
Automated Incentive Management
for Social Computing

Foundations, Models, Tools and Algorithms

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Dipl.-Ing. Ognjen Šćekić
Registration Number 1028158

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Second advisor: Dr. Hong-Linh Truong

External reviewers:
Prof. Fausto Giunchiglia. University of Trento, Italy.
Prof. Stuart Anderson. University of Edinburgh, UK.

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Vienna, 15th January, 2016
Ognjen Šćekić Schahram Dustdar

Declaration of Authorship

Dipl.-Ing. Ognjen Šćekić
Gasgasse 2/7079, 1150 Wien, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 15th January, 2016
Ognjen Šćekić

iii

Acknowledgements

I would hereby like to thank all those people who helped and supported me throughout
my doctoral studies and writing of this thesis. Firstly, my supervisors Prof. Dr. Schahram
Dustdar and Dr. Hong-Linh Truong for their daily guidance and collaboration. Secondly,
my friends and colleagues from the Distributed Systems Group, foremost Stefan Nastić,
Sanjin Sehić, Christoph Mayr-Dorn, and Philipp Zeppezauer for inspired discussions and
concrete suggestions. Thirdly, all the people from various organizations who helped me
financially and organizationally: the Vienna PhD School of Informatics for supporting
me financially and for providing an interesting and creative environment during the
initial stages of the studies, as well as all the colleagues and the Secretariate of the
School; all the staff of the Distributed Systems Group; the EU FP7 SmartSociety
research project for the financial support in the second part of the studies and the fellow
researchers from the project; the FoCAS EU Coordination Action for financing a number
of research and collaboration visits. Finally, but most importantly, I would like to thank
my family – mother Mladenka, father Milan, brother Igor, and my fiancée Katarina for
the wholehearted encouragement and for always being there for me.

v

Kurzfassung

Die menschliche Teilnahme in sozio-technischen Systemen überfordert herkömmliche
Crowdsourcing Mechanismen, in denen Menschen üblicherweise einfache und unabhängige
Tasks lösen. Neuartige Systeme hingegen, versuchen Menschen für intellektuell herausfor-
dernde Aufgaben zu nutzen. Diese Aufgaben beinhalten länger anhaltende Beschäftigung
und komplexe Muster zur Zusammenarbeit. Kontrollierbarkeit solcher Systeme erfordert
verschiedene direkte und indirekte Methoden zur Beeinflussung der beteiligten Menschen.
Konventionelle Organisationen, wie Unternehmen oder Institutionen, benutzen seit Jahr-
zehnten Anreize, um die Interessen der Arbeitnehmer und der Unternehmen aneinander
anzupassen. Da Kooperationen, die mit sozio-technischen Plattformen verwaltet werden,
immer komplexer werden und damit herkömmliche Ansätze in ihrer Komplexität über-
steigen, gibt es einen Bedarf fortgeschrittene Anreiz-Techniken in virtuellen Umgebungen
anzuwenden.

Allerdings sind bestehende Anreiz-Management-Techniken, die bereits in Crowd-
sourcing bzw. sozio-technischen Plattformen angewendet werden, nicht für die oben
beschriebenen (komplexen oder intellektuell herausfordernden) Aufgaben geeignet. Zu-
sätzlich nutzen bestehende Plattformen individuell entwickelte Lösungen. Dieser Ansatz
ist jedoch nicht übertragbar und verhindert die Wiederverwendung von gemeinsamer
Anreizlogik und Reputationsübertragung. Folglich wird dadurch verhindert, dass Arbeit-
nehmer verschiedene Plattformen vergleichen können, wodurch die Wettbewerbsfähigkeit
des virtuellen Arbeitsmarktes behindert wird und dieser damit weniger attraktiv für
qualifizierte Arbeitskräfte ist.

Diese Arbeit präsentiert eine Reihe von Modellen und Werkzeugen für programmier-
bares Anreiz-Management in sozialen Computing-Plattformen. Insbesondere werden die
folgenden Punkte vorgestellt:

(i) Eine umfassende, multidisziplinären Analyse der bestehenden Literatur über An-
reize, sowie eine umfangreiche Studie von realen Anreiz-Praktiken im sozialen Computing-
Umfeld,

(ii) Ein Basismodell für Anreize, das in sozio-technischen Systemen angewendet
werden kann,

(iii) princ - ein Modell und Framework zur Ausführung programmierbarer Anreizme-
chanismen, um Anreize mittels einem Service-Modell anzubieten.

(iv) pringl - eine domänen-spezifische Sprache zum Kodieren komplexer Anreizstra-
tegien für sozio-technische Systeme. Die Sprache fördert einen modularen Ansatz beim

vii

Aufbau von Anreizstrategien, reduziert Entwicklungs- und Anpassungszeit, und schafft
eine Grundlage für die Entwicklung von standardisierten, aber anpassbaren Anreizen.

Die vorgestellten Werkzeuge sollen System- und Anreizentwicklern eine komplette
Umgebung zur Modellierung, Verwaltung, Ausführung und Anpassung von verschiedenen
realistischen Anreizmechanismen, in einer Privatsphäre erhaltenden Art und Weise,
ermöglichen. Keine vergleichbaren Systeme waren zum Zeitpunkt des Schreibens dieser
Arbeit bekannt.

Abstract

Human participation in socio-technical systems is overgrowing conventional crowdsourc-
ing where humans solve simple, independent tasks. Novel systems are attempting to
leverage humans for more intellectually challenging tasks, involving longer lasting worker
engagement and complex collaboration patterns. Controllability of such systems requires
different direct and indirect methods of influencing the participating humans. Conven-
tional human organizations, such as companies or institutions, have been using incentives
for decades to align the interests of workers and organizations. With the collaborations
managed by the socio-technical platforms growing ever more complex and resembling, or
even surpassing in complexity, the conventional ones, there is a need to apply advanced
incentivizing techniques in the virtual environment as well.

However, existing incentive management techniques in use in crowdsourcing/socio-
technical platforms are not suitable for the described (complex or intellectually-challenging)
tasks. In addition, existing platforms currently use custom-developed solutions. This
approach is not portable, and effectively prevents reuse of common incentive logic and
reputation transfer. Consequently, this prevents workers from comparing different plat-
forms, hindering the competitiveness of the virtual labor market and making it less
attractive to skilled workers.

This research presents a complete set of models and tools for programmable incentive
management for social computing platforms. In particular, it introduces:

(i) A comprehensive, multidisciplinary review of existing literature on incentives as
well as an extensive survey of real-world incentive practices in social computing milieu,

(ii) A low-level model of incentives suitable for use in socio-technical systems
(iii) princ – a model and framework for execution of programmable incentive mecha-

nisms, allowing the offering of incentives through a service model.
(iv) pringl – a high-level domain-specific language for encoding complex incentive

strategies for socio-technical systems, encouraging a modular approach in building
incentive strategies, cutting down development and adjustment time and creating a basis
for development of standardized but tweakable incentives.

The tools are meant to allow system and incentive designers a complete environment for
modeling, administering/executing and adjusting a whole spectrum of realistic incentive
mechanisms in a privacy-preserving manner. No known comparable systems were known
to exist at the time of writing of the thesis.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 3
1.1 Motivation . 3
1.2 Research Problem . 5
1.3 Scientific Contributions . 7
1.4 Research Methodology . 8
1.5 Organization of the Thesis . 9

2 Theoretical Background & Related Work 11
2.1 Theories of Motivation and Incentives . 11
2.2 Related Work . 15

I Modeling Incentives 17

3 Existing Incentive and Rewarding Practices 19
3.1 Classification of Incentive Mechanisms . 19
3.2 Composition of Incentive Mechanisms . 25
3.3 Identifying Composing Parts of Incentive Mechanisms 26
3.4 A Survey of Incentive Mechanisms in Real-World Social Computing Platforms 35

4 Modeling Incentives for Use in Socio-Technical Systems 43
4.1 Comprehensive Incentive Model . 44
4.2 Rewarding Model . 48
4.3 Simulation Model . 57

xi

II Supporting Automated Incentive Management in Social Com-
puting 71

5 Executive Framework for Incentive Management 73
5.1 Usage Context . 74
5.2 Internal Architecture . 75
5.3 Prototype & Evaluation . 79

6 Communication Middleware for Application of Incentives 83
6.1 Middleware Design and Architecture . 85
6.2 Implementation & Evaluation . 89

7 Programming Model and Domain-Specific Language for Incentive
Management 93
7.1 Overview . 94
7.2 Programming Model . 96
7.3 Execution Model . 113
7.4 Evaluation . 114
7.5 Implementation . 127
7.6 Discussion . 128

8 Conclusion & Research Outlook 131
8.1 Discussion . 131
8.2 Limitations . 133
8.3 Future Work . 135

Bibliography 137

Appendices 147
A SmartCOM Algorithms . 147
B PRINGL Models . 151

Glossary 171

Acronyms 173

xii

List of Figures

1.1 Evolution of Social Computing: As working patterns become more com-
plex and reminiscent of traditional companies, social computing platforms
need advanced organizational structure and ‘crowd’ management capabilities,
including automated incentive management. 4

1.2 Controlling socio-technical systems requires influencing both its technical and
social components. 5

1.3 Application context of incentive management systems. 6
1.4 Overview of the components, contributions and design/evaluation methodolo-

gies used. Dashed lines represent planned/future activities. 8

3.1 An entire incentive strategy of an organization can be composed using smaller,
modelable components – incentive elements. 27

3.2 Application and effectiveness of rewarding actions. 34

4.1 A conceptual illustration of a system capable of translating portable incentive
strategies into concrete rewarding actions for different socio-technical platforms.
The system corresponds to the lower section of Figure 1.2, representing the
part of the control loop affecting the human component of a socio-technical
system. 43

4.2 Incentive mechanisms need to capture the interaction between workers (agent)
and authority (principal). 45

4.3 Components and interactions in RMod . 50
4.4 Partial UML class diagram of the model prototype. 53
4.5 Composing rewarding mechanisms in an IT incident management system. . . 55
4.6 The methodology of simulation design and development. 61
4.7 Simulation meta-model including domain specific extensions in bold/blue. . . 62
4.8 Partial screenshot of the implemented case-study simulation model in Do-

mainPro Designer. 63
4.9 Incurred report processing costs for CIS1, CIS2, and CIS3. Inset: average

paid points per worker. 67
4.10 Costs per report incurred at various combinations of worker and situation count. 68
4.11 Reputation acquired by workers (bottom), and report importance addressed,

respectively remaining open (top). 68
4.12 Costs per report incurred due to various level of malicious workers. 69
4.13 Average reputation acquired by malicious and non-malicious workers. 69

5.1 The incentive management platform. The princ Framework, presented in
this chapter, is shown fully outlined. The remaining tools (dashed-outlined)
are presented in subsequent chapters. 73

5.2 Adapting a general piece-work incentive mechanism for software testing com-
pany use-case. 77

5.3 Abstract representation of the MSGI message format. 79

6.1 SmartCOM’s application context. 84
6.2 Internal architecture of SmartCOM middleware. 85
6.3 Simplified example of a peer with multiple profiles. Each profile is revealed to

a different application. 88
6.4 Setup for the performance evaluations. 90
6.5 Simulated message throughput. ‘Workers’ are concurrent threads simulating

concurrent applications of rewarding actions to human ‘peers’. 90

7.1 Incentive management platform tools, showing an overview of pringl’s pro-
graming model elements, architecture, users, operative environment and
implementation (marked in blue). 95

7.2 Complex incentive elements class hierarchy. 99
7.3 Visual element representing an IncentiveLogic definition. 101
7.4 Visual element used for SimpleWorkerFilter definition. 104
7.5 An example CompositeWorkerFilter definition. 104
7.6 Visual element used for SimpleRewardingAction definition. 105
7.7 An example CompositeRewardingAction definition with branch delays shown.107
7.8 A CompositeRewardingAction letting the workers choose one of the rewards. 109
7.9 An example IncentiveMechanism definition. 110
7.10 Incentive scheme from Example 3, illustrating the decreasing of complexity

going from modeling of (low-level) incentive elements by incentive designers
to adjusting existing incentive schemes by incentive operators. 112

7.11 A CompositeWorkerFilter for referral bonuses. 117
7.12 An incentive scheme example combining peer voting and team-based compen-

sation. 118
7.13 Additional incentives elements needed to augment the incentive scheme from

Example 3 (Fig. 7.10) in order to display motivational rankings to the non-
rewarded workers from Example 3. 121

7.14 Modeling the rotating presidency incentive scheme in pringl. Segment
showing the incentive scheme (top right), rewarding actions (top center and
left), and incentive mechanisms (bottom). 122

7.15 Modeling the rotating presidency example: Segment showing simple filters
(right) and composite ones (left). 123

7.16 Modeling the rotating presidency example: Segment showing the incentive
logic elements. 125

7.17 Implementing the rotating presidency incentive scheme (Example 5) using
generated pringl Visual Studio environment. Generated C# code is performs
calls to princ APIs, which ultimately perform structural changes on the
worker graph (part of RMod). 129

B.1 Partial screenshot of the implemented pringl DSL metamodel. (upper section)151
B.2 Partial screenshot of the implemented pringl DSL metamodel. (middle section)152
B.3 Partial screenshot of the implemented pringl DSL metamodel. (lower section)153
B.4 Example 5from Section 7.4.5 modeled with implemented PRINGL Visual

Studio plugin. 154

List of Tables

3.1 Left: Adoption of incentive mechanisms in different business environments
(+ : low, ++ : medium, +++ : high). Right: Different application considerations. 23

3.2 Application and composability considerations for evaluation methods. 32
3.3 Use of incentive mechanism categories by social computing companies. 37
3.4 Number of incentive mechanisms used by social computing companies. Over

80% of the companies employ only one mechanism. 38
3.5 Use of evaluation mechanisms (excluding companies running creative contests). 39
3.6 Examples of companies employing different evaluation methods (columns)

within different incentive mechanisms (rows) at the time the survey was
compiled. Note: mechanisms presented here may not represent the only or
primary mechanisms that the company uses. 41

5.1 Functionalities exposed through the APIs . 78

7.1 Primitive types. 97
7.2 IncentiveLogic subtypes . 102
7.3 SimpleWorkerFilter fields. 103
7.4 SimpleRewardingAction fields. 106
7.5 Description of IncentiveMechanism fields. 110
7.6 Coverage of incentive categories, rewarding actions and evaluation methods

by the provided examples. 116
7.7 Incentive logic elements used in the rotating presidency example. 126

xv

Publications
Parts of the work presented in this dissertation were published in the following publica-
tions:

1. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Incentives and rewarding
in social computing. Comm. of the ACM, 56(6):72, 6 2013

2. Ognjen Scekic, Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar. Social
interaction analysis for team collaboration. In Reda Alhajj and Jon Rokne, editors,
Encyclopedia of Social Network Analysis and Mining. SpringerScience+Business
Media, NewYork, 2014

3. Ognjen Scekic, Christoph Dorn, and Schahram Dustdar. Simulation-based modeling
and evaluation of incentive schemes in crowdsourcing environments. In Robert
Meersman, Hervé Panetto, Tharam Dillon, Johann Eder, Zohra Bellahsene, Norbert
Ritter, Pieter De Leenheer, and Deijing Dou, editors, On the Move to Meaningful
Internet Systems: OTM 2013 Conf.s, volume 8185 of LNCS, pages 167–184. Springer,
2013

4. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Modeling rewards
and incentive mechanisms for social bpm. In Alistair Barros, Avigdor Gal, and
Ekkart Kindler, editors, Business Process Management, volume 7481 of LNCS,
pages 150–155. Springer Berlin Heidelberg, 2012

5. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Programming incentives
in information systems. In Camille Salinesi, Moira C. Norrie, and Óscar Pastor,
editors, Advanced Information Systems Engineering, volume 7908 of LNCS, pages
688–703. Springer, 2013

6. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Managing incentives
in social computing systems with pringl. In Boualem Benatallah, Azer Bestavros,
Yannis Manolopoulos, Athena Vakali, and Yanchun Zhang, editors,Web Inf. Systems
Engineering (WISE’14), volume 8787 of LNCS, pages 415–424. Springer, 2014

7. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Pringl – a domain-
specific language for incentive management in crowdsourcing. Computer Networks,
9 July 2015

8. Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar.
Virtualizing communication for hybrid and diversity-aware collective adaptive sys-
tems. In Proc. of 10th Intl. Workshop on Engineering Service-Oriented Applications,
WESOA’14, pages 56–67. Springer, 11 2014

9. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Supporting multilevel
incentive mechanisms in crowdsourcing systems: an artifact-centric view. In Cloud-
based Software Crowdsourcing, pages 95–114. Springer, 2015

1

10. Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. A collaboration model
for community-based software development with social machines. In Proc. of
the 10th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, Miami, FL, USA, October 2014

11. O. Scekic, T. Schiavinotto, D.I. Diochnos, M. Rovatsos, H.-L. Truong, I. Carreras,
and S. Dustdar. Programming model elements for hybrid collaborative adaptive
systems. In Proc. of the 1st IEEE International Conference on Collaboration and
Internet Computing (CIC’15), Hangzhou, China, October 2015

2

CHAPTER 1
Introduction

1.1 Motivation
Incentives help align interests of employees and organizations. They first appeared with
the division of labor and have since followed the growth in complexity of human labor and
organization. Modern working environments are especially attractive to unfair gainful
activities due to existing diversity of working roles, scale of workforce and complexity
of tasks performed collectively. In such environments, incentives are being increasingly
used to prevent the various types of occurring dysfunctional behavior. This is evidenced
by the fact that most big or medium-sized companies employ some incentive measures;
e.g., over 80% in the US [Feh13, Ch. 1]. Furthermore, numerous studies have shown
effectiveness [Pre99] of different incentive mechanisms and their selective and motivating
effects [Laz07].

We have recently witnessed the evolution of conventional crowdsourcing systems
[HPTA14, MD15] and appearance of novel types of social computing systems, attempting
to leverage human experts for more intellectually challenging tasks [ABMK11, BCBM12,
MB12, MM, BBC+14, TDKC15], often by actively targeting preferred workers. These
novel systems involve longer lasting worker engagement and complex collaboration
workflows, often integrating the notion of team programmability. To highlight this
distinction compared to conventional crowdsourcing, some authors started naming these
systems socio-technical. However, the principal trait of all these systems is that they need
to manage interactions with and among human elements, referred to as workers, agents,
human services or peers, performing different tasks (jobs) or collaborative workflows thereof.
In this thesis the terms ‘social computing’ and ‘socio-technical’ are used interchangeably
to describe the whole class of similar systems involving groups of humans providing effort
in work processes managed by a software platform.

