
Consumer-specified Service License Selection and Composition

G.R. Gangadharan†, Hong-Linh Truong§, Martin Treiber§,
Vincenzo D’Andrea†, Schahram Dustdar§, Renato Iannella¶, Michael Weiss‡

† University of Trento, Trento, Italy
{gr, dandrea}@dit.unitn.it

§ Vienna University of Technology, Austria
{truong, treiber,dustdar}@infosys.tuwien.ac.at
¶ National ICT Australia, Brisbane, Australia

renato@nicta.com.au
‡ Carleton University, Ottawa, Canada

weiss@scs.carleton.ca

Abstract

Service oriented computing represents the conver-
gence of technology with an understanding of cross-
organizational business processes. A service license de-
scribes the terms and conditions for the use and access
of the service in a machine interpretable way. Generally,
a service provider defines individual services with corre-
sponding service licenses which consumers have to follow.
Often, service consumers are interested in selecting a ser-
vice based on certain licensing terms and/or in compos-
ing individual services depending on their needs. Thus,
consumer-specified licenses become pivotal in service com-
position as this allows consumers to make a preference on
what their service licenses should be and whether they can
compose certain services together in a composition satisfy-
ing their specified licensing terms. In this paper, we propose
an approach allowing service consumers to specify service
licensing terms and select services that match licenses and
implement this approach within a semi-automated service
composition framework. Furthermore, we present a di-
rectional matchmaking algorithm to compare a consumer-
specified service license with provider-specified service li-
censes and produce a composite service license satisfying
the consumer-specified license.

1 Introduction

Service Oriented Computing (SOC) currently emerges
as a leading paradigm to build agile networks of collabo-
rating distributed business applications. The seamless pro-
liferation of SOC demands licensing related to the owner-

ship and distribution aspects, to enable widespread use of
services. As services are being accessed and consumed in a
number of ways, a spectrum of licenses suitable for services
with differing license clauses can be definable. A service li-
cense should include all transactions between the licensor
and the licensee, in which the licensor agrees to grant the
licensee the right to use and access the service under prede-
fined terms and conditions.

Generally, a service provider defines a license for the
service and publishes the service with the license. Often,
service consumers are interested in selecting a service with
a particular type of license. For this purpose, a consumer
specifies the desired license clauses which are formed as
a consumer-specified license. By a consumer-specified li-
cense, in this paper, we refer to a set of license clauses spec-
ified by a consumer to be used in the selection of a license.
The desired service of a consumer may be composed of
several services. Currently existing composition tools in-
tegrate service discovery mechanisms in their composition
algorithms and compose the candidate services based on
functional specifications [4, 2]. When a consumer specifies
the desired license clauses in addition to functional param-
eters, the composition approaches should support the pro-
posal of a composite service license that should be compat-
ible with the candidate service licenses being composed and
with the consumer-specified license. Presently, to the best
of our knowledge, there exists no works on service license
composition. In this paper, we describe a novel approach
to service license composition, integrated within a frame-
work of semi-automated service composition. Service li-
cense composition supports the creation of a new license by
combining service licenses which are compatible with other
candidate licenses in the process of federation. The salient

contributions of our paper are as follows.

• A novel approach to semi-automated service composi-
tion integrated with service licenses.

• A comprehensive algorithm towards composing ser-
vice licenses together with directional compatibility
analysis of service licenses.

The rest of paper is organized as follows. Section
2 discusses related work in this field and motivations to
our approach. Section 3 describes a framework for semi-
automated service composition integrated with service li-
cense composition approach. The process of service license
composition based on the compatibility of candidate service
licenses is proposed in Section 4. In Section 5, we provide
details of a directional matchmaking algorithm. Section 6
presents the current prototype and experiments demonstrat-
ing service license composition followed by concluding re-
marks in Section 7.

2 Related Work and Motivations

Automated service composition is one of the active re-
search areas in SOC, as a significant vision to developing
dynamic composite applications integrated with service dis-
covery mechanisms. Service discovery is the process of
matching a service description of a requestor to the ser-
vice descriptions of providers, with the objective of find-
ing the most appropriate ones [8]. Service discovery in-
volves matching of the description of a service against the
description of a set of available resources and selection of
services based on ranking (filtered by a set of criteria). The
present researches focus on matching and finding of ser-
vices through composition based on functional specifica-
tions [4, 2], but not on licenses.

