a Web Service operation, which
may wrap executable programs. This type of workflows will require different
instrumentation mechanisms, e.g. dynamic instrumentation of Java services.
Meanwhile, the process of analysis, monitoring and instrumentation is con-
trolled by the end-user, but this process will be automated.

IRL will be extended to support the specification of more complex in-
strumentation requests such as events, the activation and deactivation of the
instrumentation.
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8.2.4 Semantic Performance Data and Ontology-based
Performance Analysis

We will continue our effort on investigating and applying ontology for per-
formance analysis. In the field of developing semantic representation for per-
formance data, we are currently enhancing and reevaluating our proposed
ontology in many directions. One of the directions is that we consider to sep-
arate PERFONTO into two separate ontology models for class descriptions:
experiment-related class (related to application and its execution behavior,
e.g., performance metrics, events) and system-related class (related to com-
puting resources allocated for executing experiments, e.g., clusters, networks,
computational nodes). By doing so, we can easily extend ontology models.
Another direction is to extend the ontology to describe performance proper-
ties and performance data of workflow applications. We are currently studying
performance metrics and developing ontology for describing performance data
of workflows [256]. In addition, we plan to develop a task-based ontology that
describes conceptualizations of tasks and tools along with their interrelation-
ships and properties for an automatic performance analysis system [105].
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Notations

Symbol Description
∈ set membership
/∈ not set membership

{x1, x2, · · · , xn} a set includes x1, x2, · · · , xn

∧ logical conjunction
∨ logical disjunction
∃ exists
∩ intersection
∪ union
≡ equivalence
∑

sum
∀ for all

AT the transpose of matrix/vector A
m metric
To temporal overhead
T i

o temporal overhead of thread i
To(r) temporal overhead of code region r
T i

o(r) temporal overhead of code region r executed on processor i
Ti identified overhead
Tu unidentified overhead
Tp execution time of parallel version with p processors
Ts execution time of sequential version

Tp(r) execution time of code region r with p processors
T i(r) execution time of code region r on processor numbered i

Tname(r) performance metric name (in time) of code region r
T i

name(r) performancemetric name of code region r in processor i
crmi

activation of code region rmi

cl
ri

→ ck
rj

activation numbered k of code region rj is called directly by
activation numbered l of code region ri

pu processing unit
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Symbol Description
µ(x) membership function that maps x into range [0, 1]
si performance score

OWA(~s) overall weighted average score of a score vector
~s a vector of performance scores
rs region summary

sim(rsi, rsj) similarity measure between region summary rsi and rsj

simf (ei, ej) similarity measure between factor f in experiment ei and ej

dij distance function between two scores
dfcm distance function used in fuzzy C-means

(ai, aj) the dependency between activity ai and aj

pred(ai) set of the immediate predecessors of ai

succ(ai) set of the immediate successors of ai

P (a) activity execution status graph of activity a
(e, s) the leading event e of state s
(s, e) the ending event e of state s
tnow timestamp of the current time

ei → ej event ei happens before event ej

ename(a) an event name of P (a)
t(e) the timestamp of an event e

Tsd(ai, aj) the synchronization delay from ai to aj

1Nx4P 1 SMP node, 4 processors per node
P4 MPICH P4
GM MPICH Myrinet
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Abbreviations and Accronyms

Abbreviation Description
ACL Access Control List

ANOVA Analysis of Variance
CPU Central Processing Unit
CR Code Region
CS Client Service

DPG Dynamic Processing Unit Graph
DQS Data Query and Subscription
DRG Dynamic Code Region Call Graph
DS Directory Service
FL Fuzzy Logic
FS Fuzzy Set
GSI Grid Security Infrastructure
GUI Graphical User Interface
HPC High Performance Computing
HPF High Performance Fortran
HW Hardware
IL Intermediate Language

IRL Instrumentation Request Language
LAN Local Area Network
MF Mutator Factory

MFLOPS Millions Floating-Point Operations Per Second
MI Mutator Instance
ML Machine Learning
MPI Message Passing Interface
MPP Massive Parallel Processing
MS Mutator Service
OS Operating System

OpenMP Open Multi-Processing
OWA Overall Weighted Average



208 Abbreviations and Accronyms

Abbreviation Description
OWL Web Ontology Language
PC Personal Computer

PERFONTO Ontology for Performance Analysis
PVM Parallel Virtual Machine
PVP Parallel Vector Processing

PERFQL Performance Query Language based on Fuzzy Logic
P2P Peer-to-Peer
RMA Remote Memory Access
SIS SCALEA Instrumentation System
SIR Standardized Intermediate Representation

SIRBC Standardized Intermediate Representation for Binary Code
SM Sensor Manager Service

SMP Symmetric Multi-Processor
VFC Vienna Fortran Compiler
WF Workflow
WFA Workflow-based Application
WfMS Workflow Management System
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Code Region and Performance Metric
Mnemonics

C.1 Code Region Mnemonics

Code region mnemonics are used to specify types of code regions. Code region
mnemonics are listed in Table C.1.