The novel social computing systems resemble in complexity the conventional (non-
virtual) working environments (Figure 1.1), but still employ a limited number of simple
incentive mechanisms, suitable for crowdsourcing platforms employing anonymous crowds

3

Figure 1.1: Evolution of Social Computing: As working patterns become more complex
and reminiscent of traditional companies, social computing platforms need advanced
organizational structure and ‘crowd’ management capabilities, including automated
incentive management.

for one-off task executions. This can be perceived as a big opportunity to offer novel
ways of handling incentives and rewarding. While incentives were already identified as
one of the fundamental characteristics of conventional crowdsourcing systems [HPTA14],
supporting more complex work patterns introduces novel challenges, with respect to
finding, motivating and assessing (expert) workers executing them. Furthermore, in order
to retain such workers the virtual labor market must be made more competitive and
attractive [KNB+13].

In [KNB+13] the authors discuss the recent developments in the area and highlight a
number of important research directions that need to be investigated in order to build
such systems. Incentive management (cf. [MW09, Lit10]) was identified as one of them.
However, contemporary approaches to incentive management usually imply hard-coded,
system-specific solutions (see Chapter 2). Such approaches are not portable, and prevent
reuse of common incentive logic. That hinders cross-platform application of incentives and
reputation transfer [KNB+13]. Additionally, in social computing environments there is a
need to combine, personalize and frequently adapt incentive mechanisms [Vas12], which
is not straightforward in current approaches. Furthermore, the modeling of incentives
is performed by multidisciplinary domain experts (incentive designers), often lacking
the knowledge of the technical internals of the social computing platform. On the other
hand, the platforms developers lack the domain knowledge necessary to understand the
provided incentives, leading to a discrepancy between modeling and implementation
processes.

By designing a comprehensive incentive model and developing an execution framework
that can be coupled with different socio-technical systems it would be possible to perform
advanced incentivizing measures and indirect team adaptations. The design of the
incentives could be performed by the domain experts, while the execution would be
handled by the framework, allowing a decoupling of the incentivizing functionality from
the platform, and offering it as a service.

4

1.2 Research Problem

Incentive
Management

Platform
SmartCOM

Socio-technical
System

(e.g., SmartSociety)

e.g., RESTe.g., protobuffer

e.g.,
Android
notification

workers

privacy
policies

Peer
Store

communication path

concrete communication
channel/protocol

privacy policy enforcement

programming
code

applications

incentive
mechanisms

rewards
social

components

technical
components

socio-technical system

Figure 1.2: Controlling socio-technical systems requires influencing both its technical and
social components.

Figure 1.2 shows the envisioned control loop for socio-technical systems, aiming to
close the existing gap where socio-technical systems are controlled predominantly by
programming elements suitable for software services and machine control units only
(e.g., activities, constraints, APIs). Instead, we propose targeting the social component
(human participants) with mechanisms tailored to act on psychological level. In turn, the
social component is motivated to better use and control more effectively the technical
component from within the system (e.g., motivating human participants to provide votes
on other participants via the system and confide in system’s reputation calculations).
Furthermore, once the incentive controllability components are in place, they can be
coupled in a feedback loop with the existing software software control components,
exchanging state updates and suggested rewarding actions. We explain this in more
detail in subsequent sections.

1.2.1 Application Context

Figure 1.3 visualizes the application context of an incentive management framework:
A complex business process is being executed by employing crowdsourced team(s) of
human experts to execute various workflow activities. The teams are provisioned by a
dedicated platform (e.g., Social Compute Unit (SCU) [CTD13, RTD14], SmartSociety
[SMS+15]) that assembles teams of crowd workers based on required functionality,
collaboration patterns and elasticity parameters, such as: price, speed or reputation.
However, choosing appropriate workers alone does not guarantee the quality of subsequent
team’s performance. In order to monitor and influence the behavior of workers during
and across activity executions an incentive scheme needs to be enacted.

This is the task of the envisioned incentive management framework. It enacts the
incentive scheme by applying rewards or penalties in a timely manner to induce a

5

Activity 2

Activity 1 Activity 2

Crowdsourced
Collaborative

Process

Incentive Management

Team Provisioning

team A' team A'' team B
incentivize
motivate
adapt Monitoring

metrics'

A'

metrics"

A"

Figure 1.3: Application context of incentive management systems.

wanted worker behavior, thus effectively performing runtime team adaptations (e.g.,
Fig. 1.3: A′ → A′′). Most real-world incentive strategies can be composed of modelable
and reusable bits of incentive logic ([STD13a, TCZ12]). However, the efficacy of incentives
can depend on multiple other factors, such as team size, cultural background, or knowledge
of other participants ([Feh13]). The scheme is usually a result of a prior assessment
or case study of the particular application scenario, but needs subsequent adaptations
and adjustments [Vas12]. Therefore, the challenge is to design an incentive management
framework capable of combining and reusing existing and proven incentive mechanisms,
but also allowing for easy tweaking to particular application contexts. We make a strong
case for this in Section 3.4.3

Prior to enactment, an incentive scheme must be modeled and encoded by an incentive
designer. The incentive model used in the process needs to be based on widely-adopted
incentive practices in both traditional companies as well as in contemporary social
computing environments to allow for expressing of realistic incentives covering a wide
array of incentivizing use-cases.

As the incentive designer cannot be assumed to be a software developer with knowledge
of particular social computing platform APIs, a Domain-Specific Language (DSL) is to
be provided for encoding the incentives. The DSL allows the designer to provide reusable
domain-specific expertise in a portable, platform-agnostic fashion.

1.2.2 Research Questions

Based on the described application context, we can break down the necessary steps in
designing the envisioned incentive management framework into the following research
questions:

6

1. Identify fundamental incentive elements used in conventional companies/organiza-
tions and in contemporary social computing environments.

2. Design an incentive model comprising the incentive elements and constructs for
their composition.

3. Design a programming model for application of incentive mechanisms based on the
incentive model.

4. Design a supporting framework for coupling with social computing platforms and
executing/applying the incentives.

5. Design a DSL for facilitating the encoding and description of incentive schemes
suitable for social computing platforms.

1.3 Scientific Contributions
The goal of this thesis is to respond to the previously formulated research questions by
presenting the results of the research leading to development of models, techniques and
components of a general framework for automated incentive management for the emerging
social computing systems. Concretely, the following contributions are presented:

• A comprehensive, multidisciplinary review of existing literature on incentives as
well as an extensive survey of real-world incentive practices in social computing
milieu. Related publications: [STD13a]

• A low-level model of incentives suitable for use in socio-technical systems. Related
publications: [SDD13]

• An execution model, set of primitives and data structures for scheduling and
execution of incentive mechanisms, allowing the offering of incentives through a
service model; integrated into princ – a framework for incentive management for
social computing platforms. Related publications: [STD13b]

• pringl – a high-level domain-specific language for encoding complex incentive
strategies for socio-technical systems, encouraging a modular approach in building
incentive strategies, cutting down development and adjustment time and creat-
ing a basis for development of standardized but tweakable incentives. Related
publications: [STD14b, STD15b]

Overall, the goal of the thesis is to present a set of software tools for incentive
designers and operators that will allow them to capture the range and diversity of
incentive mechanisms currently in use in complex work settings. The tools are presented
as a unified platform for incentive management in Part II of the thesis. The platform is
intended to couple with different socio-technical systems. The platform’s components are
based on the listed contributions. An additional component – SmartCOM (Chapter 6)

7

Programming
Model

Incentive &
Rew. Model

(PRINC)

DSL
(PRINGL)

survey

Survey of
Incentive
Practices

• economic literature
• existing CS systems

simulation
modeling

• software agents

design science,
prototyping

• requirements
 elicited from survey

usability study

• feedback from
 developers

INCENTIVE MANAGEMENT PLATFORM (TOOLS)

qualitative
evaluation

• requirements
 elicited from survey

Design/Evaluation methodology

Inputs/Artifacts/Resources

Platform component

experimental
evaluation

• SmartSociety
 platform

functional
evaluation

• component
 prototypes

Interlayer
Middleware
(SmartCOM)

design science,
prototyping

• SmartSociety
 platform reqs.

Figure 1.4: Overview of the components, contributions and design/evaluation methodolo-
gies used. Dashed lines represent planned/future activities.

is technically not considered a contribution of this thesis. However, being a fundamental
part of the overall platform, for completeness purposes it was necessary to include the
details relevant to its design and functioning in the incentive management context.

It is important to emphasize that the goal of the thesis is not to design new incentive
mechanisms nor evaluate the effectiveness of existing ones.

1.4 Research Methodology

The work presented in this dissertation is motivated by the lack of general and configurable
incentive management solutions for (novel) types of social computing systems [KNB+13].
As shown in Chapter 2, previous research on incentives in social computing was mostly
focused on concrete, application-specific incentive design and validation. To the best
of our knowledge, there have been no previous attempts of formalizing a general and
comprehensive approach to incentive management for socio-technical systems.

In order to determine the appropriate incentive model granularity and expressiveness
grounded in existing incentivizing practices, an extensive survey of existing literature
and incentive schemes used in crowdsourcing companies was performed (Chapter 3). The
resulting incentive model and its elements were validated through simulation modeling
(Chapter 4). Simulation modeling is used in the computational social sciences to explore
theoretical ideas in the context of synthetic populations, particularly where real studies
would be impractical [GT05b, MN10]. Recently, this has been applied to crowdsourcing,
in order to generalize results which otherwise would be tied to a particular situation
[BFGK13]. Advantages and limitations of this approach are discussed in Section 4.3.

A programming model and the supporting software framework were then designed
around the incentive model to support its operation with arbitrary socio-technical

8

platforms. The effort followed the general guidelines of the “design science” research
methodology [HMPR04]. This included the design of specific artifacts, including support-
ing data structures, algorithms and mapping models for interaction with the underlying
socio-technical platforms (Chapter 5), which were developed following a prototyping
approach. Note that this is a widely accepted methodology in computer science when new
designs and models are proposed, with experimental evaluation often lacking [TLPH95].
The design requirements were formulated to target the identified shortcomings of existing
incentivizing approaches in socio-technical platforms. The prototypes were evaluated
functionally, as comparative evaluation was not possible due to non-existence of similar
systems.

In order to allow the use of the framework to domain experts, a DSL was developed.
The purpose of any DSL is to allow the user to solve quickly and more easily some
clearly identifiable problems in a domain, sacrificing in exchange the generality offered
by a general-purpose programming language. In this case, the challenge was to allow
quick and uniform/portable modeling of commonly used incentive patterns identified
in Chapter 3. In order to design a useful DSL, we followed the general guidelines
described in [MH10] to formulate design requirements, based on which we implemented
and evaluated the programming model. As is common practice during the prototyping
phase of DSL development, we evaluated the programming model qualitatively [SDKP06],
with particular focus on groundedness, expressiveness and reusability.

An interlayer middleware SmartCOM, originally planned for the purposes of com-
munication and virtualization in the SmartSociety platform, was developed from the
very beginning also to be able to serve to the incentive management platform, providing
the functionalities of direct incentive messaging, coupling with arbitrary platforms, and
managing sensitive worker data (Chapter 6). The middleware was evaluated both func-
tionally (through unit and integration testing) and experimentally (through experiments
to test the scalability as well as in-field runs integrated with the SmartSociety platform).

Figure 1.4 shows an overview of the described methodological approach.

1.5 Organization of the Thesis

This dissertation includes the contributions from original research papers that were
published during the author’s doctoral studies. The individual contributions have been
re-worked, extended and presented in a unified context. Corresponding papers are
referenced throughout the thesis, when relevant research components are presented. A
comprehensive list of relevant author’s publications is presented at the beginning of the
document.

The thesis is organized as follows:
Chapter 2 introduces the key theoretical concepts related to incentives, as well as an
overview or related work. Chapter 3 presents a survey of existing, real-world practices in
conventional companies and crowdsourcing platforms, allowing us to identify particular
incentive elements (subcomponents) and model them. The modeling process is described
in Chapter 4. The remaining chapters present the design of key components designed to be

9

interoperable and jointly provide a usable platform for automated incentive management.
In Chapter 5 the theoretical model introduced in the previous chapter is embodied into
an executive framework that can be coupled with external socio-technical, workforce
management platforms. The process of coupling, and the middleware that was designed
for this purpose is presented in Chapter 6. A programming model and a domain-specific
language capable of encoding incentive mechanisms executable on the incentive framework
are presented in Chapter 7. Finally, Chapter 8 recapitulates the initial research challenges,
describes the proposed solutions and discusses their advantages and limitations, as well
as the future research outlook.

10

CHAPTER 2
Theoretical Background &

Related Work

2.1 Theories of Motivation and Incentives

2.1.1 Intrinsic and Extrinsic Motivation

The fundamental concept related to incentives and rewards is the concept of motivation.
Motivation has been the topic of interest of psychology for decades, with different theories
emerging in different epochs. The resulting corpus of research lead to the commonly
accepted view of today [RD00], where motivation is classified into two major types –
intrinsic and extrinsic.

Intrinsic motivation is described as the driving force attracting individuals to perform
an activity for the inherent satisfaction associated purely with the act of performing that
activity. Extrinsic motivation, on the other hand, is the driving force pushing individuals
to perform an activity in which they find no inherent interest or satisfaction, but which
is associated with external rewards substituting the missing inherent satisfaction.

Intrinsic motivation is powerful and stable, often associated with curiosity, creativity,
competitiveness, playfulness and volunteering. However, it can also be highly dependent
on different social and environmental factors. On the other hand, extrinsic motivation is
exerted directly by an intervention strategy (e.g., incentive), making it more controllable,
but also more volatile, as its effects are gone when the intervention is absent. Extrinsic
motivation is important for performing activities which individuals consider important
and necessary but not inherently enjoyable (e.g., learning, working). The different
motivation types, and how they influence human behavior, are introduced and researched
as part of the Self-Determination Theory (SDT) [DR85].

From the operational aspect (which is of particular interest to us), the two motivation
types can be treated through the notion of reward. While the concept of reward is inherent
to the definition of extrinsic motivation, in case of intrinsic motivation the reward can be

11

considered as providing the opportunity to perform an activity or get better at it. Same
rationale is also adopted by the Operant Theory [Ski54]. This operationalization allows
us further to define incentivization as the process through which motivation is fostered
by application or provisioning of rewards.

As a practical example, this means that by incentivization we consider both a
promise of payment of a monetary reward (extrinsic motivation); as well as providing
an opportunity for an amateur astronomer to voluntarily participate in a citizen-science
galaxy identification program (intrinsic motivation). In both cases incentivization is
influencing individual’s locus of control – in former case the locus is external; in the latter
the locus is internal.

2.1.2 Principal-Agent Theory

Historically, there has been much more commercial interest in investigation of extrinsic
intervention strategies. The practical concept of ‘incentives’ appeared together with the
division of labor. Delegating productive tasks to others (workers) meant it was necessary
to make sure that workers, pursuing own interests, did not work against owner’s interests.
Incentives served primarily this purpose – to align interests of the owner and the workers.
This meant that the most important extrinsic operational models and theories were
originally developed by economists. An overview of historical development of the notion
of incentives and rewarding in economic thought can be found in [LM02].

The predominant model of incentives used in economy was set out in the Principal-
agent Theory (also known as Agency Theory) [BM98, LM02]. The theory introduces
the role of principal, corresponding to a manager in a traditional firm, who delegates
tasks to a number of agents, corresponding to employees under his supervision. It is
assumed that the agents seek to minimize their effort and risks while maximizing their
compensation. The principal wants to minimize the costs of agents’ labor and maximize
profits. Therefore, their interests diverge.

Every agent is unique, possessing unique qualities and properties. For the same task
different agents will put in different levels of effort, and will value that effort at a different
cost1. Additionally, every agent can, unobserved by the principal, perform certain actions
that go against principal’s interests. The theory implies that the agents know their
personal values for these properties (adverse selection) and know their intentions on
committing hidden actions (moral hazard). The fact that they remain secret to the
principal is called information asymmetry or information gap.

We assume that the principal knows just the statistical distribution of these values.
If the principal knew entirely the private information (signals) for every agent, then each
agent could be offered the ideal contract from principal’s point of view, i.e., paying him
just as little as it takes for him to perform the work with the given effort. However,
this not being the case, some agents get overpaid while others get underpaid, effectively

1All the costs and prices, as well as amounts of incentives are expressed as numerical quantities. It
is assumed that these numerical values include and represent also any other properties that the agents
and principal value, like risk, free time, gratification due to pleasant working environment, personal
satisfaction, prospect of promotion, fear of dismissal, etc.

12

inducing them not to accept working on the task. The principal would want to know and
measure as many agent signals as possible, because the more insight he gets into agent’s
capabilities and behavior, the more chances he has of setting up a better contract and
maximizing the profit (Informativeness Principle). So, the principal offers the agent an
incentive to disclose part of this information in order to compile a better-suited contract.

Incentives are an additional expense for the principal. However, if, based on the new
information, the principal can offer better contracts and consequently make more profit
by filtering out and motivating quality agents, then the investment in the incentives will
pay off. Therefore, the incentive designer is faced with an optimization problem that
involves human agents, whose individual behaviors cannot be foreseen. A way to solve
this problem lies in assembling an incentive strategy comprised of a number of simple
incentives whose effects on the majority of agents can be predicted closely enough, and
then adapt the strategy based on the concrete, context-specific feedback. In a traditional
company, that would mean that a manager would offer a combination of wage increases,
free days, promotions, bonuses and other benefits to the workers that achieve higher levels
of some wanted property (e.g., productivity, quality, knowledge, leadership). Increased
expenses for the principal are compensated not only by increased productivity, but in fact
much more by the selective effects of the incentives [Laz07]; by investing into incentives
the management gains the knowledge on which workers can produce more value to the
company and therefore should be stimulated to stay in the company.