A selection processes for commercial-off-the-shelf com-
ponents using some of the non-technical features is ad-
dressed in [15], vaguely related to our work. An interest-
ing approach for matching non-functional properties of Web
services represented using WS-Policy is described in [16].

Service composition combines several independently de-
veloped services into a more complex service. Several
researches are continually in progress addressing service
composition with functional and non-functional aspects
[3, 19]. The most comprehensive work on automated com-
patibility analysis of WSLA service level objectives is elab-
orated in [18]. However, license clauses are not simple as
in the case of service level objectives of WSLA or policies
of WS-Policy and the algorithm presented in [18] cannot
handle service license clauses. The problem of licensing
compatibility is difficult to resolve automatically as license
clauses are generally written in a natural language (like En-
glish) and contains highly legalized terms, sometimes even

difficult for the end users to understand. However, no work
considers discovery and composition of services with li-
censes in addition to functional specifications. Our work
presented in this paper focuses on composing candidate ser-
vice licenses and proposing a composite license for a com-
posite service.

In the business domain, consumer confidence is estab-
lished through a contract with the service provider. In
SOC, service level agreements (SLA) and policies support
these contractual terms. A service license may include SLA
terms. Thus, a service license is broader than the scope of
SLA, protecting the rights of service providers and service
consumers. Basically, a service license primarily focuses
on the usage and provisioning terms of services. License
clauses [17] are unexplored by currently available service
description standards and languages. Current SLA and poli-
cies specification languages/standards for services (WSLA
[9], SLANG [12], WSOL [13], WS-Agreement [1], WS-
Policy [14]) define what to measure/monitor and describe
payments/penalties. These specifications describe func-
tional/nonfunctional properties and business/management
information of services with varying levels of details.

Though there are examples of service licenses in prac-
tical use (by Amazon, Google, Yahoo!), to the best of our
knowledge, there appears to be no conceptualization of ser-
vice licensing in general. We have formalized service li-
cense clauses and proposed a language ODRL-S for defin-
ing service licenses in machine interpretable way [5]. The
anatomy of a service license includes clauses on Subject,
Scope of Rights, Financial Terms, Warranties, Indemnities,
and Limitation of liabilities (WIL), and Evolution as de-
tailed in [5]. The structure of a license in ODRL-S is as
shown in Figure 1. A service license is a finite set of mod-
els (generally referred as licensing clauses), each of which
further consists of a set of elements. Elements can be spec-
ified with value or without element value (having the ele-
ment type only). Elements can have attributes (optional).
Each attribute should have an attribute name and value for
attribute.

Service license composition becomes important as ser-
vices are composed with one another. In this case, the li-
cense of a composite service should be compatible with the
licenses of services being composed. We have described
a comprehensive algorithm for compatibility analysis of li-
censes (at license clause level) [7], as a pre-requisite for
composition. The concept of service composition becomes
complex when service licensing terms are specified by con-
sumers in automated service composition. Our algorithm
proposed in [7] does not consider the relationship between
service consumer and service provider in the given two li-
censes, thus bypassing the directional issues of compati-
bility. The subsumption properties affect the directional
compatibilities between consumer-specified licenses and

Figure 1. ODRL-S License Structure

provider-specified licenses. To handle consumer-specified
licensing terms in service composition, in this paper, we
propose a directional matchmaking algorithm. Further-
more, a semi-automated service composition approach is
integrated with our service license composition algorithm.

3 An Approach to Semi-automated Service
Composition Integrated with Licenses

Generally a service consumer looks up a service direc-
tory for services with specific functionality. The service
discovery algorithm tries to find if any service advertise-
ments given by providers matches the request of consumers
and selects a service that matches with the specification of
a consumer. There may be always a possibility of more
than one services, offering similar functionality that differ
in their licenses. Existing works do not support license-
based service selection and composition.

Figure 2 depicts our framework that integrates service
discovery and composition mechanism with licenses. The
framework supports semi-automated service composition
integrated with service licenses and consists of the follow-
ing components.