Mnemonics Descriptions
CR P Main program
CR A Arbitrary code region
CR L All loops (general)
CR U Outermost loop
CR B Branch code region
CR W I/O Write operation
CR R I/O read operation
CR O I/O open operation
CR C I/O close operation
CR Y Procedure’s internal (function or subroutine)
CR S Subroutine call
CR F Function calls

CR COMALL All common code regions
CR I INDEPENDENT loop (HPF)
CR D Work distribution (HPF)
CR N Inspector (HPF)
CR X Executor (HPF)
CR G Gather (HPF)
CR T Scatter (HPF)

CR HPFALL All HPF code regions
CR OMPPA OMP PARALLEL
CR OMPPD OMP PARALLEL DO
CR OMPPS OMP PARALLEL SECTIONS
CR OMPPW OMP PARALLEL WORKSHARE
CR OMPDO OMP DO
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Mnemonics Descriptions
CR OMPSE OMP SECTIONS
CR OMPWO OMP WORKSHARE
CR OMPSI OMP SINGLE

CR OMPMA OMP MASTER
CR OMPBA OMP BARRIER
CR OMPCR OMP CRITICAL
CR OMPAT OMP ATOMIC
CR OMPOR OMP ORDERED
CR OMPFL OMP FLUSH
CR OMPSE OMP SECTION
CR OMPICR Codes inside OMP CRITICAL
CR OMPIOR Codes inside OMP ORDERED
CR OMPISE Codes inside OMP SINGLE
CR OMPBPA OMP PARALLEL directive
CR OMPEPA OMP END PARALLEL directive
CR OMPIDO The body of do loop of OMP DO
CR OMPLO OpenMP locks
CR OMPALL All OpenMP code regions

CR MPISTARTUP MPI initialization and MPI finalization
CR MPIP2P MPI point-to-point communication

CR MPISEND MPI Send
CR MPIRECV MPI Receive
CR MPICOL MPI Collective communication
CR MPITP MPI data type conversions
CR MPIBA MPI barrier
CR MPIALL All MPI code regions

CR OTHERREP Replicated code region
CR OTHERSEQ Sequential code region

Table C.1: Code region mnemonics

C.2 Performance Metric Mnemonics

Mnemonics of performance metrics are classified into mnemonics for measured
timing, measured counter (including hardware counters) and overhead met-
rics. Table C.2 presents mnemonics of measured timing and counter metrics.
The mnemonics for hardware counter metrics are based on hard counter names
supported by PAPI [49]. These names are alike to those in PAPI (in fact sim-
ilar to those supported by current hardware vendors) because our hardware
measurement is based on PAPI. However, as it is possible to interface our
tool to other hardware measurement libraries, we opt to change slightly PAPI
metric names. Mnemonics for overhead metrics are presented in Table C.3.



C.2 Performance Metric Mnemonics 211

Mnemonics Data Type Unit Descriptions
wtime double microsecond Wall-clock time
utime double microsecond User CPU time
stime double microsecond System CPU time
ctime double microsecond CPU Time, including user CPU time

and system CPU time
ncalls int64 counter Number of executions
nsubs int64 counter Number of executions of sub code re-

gions
majflt int64 counter Page faults requiring physical I/O
minflt int64 counter Page faults not requiring physical

I/O
nswap int64 counter Number of swaps

L1 DCM int64 counter Level 1 data cache misses
L1 ICM int64 counter Level 1 instruction cache misses
L2 DCM int64 counter Level 2 data cache misses
L2 ICM int64 counter Level 2 instruction cache misses
L3 DCM int64 counter Level 3 data cache misses
L3 ICM int64 counter Level 3 instruction cache misses
L1 TCM int64 counter Level 1 cache misses
L2 TCM int64 counter Level 2 cache misses
L3 TCM int64 counter Level 3 cache misses
CA SNP int64 counter Requests for a snoop
CA SHR int64 counter Requests for exclusive access to

shared cache line
CA CLN int64 counter Requests for exclusive access to

clean cache line
CA INV int64 counter Requests for cache line invalidation
CA ITV int64 counter Requests for cache line intervention
L3 LDM int64 counter Level 3 load misses
L3 STM int64 counter Level 3 store misses
BRU IDL int64 counter Cycles branch units are idle
FXU IDL int64 counter Cycles integer units are idle
FPU IDL int64 counter Cycles floating point units are idle
LSU IDL int64 counter Cycles load/store units are idle
TLB DM int64 counter Data translation lookaside buffer