The fundamental difficulty when applying the theory in practice lies in precisely
defining and subsequently measuring the different qualities of agents and their performance
(signals). As we previously mentioned, the Informativeness Principle states that each
contract should be designed with as many signal measurements taken into consideration
as possible. As it is in the interest of the agents to keep some signals private to them,
measuring those signals becomes the major obstacle. In practice, working assumes
performing a lot of complex and interrelated tasks, and often collaborating and depending
upon different people, so the principal problem translates to the inability of effectively
assessing the quality of a particular worker’s performance in a dynamic and complex
environment due to impossibility of quantifying and measuring all of the signals. This is
even more accentuated in social computing environments, where contracts (in the sense
of Agency Theory) are more persistent than the signals sets that need to be considered,
calling for frequent contract and incentive adjustments. Additionally, it also causes a
number of behavioral responses (dysfunctional behavior) in agents meant exclusively to
increase rewards while damaging the overall performance levels.

The agency theory implies a fully rational, self-interested agent, who always acts in
his/her best interest (so called homo oeconomicus). The incentive is always monetary and
acting on extrinsic motivation. In practice, this is not always a sufficiently accurate model.
For this reason, additional decision-making theories and multidisciplinary frameworks
were developed, taking into consideration various determinants of behavior, including
additionally factors of intrinsic motivation, environmental and social factors, and assuming
agents with bounded rationality. In [Feh13, Vas12] a comprehensive overview of different
incentive theories and decision-making frameworks is presented. However, while providing

13

more realistic and nuanced behavioral models, these frameworks are less suited for
technical abstraction and exploitation. The agency theory remains, therefore an important
theory that is practically applicable in appropriate working environments.

Both the agency theory, as well as the more complex decision-making frameworks
state that the effect of incentives on agent’s behavior is exhibited dually, through selective
(sorting) effects and performance effects. Selective effects are defined as the act of
revealing more precise details of an agent’s qualities, shortcomings and performance
parameters through monitoring the application of incentives or through agent self-selection.
Performance effects are changes in agent’s performance caused by behavior modified
through application of incentives.

Depending on the incentive and the application context one effect type may be more
expressed than the other. Also, one type may be valued more than the other by the
principal. For example, in piecework productive activities performance effects are usually
valued more, while in engineering disciplines discovery of creative workers may be in a
long run more profitable than the rewarding of the currently more productive ones.

2.1.3 Efficacy of Incentives

Although it sounds a commonplace that offering monetary rewards to someone should
gratify that person and induce him/her to perform better, different research efforts
demonstrated through empirical studies that it may not always be the case. For example,
in [FJ01] the authors empirically conclude that in some cases the monetary rewards
actually decrease intrinsic motivation. On the other hand, in [Laz00] for example, we
encounter strong empirical evidence that in specific cases monetary rewards do significantly
increase performance.

However, all the studies conclude that, depending on the environment, there always
exist types of incentives that can provide the necessary motivation. With some simple,
repetitive tasks, paying for performance increases productivity [Laz00, MW09, MKC+13].
Professionals that value a humanistic impact of their work (volunteers, community
workers, firemen, doctors, scientists, etc.) may be intrinsically motivated by having their
positive contribution of their work to the society shown [HS96, HA07]. In companies
with lengthy and complex tasks promotions and/or team-based rewards are effective
[VCV06, KO02]. Finally, as mentioned before, sometimes the sorting effects of incentives
are much more useful to the principal than possibly moderate performance effects.

The expertise on the expected effects of particular incentives is based on empirical
data usually formulated as very general claims about behavior of agents under certain
conditions and then proven by different empirical methods (see [Feh13, Ch. 6] for
an overview). However, as in many areas dealing with human behavior, absolute and
quantifiable incentives cannot be given in advance, but rather must be adapted for a given
collaborative environment after a careful study of the context and the habitual/cultural
background of the participants.

While choosing appropriate incentive strategies and adapting them to fit to specific
types of labor may prove a challenging task, it is a conclusive fact that incentives can

14

exhibit considerable selective or performance effects on workers, corroborated in practice
by the fact that most traditional businesses employ incentive schemes [Feh13, Ch. 1].

2.2 Related Work

Most related work in the area of rewarding and incentives originates from the economics,
organizational science, psychology, and applied research, mostly for military purposes. It
can be used to classify and substantiate the basic rewarding approaches, and expected
outcomes, and to simulate the responses to our incentive strategies. There is only a small
number of computer science papers that threat the topics of incentives and rewarding,
usually within particular application contexts (e.g. peer-to-peer networks, agent-based
systems). However, to the best of our knowledge, no other computer science paper threats
the topic in a comprehensive manner. In fact, most papers completely disregard the
existing theoretical foundations of incentives, and are concerned with solving only the
particular problem, as we will show in the rest of this section. The work [Vas12] is a
notable exception, discussing incentives designed to motivate participation in different
social computing platforms and relating them to the leading behavioral theories, and
presenting a vision for the future developments in this research area.

In [SHY+08a] the aim is to maximize p2p content sharing. Therefore, they define roles
of (content) forwarders and receivers. Forwarder gets a reward when the receiver reacts in
some way to the content being forwarded. They then define the prices of forwarding, and
receiving actions and assign the incentives based on that. Many other papers similarly
identify certain behavioral patterns and develop particular solutions to prevent unwanted
behavior or enhance existing algorithms to optimize certain metrics ([Kau11]).

The paper [FGP+09] discusses ways of modeling and implementing adaptable agent-
based systems. Each agent can be modified by adding or removing ”modules” that
the agent consists of. Cause for agent adaptability is usually a role change within an
organization.

In [Lit10] the authors are trying to determine quality of work achieved when a task is
done iteratively compared to when it is done in parallel. The difference is that in iterative
processes (when applicable), workers are shown previous attempts by other workers, which
can influence their work in positive or negative way. They conduct experiments with real
workers on Amazon Mechanical Turk, and prove statistically that, when applicable, the
iterative approach yields better (more accurate) results. The quality of the work in their
experiments is quantifiable, or voted by the crowd. This is an important finding, since it
justifies the choice of iterative execution model that we adopt.

In [MW09] two basic findings seem robust, and can be used as general conclusions
when modeling behavior of contributors: “First, that paying subjects elicited higher
output than not paying them (where increasing their pay rate also yielded higher output);
and second, that in contrast to the quantity of work done, paying subjects did not affect
their accuracy. Although surprising, this latter result may be related to an “anchoring
effect” in that subjects’ perception of the value of their work was strongly correlated
with their actual pay rate.”

15

In [MKC+13] the authors compare the performance between paid and volunteering
workers by running experiments on well-known commercial platforms (Amazon Mechanical
Turk, Zooniverse and Planet Hunters) and analyze different reasons for improved or
worsened performance. Interestingly, although the experiments bear much resemblance
to psychological experiments intended to measure intrinsic motivation in the context of
SDT, no reference to those experiments is made.

In [WD99] the authors investigate whether self-governing and self-coordinated human
teams (without a centralized authority) can be stable if individual members of such teams
follow appropriate rules. In [YST+10] the authors seek to maximize the extension of social
network by motivating people to invite others to visit more content (i.e. give contribution
measured in number of pages), and evaluate a number of concrete rewarding schemes
(e.g. Dynamic Differentiated Rewarding Scheme). In [HHTG13] the authors analyze two
commonly used approaches to detect cheating and properly validate crowdsourced tasks.
In [BCBM12] the focus is on pricing policies that should elicit timely and correct answers
from crowd workers. Paper [HRMF14] examines which psychological and monetary
incentives are used to lure social network users to click on malicious links. In [RHF13] the
authors analyze how incentive schemes relying on peer voting can influence the decisions
of workers from a crowdsourcing platform.

The major limitation of these research approaches (see [Ada11]) is that the findings are
applicable only for a limited range of activities, considered as conventional crowdsourcing
tasks, such as image tagging, multiple-choice question answering, text translation, or
design contests. Furthermore, difference in cultural background [Gun06] can also skew
the findings. However, the results of the listed papers, taken together, can provide some
generalizable findings that need to be taken into account when designing an incentive
management system. For example, the finding that the transparency of actors and
processes in a socio-technical system will likely improve the overall performance [HF13]
for us translates to the requirement of portability and transparency of incentives. The
findings of [GMS14] indicate that for performing more intellectually challenging tasks
smaller groups of expert workers may be more effective than web-scale crowd collectives.
Again, this is in line with our motivation of supporting novel socio-technical systems
employing smaller teams of experts rather than large anonymous crowds only. Similarly,
the aforementioned difference of effectiveness in different cultural backgrounds maps to
the requirements of usability and expressiveness, to offer to incentive designers a tool for
quick adaptations of general incentive mechanisms into the locally-effective versions.

Overall, in this thesis we take a different approach. Instead of investigating or
designing concrete incentives we design a general model and framework for defining,
adapting and monitoring incentive mechanisms, where supported mechanisms are elicited
from a broad survey of literature and practice in social computing companies and
volunteering organizations.

16

Part I

Modeling Incentives

17

CHAPTER 3
Existing Incentive and Rewarding

Practices

3.1 Classification of Incentive Mechanisms
The incentive mechanisms classification presented in this section covers most known classes
of incentives in general used in different types of human organizations – companies, non-
profit (voluntary) organizations, engineering/design teams and crowdsourcing systems.
Different organizations employ different (combinations of) incentive mechanisms to
stimulate specific responses from agents. The classification is derived by the author from:
a) a multidisciplinary review of relevant domain literature cited throughout this section;
and b) a survey of existing practices in social-computing platform presented in Section 3.4.
Note, for generality purposes, the following descriptions use the terms ‘principal’ and
‘agent’ from the well-know ‘principal-agent theory’ (Section 2.1). The theory introduces
the role of principal, corresponding to an owner or a manager of the organization, who
delegates tasks to a number of agents, corresponding to employees (workers) under his
supervision. The principal offers the agents an incentive to disclose part of their personal
performance information (signal) in order to compile a better-suited contract.

• Pay-per-performance (PPP) – PPP is one of the most commonly used incentive
mechanisms. The guiding principle states that every agent should be compensated
proportionally to his contribution. Labor types where quantitative evaluation can
be applied are particularly suitable for employing this mechanism.
A typical representative of the PPP incentive is the wage. As shown in Equation
(3.1), the wage (w) usually consists of a fixed compensation amount (salary, w0)
and a variable amount (winc). The variable amount depends on measurable signals
(si). Every signal is scaled by its weight coefficient (λi). Coefficient values depend
not only on the actual importance that the principal attaches to a particular signal,
but also on the accuracy of measurement that can be achieved.

19

w = w0 + winc

winc = β ·
[
λ1s1 + λ2s2 + · · ·+

(
1−

n−1∑
i=1

λi

)
sn

]
(3.1)

As the Informativeness principle suggests, the more signals we include, the more
accurate evaluation we obtain. However, each signal value contains an intrinsic,
normally-distributed measurement error. The incentive designer needs to take this
into account. A lower value of the coefficient reflects the inaccuracy of measurement.
In addition, each signal measurement has costs associated to it. In theory, the
additional money needed for paying the rewards is provided from the additional
profits obtained from the increased productivity. Therefore, designing an effective
PPP incentive requires finding a proper trade-off between the costs of measurement
and the accuracy obtained. A signal value can also represent a mark based on a
subjective performance evaluation by a supervisor.
In practice, this type of incentive strategies shows significant, verifiable productivity
improvements of 25-40% when used for simple, repetitive production tasks, both in
traditional companies ([Laz00]), as well as with Human Intelligence Tasks (HITs)
on Amazon’s Mechanical Turk platform ([MW09]). Other studies, cited in [Pre99],
conclude that about 30-50% of the productivity gain is due to the filtering and
attraction of better workers, thanks to the selection effect of this kind of incentive.
This is an important finding, because it explains why even with relatively small
amounts of incentives it is possible to achieve higher profits. In fact, increasing the
amount of incentives for the same effort over time can lead to the anchoring effect,
causing the agents to overestimate personal qualities. Keeping them reasonably
low enables the selection effect, while not producing the anchoring effect.
Problems that characterize the application of PPP are typically: measurement
inaccuracy, choice of signals and multitasking (see Section 3.3). This is in accordance
with the newly-observed results from [MW09], which confirm that the quality of
work does not increase if the productivity is the only signal evaluated. Additionally
applying some aggregate measures of performance can help alleviate these problems.
Another problem that may arise due to an implemented PPP scheme is the decreased
solidarity among workers, potentially hampering the transfer of know-how and
experience among workers. Again, the countermeasures are similar to the ones for
multitasking, especially team-based strategies including apprentice relations, where
the team gains are related to the professional progress of novices.
As already explained, the context in which a particular incentive strategy is imple-
mented can determine its effectiveness. As demonstrated in [HS96, HA07] PPP
may not be an appropriate strategy to choose in cases where the agents are highly
interested in the quality of the output. That includes domain experts from almost
any area, who due to their expertise can usually earn enough money, so their

20

primary motivation is not the monetary reward, but the quality of the product, or
the reputational gain. PPP is also not suited for large, distributed, team-dependent
tasks, where measuring individual contributions is inherently difficult. However, it
is frequently used to complement other incentive schemes.

• Quota-systems & Discretionary bonuses –
These mechanisms are tightly related to the PPP mechanism. The conditions for
applying them are the same as in case of PPP. We observe and measure the same
signals. What is different is that instead of rewarding agents proportionally to their
productivity, the principal sets a number of performance-metrics thresholds. When
an agent reaches a threshold it is given a one-off, predefined bonus. Quota-systems
evaluate at predefined moments whether a performance signal surpasses a threshold
(e.g., yearly bonuses). On the other hand, discretionary bonuses are paid whenever
an agent reaches a performance level for the first time (e.g., upon reaching a
landmark number of customers).
Being exposed to the issues of inaccurate measurements, these incentive strategies
also suffer from appearance of multitasking. Additionally, two other phenomena
have been observed [Pre99]:

– The amount of effort is always dropping after an evaluation if the agent
perceives the time until the next evaluation as long enough;

– When performance level is close to an award-winning quota motivation is
significantly higher than the motivation of agents who have already exceeded
the quota or feel they have no realistic chances of achieving it (on time).

Therefore, the evaluation intervals and the quotas should be set in such a way that
they can be reachable with a reasonable amount of additional effort, albeit not
too easily. It is clear that these two parameters are highly context-dependent, and
therefore can be determined only after observing historical records of employee
behavior in a particular setup. Ideally, these parameters should be dynamically
adjustable.

• Deferred compensation – This mechanism is similar to a quota system, in that
an evaluation is made at predefined points in time. The subtle but important
difference is that deferred compensation takes into account three points in time
(t0, t1, t2). At t0 an agent is promised a reward after successfully passing a deferred
evaluation at t2. The evaluation takes into account the period of time [t1, t2] and
not just the current state at t2. In case t1 = t0 the evaluation covers the entire
interval.
Deferred compensation is typically used for incentivizing agents working on complex,
long-lasting tasks. The advantage is that it allows assessing more objectively an
agent’s performance from a time distance. At the same time, the agent is given
enough time [t0, t1] to adapt to the new conditions, and then to prove the quality
of his work over a period of time [t1, t2]. The disadvantage of this mechanism is

21

that it is not always applicable, since agents are not always in a situation to wait
long periods for a significant part of their compensation. A common example of
this mechanism is the referral bonus. Referral bonus is a reward for employees for
recommending or attracting new, suitable employees or partners to the organization.

• Relative evaluation – Although this mechanism can have many variations, the
common underlying principle is that an entity is evaluated with respect to other
entities within a specified group. The entity can be an agent (human), or an artifact
(movie, document, product). The relative evaluation is used mainly for two reasons:

– By restricting the evaluation to a closed group of entities (individuals), it
removes the need of setting explicit, absolute performance targets in conditions
where such targets cannot be easily set, due to dynamic and unpredictable
nature of the environment.

– It has been empirically proven that people respond positively to competition
and comparison to others. (e.g., in [TZ09]).

Much of the initial success of Amazon and eBay can be attributed to the usage of
good reputation systems [RKZF00], which in turn rely on relative evaluations of
products by the customers.

• Promotion – Empirical studies [VCV06] confirm that a prospect of a promotion
increases motivation. A promotion is the result of competition for a limited number
of predefined prizes. The prize is usually a higher position in the organization’s
hierarchy, bringing along higher pays, more decision-making power, more respect
and esteem, although other prizes are also possible. Often, the benefits enjoyed
by the agent after a promotion are disproportionately higher after a promotion
compared to the benefits on the previous position. The reason for this is not to
reward fairly the person currently holding the position, but rather to make the
future contenders for that position more competitive. In fact, the more an agent
moves up the hierarchy, the more the rewards become disproportionate to personal
abilities and productivity, moving away from the PPP principles and focusing on
the competitiveness.
Promotion is usually treated under the tournament theory ([Laz07]), although other
models also exist. The advantage of promotions is that they also eliminate centrality
bias and force positive selection, as management cannot select inappropriate persons
to advance, as that would mean transferring a great responsibility to unreliable
persons, and ultimately produce greater costs to the principal. The drawback is
that by valuing individual success, its application can de-motivate agents from
helping out each other and engaging in collaborations. Promotion often incorporates
subjective evaluation methods, although other evaluation methods are possible.

22

Ta
bl
e
3.
1:

Le
ft
:
A
do

pt
io
n
of

in
ce
nt
iv
e
m
ec
ha

ni
sm

s
in

di
ffe

re
nt

bu
sin

es
s
en
vi
ro
nm

en
ts

(+
:l
ow

,+
+

:m
ed

iu
m
,+

+
+

:h
ig
h)
.

R
ig
ht
:
D
iff
er
en
t
ap

pl
ic
at
io
n
co
ns
id
er
at
io
ns
.