The User Interface and Web Services Client supports
consumers to specify functional parameters and license
clauses based on which services would be selected and a
license for composite services would be proposed. Func-
tional parameters are inputs to the framework for select-
ing a service requested by consumers. The operations to be
performed by a service are generally specified as functional
parameters. License clauses are another set of inputs to the
framework. Consumers specify a set of licensing clauses of
their choice. For licensing clauses specified by a consumer,
a service license is generated by the framework.

Functional parameters and license clauses will be han-

Figure 2. Semi-automated service composi-
tion Framework integrated with service li-
censes

dled by components of the Service Management Framework
which manages service functionality selection, performs
compatibility analysis and composition of service function-
alities and licenses, and returns the result to consumers. In
Figure 2, we outline the main components of the Service
Management Framework that involves the service discov-
ery and license composition.

• Service Selection Request Handler: receives func-
tional parameters and license specifications from con-
sumers and passes to FCA and LCA respectively.

• Functional Compatibility Analyzer (FCA): selects ser-
vices from the service directory that match with the
request of consumers. Based on the inputs from con-
sumer for the required service functionality which the
consumer is searching for, FCA looks up in the Ser-
vice Directory and returns a set of services satisfying
functional specifications.

• License Compatibility Analyzer (LCA): for the services
returned by the FCA, LCA compares each of licenses
with consumer-specified license and returns a set of
compatible licenses. LCA is the focus of this paper.

• Service Discovery: discovers a set of services satisfy-
ing the required functional parameters.

• Resource Catalog Management: a component that
manages various types of information associated with

services, including service license description and
rules for compatibility analysis, etc.

• Service Information: an XML-based repository where
information associated with services are stored.

In our framework, service information is described by
using Web Services Resource Catalog [10]. Service infor-
mation contains description about functionalities of services
and information about license. A service license can be ex-
pressed by ODRL-S [5]. The FCA and Service Discovery
components are based on work presented in [11]. How-
ever, they can be replaced by any existing service discov-
ery tools. This paper primarily focuses on service license
composition approach and directional compatibility anal-
ysis of consumer-specified licenses and provider-specified
licenses , which are implemented in the LCA. Note that in
our framework, the execution order of LCA and FCA can be
customized, depending specific composition strategy. This
allows clients of the framework to combine LCA and FCA
for different purposes.

4 Service Licenses Composition with
Consumer-specified License Clauses

Let F = {f1, f2, · · · , fn} denote a set of functional pa-
rameters. Functional parameters, specified by consumers,
represent the requested operations performed by services.
For each fi, we assume that there exists a category of ser-
vices, ti, that offers the funtionality specified by fi. Let
T = {t1, t2, · · · , tn} denote categories of services associ-
ated to F , where ti provides the functionality required by fi.
Given a ti ∈ T , there exist many services belonging to this
service type, each offering the functionality fi but with pos-
sibly different implementations and associated licenses. We
denote this set of services with S(ti) = {s1, s2, · · · , sm}.
From this set, a service sti

∈ S(ti) is selected for the ser-
vice composition, given fi.

Let L(T) = {l(st1), l(st2), · · · , l(stn
)} be the set of li-

censes in which l(sti
) indicates the license associated with

the service sti
. Our objective is to compose licenses in

L(T), associating functionalities fi, so that the resulting
composite license lcomposite satisfies the licensing clauses
of a consumer-specified license lc1.

Service license composition algorithm is listed in Algo-
rithm 1. The input provided by the consumer to the Service
Selection Request Handler are a set of functionalities F and
the requested license clauses lc. Each functionality fi is

1It is always possible that the composition of two service licenses can
result in a set of new composite licenses. It is up to choice of the consumer
who wants the appropriate/desired license. In case of fully automated com-
position process, the selection of new composite license can be facilitated
by some ranking approaches. In our algorithm, we bypass the concept of
multiple licenses and assume as single composite license.

represented by a category of service ti and each category of
service can have a set of services varying in licenses, S(ti).

In lines 3-4, a service matching the functionality spec-
ified by a consumer is retrieved by FCA searching in the
Service Information repository through the Service Direc-
tory component. Similarly, LCA searches in the Service
Information for the information about licenses of each ser-
vice being selected by FCA. The license associated with the
selected service is compared with the lc as in line 7. The
compatibility of these two given licenses can be analyzed by
our work [7]. This compatibility analysis is performed for
each of the selected service by FCA and grouped as L(T)
(in lines 8-10). The algorithm gets terminated if a com-
patibility is not found for a service type (in line 13). The
composition cannot be performed even if any of l(sti) does
not exist.