misses
TLB IM int64 counter Instruction translation lookaside

buffer misses
TLB TL int64 counter Total translation lookaside buffer

misses
L1 LDM int64 counter Level 1 load misses
L1 STM int64 counter Level 1 store misses
L2 LDM int64 counter Level 2 load misses
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Mnemonics Data Type Unit Descriptions
L2 STM int64 counter Level 2 store misses
BTAC M int64 counter Branch target address cache misses
PRF DM int64 counter Data prefetch cache misses
L3 DCH int64 counter Level 3 data cache hits
TLB SD int64 counter Translation lookaside buffer shoot-

downs
CSR FAL int64 counter Failed store conditional instructions
CSR SUC int64 counter Successful store conditional instruc-

tions
CSR TOT int64 counter Total store conditional instructions
MEM SCY int64 counter Cycles Stalled Waiting for memory

accesses
MEM RCY int64 counter Cycles Stalled Waiting for memory

Reads
MEM WCY int64 counter Cycles Stalled Waiting for memory

writes
STL ICY int64 counter Cycles with no instruction issue
FUL ICY int64 counter 26 Cycles with maximum instruction

issue
STL CCY int64 counter Cycles with no instructions com-

pleted
FUL CCY int64 counter Cycles with maximum instructions

completed
HW INT int64 counter Hardware interrupts
BR UCN int64 counter Unconditional branch instructions
BR CN int64 counter Conditional branch instructions

BR TKN int64 counter Conditional branch instructions
taken

BR NTK int64 counter Conditional branch instructions not
taken

BR MSP int64 counter Conditional branch instructions mis-
predicted

BR PRC int64 counter Conditional branch instructions cor-
rectly predicted

FMA INS int64 counter FMA instructions completed
TOT IIS int64 counter Instructions issued
TOT INS int64 counter Instructions completed
INT INS int64 counter Integer instructions
FP INS int64 counter Floating point instructions
LD INS int64 counter Load instructions
SR INS int64 counter Store instructions
BR INS int64 counter Branch instructions

VEC INS int64 counter Vector/SIMD instructions



C.2 Performance Metric Mnemonics 213

Mnemonics Data Type Unit Descriptions
FLOPS int64 counter Floating point instructions per sec-

ond
RES STL int64 counter Cycles stalled on any resource
FP STAL int64 counter Cycles the FP unit(s) are stalled
TOT CYC int64 counter Total cycles

IPS int64 counter Instructions per second
LST INS int64 counter Load/store instructions completed
SYC INS int64 counter Synchronization instructions com-

pleted
L1 DCH int64 counter Level 1 data cache hits
L2 DCH int64 counter Level 2 data cache hits
L1 DCA int64 counter Level 1 data cache accesses
L2 DCA int64 counter Level 2 data cache accesses
L3 DCA int64 counter Level 3 data cache accesses
L1 DCR int64 counter Level 1 data cache reads
L2 DCR int64 counter Level 2 data cache reads
L3 DCR int64 counter Level 3 data cache reads
L1 DCW int64 counter Level 1 data cache writes
L2 DCW int64 counter Level 2 data cache writes
L3 DCW int64 counter Level 3 data cache writes
L1 ICH int64 counter Level 1 instruction cache hits
L2 ICH int64 counter Level 2 instruction cache hits
L3 ICH int64 counter Level 3 instruction cache hits
L1 ICA int64 counter Level 1 instruction cache accesses
L2 ICA int64 counter Level 2 instruction cache accesses
L3 ICA int64 counter Level 3 instruction cache accesses
L1 ICR int64 counter Level 1 instruction cache reads
L2 ICR int64 counter Level 2 instruction cache reads
L3 ICR int64 counter Level 3 instruction cache reads
L1 ICW int64 counter Level 1 instruction cache writes
L2 ICW int64 counter Level 2 instruction cache writes
L3 ICW int64 counter Level 3 instruction cache writes
L1 TCH int64 counter Level 1 total cache hits
L2 TCH int64 counter Level 2 total cache hits
L3 TCH int64 counter Level 3 total cache hits
L1 TCA int64 counter Level 1 total cache accesses
L2 TCA int64 counter Level 2 total cache accesses
L3 TCA int64 counter Level 3 total cache accesses
L1 TCR int64 counter Level 1 total cache reads
L2 TCR int64 counter Level 2 total cache reads
L3 TCR int64 counter Level 3 total cache reads
L1 TCW int64 counter Level 1 total cache writes
L2 TCW int64 counter Level 2 total cache writes
L3 TCW int64 counter Level 3 total cache writes
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Mnemonics Data Type Unit Descriptions
FML INS int64 counter Floating point multiply instructions
FAD INS int64 counter Floating point add instructions
FDV INS int64 counter Floating point divide instructions
FSQ INS int64 counter Floating point square root instruc-

tions
FNV INS int64 counter Floating point inverse instructions

Table C.2: Mnemonics for measured timing and counter metrics.