23

• Team-based compensation – This mechanism is used when the contribution of
individual agents in a team environment cannot easily be identified. With this
mechanism, the entire team is evaluated and rewarded. The reward is then split
among the team members. Team-based compensation is susceptible to different
dysfunctional behavioral responses. Worse performing agents are effectively hiding
within the group. At the same time, the performance of the better performing
agents is ‘diluted’. Furthermore, teams often exhibit the free-rider phenomenon
[Pre99] – a situation in which individuals waste more resources (time, money,
materials, equipment) than they would if individual expenses could be measured.
The consequence is that the total expenses of a team surpass the summed up
expenses of independent individuals. Minimizing these negative effects is the
primary challenge when applying this mechanism [KO02]. The most common
variants are the team-level compensation and profit sharing.
When the team-level compensation is used, then the entire team is treated as an
individual. After evaluation, the team is compensated by a (usually) monetary
reward, that is then equally split among all team members. However, the scenario
in which a reward is equally divided among members can lead to the dysfunctional
behaviors we described above. In some cases, the better-performing team members
will themselves naturally exert pressure on the free-riders, and thus weaken their
negative effects. However, in cases where this does not happen, an attempt to
differentiate individual efforts can be made. Peer voting is the most effective group
evaluation mechanism in such cases, and it may be employed to differentiate agents
and split the reward accordingly. This is clearly an example of a hybrid approach
combining the idea of a team-based incentive, together with an incentive strategy
targeted at individuals to eliminate dysfunctional behavior. Some studies (e.g.,
[PCE10]) have shown that hybrid incentive strategies are indeed more effective
than the pure team-based compensation.
The decision on the reward amount can be a matter of subjective or quantitative
evaluation. Even with a constant high level of effort, the performance of the team can
vary throughout its lifetime, depending on the compactness and interconnectedness
of the group and the task that the team is working on. So, finding appropriate
reward amounts becomes a difficult task [HDG00]. One way to avoid having
to decide on the amount of compensation in cases of unknown outcome of the
collaborative effort is to tie it to the profit the company (or a company section)
makes. This strategy is called profit sharing.
Quantitative or subjective evaluation is usually used, often in combination with
peer voting. The incentive action is usually a monetary reward, divided among
team members equally or according to individual ratings.

• Psychological incentive mechanisms – Psychological incentives are the most
elusive, making them hard to define and classify, since they often complement other
mechanisms or even occur within them. They are mostly meant to target intrinsic
motivation of individuals. They can be operatively described as mechanisms that

24

must: a) relate to human emotions; b) be advertised by the principal; c) be perceived
by the agent.

The already mentioned incentive strategy of Stack Overflow, apart from being an
example of relative evaluation strategy at the same time employs a number of
psychological incentive mechanisms, like: status, points, badges. They serve not
only to attest to the quality of contributors and answers, but also to motivate
further contributions. If the points and statuses were not shown to the others and
advertised, but rather used for evaluation only, we would still have the indirect
evaluation, but would miss out on the possibility to motivate users. Similarly,
psychological incentive mechanisms can be coupled with a quota system. We
already mentioned how agent’s productivity/motivation rises upon nearing a bonus
quota. Even though an agent is well-aware of the quota he is trying to achieve,
the principal nonetheless advertises how ‘little’ it is still left to achieve the goal to
further boost the motivation. Acting upon human fear is also a tactics commonly
(mis)used (e.g., threat of dismissal or downgrading). The threat of being dismissed
or downgraded is a powerful motivator, although very stressful for agents and
causing different types of unforeseeable dysfunctional behavior.

Perception of the incentive by the agent affects its effectiveness. As the perception
is context-dependent, choosing an adequate way of presenting the incentive is not a
trivial decision. For example, choosing and advertising the employee of the month
in societies where the sense of common good is highly valued can be very effective.
In more individually-oriented environments it is the competition that drives the
performance. A principal may choose to exploit this fact by showing performance
comparisons to (targeted) agents.

Psychological incentives have long been used in video games to elicit player ded-
ication and motivation. Today, the same techniques (gamification) are used to
make boring tasks (product reviews, customer feedback) appear more interesting
and appealing. As a large number of business models of Internet-based companies
depend on the revenues obtained through placing targeted advertisements, incen-
tivizing customers to provide accurate product reviews and leave feedback becomes
fundamentally important.

3.2 Composition of Incentive Mechanisms

In practice, employing a single incentive mechanism is usually not enough. Most
organizations need to combine different incentive strategies to target different work
roles and employees with different statuses. If we look at an engineering company,
it is quite common for it to be organized in teams at the lowest level. Such a
company would typically have teams of engineers developing the products, testing
teams, marketing teams, sales teams, IT teams, customer support teams, etc. In
addition, there are employees responsible for providing other services necessary for
the running of the company (finance, HR, security, transport, supplies). A number

25

of teams is forming a unit responsible for a family of related products, or a number
of related projects. Different teams are led by managers, who in turn respond to
higher-positioned managers (e.g., project managers, product managers, division
managers). Within each team engineers can have the ranks, like: junior engineer,
senior engineer, distinguished engineer. More experienced engineers usually act as
team leads, i.e., highly experienced professionals who drive the technical aspect of
product development.

Such a company may decide to use a profit-sharing scheme at the division level
– i.e., reward with a bonus all the teams in the division by a profit share if the
financial results of the division are positive. In addition to that, individual efforts
within a team can be stimulated by individual incentive strategies. In some teams
where the contribution can be easily established (e.g., number of customer cases
solved in case of customer support) PPP may be used to filter and keep the best
employees. In other teams, we can use a combination of the subjective evaluation
and peer voting to assess the contributions and adjust the variable part of the
salary. Team members are given an opportunity to advance in ranks and into
managerial positions and keep advancing further if they accomplish certain goals.
Every promotion brings along an increase in pay but also in responsibility. Top
managers are evaluated exclusively with respect to the success of the company, and
the payment of bonuses may be deferred. Additionally, the company may decide to
give out referral bonuses, and award “employee of the year” awards.

Composing incentive mechanisms is often not simply wanted by an organization
to improve performance, but also required to prevent dysfunctional behavior (pos-
sibly arising from application of original incentive mechanisms). At the end of
Section 3.4.2 we describe the former incentive strategy of the company Locationary,
which nicely showcases this: the originally introduced PPP was causing too many
non-profitable contributions by the crowd workers; subsequently a profit-sharing
team-based mechanism was composed into the scheme to influence the quality of
the contributions.

Table 3.1 presents a condensed view of different usage environments and application
considerations of the incentive mechanisms we described.

3.3 Identifying Composing Parts of Incentive Mechanisms

The related work we analyzed (Chapter 2) has not gone past the level of granularity
of incentive mechanisms. We believe that this in great measure prevents development
of generic handling of incentives in information systems. The goal of this section is to
identify finer-grained building elements that can be individually modeled and used in
information systems to compose and encode the incentive mechanisms.

By analyzing the previously described incentive mechanism categories in Section 3.1
we can identify the following incentive elements, i.e., the atomic subcomponents in terms
of which all mentioned incentive mechanisms can be expressed (Figure 3.1):

26

Figure 3.1: An entire incentive strategy of an organization can be composed using smaller,
modelable components – incentive elements.

1. Evaluation method – provides inputs (signals) on agent performance to the
incentive mechanism. Those inputs are evaluated in the logical context defined in
the incentive condition.

2. Incentive condition – contains the business logic of the incentive mechanism,
i.e., the logical rules for application of certain rewarding actions.

3. Rewarding action – a concrete activity exerted upon targeted agents meant to
influence their future behavior. Represents the outcome of the incentive mechanism.

3.3.1 Evaluation Methods

Individual Evaluation Methods

As the name suggests, these methods are used to evaluate agents individually, i.e. not
explicitly conditioning their scores with the scores or opinions of other agents.

Quantitative evaluation represents the rating of individuals based on measurable
properties of their contribution. Quantitative evaluation is attractive because it does not
require human participation and can be entirely implemented in software. It is considered
to be a precise and fair method. However, as it is not suitable for all purposes, it is often
combined with other methods.

Some labor types are suitable for precisely measuring the individual contributions
of an agent (e.g., OCR correction, image labeling). In this case the agent can simply
be evaluated on the number of units processed. But apart from the most primitive
labor types, evaluating an agent’s performance requires evaluating different performance
aspects (i.e., measurable signals), the most common being: productivity, effort and
quality of product. Different metrics are usually taken into consideration with different

27

weights, depending on their importance and measurement accuracy. For example, in case
of a product assembly line, the metric can be the number of units assembled, but also
(with lower importance) the quality of assembled products, since the quality of work of a
particular worker cannot always be precisely established. In other cases, e.g., in case of
telemarketing where different phone agents are covering different neighborhoods, towns
or ethnic groups, effort of agents may be highly valued compared to the number of units
sold, because the success of sales of a particular product may depend on the geographical
location of the area, wealth, climate or local habits. Effort is always highly valued metric
in cases where agents are not working under equal conditions.

Problems that arise here are the measurement inaccuracy and the difficulty of choice of
proper signals and weights. An additional problem is the phenomenon called multitasking.
In spite of its counterintuitive name, it refers to agents putting most of the effort into
tasks that are subject to incentives, while neglecting other tasks, subsequently damaging
overall performance [HM91]. Principal can fight this kind of misbehavior by additionally
employing subjective evaluation.

Subjective Evaluation Many aspects of human work are not quantifiable. The
reasons can be:

• there are no clear outputs to evaluate;

• contribution has properties understandable and valuable to humans only;

• tasks are too complex to be clearly defined.

For example, whether a logo design is good or not is ultimately a matter of aesthetic
preference of the customer. In such cases we need to substitute an objective measurement
with a human, subjective assessment of the quality of work. In this case a human acts as
a mapping function that quantifies human-oriented work aspects by wrapping together
all the undefinable signals into one subjective assessment signal. Subjective evaluation
is a widely used evaluation mechanism. Its advantages are simplicity and low cost, but
its implementation as a human-based task makes it inherently imprecise and prone to
dysfunctional behavioral responses.

Some of the phenomena that characterize this evaluation method that have been
observed in practice [Pre99] include:

• Centrality bias – ratings concentrated around some average value. Not enough
differentiating of ‘good’ and ‘bad’ workers.

• Leniency bias – discomfort to rate ‘bad’ workers with low marks.

• Rent-seeking activities – actions taken by employees with the particular goal of
increasing the chances of getting better rating from the manager, often including
personal favors or unethical behavior.

• Embellishment – tendency of managers to rate subordinates better than deserved if
manager’s own reputation or team-bonus depend on it.

28

• Theft – tendency of managers to consistently give lower scores to subordinates to
save budgeted money if the compensation of the employees depends on the scores.

Centrality bias and leniency bias can be prevented by checking if the ratings follow a
distribution with specified parameters. However, this is not always preferable in practice,
because it could motivate managers to perform data fitting. The usual solution for these,
and also for other listed problems, is to make the ratings of managers subject of incentives
as well. In practice, it means punishing a manager if his ratings of individual subordinate
employees significantly or consistently differ from the ratings of other managers who
worked with them, or from the ratings of their co-workers.

Group Evaluation Methods

Group evaluation methods evaluate an agent by aggregating assessments of community
members.

Peer Evaluation (Peer Voting) is an expression of collective intelligence where
members of a group evaluate the quality of other members. In the ideal case, the
aggregated, subjective scores represent a fair, objective assessment.

The better the voters know the object of the vote, the better they can judge it. With
the voting group large enough, this method eliminates or alleviates the problems that
subjective and quantitative evaluation suffers from. Centrality and leniency biases are
alleviated by the fact that the votes will be better distributed, as the aggregated scores
cannot be subjectively influenced. Since there is no more a single voter who decides,
activities that target single voter’s interests, like embellishment, theft and rent-seeking
are eliminated. Since a large number of different and professional peers evaluates different
performance aspects, that leaves less space for multitasking activities.

This method also suffers from different weaknesses. In small, interconnected groups
the voters can be unjust or lenient because of personal reasons. They can also feel
uncomfortable and exhibit dysfunctional behavior if the person being judged knows their
identity. Therefore, anonymity is often a favorable property in such cases. Another way
of fighting these dysfunctional behaviors is to make voters subject to incentives: votes
get compared, and those that stand out are discarded. At the same time one keeps track
of agent’s voting history to prevent consistent unfair voting.

When the community consists of a relatively small group of voted persons and a
considerably larger group of voters, and both groups remain stable throughout the time,
use of this method is particularly favorable. In that case, the voters have a good overview
of much of the voted group. Since the relation voter-voted is unidirectional and will
probably not change over time, voters do not have interest to exhibit dysfunctional
behavior. This pattern is very common on the Internet today.

The method works as long as the size of the voted group remains small enough. As
the voted group grows, voters become unable to catch up and acquire all the new facts
necessary to pass fair judgments. Then they opt to rate better those persons or artifacts
they know or feel have traditionally good reputation ([Pri76]). This phenomenon is known
as preferential attachment, or colloquially “the rich get richer”. It can be noticed on news

29

sites that attract high numbers of user comments. Newly arriving readers usually tend
to read and vote the most popular comments only, leaving many interesting comments
practically unvoted. Therefore, determining the group of voters and voted agents is
crucial when designing instances of this incentive mechanism.

In traditional businesses, the major obstacle for applying this method was the cost,
both in time and in money. Additionally, it was technically challenging, if not impossible,
to apply this method often enough, and with appropriate voting groups. However, use
of information systems, the Internet and social networks permitted a drastic decrease
in application costs. A number of implementations already exist on the Internet (e.g.,
Like-button, binary voting, star voting, polls) but we lack a unified model able to express
their different flavors and specify the voters and voted groups. Again, the act of voting
is modeled as a human task, requiring active human participation.

Indirect Evaluation Since human performance is often difficult to define and
measure, it is common to evaluate humans based on properties and relations among the
artifacts they produce. As the artifacts are always produced to be consumed by others,
the decision on their quality is left to the community.

The artifacts are connected by various relations among themselves (contains, refers-to,
subclass-of, etc.), as well as with users (e.g., author, owner, consumer). The method
of mapping properties and relations of artifacts to scores is non-trivial in general case.
An algorithm tracks relations and past interactions of the agent or his artifacts with
the artifact that is being evaluated and calculates the score. For example, in [Kau11,
SHY+08b] the authors evaluate users of peer-to-peer networks by monitoring the content
contributions of the users. Similarly, scientists can be evaluated by the number of
publications in journals, which in turn are ranked by the impact factor, which depends
on the number of citations scientists make. The well-known e-labor (freelance) platform
UpWork1 uses a proprietary algorithm for worker evaluation and ranking [DS14]. Usually,
a tailor-made algorithm needs to be developed, or an existing one adapted to a particular
environment. The major difference from peer evaluation is that here the agent does not
actively evaluate the artifact, and hence the algorithm is not dependent on interacting
with the agent.

Another efficient way of fighting this is by employing peer voting to evaluate artifacts.
If we have favorable conditions for applying low-cost peer evaluation on artifacts then we
eliminate the problem of dummy artifacts. It is also an added value for the accuracy of the
algorithm. As the conditions for applying peer evaluations within Internet communities
are usually favorable, this is a very commonly employed technique today.

Advantages and drawbacks of this method fully depend on the properties of the
particular algorithm. If the algorithm is suitable it will exhibit fairness and prevent false
results. The cost of this method also depends on the costs of developing, implementing
and running the algorithm. A common problem is that users who know how the algorithm
works may try to deceive it by outputting dummy artifacts with the sole purpose of
increasing their scores. Detecting and preventing such attempts requires amending the
algorithm, further increasing the costs.

1https://www.upwork.com/ Result of merger between oDesk and Elance.

30

https://www.upwork.com/

Table 3.2 lists some common application and composability considerations for evalua-
tion methods presented here. It also indicates how drawbacks of a particular evaluation
method can be alleviated by combining them with other methods.

31

Ta
bl
e
3.
2:

A
pp

lic
at
io
n
an

d
co
m
po

sa
bi
lit
y
co
ns
id
er
at
io
ns

fo
r
ev
al
ua

tio
n
m
et
ho

ds
.

32

3.3.2 Rewarding Actions

In order to induce a future specific behavioral response from agents the principal must
perform one or more rewarding actions over them.2 The application of the actions is
often colloquially called rewarding or incentivizing. A rewarding action can be one of the
following types:

• Reward

• Structural change

• Psychological action

Rewards (but also: penalties, fines) can be modeled as quantitative changes in
parameters associated with an agent or a group of agents. For example, a parameter
can be the wage amount, which can be incremented by a bonus, or decreased by a
penalty. Similarly, a parameter can be an agent’s status, or a collection of objects in
agent’s possession (e.g., FourSquare motivates users by assigning them different badges
for different check-in patterns)

Structural changes are an empirically proven [Laz07] motivator. A structural change
does not imply strictly position advancement/downgrading in the traditional tree-like
management structures. It also includes belonging to different teams at different times or
collaborating with different people. For example, working in the team with a distinguished
individual can diversify an agent’s experience and boost his career. One way of modeling
structural changes is by graph rewriting [BH02].

Psychological actions. Although all incentive actions work by exerting a psychological
effect, what we denominate as psychological actions are only those in which an agent
is influenced purely by being presented some information. For example, we may decide
to show an agent only the results of a couple of better-ranking agents rather than the
full rankings. That way, the agent will not know his position in the rankings, which can
be beneficial in two ways – by preventing the “anchoring effect” [MW09] for agents in
the top part of the rankings and by preventing discouragement of agents in the lower
part. Psychological actions do not include any explicit parameter or position change, but
the diversity of presentation options means that defining a unified model for describing
different psychological actions is still an open challenge. Effects of these actions are hard
to measure precisely, but apart from empirical evidence [FJ01], their broad adoption on
the Internet today is another clear indication of their effectiveness.

Apart from the type of the rewarding action, another crucial aspect of the action’s
efficacy is the timing of the action (Figure 3.2). We can distinguish the moments: 1)
when the action is announced/advertised to the agent; and 2) when the action is applied.
The period between the two moments can be used to evaluate agent signals. The period
spanning from the moment of the announcement and lasting possibly for an unspecified

2A punishment is simply a term used to describe a rewarding action meant to prevent a specific
behavior instead of inducing one.

33

amount of time, but at least until the moment of the application of the action is called
the effectiveness range.

announced

t

applied

possible effectiveness range

possible evaluation range

Figure 3.2: Application and effectiveness of rewarding actions.

3.3.3 Incentive Conditions

Incentive conditions state precisely how, when, and where to apply rewarding actions.
Each consists of at most three components (subconditions):

• Parameter component expresses a subcondition in form of a logical formula over
a specified number of parameters that describe an agent. For example: such a
condition could filter out all the agents whose productivity is less than the team’s
average.

• Time component is used to formulate a condition over past behavior of an agent. For
example: select all the agents who within last three months had an unsatisfactory
productivity level.

• Structure component filters out agents based on the relations they take part in.
This component can be used to select members of a team, or all the collaborators
of a specific agent.

By using all three components at the same time we can specify a complex condition,
e.g.: “incentivize the subordinates of a specific manager, who over the last year achieved
a score higher than 60% in at least 10 months.”