Each of these selected licenses are compared for com-
patibility (in lines 15-21) with other licenses [7]. The al-
gorithm is terminated if incompatibility arises between any
two licenses (in lines 17-19).

Algorithm 1 Service License Composition

1: S(ti) = φ
2: L(T) = φ
3: for all ti ∈ T do
4: ask FCA for S(ti)
5: sti

= φ
6: for all sj ∈ S(ti) do
7: if Compatible(l(sj), lc) then
8: sti

= sj

9: l(sti
) = l(sj)

10: break
11: end if
12: end for
13: Terminate if sti

= φ
14: end for
15: for all (lx, ly) ∈ L(T) do
16: if lx �= ly then
17: if ¬Compatible(lx, ly) then
18: Terminate
19: end if
20: end if
21: end for
22: lgenerated ← Compose(L(T))
23: if CLCompatible(lgenerated, lc) then
24: lcomposite ← Compose(lgenerated, lc)
25: end if

These licenses in L(T) are composed as follows (in line
22).

• Extract elements of each license and put them together
in a single license (lgenerated).

• Remove redundant clauses.

lgenerated is composed with lc to generate lcomposite. The
purpose of this composition (in line 24) is to include a set
of licensing clauses that may not be in the composite li-
cense but specified by the consumer. Then, lcomposite is
compared with lc for compatibility (in line 23). If compat-
ible, lcomposite will be the required composite license (in
line 24) which is composed from the given service licenses
and also compatible with the consumer-specified licensing
clauses.

Compatible(lu, lv) is an algorithm for analyzing the
compatibility between any two given licenses, that consid-
ers subsumption issues and does not consider conditions as
specified in [7]. CLCompatible(lu, lv) is an algorithm for
analyzing the compatibility between a consumer specified
license and a provider specified service license (described
in Section 5). Compose(lu, lv) is an algorithm that extracts
the elements from the given licenses and builds a new li-
cense eliminating redundant licensing clauses.

5. Directional Matchmaking Algorithm

For a service with consumer specified lc, the function
(CLCompatible(lu, lv)) looks up licenses of extracted ser-
vices L(T) and finds a corresponding l(sti

), comparing
with lc on one-by-one basis. This function is explicated
by directional matchmaking algorithm (DMA) as follows.

There could be a scenario when analyzing the compati-
bility of service licenses where one of the licenses contains
clauses that the other license does not2. In certain cases, the
absence of one or several of these clauses does not affect
the compatibility with the other license.

Based on the subsumption property, a set of rules is pro-
posed in [7] to check the compatibility of two licenses in the
element level3. For example, a provider specified license
contains a clause, say composition. A consumer can spec-
ify adaptation. Based on [7], these licenses are incompati-
ble, because the direction of interactions between the given
licenses is not considered in that algorithm and we get a re-
sult of compatibility between these terms (as a result of sub-
sumption). A consumer may not be interested in a license
allowing composition as the consumer desires only adapta-
tion. Similarly, we can see if a consumer asks for compo-
sition, based on subsumption, derivation becomes compat-
ible. As derivation requires the service to free/open [6], the
consumer need not wish this. Thus, in these cases, it is ev-

2The general approach for handling unspecified elements in license
compatibility analysis is through “conservative” approach i.e. unspecifi-
cation equals denial of compatibility.

3Subsumption implies a match that should occur, if the given license
element is more permissive (accepts more) than the corresponding element
in the other license.

ident that the direction of interactions between the licenses
in composition becomes significant.

We introduce the directional aspect of compatibility in
composition of service licenses as follows. Table 1 lists
rules used by the DMA to determine the compatibility be-
tween consumer-specified license clauses against unspec-
ified Scope of Rights and Financial Terms elements in
provider-specified license clauses. Table 2 lists rules used
by the DMA to find the compatibility between unspecified
Scope of Rights and Financial Terms elements in consumer-
specified license clauses against provider-specified license
clauses.

The DMA for matchmaking between a consumer-
specified license (subscript c in the following definitions)
with a provider-specified license (subscript p) is given in
Algorithm 2.