Mnemonics Data type Unit Descriptions
odata double microsecond Data movement

odata l21 double microsecond L2 to L1
odata l23 double microsecond L3 to L2

odata send double microsecond SEND
odata recv double microsecond RECV
odata p2p double microsecond Point to Point communication
odata col double microsecond Collective communication
odata put double microsecond PUT
odata get double microsecond GET

odata fread double microsecond File System read
odata fwrite double microsecond File System write
odata fother double microsecond Other file system operation

osync double microsecond Synchronization
osync bar double microsecond Barriers in Single address space
osync lock double microsecond Lock in single address space
osync cond double microsecond Conditional variable in single address

space
osync mpbar double microsecond Barriers in multiple addresses space

osync dcs double microsecond Deferred communication synchro-
nization

osync crs double microsecond Collective RMA synchronization
osync rlo double microsecond RMA Locks

octrp double microsecond Control of parallelism
octrp sched double microsecond Schedule
octrp insp double microsecond Inspector
octrp exec double microsecond Executor
octrp fkjn double microsecond Fork/join threads
octrp infl double microsecond Initialize/Finalize message passing
octrp sp double microsecond Spawn processes

oadd double microsecond Additional overhead
oadd algr double microsecond Overhead due to algorithm change
oadd comp double microsecond Overhead due to compiler changes
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Mnemonics Data type Unit Descriptions
oadd dtc double microsecond Overhead due to data type conver-

sion
oadd pui double microsecond Overhead of processing unit informa-

tion
olopa double microsecond Overhead of loss parallelism

olopa unpar double microsecond Unparallelized code
olopa repl double microsecond Replicated code
olopa ppar double microsecond Partial parallelized code
oall ident double microsecond Identified Overhead
oall unid double microsecond Unidentified Overhead

oall double microsecond All above overhead
Table C.3: Mnemonics for overhead metrics.
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SIS Command-line Options and APIs

This chapter outlines features of SCALEA Instrumentation System (SIS).
More detailed information can be found [243].

D.1 Command-line Options

SIS supplies various commands for controlling the instrumentation of parallel
programs of many programming paradigms. The text bellow shows the com-
mands that allow the user to specify programming models of input programs
and to select the instrumentation library. To invoke SIS:

fsis [options] files...

with main options shown in Figure D.1.
In the following, we detail main options.

-VH[HPF+ Code regions] Specifies the input programs, which are HPF+
programs, and the HPF code regions to be instrumented.

-VM[MPI code regions] Specifies the input programs, which are MPI pro-
grams, and the MPI code regions to be instrumented.

-VS[OpenMP code regions] Specifies the input programs, which are OpenMP
or sequential programs, and the OpenMP code regions to be se-
lected. Note that the user has to specify option -P5 to enable
OpenMP directives; otherwise OpenMP directives will be omitted.

-VLS Specifies SISPROFILING instrumentation library.
-C -O[Output directory] Specifies the directory where the instrumented

files are saved.
-O[outputfile] Specifies the output of instrumentation (instrumented pro-

gram) to be saved in only one file named outputfile. This option
is only valid for HPF programs.

By default, with a given input source file named filename.[ext], the
corresponding instrumented file will be filename sis.[ext].
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-F free source form

-P5 OMP directives allowed

-P7 SIS directives allowed

-C code generation. With -C, -O<dirname> mode will be used.

-Ofilename

name of output file

The file <filename> contains all the input files

-Odirname

name of output directory

In this case for each inputfile,

<dirname>/<input_filename>_sis.f90 will be generated.

Useful for independent compilation.

See "-C" for triggering between these two modes.

-W0 no output of warnings

-W[1] output of warnings about possible error situations

-W2 output of warnings about used extensions of

Fortran 90

-W4 output of warnings about used obsolescent features

of Fortran 90

-Ipathname

add pathname to the list of directories in which to

search for INCLUDE files or automatically imported

modules.

-VH[coderegions] enable instrumentation of HPF programs

-VS[coderegions] enable instrumentation of OpenMP/sequential

programs

-VM[coderegions] enable instrumentation of MPI programs

-VR[coderegions] set generic code regions

-VKn set event counter n

-VLS use SISPROFILING Library

Fig. D.1. SIS main options

When instrumenting hybrid programs the user has to combine options for
specific programming models. For examples, to instrument an OpenMP/MPI
program the option -p5 -p7 -VM[...] -VS[...] is used.

Pre-defined code regions are classified into generic code regions and spe-
cific code regions. Table D.1 specifies the pre-defined common code region
types. These types are set by using -VR options. For example, -VRSLRW means
to instrument subroutines, loops and read/write statements. Note that the
option -VRL (instrumentation of all loops) will override the option -VRU (in-
strumentation of outermost loops).
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Parameters Generic code regions

P Entire program
Y Procedures
S Subroutines calls
F Function calls
L All loops
U Outermost loop
R All read statements
W All write statements
B Arbitrary code regions

Table D.1. Command for control common code regions

Table D.2 specifies pre-defined HPF code region types that are set by using
-VH options. Table D.3 specifies pre-defined MPI code region types that are
set by using -VM options. Table D.4 specifies pre-defined OpenMP code region
types that are set by using -VS options.