Incentive conditions are part of the business logic, and as such are stipulated by
the domain experts empowered by the principal to manage the workforce. However, a
small organization can take an advantage of some good practices and employ pre-made
incentive models (patterns) adapted to fit particular organization’s needs. Feedback
information obtained through monitoring execution of rewarding actions can be used to
adapt condition parameters.

34

3.4 A Survey of Incentive Mechanisms in Real-World
Social Computing Platforms

3.4.1 Survey Criteria

In 20123 we surveyed over 1600 Internet-based companies and organizations that describe
themselves using keywords such as ‘social computing’ or ‘crowdsourcing’. We investigated
their business models and contracts offered to users/participants/workers, as described
on organizations’ websites. The main goals of the survey were:

• To demonstrate that the classification we had established mostly based on the
multidisciplinary literature survey is valid and applicable also for internet-based
social-computing business models.

• To gain a better insight into the usage patterns of different incentive mechanisms,
evaluation methods, rewarding actions, and combinations thereof.

We filtered the companies in such a way to exclude those that fulfill any of the
following criteria:

• Crowd-funding websites, humanitarian & community-benefit sites or voluntary-
contribution sites.

• Sites who only act as intermediaries to establish links between human service
providers and consumers (often earning by charging commission for enabling secure
transaction environment), except when they employed incentive mechanisms to
increase the numbers and quality of participants.

• Sites which just provide a technical solution or environment to do the business.
• Sites that directly sell products created/owned by the crowd – e.g., stock photogra-

phy.
• Sites that do not disclose or clearly/publicly state the incentive scheme.
• Sites that were not in one of the following languages: English, German, Spanish,

Portuguese, Italian.

We also decided not to include companies employing gamification approaches into
our classification part of the survey. There are several reasons for this decision:

• Every gamification approach can be considered a psychological strategy, with
quantitative evaluation.

• A company rarely bases its principal incentive strategy on gamification only.
• Many companies employing gamification are not primarily social-computing com-

panies, but traditional companies relying on gamification elements to attract users
for performing uninteresting tasks.

3Please note that some information in this section may be outdated due to the highly dynamic nature
of the social-computing market.

35

However, we acknowledge the growing importance of psychological incentive mech-
anisms and including gamification approaches. For example, SAP (within their SAP
Community Network4) offers their employees to build up reputation by writing articles,
guides, samples, answering question, etc. That not only helps other team members
get useful information more easily, but also raises the reputation of the employee that
transfers the knowledge. The contributors are scored, and score-boards are publicly
available. Even though the score does not bring any concrete rewards, the reputation
gained can implicitly bring better career advancement opportunities and higher respect
from colleagues.

Another example of how gamification can incentivize employees is the use of games
in teaching employees to better understand, use and represent the products of their
own company (e.g., IBM Innov85). While employees get distracted from dull tasks for
some time and learn something in the process, the company gets better skilled and more
competitive workers. Finally, yet another gamification example can be seen in a project
run by the National Library of Finland6, where contributors are engaged in a game, with
the true purpose of correctly recognizing scanned material from the library archives.

3.4.2 Survey Results

After applying the filtering rules stated above, out of over 1,600 examined companies
we identified 140 companies (8.75%) that employed and clearly described the reward-
ing/incentive practices (types of awards, evaluation methods, rules, conditions). We then
classified them according to the previously described classification (Section 3.1).

The most surprising finding was that 59 of the 140 companies (42%) employed a
very simple ‘contest’ business model employing relative evaluation incentive mechanism,
meaning that a creative task is deployed to the crowd. Each crowd member (or entity)
then submits a design. The best design is in the vast majority of cases chosen by
subjective evaluation (85%). That was expected, since the company buying the design
reserves the right to ultimately decide on the best design. In fact, in many cases, it is the
only possible choice. The remaining ‘contest’ companies employ peer evaluation (10%)
or quantitative evaluation (5%). When using peer evaluation, the company delegates the
decision on the best design to the crowd of peers, while taking the risk of producing and
selling the design. In some cases, e.g., programming contests, the artifacts are evaluated
quantitatively, by automated testing procedures. It is worth noticing that using peer
or quantitative evaluation produces quantifiable ratings of the users. In such cases,
individuals are better motivated to take part in future contests even if they feel they
cannot win, because they can use their ranking as a personal quality proof when applying
for other jobs or just as a matter of prestige. We expect to see an increase in the latter
two evaluation categories, as they help improve the quality of designs if the crowd is
large, contains quality individuals, and is properly motivated. However, building up and

4http://scn.sap.com/
5http://www.ibm.com/innov8/
6http://www.digitalkoot.fi

36

http://scn.sap.com/
http://www.ibm.com/innov8/
http://www.digitalkoot.fi

managing such a crowd also implies the use of other incentive mechanisms. The contest
model alone dissuades good (but not the best) agents, who rarely win the contests.

Apart from the 59 organizations running contests, relative evaluation is used by
another 16 organizations, usually combined with various other mechanisms. This makes
relative evaluation by far the most widely used incentive mechanism on the social
computing market today (54%) (Table 3.3). This is in contrast with its use in traditional
businesses, where it is used considerably less [Arm10], as the implementation costs are
much higher.

Incentive Mech. Type No. of Companies Percentage
Relative Evaluation 75 54%
Pay-per-performance 46 33%
Psychological 23 16%
Quota Sys. / Disc. Bonus 12 9%
Deferred Compensation 10 7%
Promotion 9 6%
Team-based Compensation 3 2%

Table 3.3: Use of incentive mechanism categories by social computing companies.

The other significant group are the companies that pay the agents for completing
human microtasks. We found 46 such companies (33%). Some of them are general
platforms for submitting and managing any kind of human-doable tasks (like the em-
blematic Amazon Mechanical Turk7). Others offer specialized human services; most
commonly: writing reviews, locating software bugs, translating or performing some
simple, location-based tasks, etc. What all those companies have in common is the use of
pay-per-performance mechanism (PPP). The tasks range from very simple (in majority
of cases) to more imaginative and complex, like locating bugs. Quantitative evaluation is
the method of choice in most cases (65%). Quantitative evaluation sometimes produces
a binary output, e.g., when submitting successful/unsuccessful steps to reproduce a
bug. The binary output allows expressing only two levels of the quality of work, so the
agents are rewarded on a per-task basis for every successful completion. In that case, the
company usually requires no entry tests for joining the contributing crowd. In other cases,
the quality of work is not easy to establish and the output is proportional to the quantity
of finer-grained units performed (e.g., word count in translation tasks) but the agents are
usually asked to complete entry tests. Pay rate for subsequent work is determined by the
test results. Other evaluation methods include subjective and peer/indirect evaluation,
both at 17%. It is interesting to note that the peer evaluation for double-checking the
results is not frequently employed, as companies find it cheaper to test the contributors
once and trust their skills later on. However, as companies start to offer more complex

7http://www.mturk.com/

37

http://www.mturk.com/

human tasks, quality assurance becomes imperative, so we expect so see a rise in peer
and indirect evaluation. Eleven companies combined pure PPP with other mechanisms.

Only three companies employ a combination of 4-5 different mechanisms (Table 3.4).
The most famous of them is uTest.com. As their business model requires them to have a
large crowd of dedicated professionals, it becomes clear why they employ more than just
simple PPP.

ScalableWorkforce.com is the only company in our study that advertises the impor-
tance of crowd (workforce) management. They offer the tools for crowd management on
Amazon Mechanical Turk to their clients. Their tools allow for tighter agent collaboration
(creating a sense of community among workers), workflow management, performance
management and elementary career building.

No. of Inc. Mech. No. of Companies Percentage
1 116 83%
2 15 11%
3 6 4%
4 3 2%

Table 3.4: Number of incentive mechanisms used by social computing companies. Over
80% of the companies employ only one mechanism.

Twelve companies (8.5%) rely uniquely on psychological mechanisms to assemble
and improve the agent community. The common trait is relying on indirect influence
of rankings in agent’s (non-virtual) professional life. For example, avvo.com attracts
large communities of doctors and lawyers in the US who offer free responses and advice
to people visiting the website. Quality and timeliness of professionals’ responses affect
their reputation rankings, which can be used as a prestige advertisement to attract
actual paying customers to their private practices. Another very interesting example
are companies like crowdpark.de or prediculous.com. They ask their users to ‘predict’
the future by placing bets on upcoming events using virtual currency. Users that have
best predictions over time earn virtual trophies (badges), which is the only incentive for
people to participate. The crowdsourced odds can be used to adjust odds in real betting.

Team-based compensation was used by only three companies we surveyed. For
example, mercmob.com encourages formation of virtual human teams for various tasks.
An agent expresses confidence in the successful completion of a task by investing part
of a limited number of his ‘contracts’. Once invested, the contracts are tied to the task,
motivating the agents that accept the task to give their best to self-organize in a team
and attract others to accomplish the task. If in the end the task is completed successfully
each agent gets a monetary reward proportional to the number of invested contracts.

Discretionary bonuses or quota systems are used by eleven companies (8%). However,
they are always used in combination with another mechanism – most commonly PPP
(64%), as is also the case in traditional companies.

38

Deferred compensation is used by 7% of the companies, and usually as the only
mechanism employed. Bluepatent.com is a company that crowdsources the task of
locating ‘prior art’ for potential patent submissions. The agents (researchers) are asked
to find and submit relevant documents proving existence of prior art. Deciding on the
validity and usefulness of such documents is an intricate task, and hence the decision on
the compensation is delayed until an expert committee decides on it. Advisemejobs.com
pays out classical referral bonuses to the agents who suggest appropriate job candidates.

Only 7% of the companies offer some kind of career advancements, combined with
other mechanisms. As the crowd structure is usually plain, the career advances usually
mean a higher status, implying a higher wage. We have encountered only two cases
where the advancement also meant some kind of structural change, with an agent taking
responsibility of leading or supervising lower-ranked agents (e.g., uTest.com). In tra-
ditional companies the decision on a promotion of an employee is usually a matter of
subjective evaluation by his superiors. With the promotion being the most commonly
employed traditional incentive, the subjective evaluation is then also the most commonly
used evaluation method. However, if we take out of the picture the companies running
creative contests, where the artistic nature of the artifacts forces the use of subjective
evaluation, we see that in the world of Social Computing this trend has reversed. Sub-
jective evaluation trails behind quantitative and peer evaluation (Table 3.5). This is
explained by the fact that the use of information systems enables cheaper measurements
of different inputs and setting up of peer voting mechanisms.

Evaluation Method No. of Companies Percentage
Quantitative Evaluation 51 63%
Peer Voting + Indirect 35 43%
Subjective evaluation 14 17%

Table 3.5: Use of evaluation mechanisms (excluding companies running creative contests).

A small number of companies employ a combination of different incentive mechanisms.
Locationary8 was a company that used agents spread around the world to expand and
maintain a global business directory by adding local business information.

Their strategy combined a number of incentive mechanisms: 1) ‘lottery tickets’ (a
Quota system, also known as ‘conditional PPP’); 2) team-based compensation (based on
the ‘shares’ of added companies); 3) deferred compensation, based on the trust scores of
the agents.

With every new entry added/corrected an agent wins ‘lottery tickets’ that increase
the chances of winning a reward in a lottery. However, there is a minimum quota of
tickets that represents the condition to enter the draw (hence ‘conditional PPP’). Tickets
are not tied to any particular directory entry. Agents are given different ticket amounts

8The incentive strategy was acquired before the company was taken over and integrated by Apple, Inc.
http://allthingsd.com/20130719/apple-acquires-local-data-outfit-locationary/. The original
URL was http://www.locationary.com/

39

http://allthingsd.com/20130719/apple-acquires-local-data-outfit-locationary/
http://www.locationary.com/

for different actions (adding, editing or verifying different directory entry fields). The
amount of tickets issued to an agent for editing an entry depends on how valuable the
(accuracy of the) entry is to the company. For example, a Google street view URL is more
valuable than the URL of the web page of the place. Similarly, fixing outdated/incorrect
data is highly appreciated.

This mechanism incentivizes the increased activity of the agents, but also motivates
them to cheat, as some people will start inputting invalid entries to increase their chances
of winning. To counteract this caused dysfunctional behavior deferred compensation is
used. The agents are only allowed to enter the prize draws if (apart from the ticket quota)
their trust score is high enough. The trust metric plays a crucial role here. Trust is
proportional to the percentage of the approved entries, and this metric discourages agents
to cheat. The entries can be approved or disapproved only by other highly trusted agents
(an example of peer evaluation). Trusted agents are motivated to perform validation
tasks by getting more lottery tickets than they would get for adding/editing fields. On
the other hand, cheaters are further punished by subtraction of lottery tickets for every
incorrect data field they provided.

The incentive strategy described so far does a good job of attracting a high number of
entries and keeping them fresh and accurate. However, it does not discriminate between
the directory entries themselves. That means that it equally motivates agents to enter
information on an insignificant local grocery store, as it motivates them to enter/update
information on a high-profile company. As Locationary used to rely on advertising
revenues, that meant that an additional incentive mechanism attracting higher numbers
of profitable entries needed to be included on top of the strategy described so far. The
team-based compensation plays this role. Locationary used to share 50% of the revenues
originating from a directory entry with the agents holding ‘shares’ of that entry. Shares
were given to the people who were first to provide new/additional information on the
entry. Again, cashing out was permitted only to the trusted agents.

This example demonstrates how different mechanisms are used to target different
necessities, and how they need to be composed to achieve their full effect. In Table 3.6 we
list some examples of companies employing different evaluation methods within different
incentive mechanisms.

3.4.3 Survey Conclusions

With creativity contests and microtask platforms dominating the landscape of Social
Computing today we see that the organizational structure of agents is usually flat or very
simple. Hierarchies and teams of agents usually do not exist. In such environment, most
Social Computing companies need to use only one or two simple incentive mechanisms.
Promotion, commonly used in traditional companies, is rarely found within Social
Computing companies. The reason is the short-lived nature of transactions between
agents and the Internet companies. For the same reason, team-based compensation is
also poorly represented. The idea of building a “career in the cloud” is still considered in
theoretical domain.

40

Table 3.6: Examples of companies employing different evaluation methods (columns)
within different incentive mechanisms (rows) at the time the survey was compiled. Note:
mechanisms presented here may not represent the only or primary mechanisms that the
company uses.

On the other hand, most traditional companies combine different, elaborate mecha-
nisms to elicit particular responses from agents and retain the quality workers [Pre99].
The mechanisms complement themselves to mutually cancel out individual drawbacks.
In many cases the (more complex) mechanism combinations arose only after the practical
use of simpler combinations exposed the weaknesses which the agents would exploit to
their benefit. We encountered such experiences also in the surveyed social computing
companies, with, e.g., the Locationary incentive scheme being a very illustrative example
thereof.

Our survey shows that as the price of application of quantitative, peer and indirect
evaluation has lowered, relative evaluation and PPP became the most popular incentive
mechanisms among Social Computing companies. Subjective evaluation, although in total
numbers well represented, is found largely within companies that base their business model
on organizing creativity contests. Psychological incentives and gamification approaches
are gaining ground. We expect them to achieve their full potential as amplifiers for other
incentive mechanisms.

The envisioned growth in complexity of business processes and organizational struc-
tures for Social Computing will require novel, automated ways of handling behavior
of agent crowds. That is why we perceive a necessity to develop models of incentive
mechanisms and incentive management frameworks fitting existing business models and
real-world socio-technical systems, capable of supporting complex, composable incentive
mechanisms.

Such frameworks need to be able to monitor worker crowds and perform runtime
applications and adaptations of incentive mechanisms to prevent diverse negative effects
we described (e.g., free-rider problem, multitasking, biasing, anchoring, preferential
attachment), switching when needed between different evaluation methods, rewarding
actions and incentive conditions in runtime, while minimizing overall costs. This way,
particular worker groups and behaviors can be efficiently targeted.

Additional benefits would include the following:

• Historical data can be used to detect performance bottlenecks, preferable team
compositions, optimal wages, etc. Additionally, we can make predictions and

41

choose optimal composition of incentive mechanisms for the future. This opens
up a possibility for novel ways of achieving indirect, automated team adaptability
through application of incentives.

• For certain business models, application of proven incentive patterns cuts costs
in both time and money. The incentive patterns can be tweaked to fit particular
needs based on feedback obtained via monitoring.

• By generalizing and formally modeling incentive mechanisms, we can encode them
in a system-independent manner. That way, they become portable and reusable on
different underlying systems, without having to write system-specific programming
code again.

• The management of rewarding and incentives can be offered remotely as a Web
Service.

42

CHAPTER 4
Modeling Incentives for Use in

Socio-Technical Systems

In Chapter 3 we performed the classification of incentive mechanisms by analyzing
described incentive practices in the literature and surveying their practical application
in the social computing domain. This allowed us to identify the composing elements of
incentive mechanisms and their typical usage patterns.

This chapter builds on the first three chapters to develop actionable incentive models
that allow us to:

(a) Model the previously described incentive mechanisms

(b) Model the application of incentive mechanisms from (a) and responses to it.

Figure 4.1: A conceptual illustration of a system capable of translating portable incentive
strategies into concrete rewarding actions for different socio-technical platforms. The
system corresponds to the lower section of Figure 1.2, representing the part of the control
loop affecting the human component of a socio-technical system.

43

The models introduced in this chapter will allow us to build frameworks operating
on these models, and offering the functionality of incentive management to third parties
(Figure 4.1).

4.1 Comprehensive Incentive Model

Application of incentives always requires two interested parties - an authority (principal)
and a worker (agent). The authority is interested in stimulating, promoting or discour-
aging certain behavioral responses in workers. The incentive exhibits its psychological
effect by promising the worker a reward or a punishment based on the actions the worker
will perform. The wish to get the reward or escape the punishment drives the worker’s
decisions on future actions. The reward (punishment) can be material or psychological
(e.g., a change of status in a community – ranking, promotion). The type, timings
and amounts of reward need to be carefully considered to achieve the wanted effect
of influencing a specific behavior in a planned direction. In addition, introduction of
incentives introduces additional costs for the authority who hopes to compensate for
them through the newly arisen worker behavior (e.g., increased productivity).