6 Experiments

6.1 Prototype Implementation

Our current prototype implementation uses the Web Ser-
vices Resource Catalog (WSRC) to persist license and ser-
vice related information. We have implemented a web
based front end that supports consumers in defining func-
tional parameters and licenses. We use a vector based
search engine [11] for the discovery of Web services based
on functional descriptions.

The current prototype supports a keyword based search
for web services.Note that our approach considers the func-
tional discovery part of our architecture as black box that
can be replaced by other search engines (see Figure 2). se-
mantic discovery techniques, etc.

In order to map licenses to web services, we use WSRC.
We map interface descriptions and license information into
a single WSRC element. Every WSRC element contains
references to external documents that represent the interface
descriptions and the corresponding licenses (see Figure 3).
Lines 2 - 12 define the root of our web service entry and
contain references to child entries (lines 6 - 8, 9 - 11 re-
spectively) that represent the license (lines 13 - 24) and the
interface description (lines 25 - 36). We have implemented
compatibility algorithm in Java and currently we are inte-
grating it with functional selection of services.

6.2 Scenario on Consumer-specified Li-
cense Selection and Composition

In order to demonstrate our approach, we examine an il-
lustrating scenario in which the consumer wants to create a
restaurant service (by composition of various services) that
offers information on restaurant location and opening hours,

Table 1. Compatibility between consumer-specified license clauses against unspecified Scope of Rights
and Financial Terms elements in provider-specified license clauses

Consumer-specified
license element

Compatibility Rationale

adaptation Incompatible A consumer-specified license requiring adaptation cannot be com-
patible with a license denying adaptation. Even if a provider-
specified license may allow broader Scope of Rights (composition or
derivation) than the requirement by the consumer, it is considered as in-
compatible.

composition Incompatible A consumer-specified license requiring composition cannot be com-
patible with a license denying composition (as unspecified) or even
allowing only adaptation.

derivation Incompatible Derivation requires a service to be ‘Free’/‘Open’ [6]. Even, a license
allowing adaptation or composition can not be compatible.

attribution Compatible The requirement by a consumer for specification of attribution will
not affect compatibility when unspecified in the provider’s license.

sharealike Compatible The clause sharealike affects the composite license requiring that the
composite license should be similar to the license having sharealike
element.

noncommercialuse Compatible Commercial use of services is denied by the clause
noncommercialuse. However, if a consumer wishes its service
license to be a non-commercial, this would not affect the compatibility
with other services whose licenses may allow commercial use.

payment Compatible A consumer can charge for its service even it may compose a cost-free
service.

Table 2. Compatibility between unspecified Scope of Rights and Financial Terms elements in consumer-
specified license clauses against provider-specified license clauses

Provider-specified
license element

Compatibility Rationale

adaptation Incompatible As adaptation is the right for interface reuse, a consumer may deny.
In this case, the specification of adaptation in a provider’s license is
not compatible when it is unspecified in a consumer’s license.

composition Incompatible If a consumer denies composition by unspecifying composition
clause, this cannot be considered as don’t care although composition
supports subsumption.

derivation Incompatible Though, in general, derivation supports subsumption [7] over
composition or adaptation, the specification by a consumer over-
rides the subsumption property.

attribution Compatible The specification of attribution in a provider’s license will not af-
fect compatibility when unspecified in a consumer’s license.

sharealike Incompatible If a provider-specified license requires for sharealike clause, a con-
sumer may not even want its service to be licensed under the same terms
of the provider-specified license.

noncommercialuse Incompatible Commercial use of a service is denied by the clause
noncommercialuse.

payment Compatible The clause payment does not affect compatibility directly, if unspeci-
fied by a consumer because the license elements related to payment and
charging are dependent on service provisioning issues.

Algorithm 2 Directional Matchmaking Algorithm (DMA)

1: for all (mc,mp) and (modelname(mc) = modelname(mp)) do
2: for all ec ∈ mp do
3: for all ep ∈ mp do
4: bool res = ElementCompatibility(ec, ep)
5: if (¬res) then
6: Terminate
7: end if
8: end for
9: end for

10: mc and mp compatible
11: end for

procedure boolean ElementCompatibility(ec, ep)
1: if (type(ec) = type(ep)) ∧ (value(ec) = null) ∧ (value(ep) = null) then
2: return TRUE
3: end if
4: if (type(ec) = type(ep)) ∧ (value(ec) = value(ep)) ∧ (attributename(ec) = null) ∧ (attributename(ep) = null)

then
5: return TRUE
6: end if
7: if ((type(ec) = type(ep)) ∧ (value(ec) = value(ep)) ∧ AttributeCompatibility(ec, ep) = TRUE) then
8: return TRUE
9: end if