Parameters HPF+ code regions

D Work distribution
N Inspector
X Executor
G Gather
T Scatter
I INDEPENDENT loops
R All parallel read statement
W All parallel write statement
E All above code regions

Table D.2. Parameters for controlling HPF+ code regions.

Parameters MPI Code regions

I Initialization and Finalization
P Point to point communication
C Collective communication routines
O MPI IO routines
B Barrier routines
T Data type routines
E All MPI routines

Table D.3. Parameters for controlling MPI code regions.
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Parameters OMP Code regions

A OMP PARALLEL
D OMP PARALLEL DO
S OMP PARALLEL SECTIONS
W OMP PARALLEL WORSHARE
O OMP DO
Z OMP SECTIONS
K OMP WORKSHARE
I OMP SINGLE

M OMP MASTER
B OMP BARRIER
T OMP ATOMIC
R OMP ORDERED
F OMP FLUSH
E all above code regions

Table D.4. Parameters for controlling OpenMP code regions.

D.2 High-level Instrumentation APIs

SISHLLIB (SIS High-level Library) provides a full Fortran90 OpenMP/MPI
/HPF frontend that allows external tools to instrument an abstract syntax
tree at a very high-level with C-function calls and to generate source code.

void sishl insert fstmt acr(tTree tree, char *name );

This routine is used to insert SIS directives that mark an arbitrary code region
and its name. The region is determined by a single ATS tree node pointed by
tree.

void sishl insert acr(tTree beginTree, tTree endTree, char *name);

This routine is used to insert SIS directives that mark an arbitrary code
region and its name. The arbitrary code region is determined by the begin
tree(beginTree) and the end (tree endTree).

void sishl insert local fstmt(tTree tree, char *cr mnem[], int

ncr mnem, char * perf mnem[], int nperf mnem, char * name);

This routine is used to insert SIS directives that enclose a set of code regions
named name. Code regions in the selected set that are included in the list
of cr mnem will be measured with performance metrics given by the list of
perf mnem. The selected set of code regions is pointed by a single ATS tree
node (tree).

void sishl insert local(tTree beginTree,tTree endTree, char *

cr mnem[], int ncr mnem, char * perf mnem[], int nperf mnem,

char *name);

This routine is used to insert SIS directives that enclose a set of code regions



D.3 On Detailing Instrumentation for OpenMP and MPI Code Regions 221

named name. Code regions in the selected set that are included in the list
of cr mnem will be measured with performance metrics given by the list of
perf mnem. The selected set is determined by the begin tree (beginTree) and
the end (tree endTree).

void sishl insert global(tTree tree, char * cr mnem[],int ncr mnem,

char * perf mnem[], int nperf mnem);

This routine is used to insert a global SIS directive with list of code regions
(cr mnem) and their performance metrics(perf mnem); the directive affects in
the entire program unit. The user can select any node in a program unit and
insert the global directive. Since the global directive affects entire program
unit, we don’t need to insert it several times.

void sishl measure enable(tTree tree, int before);

This function will insert SIS MEASURE ENABLE directives before/after a
statement determined by tree. If before is 1 then directive is inserted before
the statement otherwise it is inserted after.

void sishl measure disable(tTree tree, int before);

This function will insert SIS MEASURE DISABLE directives before/after a
statement determined by tree. If before is 1 then directive is inserted before
the statement otherwise it is inserted after.

D.3 On Detailing Instrumentation for OpenMP and
MPI Code Regions

Original Source Code Instrumented Source Code

sis start(PB1, CR OMPPA)
sis master start(PB2, CR OMPBPA)

!$OMP PARALLEL !$OMP PARALLEL
sis master stop( PB2)

statements statements
sis master start(PB3,CR OMPEPA)

!$OMP END PARALLEL !$OMP END PARALLEL
sis master stop( PB3)
sis stop(PB1)

sis start( PB1, CR OMPDO)
!$OMP DO SCHEDULE !$OMP DO SCHEDULE()

DO I=... DO I=...
statements statements

END DO END DO
!$OMP END DO [NOWAIT] !$ OMP END DO NOWAIT

sis stop(PB1)



222 SIS Command-line Options and APIs

Original Source Code Instrumented Source Code
[sis start(PB2,CR OMPBAR)
!$ OMP BARRIER
sis stop(PB2)]

sis start( PB1, CR OMPSE)
!$OMP SECTIONS !$OMP SECTIONS
!$OMP SECTION !$OMP SECTION

sis start(PB2, CR OMPISE)
statements statements

sis stop(PB2)
!$OMP END SECTION !$OMP END SECTION
... ...
!$OMP END SECTIONS !$OMP END SECTIONS

sis stop(PB1)

sis start(PB1,CR OMPSI)
!$OMP SINGLE !$OMP SINGLE

sis start( PB2,CR OMPISI)
statements statements

sis stop(PB2)
!$OMP END SINGLE [NOWAIT] !$OMP END SINGLE [NOWAIT]

sis stop(PB1)