However, as soon as an incentive mechanism is introduced, it produces dysfunctional
behavior responses in the worker population. The workers, being rational agents, adapt
to the new rules and change their working patterns, trying to exploit the new incentive
to profit more than the rest of the population. The authority compensates for this by
introducing other incentive mechanisms targeting the dysfunctional behavior, further
increasing the authority-side costs, and causing new types of dysfunctional behavior.
However, once the proper combination of incentive mechanisms is put in place and
calibrated, the system enters a stable state. The problem with the crowdsourcing/social
computing processes is that the system may not stay long in a stable state due to
an unforeseen change in worker participation or collaboration pattern. Therefore, the
incentive setup needs to be reconfigured and re-calibrated as quickly as possible, in order
to avoid incurring high costs to the authority. This feedback control-loop involving the
authority and the worker represents the actual incentive mechanism that we are interested
in modeling.

Modeling an incentive mechanism, therefore, always involves modeling both the
authority and the worker side, as well as the possible interactions between them. In
Figure 4.2 we show an abstract representation of the model of incentive mechanism.

Workers differentiate from each other by having different sets of personal characteristics
(e.g., accuracy, speed, experience). The characteristics are determined by a private set
of variables stored in the internal state S. The internal state also contains records of
worker’s past actions. The internal state is private to the worker, and is used as one of
the inputs for the decision-making function fa that describes the worker’s choice of the
next action to perform.

In majority of cases the internal state variables are normally distributed across the
worker population. Occasionally, certain variables can be intentionally given predefined
values to simulate a certain type of behavior, or a specific class of workers. This can also

44

Action 1 Action 2 Action 3

fa

Worker (Agent)

Authority (Principal)

<<public>>

Rewards (R)

Performance
Metrics (M)

M = {m1, m2, … , ml}

<<public>>

Internal State (S)

history current

Si = {s1, s2, … , sn}0..t

<<private>>

Incentive Scheme

IM1 IM2 IMz

Artifacts

<<subscribe>>

<<publish>>

<<process>>

<<assign>>

<<read>>

state

<<adjust>>

<<read>>

Figure 4.2: Incentive mechanisms need to capture the interaction between workers (agent)
and authority (principal).

be used to simulate changes in behavior after unconstrained interactions among workers;
for example, after an interaction with another worker a worker may be “persuaded” to
decrease his performance levels by lowering his internal effort metric. The algorithms
modifying the internal state S are not prescribed by our model, and are freely chosen by
the system designer.

Apart from the internal state, each worker is characterized by the publicly exposed set
of performance metrics M that are defined and constantly updated by the authority for
each worker. The performance metrics reflect the authority’s perception of the worker’s
past interactions with the system (e.g., trust, rank, expertise, responsiveness). Knowing
this allows the worker to decide better on his future actions. For example, knowing that
a poor reputation will disqualify him from getting a reward in future may drive the
worker to work better or to quit the system altogether. It also allows him to compare
with other workers. Therefore, the set of performance metrics is another input for the
decision-making function fa.

The third input for the decision-making function fa is the set of promised rewards
(punishments) R. Rewards are expressed as publicly advertised amounts/increments in
certain parameters that serve as the recognized means of payment/prestige within the
system (e.g., money, points, stakes/shares, badges). They are specified per action, per
artifact, and per performance metrics (or a combination thereof), thus making them also
dependent on a particular worker. For example, a reward may promise an increase of at
least 100 points to any/first worker who performs the action of rating an artifact. The
amount of points can then be further increased or decreased depending on the worker’s
reputation.

Workers interact with the authority solely by performing actions over artifacts (K)

45

offered to the worker population by the authority. A worker’s behavior can thus be
described as a sequence of actions in time, At ∈ A = {A0, ..., An}, interleaved with
periods of idling (idling being a special-case of action). The set of possible actions is
the same for every worker. However, the effects of the execution of an action may be
different, depending on the worker’s personal characteristics from the internal state S.
For example, a worker with innate precision and bigger experience can improve an artifact
better than the worker not possessing those qualities.

As previously stated, worker’s next action is selected through the use of a decision-
making function fa = f(S,M,R) potentially considering all of the following factors: a)
the statistically or intentionally determined personality of the worker; b) historical record
of past actions; c) authority’s view of one’s own performance; d) performance of other
workers; and e) promised rewards, with respect to the current state of one’s performance
metrics. The decision-making function is context-dependent, and defined by the model
designer based on the observed/expected worker behavior.

From a social computing perspective, the authority’s motivation for offering artifacts
for processing to the worker crowd is to exploit the crowd’s numerosity to either achieve
higher quality of the artifacts (e.g., in terms of accuracy, relevance, creativity), or lower
the cost (e.g., in terms of time or money). This motivation guides the authority’s choice
of incentive mechanisms. Authority has at its disposal a number of incentive mechanisms
IM i. Each one of them should be designed to target/modify only a small number of
very specific parameters. Thus, it is the proper addition or composition of incentive
mechanisms that allows the overall effect of an incentive scheme, as well as fine-tuning
and runtime modifications.

An incentive mechanism IM takes as inputs: 1) the current state of an artifact Ki;
2) the current performance metrics of a worker Mj ; and optionally 3) the output from
another incentive mechanism returning the same type of reward – R′ak

. The output of an
incentive mechanism is the amount/increment of the reward Rak

to offer to the worker
Mj for the action ak over artifact Ki.

IM : (Ki,Mj , R
′
ak

)→ Rak
(4.1)

The true power of incentive mechanisms lies in the possibility of their combination.
The reward (fR) can be calculated through a number of additions (+) and/or functional
compositions (◦) of different incentive mechanisms. For example, a worker may be given
an increment in points for each time he worked on an artifact in the past. Each of those
increments can then be modified, depending on how many other workers worked on that
same artifact. In addition, the total increment in points can be further modified according
to the worker’s current reputation. The finally calculated increment value represents the
promised reward. The set of finally calculated rewards per worker Rw = {fR1 , ..., fRz} is
then advertised to the workers, influencing their future behavior, and closing the feedback
loop. The major difficulty in designing a successful incentive scheme lies in properly
choosing the set of incentive parameters (performance metrics, incentive mechanisms,
and their compositions). Often, the possible effects when using one set of parameters

46

are unclear at design time, and an experimental or a simulation evaluation is needed to
determine them.

The comprehensive model presented so far describes the general incentivization loop.
While useful in abstracting the way we can think of and represent the application of
incentives in an information system, it is not practically usable, since it abstracts the
human actor in the loop in a too generic way. This is why we use this simple model as
the starting point for defining two practically useful (actionable) models: In Section 4.2
we define the Rewarding Model (RMod) allowing the authority to monitor and apply
incentive mechanisms described in Chapter 3 upon a workforce model. In Section 4.3
we present a methodology and a Simulation Model for simulating the application of
incentives and behavioral responses.

4.1.1 Definitions

Now we can define the key terms related with incentive management:

Worker (Agent)
A human which is the target of incentives.

Authority (Principal)
The entity engaging the workers for productive working purposes, administering
incentives upon them.

Incentive
Any activity or scheme employed by the authority to stimulate (motivate) increased
level of certain work-related activities (e.g., productivity, speed, quality of work,
number of participants) or to discourage certain activities (e.g., drop-out rate),
before the actual execution of those activities.

Reward
Any kind of recompense for worthy services rendered or retribution for wrongdoing
exerted upon workers during the execution of the activity or after its completion.
A reward can be made equivalent of an economic value (money or physical goods),
or a social status like prestige, rank, or expertise.

Incentive Mechanism
A concrete rule for assigning/applying the rewards targeting a specific (group
of) workers, based on certain logical, temporal and spatial criteria; A concrete
implementation of an incentive for a given application context.

Incentive Element
An atomic component (construct) in terms of which incentive mechanisms can be
expressed (as defined in Section 3.3).

Incentive Scheme
Combined global effect of the application of a set of incentive mechanisms.

47

4.2 Rewarding Model

In the comprehensive model presented in the previous section, the authority reads worker’s
performance metrics and changes in artifact states associated with a worker as inputs for
the incentive scheme. However, the model presented there says nothing further about
how the authority is able to interpret those inputs and output concrete rewards. In
this section, we investigate the authority’s internal model for representing the workers,
encoding incentive mechanisms and representing rewarding actions. The model is named
the Rewarding Model (RMod).

For the authority (principal) the RMod represents the following aspects of a real-world
incentive loop:

State
Represents quantitative state of the both the incentivized socio-technical system as
well as the internal business logic state needed for making incentive decisions. This
includes global attributes and individual worker attributes representing different
worker performance metrics (QoS).

Time
Expressed as a collection of time-annotated records of past and future worker
interactions supporting various time conditions and constraints. The notion of
timing is fundamental when dealing with incentives, as worker evaluation in most
cases depends on the history of past behavior. Similarly, a reward may be scheduled
for a future moment if the performance metrics in the upcoming period meet the
expectations.

Structure
Allows representation and manipulation of various types of relationships among
workers. Workers are often stimulated just by being placed into position to collabo-
rate with people they find most comfortable working with. In fact, proper team
composition can be vital to a process success, and can often be subject to changes
during the process execution. Finally, promotions, as one of the most widely used
incentive mechanisms, imply a clear hierarchical change.

The authority employs a group of workers to perform a complex process, consisting of
multiple tasks. It is assumed that the complete task lifecycle management (e.g., splitting
into subtasks, task descriptions, task assignment, task negotiation and agreement) is
under the control of the authority. A worker is assigned a (sub)task to perform in a given
time and agrees to be subject of incentive evaluations. Concretely, the authority and the
worker agree that the worker may be subject to rewards/penalties in some predetermined
cases. Workers can work individually on assigned tasks, in a formalized organization
(team, collective, SCU) or relationship with the authority (e.g., be employed, be part
of teams, have managers). Authority’s entire knowledge on the progress of the task is
obtained by periodic messages (updates) that it receives from the workers and subsequent

48

reasoning over that data. The application of rewards to the workers is similarly abstracted
as legally-binding messages to the worker.

Task is the basic working unit. Workers are rewarded for working on a particular task
within the task’s timeframe, although the outcome of the evaluation can also depend on
the history of previous contributions. Therefore, the lifetime of a worker is not related
to the duration of the task. The authority maintains its own view of the workers and
the relations between them in a community graph. The nodes in the graph represent the
workers, while the edges represent different real-world relationships among the workers.
For example, they can represent records of past collaborations, notion of trust[SSD10],
dependencies, managerial relations, etc. In addition, each node is described by a set of
attributes. The attributes may represent task-specific (short-lived) or permanent records
of worker’s performance. This is the most general representation possible. However,
in practice the model is to be coupled with a real-world socio-technical platform (e.g.,
SmartSociety1), so the nodes and relations need to be mapped to entities in that platform
(cf. Sec. 5.2.2).

The model assumes an iterative task execution. Iteration length is measured in clock
ticks. Clock tick is the basic unit of time measurement. Worker’s progress is read upon
iteration expiry so the model can obtain up-to-date the QoS metrics. Iteration is the
basic time unit when monitoring and evaluating task execution. Iteration cycle length is
tunable to allow better runtime adaptability, as the iteration length can be a significant
factor when evaluating results and can affect the performance of the team.

In order to model history of past behavior, as well as scheduling of future performance
evaluations and rewarding actions, we include in the model the notions of timeline and
event. The timeline is a time-stamped collection of past and future event records. An
event is an object encapsulating an executable action and a timestamp. Events are
interpreted by the socio-technical platform as instructions or suggestions to the platform
itself or particular workers. For example, an event could notify a worker that he needs to
increase the QoS level of his service in future iterations, or face penalties. Similarly, it
could instruct the platform to dissolve a team, invite new workers, or terminate contracts
with the others. Events can be generated by the platform itself or originate from an
incentive mechanism in RMod. They can target individual workers or groups of workers,
depending on the query that forms part of the action contained in the event object. An
event can also target global properties of the system itself.

An event can be in two states: scheduled and past. Scheduled events are used to en-
force/influence future worker behavior. They contain information to execute performance
measurements, evaluations or concrete rewarding actions in a specified moment in the
future. Scheduled events can be canceled or re-scheduled when needed. The timestamp
can be expressed either in iterations or clock ticks. Time expressed in clock ticks is fixed,
whereas time expressed in iterations is automatically recalculated to an appropriate clock
tick if the iteration duration is altered. This can be useful in many real-world situations.
For example, a Christmas bonuses is to be paid out on a fixed date, while if a project
stage is prolonged due to some unexpected events, we would want to reschedule the

1http://cordis.europa.eu/project/rcn/106959_en.html

49

http://cordis.europa.eu/project/rcn/106959_en.html

Incentive designer
(authority)

IMs

RModManager

<<provides>>

<<EvaluatedOnChange>>

te1

iteration

ticks

e2 e3 e4

Timeline

<<generates>><<evaluates>>

RModManager

<<executedBy>>

<<usesForGeneratingEvents>>

[tags]

[attributes]

Graph

<<changes/evaluates>>

event

Figure 4.3: Components and interactions in RMod

current iteration and perform the rewarding only at its end. When the time to execute an
event is reached, the contained action is executed and the results stored back in the event,
which is then archived and put into past state. After that point, the purpose of the past
event is to serve as a historical reference for future evaluations of workers. An event
execution can generate new events, or perform modifications of the team structure and
worker attributes. Events are initially generated by executing rewarding actions, that are
parts of the enforced incentive mechanisms. Figure 4.3 describes a typical working cycle
of our RMod. incentive mechanisms (IMs) provide the necessary logic for performing
worker evaluations and rewarding actions. At every clock tick IMs get evaluated. Only
the IMs that fulfill a logical condition will be triggered to execute. The IM examines the
current state of the model, and if a rewarding action needs to be performed produces
one or more event objects. The rewarding action contained in the event will include the
business (incentive) logic specified in the IM. The events then get stored into the timeline.
When the appropriate time comes, the events get executed, modifying the attributes
and the graph structure, and possibly spawning new events. The RModManager boxes
in Figure 4.3 represent the system that implements the functionalities and manipulates
RMod.

The RMod allows us to express various basic incentive mechanisms, like:

• “At the end of iteration, award each contributor who scored better than the average
score of his neighbors in that iteration.”

• “Reward every worker (contributor) who within the last” n “iterations scored a
score” t “or greater in at least” k “iterations” (k ≤ n).

50

• “Assign the person with most check-ins at a place a ’Mayor’ badge.”
• “Unless the productivity increases to a level” p “within” n “next iterations, replace

team’s current manager with the most-trusted of his subordinate workers.”

Furthermore, the model allows for easy composition of different incentive mechanisms,
a feature necessary to target different dysfunctional behaviors of workers.

4.2.1 Formal Definition

The RMod contains a set of graph nodes n ∈ N . Each worker w = (n,Qw) ∈ W
is associated with a set of quantitative attributes Qw. Quantitative attributes are
represented as simple data types (numerics, strings) or collections of them. The complete
quantitative state of the model Q is represented by the union of global attribute data
and all individual worker attribute sets.

Q =
⋃
i

Q(wi) ∪Qglobal (4.2)

Relationship r is defined as triple (s, t, θr), where s, t ∈W and θr ∈ Θ is the type of
the relation. Relation type θr belongs to the context-specific set Θ of possible relation
types. Relation types represent different notions of relations meaningful to humans, like
management, friendship or trust. Union of all relationships is denominated R. The
structural component of the model is represented by the community graph G = (W,R).
The graph G can be a multigraph, meaning that multiple edges of the same direction
between two workers are possible. However, there may be no two relationships of the
same type with the same source and target workers:

¬∃r1,r2∈R {s(r1) = s(r2) ∧ t(r1) = t(r2) ∧ θ1 = θ2} (4.3)

This means that when we fix the type of the edges to θ, the graph containing only
edges of that type is again a simple graph (θ-typed view of the graph). Depending on the
context, we switch between different views in our model. At any time, a single graph
transformation[BH02] operates only over a single-typed graph.

In time ti the state of the model is represented by the triple si = (ti, Gi, Qi). We
mark the current state of the model with s0. The history of the states of the model, from
the moment of tstart until the present t0 is represented by the time-ordered sequence
H = (st|t < 0).

An action is a function transforming the current quantitative and structural state of
the model into a new state a : (G,Q)→ (G′, Q′). An event is a triple e = (t, a, p), e ∈ E
where t is the scheduled execution time, a is the associated action, and p is the execution
priority. At a discrete moment in time ti a number of event actions may be scheduled to
be applied over the current state to transform the state si into si+1.

(ti, Gi, Qi)
ai1◦ai2◦...◦aip−−−−−−−−−→ (ti+1, Gi+1, Qi+1) (4.4)

51

The order of application is governed by the action priorities. In case of equal priorities,
it is assumed that the actions are commutable, meaning that as long as their execution
is serialized they can be executed in any order leaving the model in a well-defined state.

Events can have an external origin or can be generated as the result of evaluation
of a rewarding action (see below). Events are called past or future depending on the
execution time of event actions. Set of all future events is Ef = {e|time(e) > t0}.

A rewarding action l is a function reasoning over the collection of past states of the
model (H), current state of the model (s0), and scheduled future events (Ef) to produce
new events scheduled for future.

l : (H, s0, Ef)→
{
e′ ∈ E|time(e′) > t0

}
Ef → Ef ∪ e′

(4.5)

For a worker, a reward represents a change in the values of some of his quantitative
parameters (e.g., wage, bonus, rank) and/or the change in the relations the worker is
involved in (e.g. promotion, change of the team). Therefore, we first define a worker’s
rewarding set. Rewarding set elements are context-specific.

RSwi = (QRwi
, RRwi

) : QRwi
⊆ Qwi , R

R
wi
⊆ Rwi (4.6)

A reward to a worker wi is then defined as any change of his rewarding set:

Rwi : RSwi → RS′wi (4.7)

4.2.2 Prototype Implementation & Evaluation

We present here a prototype implementation of RMod and the system that manipulates
it. In the prototype the workers are represented as nodes of an internal graph representa-
tion. Each worker is represented a class inherited from Worker, such as SCUWorker or
HumanProvidedService. These classes are meant to allow an integration of our model
with different underlying socio-technical platforms offering human-provided services.
Each Worker object contains a set of local attribute data. The attribute types and
initial data are user-specified, and provided as inputs. There is also a class responsible
for handling system-level quantitative data, named GlobalAttributes. A Relation
contains references to a source and a target Worker nodes, and a set of tags that determine
its type.