10: if ((type(ec) = adapatation) ∨ (type(ec) = composition) ∨ (type(ec) = derivation) ∧ (type(ep) = unspecified))
then

11: return FALSE
12: end if
13: if ((type(ec) = attribution) ∨ (type(ec) = noncommercialuse) ∨ (type(ec) = sharealike) ∨ (type(ec) =

payment) ∧ (type(ep) = unspecified)) then
14: return TRUE
15: end if
16: if ((type(ep) = adapatation) ∨ (type(ep) = composition) ∨ (type(ep) = derivation) ∨ (type(ep) = sharalike) ∨

(type(ep) = noncommercialuse) ∧ (type(ec) = unspecified)) then
17: return FALSE
18: end if
19: if ((type(ep) = attribution) ∨ (type(ep) = payment) ∧ (type(ec) = unspecified)) then
20: return TRUE
21: end if

procedure boolean AttributeCompatibility(ac, ap)
1: if (attributename(ac) = attributename(ap)) then
2: if (value(ac) = value(ap)) then
3: ac and ap compatible
4: return TRUE
5: end if
6: end if

1 <Catalog>
2 <Entry Id="http://vienna.vitalab.tuwien.ac.at/MenuService">
3 <Resource>
4 <Reference>...</Reference>
5 </Resource>
6 <EntryRef Role="http://schemas.xmlsoap.org/ws/2007/05/resourceCatalog/roles/child">
7 <EntryId>http://vitalab.tuwien.ac.at/MenuServiceLicense</EntryId>
8 </EntryRef>
9 <EntryRef Role="http://schemas.xmlsoap.org/ws/2007/05/resourceCatalog/roles/child">
10 <EntryId>http://vitalab.tuwien.ac.at/MenuServiceInterface</EntryId>
11 </EntryRef>
12 </Entry>
13 <Entry Id="http://paris.vitalab.tuwien.ac.at/MenuServiceLicense">
14 <Classifier>http://odrl.net/1.1/ODRL-EX-11.xsd</Classifier>
15 <Annotation lang="en">License</Annotation>
16 <Resource>
17 <ResourceRef>
18 <ResourceElement LocalName="License"

Namespace="http://vitalab.tuwien.ac.at/License.xsd"/>
19 <Reference>
20 <URI>http://paris.vitalab.tuwien.ac.at/MenuService.xml</URI>
21 </Reference>
22 </ResourceRef>
23 </Resource>
24 </Entry>
25 <Entry Id="http://paris.vitalab.tuwien.ac.at/MenuServiceInterface">
26 <Classifier>http://schemas.xmlsoap.org/wsdl/</Classifier>
27 <Annotation lang="en">WSDL</Annotation>
28 <Resource>
29 <ResourceRef>
30 <ResourceElement LocalName="ServiceInterface"

Namespace="http://vitalab.tuwien.ac.at/MenuService.xsd"/>
31 <Reference>
32 <URI>http://paris.vitalab.tuwien.ac.at/MenuService.wsdl</URI>
33 </Reference>
34 </ResourceRef>
35 </Resource>
36 </Entry>
37 </Catalog>

Figure 3. Web Service Resource Catalog fragment for MenuService

catalog of specialty cuisines, and online table reservation.
In doing so, the consumer will search for existing services
that offer these individual operations, and will compose the
restaurant service. Examples of possible individual services
are a map service named LocationService display-
ing the location and a service facilitating intermediate ta-
ble reservation named ReservationService. In ad-
dition to this, the consumer may also specify the licens-
ing clauses that he/she prefers for the composite service.
Our proposed framework checks the compatibility between
licenses of individual services and consumer-specified li-
cense, and if compatible, proposes a new license for the
composite restaurant service.

In our experiment, the license of LocationService
allows composition and requires attribution when
LocationService is used by other services. The li-
cense of LocationService in ODRL-S [5] is described
in Figure 4.

The license of ReservationService allows the ac-
cess to source code of service realization and requires
attribution when ReservationService is used
by other services. Furthermore, ReservationService
requires a fee of 1 Euro per use. The license of
ReservationService is described in Figure 5.