!$OMP MASTER !$OMP MASTER
sis start(PB1,CR OMPMA)

statements statements
sis stop(PB1)

!$OMP END MASTER !$OMP END MASTER

sis start( PB1, CR OMPCR)
!$OMP CRITICAL !$OMP CRITICAL

sis start(PB2, CR OMPICR)
statements statements

sis stop(PB2)
!$OMP END CRITICAL !$OMP END CRITICAL

sis stop(PB2)

sis start(PB1, CR OMPBA)
!$OMP BARRIER !$OMP BARRIER

sis stop(PB1)

sis start(PB1, CR OMPOR)
!$OMP ORDERED !$OMP ORDERED

sis start(PB2,CR OMPIOR)
statements statements

sis stop(PB2)
!$OMP END ORDERED !$OMP END ORDERED
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Original Source Code Instrumented Source Code
sis stop(PB1)

sis start(PB1,CR OMPFL)
!$OMP FLUSH !$OMP FLUSH

sis stop(PB1)

sis start(PBid,cr type)
call MPI function name() call MPI function name ()

sis stop(PBid)
Table D.5: Examples of instrumentation for OpenMP and MPI
code regions implemented in SIS.
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Performance Database

E.1 Database Schema

The data schema of the experiment data repository is presented as follows.

CREATE TABLE PMC (

pmcID SERIAL PRIMARY KEY,

pmcMetricName TEXT,

pmcMetricUnit TEXT,

pmcMetricDataType TEXT,

pmcMetricDesc TEXT

);

CREATE TABLE VirtualMachine (

virtualMachineID SERIAL PRIMARY KEY,

name TEXT

);

CREATE TABLE VirtualNode (

virtualNodeID SERIAL PRIMARY KEY,

name TEXT,

numCpu INTEGER,

virtualMachineID INTEGER REFERENCES VirtualMachine

);

CREATE TABLE Cluster (

clusterID SERIAL PRIMARY KEY,

name TEXT,

totalFlops REAL

);

CREATE TABLE Network (
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networkID SERIAL PRIMARY KEY,

name TEXT,

bandwidth REAL,

latency REAL,

clusterID INTEGER REFERENCES Cluster

);

CREATE TABLE NetworkMPP2PPerf(

colMPICommID SERIAL PRIMARY KEY,

mpilibName TEXT,

numNode INTEGER,

mpiBarrier REAL,

mpiBcast REAL[5],

networkID INTEGER REFERENCES Network

);

CREATE TABLE NetworkMPColPerf(

perfMPICompNodeID SERIAL PRIMARY KEY,

mpilibName TEXT,

mpiSync REAL[6],

mpiAsync REAL[6],

mpiSsend REAL[6],

networkID INTEGER REFERENCES Network

);

CREATE TABLE NodeSharedMemoryPerf(

perfOMPCompNodeID SERIAL PRIMARY KEY,

omplibName TEXT,

clusterID INTEGER REFERENCES Cluster

);

CREATE TABLE ComputationalNode (

compNodeID SERIAL PRIMARY KEY,

hostName TEXT,

hostAliases TEXT[],

hostAddresses TEXT[],

systemModel TEXT,

physMem TEXT,

virtMem TEXT,

numCpu INTEGER,

cpuType TEXT,

cpuSpeed TEXT,

osName TEXT,

osVersion TEXT,
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hardDiskSize INTEGER,

dataCacheSize INTEGER[],

cacheMissPenalty INTEGER[],

clusterID INTEGER REFERENCES Cluster

);

CREATE TABLE Application (

applicationID SERIAL PRIMARY KEY,

name TEXT

);

CREATE TABLE Version (

versionID SERIAL PRIMARY KEY,

versionInfo TEXT ,

applicationID INTEGER NOT NULL REFERENCES Application

);

CREATE TABLE SourceFile (

sourceFileID SERIAL PRIMARY KEY,

name TEXT NOT NULL,

contents TEXT,

location TEXT,

versionID INTEGER NOT NULL References Version

);

CREATE TABLE CodeRegion (

codeRegionID SERIAL PRIMARY KEY,

startPos_x INTEGER NOT NULL,

startPos_y INTEGER NOT NULL,

endPos_x INTEGER NOT NULL,

endPos_y INTEGER NOT NULL,

CodeRegionType TEXT,

CodeRegionUnit TEXT,

codeRegion INTEGER NOT NULL,

sourceFileID INTEGER,

parentCodeRegionID INTEGER REFERENCES CodeRegion

);

CREATE TABLE Experiment (

experimentID SERIAL PRIMARY KEY,

info TEXT,

startTime TIMESTAMP,

endTime TIMESTAMP,

commandLine TEXT,

compiler TEXT,
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compilerOptions TEXT,

versionID INTEGER NOT NULL REFERENCES Version

);