An Event encapsulates all the information necessary to perform an evaluation or
rewarding. In order to do that, an event must be able to identify which nodes will be
the subjects of rewarding and actually perform the rewarding based on the outcome
of condition evaluation. It is important to notice that the conditional evaluation may
involve reasoning over nodes that do not belong to the target group, e.g., if we want
to reward a team manager based on the evaluation of his team members. Similarly,
attributes that are used in condition evaluation can be completely different than those
altered when rewarding a worker (e.g. we reason over number of units produced to
increase the wage). That is why each Event has to contain two data sets. In our case we

52

Figure 4.4: Partial UML class diagram of the model prototype.

achieve this by having Event contain up to two instances of the Query class (selectQuery
and modifyQuery fields). Another reason is due to a property of graph transformation
systems.

A Query can read current attribute data from Worker objects, past data from the
database, or current worker structure (relations among nodes). That is why it contains a
number of subqueries and a logic in which order to execute them. This logic originates
from the rules. A subquery can be: a) SQL query; b) graph transformation query; or c)
attribute query. If a query modifies in any way structure or parameters, its outcome is
persisted in the database.

The timeline is implemented by using a database instance for storing and querying past
events, and a separate in-memory structure for keeping and manipulating future events.
Once persisted in the database, the event objects are immutable. The class Timeline is
a façade for providing the unified view of the timeline in our model. Additionally, it is in
charge of producing clock ticks, delimiting iterations and ordering events happening at
the same moment.

The RModManager is in charge of the overall functioning of the prototype. It provides
an interface to the underlying socio-technical platform. The interface is established via
XML messages. The RModManager translates the incoming messages into appropriate
Event objects that are executed at the next clock tick, taking precedence over previously
stored events. This is the way for the external system to modify the internal model state.
On the other hand, all the changes to the state of the model that are caused by internal
events are reported to the underlying system using the same message interface. The
underlying system is expected to understand the meaning of the messages.

The rule execution engine forms part of the RModManager. The rule engine is a
prototype replacement simulating the working of the fully-fledged incentive mechanism

53

execution engine. Rewarding rules are provided by the prototype user (i.e., authority).
Result of a rule execution is the generation of either a returned/stored value (following
a non-modifying evaluation), or a number of Event objects stored in Timeline. A rule
can be marked for evaluation either at each iteration cycle or upon receiving a message
coming from the underlying system that changes the internal state of our model. For the
prototype evaluation purposed, we only emulate rule execution by feeding pre-generated
events into the system. The described class structure is presented in Figure 4.4.

The prototype of the model is capable of encoding simple incentive mechanisms and
simulate rewarding actions. The described model and system were implemented2 in
C#, using a Microsoft SQL Server database as storage. Structural modifications are
performed through graph transformations[BH02] (graph rewriting). Graph queries are
performed using GrGen.NET[JBK10]3.

In order to facilitate performing structural transformations, each instance of Worker
and Relation were mapped to a corresponding node and edge in GrGen’s internal
representation. For the prototype evaluation pre-compiled graph transformation patterns
are used, which are able to capture structural requirements of the incentive mechanisms
that needs to be performed. When performing a graph transformation, if more subsets in
the graph match the pattern to be replaced (modified) then an arbitrary match is picked
as the target subset. To avoid this ambiguity, we first run a GrGen matching query that
does not perform any graph transformations. Then our system decides which of the
matching subsets should be modified. Those graph elements are additionally marked,
and a new, modifying query is issued, that will target exactly the subset(s) we want.

The prototype has the following inputs:

• A one-time specification of the graph model and the initial team configuration
provided using GrGen’s domain-specific language [JBK10].

• A set of global and individual worker attributes, with initial values, provided at
startup.

• A set of rewarding rules that are being evaluated and executed throughout the
running time.

• Messages coming from the underlying system that change the internal model state.

The output of the prototype are the messages instructing the underlying socio-technical
platform to perform a rewarding action.

Scenario I - Customer Case Solving Teams

Let us consider an incident management system that utilizes SCU [DB11] for solving
possible software/hardware defects associated with a distributed IT system. The IT

2https://github.com/tuwiendsg/PRINC
3GrGen is a powerful and versatile system for performing algebraic graph transformations, implement-

ing single and double pushout (SPO and DPO) formalisms. It provides a domain-specific specification
language allowing declarative graph pattern matching and rewriting.
URL: http://www.info.uni-karlsruhe.de/software/grgen/

54

https://github.com/tuwiendsg/PRINC
http://www.info.uni-karlsruhe.de/software/grgen/

system can be represented as a dependency graph of distributed IT components. This
scenario is inspired by real situations faced by IBM engineers4. Figure 4.5 helps describe
the scenario.

Each unit A,B, . . . , G has an assigned group of maintenance engineers gi. When
device A fails, a case is opened, and a first SCU reaction team is formed, consisting of
maintenance engineers assigned to A, i.e., {g1, g2}. SCU1 team performs the maintenance
work on A during a time period. The team members are paid for taking part in a
customer case according to the pay-rate RM1. If the team is unable to fix the component
in a predefined time, additional engineers, assigned to devices that depend on A are
included to the team: SCU2 = SCU1 ∪ assignedTo(E,F). The new engineers are paid
according to the pay-rate RM2. Similarly, a third layer of engineers can be activated
(SCU3 = SCU2 ∪ assignedTo(B,C,D)), with the pay-rate RM3.

E F

A

B C

D

G

{g1, g2}

{g2, g3} {g2, g4}

{g1, g4}

{g5}

{g6, g7, g8}{g6, g8}

t

t1 t2 t3

RM1

RM2

RM3

{g1, g2}

{g3, g4}

{g6, g7, g8}

Figure 4.5: Composing rewarding mechanisms in an IT incident management system.

In the rules, we have the following graph patterns specified: LAYER0(Node N) re-
turning engineers assigned to that node; LAYER1(Node N) returning engineers of the
dependent nodes; LAYER2(Node N) returning engineers of the nodes N depends of. The
rule ASSIGN(Node, Workers) assigns the engineers to a case, notifies them, and generates
a new event that is meant to perform a payment to the assigned engineers. The rule
PROGRESS(Case) evaluates the quantitative data obtained from engineers to determine
the completion percentage of the case. The rules PAY_RM1(Node) and PAY_RM2(Node)
perform the actual payments according to the pay-rates RM1 and RM2, respectively.

When an IT case is opened, a notification is received and iteration I1 is initialized.
Let the iteration be initialized to the average case duration for that particular component
type, e.g., END(I1) = 100, where END(Iteration) is a built-in primitive to automatically
map time values from iterations to clock ticks.

->MSG: CASE:C765; COMPONENT:A; SCU:g1,g2; ITERATION:I1,100;

An initialization rule immediately schedules the following events:
If at t = 80 we detect that the case is not progressing as expected, the new set

of engineers is assigned to the case and the iteration is prolonged to the 120% of the
initial value. That also triggers a generation of the new event EvtID = 20. At this point,
events 18 and 20 are both scheduled to happen at t = 120, effectively composing the
two rewarding mechanisms RM1 and RM2.

4The author would like to thank Dr. Kamal Bhattacharya, at the time from IBM Research–India for
sharing the data for the incident management scenario.

55

EvtID = 18; t = END(I1);
{if (PROGRESS (C76) == 1) PAY_RM1 (A);}

EvtID = 19; t = 0.8 * END(I1);
{if (PROGRESS (C76) < 0.8) {

ASSIGN (C76 , LAYER1 (A)); END(I1) = 1.2 * END(I1);}}

{if (PROGRESS (C76) == 1) PAY_RM2 (A);
else ASSIGN (C76 , LAYER2 (A)); }
/* etc ... */

This scenario shows how the RMod prototype composes different incentive mechanisms.
In this case, the focus is placed on evaluation and composition. The only changes
performed are the changes in the domain of quantitative data (different pays).

Scenario II - Rotating Presidency

A number of workers (employees) is split in teams, led by a single team leader (or
manager). The manager post is not permanent, but instead, upon each iteration the best
performing team member up to then becomes the team manager for the upcoming period,
while the current manager reverts to a regular team member. A single employee cannot
hold the leader position for more than two consecutive turns. This incentive mechanism
is intended to increase competitiveness and have the team run by the most appreciated
member.

We assume that there is a quantitative measure of worker’s quality, e.g., an average
of peer-voted scores received so far. Votes describing worker performance are fed via
input messages a couple of times within a single iteration and stored in the database.
The contents of the messages can be simulated to favor particular workers. An example
of an incoming message looks like this:

->MSG: TASK:T843; TEAM:T5; WORKER:75; SCORE:96;

We have the following graph matching patterns defined: TEAM(Team) returning a collec-
tion of Workers assigned to the team provided as input parameter; and MANAGER(Worker[])
returning the Worker who is the manager of the team. We also have one graph trans-
formation pattern defined: SET_MANAGER(Team, Worker) performing the “re-chaining”
of relations in the graph to point to the new team manager. In addition, we have an
evaluation rule: BEST_OF(Worker[]) returning the best-scored Worker in the collection
provided as input parameter. The scores are calculated by averaging values read from
the database. SCHD_EVT(Time, Rule) is the built-in primitive for scheduling an event
and integrating into it the logic contained in the provided Rule. The primitives (with
variable number of arguments) DB_READ(String, Time,...) and DB_WRITE(String,
Time,...) execute predefined SQL queries.

At the beginning of each new iteration (e.g., I3) an event that performs an evaluation
at the iteration’s end (e.g., EvtID = 47) is scheduled. The event contains the logic to
perform evaluation and a possible manager change.

56

EvtID = 47; t = END(I3); {
Worker currMgr = MANAGER (TEAM(T5));
Worker bestWrk = BEST_OF (TEAM(T5));
if (currMgr != bestWrk)

SCHD_EVT (START (I4), SET_MANAGER (T5 , bestWrk));
else

if (DB_READ (’manager ’, I3 , T5 , currMgr) == 1)
SCHD_EVT (START (I4), SET_MANAGER (T5 , BEST_OF (TEAM(T5) - currMgr)); //

replace with 2nd best
else DB_WRITE (’manager ’, I4 , T5 , currMgr);

}

A combined DB-graph query is then run that considers the history of all previous
evaluations for all the workers in the team, and the previous positions the worker held.
If the current leader fulfills the two criteria, it can remain the leader for another term. If
not, it is replaced by the second best candidate from his team. The information about
positional change (or not) is then stored in the database for future evaluations.

Although simple, this example allows us to test modeling of evaluations based on
historical quantitative data (performance votes) and current structural data (the fact
that a worker is a leader is determined through graph relations). Compared to Scenario
I we perform not only quantitative, but also structural changes.

4.3 Simulation Model

The Rewarding Model (RMod) presented in the previous section represented the au-
thority’s simplified view on the workers in a socio-technical platform. The RMod is
designed to be generic and simple enough to be able to encode most incentive conditions
and rewarding actions described in Chapter 3. However, referring back to Figure 4.2 in
Section 4.1, we see that in order to close the incentive loop we need also to be able to
model and simulate the behavioral responses of workers to the applied incentives. Those
responses are result of the complex traits of human nature, scenario-specific working
environment and social characteristics of the worker community. Therefore, in order to
model and simulate behavioral responses, a context-specific model emphasizing selected
behavioral traits needs to be developed each time anew. In this section, we present
a simulation methodology for developing scenario-specific simulation models based on
agent-based social simulation.

As shown in [Feh13], most incentive mechanisms are developed based on empirical data
obtained from different studies. However, the empirical findings are often context-specific,
and when applied in different environments may yield different behavioral responses.
This is especially true for incentive models that need to consider social characteristics
of the worker community, such as coordinated group actions (e.g., worker resistance
[Mum05], informal forum-based worker coordination [MHOG14] , social/regional/ethnic
peculiarities, voluntary work [HS96], importance of reputation/flaunting [SKM04], or web-
scale malicious behavior [Weg12]. An additional complication is that these phenomena

57

change often and characterize different subsets of the crowd differently in different
moments. This makes development of appropriate mathematical incentive models difficult.

The major problem an incentive designer is faced with in this case is how to evaluate
the developed incentive mechanisms aimed at targeting such disruptive or dysfunctional
behaviors. The designer needs to consider factors, such as: emerging, unexpected and
malicious worker behavior, incentive applicability, range of stability, reward fairness,
expected costs, reward values and timing. Failing to do so leads to exploding costs and
work overload, as the system cannot scale with the extent of user participation typical of
social computing environments. Unbalanced rewards keep new members from joining
or cause established members to feel unappreciated and leave. Ill-conceived incentives
allow users to game the system, prove ineffective against vandalism, or assign too many
privileges to particular members tempting them to abuse their power.

In this section we present a methodology for incentive designers for quickly selecting,
composing and customizing existing, real-world atomic incentive mechanisms, and roughly
predicting the effects of their composition in dynamic social-computing environments.
The model and simulation parameters can be changed dynamically, allowing quick testing
of different incentive setups and behavioral responses at low cost. Specifically, we employ
principles of agent-based social simulation [MN09, GT05a], an effective and inexpensive
scientific method for investigating behavioral responses of large sets of human subjects.
In theory, social simulation approaches (such as ours) allow modeling of incentives and
responses of workers of arbitrary complexity. In practice, the social phenomena listed
above as impeding factors for the development of comprehensive mathematical incentive
models pose at the same time big obstacles for developing comprehensive simulation
models, requiring development of complex agent behavioral models. Nonetheless, as
discussed in [GT05a, Vas12], the simulation approaches are a viable alternative to testing
various behavioral responses in real communities when this is impossible due to time,
cost or ethical reasons. All three limitations are especially accentuated when testing
incentive effects and their different combinations. In this case, speed is preferred over
accuracy and ethical considerations are an important feasibility factor. The simulation
approach is therefore the method of choice in this case, offering fast experimental setups
and circumventing ethical issues.

Social simulation originated in computational social sciences to explore theoretical
ideas in the context of synthetic populations. Recently, this has been applied to crowd-
sourcing, in order to generalize results which otherwise would be tied to a particular
situation [BFGK13]. However, unlike the usual approach where agents interact directly
(and thus benefit from cooperative behavior or suffer from defective behavior), we intro-
duce a provider that facilitates interactions and determines the benefits or costs of those
interactions.

4.3.1 Example Scenarios

In order to better describe the methodology and subsequently evaluate it, we first present
two exemplifying scenarios based on real-world crowdsourcing applications.

58

Citizen-driven traffic reporting

Local governments have a responsibility to provide timely information on road travel
conditions. This involves spending considerable resources on managing information
sources as well as maintaining communication channels with the public. Encouraging
citizens to share information on road damages, accidents, rockfalls, or flooding reduces
these costs while providing better geographical coverage and more up to date information5.
Such crowdsourcing process, however, poses data quality related challenges in terms of
assessing data correctness, completeness, relevance, and duplication.

Crowdsourced software testing

Traditional software testing is a lengthy and expensive process involving teams of dedicated
engineers. Software companies6 may decide to partially crowdsource this process to cut
time and costs and increase the number and accuracy of detected defects. This involves
letting the remote testers detect bugs in different software modules and usage environments
and submitting bug reports. Testers with different reputations provide reports of varying
quality and change the assigned bug severity. As single bugs can be reported multiple
times in separate reports, testers can also declare two reports as duplicates.

The two scenarios exhibit great similarities. The expected savings in time and money
can in both cases be outweighed by an incorrect setup and application of incentive
mechanisms. Furthermore, the system could suffer from high numbers of purposely
incorrect or inaccurate bug report submissions, driving the processing costs high. For
the purpose of this paper, we join and generalize the two scenarios into a single, abstract
one that we will use in our simulation setup:

The Authority seeks to lower the time and cost of processing a large number of
Reports on various Situations occurring in the interest domain of the Authority. The
Workers are independent agents, occasionally and irregularly engaging with the system
managed by the Authority to perform one of the following Actions: Submit a new Report
on a Situation, Improve an existing Report, Rate the accuracy and importance of an
existing Report, inform the Authority of his belief that two existing Reports should be
considered Duplicates. The Worker actions are driven by the combination of the following
factors: a) possibility to earn Points (translating to increased chances of exchanging
them for money); b) possibility to earn Reputation (translating to a higher status in the
community); and c) the intrinsic property of people to contribute and help or to behave
maliciously. In order to influence and (de-)motivate workers, the Authority employs a
number of Incentive Mechanisms, collectively referred to as Incentive Scheme.

This scenario also needs to address the following challenges:

• Crowdsourced report assessment. The effort required for manual validation of wo-
rker-provided reports may easily outweigh the gained effort and cost reduction

5For a real world example visit the Aberdeen City Council’s SmartJourney initiative at:
http://smartjourney.co.uk/

6For example, www.utest.com

59

http://smartjourney.co.uk/

from crowdsourced reporting in the first place. Hence, workers need to be properly
stimulated to supplement and enrich existing reports as well as vote on their
importance, thereby lifting the verification burden off the authority. The system
also needs to strike a balance not to collect too much information.

• Worker reputation (trust). A worker’s reputation serves as one potential indicator
for data reliability, assuming that reputable workers are likely to provide mostly
accurate information. Subsequently, reports from workers with unknown or low
reputation need to undergo more thorough peer assessment. The system must
support continuous adjustment of workers’ reputation.

• Adjustable and composable incentive scheme. An effective incentive scheme needs to
consider all past citizen actions, the current state of a report and the predicted costs
of processing a report manually in order to decide whether and how to stimulate
workers to provide additional information. It also needs to correctly identify
and punish undesirable and selfish behavior (e.g., false information, deliberate
duplication of reports, intentional up/downgrading of reports).

The resulting complexity arising from the possible combination and configuration of
worker behavior, incentive schemes, and processing costs requires a detailed analysis to
identify a stable and predictable system configuration and its boundaries.

4.3.2 Modeling and Simulation Methodology

Our methodology for simulating worker participation and incentive mechanisms in
crowdsourcing processes is depicted in Figure 4.6. It consists of four basic steps, usually
performed in multiple iterations:

(i) defining a domain-specific meta-model by extending a core meta-model;
(ii) capturing worker’s behavioral/participation patterns and reward calculation into

an executable model;
(iii) defining scenarios, assumptions, and configurations for individual simulation runs;

and
(iv) evaluating and interpreting simulation results.

These steps are described in more detail below.
We use the DomainPro.7 modeling and simulation tool suite in each of the outlined

methodology steps to design and instantiate executable models of incentive mechanisms
and run simulations of those models. The tool allows creating custom simulation languages
through metamodeling and supports agent-based and discrete event simulation semantics
(see [DEM12]). However, the overall approach is generic and can be easily applied using
a different modeling and simulation environment.