Based on the above-mentioned two services, we com-
posed a restaurant service MenuService providing the

<!-- Namespace declarations go here-->
1 <o-ex:offer>
2 <o-ex:asset>
3 <o-ex:context>
4 <o-dd:uid>

..........
</o-dd:uid>

5 </o-ex:context>
6 </o-ex:asset>
7 <o-ex:permission>
8 <sl:composition/>
9 </o-ex:permission>
10 <o-ex:requirement>
11 <o-dd:attribution/>
12 </o-ex:requirement>
13 </o-ex:offer>

Figure 4. Illustrating license for
LocationService

<!-- Namespace declarations go here-->
1 <o-ex:offer>
2 <o-ex:permission>
3 <sl:derivation/>
4 </o-ex:permission>
5 <o-ex:requirement>
6 <o-dd:attribution/>
7 </o-ex:requirement>
8 <o-ex:requirement>
9 <o-dd:peruse>
10 <o-dd:payment>
11 <o-dd:amount o-dd:currency=

"EUR">1.00</o-dd:amount>
12 </o-dd:payment>
13 </o-dd:peruse>
14 </o-ex:requirement>
15 </o-ex:offer>

Figure 5. Illustrating license for
ReservationService

following operations (and parameters).

• Location(Address address,
OpeningHours openhrs): provides infor-
mation about address and opening hours (where
Address and OpeningHours are complex data
types).

• Reservation(int Seat, String Name,
String ReservedTable): provides facility for
reserving table.

Location uses LocationService for providing the
location information and Reservation is derived from
the service ReservationService. Thus, the ser-
vice MenuService composes LocationService and
ReservationService. As a result, MenuService
has to be associated with a license compatible with the li-
censes of the services being composed.

The consumer-specified license clauses for
MenuService are as follows: (i) the service should
allow composition and (ii) the service is sharealiked
indicating that the service expects another services being
composed/ derived to reflect the same terms and conditions
of this service. Based on these clauses, a license (specified
as lc in Algorithm 1) is generated as shown in Figure 6.

The consumer-specified license is compared against
each service licenses being composed in the com-
posite service using [7]. In this scenario, the li-
cense of LocationService is compatible with the
consumer-specified license. Similarly, the license
of ReservationService is also compatible with
the consumer-specified license. Furthermore, the li-
cense of LocationService and the license of

ReservationService are analyzed for compatibility
using [7] and found compatible. Then, licenses of services
LocationService and ReservationService are
composed and the newly generated license is analyzed for
compatibility with the consumer-specified license. Thus, a
composite license is generated from the licenses being com-
posed and also with the specifications by consumer. A com-
posite license for MenuService is presented in Figure 7.

7 Concluding Remarks

The full potential of services as a means of developing
dynamic business solutions will only be realized when cross
organizational business processes can federate in a scale-
free manner. Being a way to enable widespread use of ser-
vices and to manage the rights between service consumers
and service providers, licenses are critical to be considered
in services. In this paper, we have analyzed the compatibil-
ity of licenses offered by service providers with consumer
specified licenses. Following this, we have presented an ap-
proach to generate composite service license based on spec-
ifications by consumers.

The presented algorithm has following limitations: First,
it selects a service for each service category, provided its li-
cense is compatible (3-14). Then, it verifies if the licenses
of these services are compatible between themselves (15-
21). The present approach may result in the incompati-
bility among the set of licenses for the candidate services
chosen from each service type. The performance analy-
sis of the proposed composition algorithm 1 is as follows.
Let m be the maximum number of services returned for a
service functionality f by FCA. Let n be the number of

<!-- Namespace declarations go here-->
1 <o-ex:offer>
2 <o-ex:permission>
3 <sl:composition/>
4 </o-ex:permission>
5 <o-ex:requirement>
6 <o-cc:sharealike>
7 </o-ex:requirement>
8 </o-ex:offer>

Figure 6. Consumer-specified license

<!-- Namespace declarations go here-->
1 <o-ex:offer>
2 <o-ex:permission>
3 <sl:composition/>
4 </o-ex:permission>
5 <o-ex:requirement>
6 <o-cc:attribution/>
7 </o-ex:requirement>
8 <o-ex:requirement>
9 <o-cc:sharealike/>
10 </o-ex:requirement>
11 </o-ex:offer>