CREATE TABLE ProcessingUnit (

puID SERIAL PRIMARY KEY,

computationalNode TEXT NOT NULL,

processID INTEGER NOT NULL,

threadID INTEGER NOT NULL

);

CREATE TABLE RegionSummary (

regionSummaryID SERIAL PRIMARY KEY,

computationalNode TEXT NOT NULL,

processID INTEGER NOT NULL,

threadID INTEGER NOT NULL,

codeRegion INTEGER ,

puID INTEGER REFERENCES ProcessingUnit,

parentRegion INTEGER,

codeRegionGroup INTEGER,

numberCalls INTEGER,

numberSubs INTEGER,

codeRegionID INTEGER,

regionSummaryIDParent INTEGER,

experimentID INTEGER NOT NULL REFERENCES Experiment

);

CREATE TABLE TimingMetrics (

name TEXT NOT NULL,

value DOUBLE PRECISION NOT NULL,

regionSummaryID INTEGER NOT NULL REFERENCES RegionSummary

);

CREATE TABLE HardwareMetrics (

name TEXT NOT NULL,

value DOUBLE PRECISION NOT NULL,

regionSummaryID INTEGER NOT NULL REFERENCES RegionSummary

);

CREATE TABLE TemporalOverheadMetrics (

name TEXT NOT NULL,

value DOUBLE PRECISION NOT NULL,

regionSummaryID INTEGER NOT NULL REFERENCES RegionSummary

);
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Fuzzy Logic

F.1 Introduction

Fuzzy logic (FL) was introduced in the theory of fuzzy sets by Lotfi Zadeh
[273, 274]. FL is a superset of Boolean logic dealing with the concept of partial
truth. In classical logic, everything can be expressed in binary terms: 0 or 1
(false or true), FL extends Boolean truth values with degrees of truth.

Two main directions in FL are fuzzy logic in the broad sense and fuzzy
logic in the narrow sense [276, 228]: The first direction covers mainly topics
concerning vagueness such as fuzzy control, analysis of vagueness in natural
language, etc. Soft computing techniques that we are using, e.g. computational
methods tolerant to imprecision, fast and simple approximate solutions, fall
into this direction. The latter is a part of symbolic logic, many-valued logic
relevant for reasoning under vagueness.

In the following, we outline main concepts of FL. More detail of FL can
be found in [228, 151, 280, 180].

F.2 Fuzzy Sets and Membership Functions

F.2.1 Fuzzy Sets

A fuzzy set is an extension of the classical set (crisp set) theory. In classical
set, an element is either in a set (the membership is full) or not in a set (the
membership is no). In other words, the membership of an element x in set A
is described by a characteristic function µA(x) as follows

µA(x) : A → {0, 1} (F.1)

where 1 represents full membership (x ∈ A) and 0 represents no membership
(x /∈ A).

Fuzzy set theory extends the membership concept by defining graded degree
of membership. A fuzzy set is characterized by a membership function, which
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maps the members of the universe of discourse into the unit interval [0, 1]. The
value 0 means that the member does not belong to the given set, 1 indicates a
fully included member. The values between 0 and 1 indicates a graded degree
of membership.

Let X be the universe of discourse and its elements are denoted by x. A
fuzzy set A in X is defined as a set of ordered pairs

A = {(x, µA(x))|x ∈ X} (F.2)

where µA(x) is called the membership function of x in A. The membership
function maps each element of X to a membership value in the interval [0, 1].

F.2.2 Common Membership Functions

Several functions can be used as membership functions. Most common mem-
bership functions are given below.

• triangular: The triangular function of x depends on three parameters a,
b, and c, and is given by

f(x; a, b, c) = max(min(
x − a

b − a
,
c − x

c − b
), 0) (F.3)

• trapezoid: The trapezoidal function of x depends on four parameters a,
b, c, and d, and is given by

f(x; a, b, c, d) = max(min(
x − a

b − a
, 1,

d − x

d − c
), 0) (F.4)

• generalized bell: The generalized bell function of x depends on three
parameters a, b, and c, and is given by

f(x; a, b, c) =
1

1 + |x−c
a

|2b
(F.5)

• sigmoid: The sigmoid function of x depends on two parameters a and c,
and is given by

f(x; a, c) =
1

1 + e−a(x−c)
(F.6)

• S-function: This function of x has S-shape and depends on two parame-
ters a and b, and is given by

f(x; a, b) =



















0 x ≤ a,

2(x−a
b−a

)2 a ≤ x ≤ a+b
2

1 − 2( b−x
b−a

)2 a+b
2 ≤ x ≤ b

1 x ≥ b

(F.7)
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• Z-function: This function of x has Z-shape and depends on two parame-
ters a and b, and is given by

f(x; a, b) =



















1 x ≤ a,

1 − 2(x−a
b−a

)2 a ≤ x ≤ a+b
2

2( b−x
b−a

)2 a+b
2 ≤ x ≤ b

0 x ≥ b

(F.8)