Figure 7. Resulting composite license

service functionality. At any point, the algorithm has to
find a maximum of mn combinations to retrieve a set of
services satisfying consumer-specified functionalities. Fur-
thermore, the concepts of SLA are not considered in the
given DMA. In our future work, we are planning to fully
integrate consumer-specified composite service license in
the proposed service selection and management framework.
Furthermore, we intend to work on monitoring and enforc-
ing license clauses.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu.
Web Services Agreement Specification (WS-Agreement)
Version 2005/09. www.gridforum.org, 2005.

[2] L. Aversano, G. Canfora, and A. Ciampi. An Algorithm
for Web service Discovery through their Composition. In
Proceedings of the IEEE International Conference on Web
Services, 2004.

[3] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and
M. Mecella. Automatic Composition of Transition Based
Semantic Web Services with Messaging. In Proc. of the 31st
VLDB Conference, 2005.

[4] A. Brogi and S. Corfini. Behaviour-aware Discovery of Web
service Compositions. International Journal of Web Ser-
vices Research, 4(3), 2007.

[5] G. R. Gangadharan, V. D’Andrea, R. Iannella, and M. Weiss.
ODRL Service Licensing Profile (ODRL-S). In Proc. of the
5th Intl. Workshop for Technical, Economic, and Legal As-
pects of Business Models for Virtual Goods, 2007.

[6] G. R. Gangadharan, V. D’Andrea, and M. Weiss. Free/Open
Services: Conceptualization, Classification, and Commer-
cialization. In Proceedings of the Third IFIP International
Conference on Open Source Systems (OSS), 2007.

[7] G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella.
Service License Composition and Compatibility Analysis.
In Proceedings of the International Conference on Service
Oriented Computing (ICSOC’07), 2007.

[8] S. Grimm, B. Motik, and C. Preist. Variance in e-Business
Service Discovery. In Proceedings of the Semantic Web Ser-
vices Workshop at ISWC’04, 2004.

[9] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web
Service Level Agreement (WSLA) Language Specification.
IBM Coporation, 2003.

[10] A. Nosov, A. Hately, B. Reistad, B. Murray,
D. Davis, H. Kreger, P. Niblett, R. McCol-
lum, V. Tewari, V. Kumbalimutt, and W. Vam-
benepe. Web Services Resource Catalog (WS-RC).
http://schemas.xmlsoap.org/ws/2007/05/resourceCatalog/,
2007.

[11] C. Platzer and S. Dustdar. A Vector Space Search Engine
for Web Services. In Proceedings of the IEEE European
Conference on Web services (ECOWS), 2005.

[12] J. Skene, D. Lamanna, and W. Emmerich. Precise Service
Level Agreements. In Proc. of 26th Intl. Conference on Soft-
ware Engineering (ICSE), 2004.

[13] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.
Management Applications of the Web Service Offerings
Language. In Proc. of the 15th Intl. Conf. on Advanced In-
formation Systems Engineering (CAiSE), 2003.

[14] A. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yend-
luri, T. Boubez, and U. Yalcinalp. Web Services Policy
Framework, 2007. http://www.w3.org/TR/ws-policy.

[15] J. P. C. Vega, X. Franch, and C. Quer. Towards a Unified
Catalogue of Non-Technical Quality Attributes to Support
COTS-Based Systems Lifecycle Activities. In Proceedings
of the IEEE International Conference on COTS Based Soft-
ware Systems (ICCBSS), pages 21 – 32, 2007.

[16] K. Verma, R. Akkiraj, and R. Goodwin. Semantic Match-
ing of Web Service Policies. In Second Intl. Workshop on
Semantic and Dynamic Web Processes, 2005.

[17] World Intellectual Property Organiza-
tion. WIPO Copyright Treaty (WCT).
http://www.wipo.int/treaties/en/ip/wct/trtdocs wo033.html,
1996.

[18] W. Yang, H. Ludwig, and A. Dan. Compatibility Analy-
sis of WSLA Service Level Objectives. Technical Report
RC22800 (W0305-082), IBM Research Division, 2003.

[19] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng. Quality Driven Web Services Composition. In
Proceedings of the WWW Conference, 2003.