• Gaussian function: The symmetric Gaussian function of x depends on
two parameters σ and c, and is given by

f(x; σ, c) = e
−(x−c)2

2σ2 (F.9)

F.3 Basic Operations on Fuzzy Sets

Fuzzy set operations are analogous to classical set operations

Definition F.1 (Fuzzy Set Intersection). The membership function µA∩B(x)
of the intersection A ∩ B is defined by

µA∩B(x) = min{µA(x), µB(x)}, x ∈ X (F.10)

Definition F.2 (Fuzzy Set Union). The membership function µA∪B(x) of
the union A ∪ B is defined by

µA∪B(x) = max{µA(x), µB(x)}, x ∈ X (F.11)

Definition F.3 (Fuzzy Set Complement). The membership function µĀ(x)
of the complement of a normalized fuzzy set A, µA(x) is defined by

µĀ(x) = 1 − µA(x), x ∈ X (F.12)

F.4 Fuzzy Modifiers (Hedges)

A fuzzy modifier (hedge) is an operation that modifies the meaning of a term
representing a fuzzy set (in other words, a fuzzy modifier modifies a fuzzy
set). For example, let poor be a fuzzy set, then we can apply modifiers such as
very, slightly to poor, which result in new fuzzy sets such as very poor, slight
poor. Terms such as very, slightly are called fuzzy modifiers. Theoretically,
let µA(x) be the membership function of x ∈ A, the membership function
µmodifier(A)(x) is defined by

µmodifier(A)(x) = f(µA(x)) (F.13)

For example, the modifier very is defined as

µvery(A)(x) = (µA(x))2 (F.14)
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F.5 Fuzzy Rules

Fuzzy rules are linguistic if-then constructions that contain fuzzy sets and
fuzzy operators. An if-then rule statement is used to construct the fuzzy-
based conditional statement. A fuzzy rule can be represented in the following
form

IF (x is A) AND (y is B) ... AND ... THEN consequent

where x, y are variables, A, B are linguistic terms representing fuzzy sets. The
part (x is A) AND (y is B) ... AND ... is called antecedent (or premise), and
consequent is the conclusion of the rule. In FL, a rule is fired when there is a
nonzero value of the antecedent.

Several rules constitute a fuzzy rule-based system.
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Ontology and Ontology Languages

G.1 Introduction

In this section, we briefly outline ontology and ontology languages. A greater
detail of ontology and ontology languages can be found in [116, 90, 171, 111].

G.2 An Overview of Ontology

Ontologies are a popular research topic in various communities such as repre-
sentation and reasoning, information integration and cooperative information
systems [90]. Ontologies were originally introduced by the artificial intelligence
community to “facilitate knowledge sharing and reuse” [116, 90, 171] and re-
cently ontology has been considered as the main tool that can be used to
achieve the semantic interoperability in the Grid [72, 234]. A widely-accepted
definition of ontology given by Tom Gruber is as follows.

Definition G.1 (Ontology). “An ontology is a formal, explicit specification
of a shared conceptualization”. [116]

This means that an ontology specifies common concepts and relationships
that characterize a domain in an open and explicit form that are accepted by
anyone in the domain. Thus these concepts and relationships can be shared.
Typically, an ontology describes main concepts in a domain, the properties
of each concept, and axioms that impose constraints on these concepts and
properties. Ontologies may be categorized into different types of ontologies
such as domain ontologies, task ontologies and application ontologies [90].

There are several reasons why ontology should be used [182]. One of key
features of ontology is that it provides a shared and common understanding
of some domain that can be used in the communication between people and
application systems [116, 90]. For example, suppose many different tools, ex-
ecuted on different Grid sites, provide monitoring and measurement service,
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if these tools share and publish the same underlying ontology of descriptions,
any performance analysis service can aggregate information from these sites
in a unified way in order to conduct the analysis.

Moreover, because ontology describes concepts and relationships with a
high level of expressiveness and detail, a set of ontology statements can allow
us to infer another facts while that cannot be achieved with XML or relational
database schema. We have to implement new functions including extra knowl-
edge (e.g., for reasoning whether a property is an inverse of another property)
in order to infer new facts from XML or relational data. Such knowledge (e.g.,
whether a property is an inverse of another property) are explicitly specified
in the ontology, but not in XML or relational data. The ontology, like a treaty
[18], will facilitate the performance data sharing.

G.3 Ontology Languages

An ontology language [90, 171, 111] usually introduces (i) concepts (also
known as classes, entities); concepts are used to describe general things in the
domain of interest; (ii) properties of concepts (also known as slots, attributes,
roles); properties are used to describe property values of those things; (iii) re-
lationships between concepts (also known as associations), and (iv) additional
constraints involving those things.
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