7Tool available at request from:
www.quandarypeak.com

60

www.quandarypeak.com

System-specifc
Simulation

Instance

Incentive-
specific Default

SimulationModel

Incentive-centric
Meta-Model

Simulation Core

Meta-Model

Simulation

Model

Simulation

Instance

Add Domain-Specific
Extensions

Domain-specific

Meta-Model

Define Simulation
Behavior

Define Instances and
Configuration

Simulation

Results

Run and Observe
Simulation

Refinement

DomainPro Designer
(Language Design Mode)

DomainPro Designer
(Model Design Mode) DomainPro Analyst

Figure 4.6: The methodology of simulation design and development.

The simulation core meta-model is implemented in the DomainPro Modeling Language.
Optional extensions result in a domain-specific meta-model that defines which component
types, connector types, configuration parameters, and links a simulation model may
exhibit. In our case, we extend the core meta-model to obtain what we refer to as incentive-
centric meta-model (Section 4.3.2). The obtained incentive-centric meta-model serves
as the basis for defining the simulation behavior, i.e., the executable simulation model
(Section 4.3.3). Obtaining the executable simulation model requires defining workers’
behavioral parameters, authority’s business logic (including incentive mechanisms and
cost metrics), the environment and the control flow conditions between them. Finally,
prior to each execution, the executable simulation model requires a quick runtime
configuration in terms of the number of worker instances and monitored performance
metrics (Section 4.3.4). During the execution, we do near real-time monitoring of metrics,
and if necessary, perform simulation stepping and premature termination of the simulation
run to execute model refinements.

The tool we use enables refinement at any modeling phase. A designer will typically
start with simple meta- and simulation models to explore the basic system behavior. She
will subsequently refine the meta-model to add, for example, configuration parameters
and extend the functionality at the modeling level. This enables testing simple incentive
mechanisms first, and then extending and composing them once their idiosyncrasies are
well understood.

Incentive-Centric Meta-Model

The derived meta-model (Fig.4.7) reflects the conceptual view of incentive mechanisms as
presented in Section 4.1. A ParticipationPattern consists of Actors (Users or Providers)
and the InteractionObjects. Actors exhibit Behavior that encapsulates different UserAc-
tivities. InteractionObjects contain ObjActivities that define allowed and reward-yielding
activities on an InteractionObject. InternalSequences, ExternalSequence, and Object-

61

Sequence determine the control flow among activities by specifying trigger conditions.
The EnvGenerator drives the simulation by controlling the generation of interaction
objects (artifacts) for the Workers to act upon, and for the Authority to check and
further process. The AtomicData within a SimulationElementType defines which data
may be passed between UserActivities and/or ObjActivities when an InternalSequence,
ExternalSequence, or ObjectSequence fires. While arbitrary data types can be passed
along, only AtomicData of type int, double, long, or boolean may be used as observable
metrics during simulation execution. The exact applicable metrics are defined later on,
on the simulation instance level.

As previously outlined, the iterative nature of the modeling process usually requires
extending the core meta-model with domain-specific elements, as the need for them is
identified. The domain-specific extensions we introduce are highlighted in bold/blue in
Figure 4.7.

ExternalSequence

:Containment

Legend

:Reference

:Refinement

InternalSequence ObjectSequence

UserActivity

InteractionObject

Variable 0..*
PromisedReward 0..*

Method

ControlFlow

Link

<Simulation Element Type>

SimExeConfigParameters

<AtomicData>

ObjectPart

Variable 0..*

Behavior

IdleProbability

Variable 0..*

UserProvider

Authority

checkingBaseCost

checkingDuplicateCost

nrMinRating

nrMinImprovements

ratingThreshold
accuracyThreshold

nrMinDuplicateInfo

WActionEvaluation

costImproveBase

costRateBase
benefitRateBase

benefitImproveBase

WorkerBehavior

durationSubmit

durationImprove

durationRate

durationDeduplicate

Worker

defaultAccuracy

defaultImportance

CalcIncentive

isActive

ObjActivity

isRewardedActivity

Actor

defaultAccuracy

Variable 0..*

ParticipationPattern

percentageMalicious

Variable 0..*

EnvGenerator

ObjectsPerPhase

PhaseDuration

Figure 4.7: Simulation meta-model including domain specific extensions in bold/blue.

4.3.3 Simulation Model of the Real-World Scenario

In this section we derive an executable simulation model for evaluating the impact of
various design decisions taken during the modeling of the case-study scenarios from
Section 4.3.1. Specifically, the goals of the simulation are:

62

(i) prototyping and evaluating various incentive schemes;

(ii) determining the impact of malicious user behavior;

(iii) observing trends in processing costs, reward payments, report accuracy, and user
activities.

Figure 4.8: Partial screenshot of the implemented case-study simulation model in Do-
mainPro Designer.

Figure 4.8 provides a partial screenshot of the case-study simulation model.
The simulation model comprises over 40 simulation parameters, determining vari-

ous factors, such as: distribution of various personality characteristics in the worker
population, injected worker roles (e.g., malicious, lazy), base costs for the authority,
selection and composition of incentive mechanisms. Describing them all in detail/formally
here would not be practical. Instead, the annotated source code of the model and the
metamodel is provided here:8. The rest of this section is written in a narrative style.

Location and importance characterize a Situation. Situations can be generated with
user-determined time, location and importance distributions, allowing us to concentrate
more problematic (important) situations around a predefined location in selected time
intervals, if needed. For the purpose of this paper, we generate situations with uniform
probability across all the three dimensions. The SituationGenerator contains the activities
for creating new situations and calculating phase-specific simulation metrics on cost,
reputation, points, actions, and importance across reports, situations and workers.

8http://tinyurl.com/incentives-sim-model

63

http://tinyurl.com/incentives-sim-model

The Worker ’s SetNextStep activity represents the implementation of the worker’s
decision-making function fa, introduced in Section 4.1. As previously explained, the
worker here considers the next action to perform based on:

1. internal state (e.g., location), including innate, population-distributed or arbitrarily
set personality characteristics (e.g, laziness, isMalicious);

2. current performance metrics (e.g., reputation, points);
3. advertised rewards (detectionReward, ratingReward, improvementReward).

Worker’s location determines his/her proximity to a situation, and, thus, the likelihood
to detect or act upon that situation (the smaller the distance, the higher the probability).
However, two workers at the same distance from a situation will not equally likely act
upon it. This depends on their personality, past behavior, and the number of points
they currently have. Default behavior of workers is produced by normally distributing
values of certain S state metrics, thus determining the “personality” of the worker. In
this case, the likelihood to act upon a situation. However, different worker behaviors
and personalities are obtainable through different roles. The simulation model does not
prescribe the complexity of the roles. Instead, the incentive designer is free to implement
them as necessary to simulated collective, disruptive of malicious behavior.

Points and reputation are the principal two metrics by which the authority assesses
Workers in our scenario. In principle, points are used by the Authority as the main factor
to stimulate activity of a Worker. The more points, the less likely will a worker idle. On
the other hand, a higher reputation implies that the Worker will more likely produce
artifacts of higher quality. Each new worker joining the system starts with the same
default point and reputation values. Precisely how the two metrics are interpreted and
changed thereafter depends on the incentive mechanisms used (see below).

As we are primarily interested in investigating how reputation affects (malicious)
behavior, we characterize each agent by reputation metric, as laboratory experiments con-
firmed that reputation promotes desirable behavior in a variety of different experimental
settings [WM00, MSK02, RM, SKM04].

The four Behavior activities produce the respective artifacts – Reports, UpdateInfos,
RatingInfos and DuplicateInfos. Worker’s internal state determines the deviations of
accuracy, importance, improvement effect, and rating value of the newly created artifacts.
The subsequently triggered Report-located activities (CreatedR, ImprovedR, RatedR
and Detected) determine the worker action’s effect on the two metrics that represent
the artifact’s state and data quality metrics at the same time – report accuracy and
importance. We use Bayes estimation to tackle the cold-start assessment of report
accuracy and importance, taking into account average values of existing reports and the
reputation of the worker itself.

The produced artifacts are queued at the Authority side for batch processing. In
PreProcessing activity we determine whether a Report is ready for being processed. This
depends on the report’s quality metrics, which in turn depend on the amount and value
of worker-provided inputs.

64

Processing reports causes costs for the Authority. The primary cost factors are low
quality reports and undetected duplicate reports. Secondary costs arise when workers
focus their actions on unimportant reports while ignoring more important ones. Therefore,
the Authority incentivizes the workers to submit required amounts of quality artifacts.
As noted in Section 4.3.1, gathering as much inexpensive data from the crowd as possible
was the original reason for the introduction of a crowdsourced process in the first place.

Our proof-of-concept simulation model for the given scenario defines three basic
incentive mechanisms:

• IM1: Users are assigned fixed amounts of points per action, independent of the
artifact. Submitting yields most points.

• IM2: The amount of points is increased before assignment, depending on the
current quality metrics of the report. E.g., the fewer ratings or improvements the
higher the increment in points.

• IM3: Users are assigned a reputation. The reputation rises with accurately
submitted reports, useful report improvements, correctly rated importance and
correctly flagged duplicates.

In Section 4.3.4, we can compose these three mechanisms in different ways to produce
different incentive schemes which we can run and compare.

For demonstration purposes we define only a single additional role - that of a malicious
worker. Malicious worker behavior is designed to cause maximum cost for the Authority.
To this end, we assume malicious workers to have a good perception of the actual situation
characteristics. Hence, upon submission they will set initial report importance low and
provide very inaccurate information subsequently. For important existing reports they
submit negative improvements (i.e., conflicting or irrelevant information) and rate them
low and while doing the opposite for unimportant reports.

4.3.4 Evaluation

For evaluating our approach, we keep using the case-study scenario from the previous
sections and perform a set of experiments on it. All provided experimental data is
averaged from multiple, identically configured simulation runs. Details on the experiment
setup are followed by experiment result9 presentation and gained insights.

Experiment Setup

Timing Aspects. We control the pace of the simulation by determining the amount
of situations created per phase. Taking a reading of all relevant (i.e., experiment-specific)
metrics at the end of each phase provides an insight on how these metrics change over
time. All our simulations last for 250 time units (t), consisting of 10 phases of 25t each.
Batch creation of situations is representative for real world environments such as bugs

9Data available here: http://tinyurl.com/scekic-dorn-dustdar-coopis13

65

http://tinyurl.com/scekic-dorn-dustdar-coopis13

that typically emerge upon a major software release or spikes in traffic impediments
coinciding with sudden weather changes. Report submission takes 5t, while improving,
rating, and duplication flagging require only 1t. The exact values are irrelevant as we
only need to express the fact that reporting requires considerably more time than the
other actions. Processing of worker-provided data on the provider side occurs every
1t. Note here, that for the purpose of the case study, we are only interested in the
generic processing costs rather than the time it takes to process that data. Each report is
assumed to cause 10 cost units for minimum quality (modeled as value of 0), and almost
no cost when quality (through worker-provided improvements) approaches maximum (=
1). The higher the quality of received reports, the less reports are needed to persuade
the principal to act (see below).

Scenario-specific thresholds. As we aim for high-quality data and significant
crowd-base confirmation, the following thresholds need to be met before a report is
considered for processing: at least three updates and high accuracy (> 0.75); or five
ratings and medium importance (> 0.5); or four duplication alerts; or being reported by
a worker of high reputation (> 0.8) and having high importance (> 0.7). Workers obtain
various amounts of points for (correct) actions, the amount depending on the value of
the action to the provider and the incentive scheme used.

Worker Behavior Configuration. A worker’s base behavior is defined as 70%
probability idling for 1t, 20% submitting or duplication reporting, and 10% rating or
improving. Obtained points and reputation increase the likelihood to engage in an action
rather than idle. The base behavior represents rather active workers. We deliberately
simulate only the top-k most involved workers in a community as these have most impact
on benefits as well as on costs. Unless noted otherwise, k = 100 for all experiments.

Composite Incentive Schemes. The experiments utilize one or more of the
following three Composite Incentive Schemes – CIS, introduced in Section 4.3.3:

• CIS1 = IM1

• CIS2 = IM2 ◦ IM1 = IM2(IM1)

• CIS3 = CIS2 + IM3 = IM2 ◦ IM1 + IM3

CIS1 promises and pays a stable amount of points for all actions. CIS2 dynamically
adjusts assigned points based on the currently available worker-provided data, but at
least as high rewards as CIS1. CIS3 additionally introduces reputation calculation.

Experiments

Experiment 1: Comparing Composite Incentive Schemes.
Here we compare the impact of CIS1, CIS2, and CIS3 on costs, assigned rewards, report
accuracy, and timely processing. Figure 4.9 displays incurred costs across the simulation
duration. All three schemes prove suitable as they allow 100 workers to provide sufficient
data to have 20 situations processed at equally high accuracy. They differ, however,

66

significantly in cost development (Fig.4.9 inset), primarily caused by undetected duplicate
reports (on average 0.2, 0.25, and 0.4 duplicates per report per phase for CIS1, CIS2,
and CIS3, respectively). CIS1 yields stable and overall lowest costs as the points paid
induce just the right level of activity to avoid workers getting too active and thus
causing duplicates. This is exactly the shortcoming of CIS2 which overpays workers that
subsequently become overly active. CIS3 pays even more, and additionally encourages
worker activity through reputation. The cost fluctuations are caused by the unpredictable
number of duplicates (however remaining within bounds). Although more costly and
less stable, CIS3 is able to identify and subsequently mitigate malicious workers (see
Experiment 3 below).

Figure 4.9: Incurred report processing costs for CIS1, CIS2, and CIS3. Inset: average
paid points per worker.

Experiment 2: the Effect of Worker/Situation mismatch.
Here we analyze the effects of having too few or too many workers per situation. In
particular, we observe per phase: the cost, points assigned, report importance (as
reflecting situation importance), and reputation when:

(i) the active core community shrinks to 20 workers while encountering 50 situations
(20u/50s);

(ii) a balance of workers and situations (100u/25s);

(iii) many active workers but only a few situations (100u/5s).

A surplus in situations (20u/50s) causes workers to become highly engaged, resulting in
rapid reputation rise (Fig 4.11 bottom) coupled with extremely high values of accumulated

67

rewarding points (Fig 4.10 inset). Costs per report remain low as duplicates become
less likely with many situations to select from (0.18 duplicates per report). Here, CIS3
promises more reward for already highly-rated reports to counteract the expected inability
to obtain sufficient worker input for all situation (on average 22 reports per phase out of
50). Subsequently, the authority receives correct ratings for reports and can focus on
processing the most important ones. Compare the importance of addressed situations in
Figure 4.11 top. A surplus in active workers (100u/5s) suffers from the inverse effect. As
there is little to do, reputation and rewards grow very slowly. Perceiving little benefit,
workers may potentially leave while the authority has a difficult time distinguishing
between malicious and non malicious workers. Configurations (100u/5s) and (100u/25s)
manage to provide reports for all situations, therefore having average report importance
remaining near 0.5, the average importance assigned across situations.

Figure 4.10: Costs per report incurred at
various combinations of worker and situa-
tion count.

Figure 4.11: Reputation acquired by
workers (bottom), and report importance
addressed, respectively remaining open
(top).

Experiment 3: Effect of Malicious Workers.
Here we evaluate the effects of an increasing amount of malicious workers on cost when
applying CIS3. Figures 4.12 and 4.13 detail cost and reputation for 0%, 20%, 30%, 40%,
and 50% malicious workers. All workers are considered of equal, medium reputation 0.5
upon simulation start. The drop in costs across time (observed for all configurations)
highlights that the mechanism indeed learns to distinguish between regular, trustworthy
workers and malicious workers. The irregular occurrence of undetected duplicates
cause the fluctuations in cost apparent for 0% and 20% malicious workers. Beyond
that, however, costs are primarily determined by low accuracy induced by malicious
workers. CIS3 appears to work acceptably well up to 20% malicious workers. Beyond
this threshold harsher reputation penalties and worker blocking (when dropping below a

68

certain reputation value) need to be put in place. In severe cases lowering the default
reputation assessment might be applicable but requires consideration of side effects (i.e.,
thereby increasing the entry barrier for new workers).

Figure 4.12: Costs per report incurred due
to various level of malicious workers.

Figure 4.13: Average reputation acquired
by malicious and non-malicious workers.

Limitations and Discussion

Simulations of complex socio-technical processes such as the use-case presented here can
only cover particular aspects of interest, never all details. Thus any results in terms of
absolute numbers are unsuitable to be applied directly in a real-world systems. Instead,
the simulation enables incentive scheme engineers to compare the impact of different
design decisions and decide what trade-offs need to be made. The simulation outcome
provides an understanding what mechanisms might fail earlier, which strategies behave
more predictably, and which configurations result in a more robust system design.

In particular, the presented comparison of CISs in Experiment 1 gives insight into the
impact of overpaying as well as indicating that the CIS3 would do well to additionally
include a mechanism to limit submissions and better reward the action of flagging the
duplicates. Experiment 2 provides insights on the effect of having too few or too many
workers for a given number of situations. It highlights the need to adjust rewards and
reputation in reaction to shifts in the environment and/or worker community structure.
Experiment 3 provides insight into the cost development in the presence of malicious
worker and highlights the potential for mechanism extension.

69

Part II

Supporting Automated Incentive
Management in Social Computing

71

CHAPTER 5
Executive Framework for

Incentive Management

Structure

incentive
designer/operator

programming model

executive
layer

language
layer

So
ci

o
-t

e
ch

n
ic

a
l S

ys
te

m
 (

ST
S)

PRINC

formal
layer

R
e

w
a

rd
in

g
M

a
n

ag
e

r

M
a

p
p

in
g

M
a

n
ag

e
r

D
ir

e
ct

 M
o

d
e

l
M

a
n

ip
u

la
ti

o
n

M

a
n

ag
e

r

executive
layer

R
e

w
a

rd
in

g
M

o
d

e
l

(R
M

o
d

)
M

a
p

p
in

g
M

o
d

el

(M
M

o
d

)

formal
layer

conceptual
layer

Timeline

Attributes

G
ra

p
h

 T
ra

n
s.

M

o
d

e
l

DB

data
layer

event-based
API

model
manipulation
API

M
e

ss
a

gi
n

g
m

id
d

le
w

a
re

ST
S k

E
xe

cu
ti

o
n

 M
o

d
el

In
ce

n
ti

ve
 M

o
d

e
l (

IM
o

d
)

D
o

m
ai

n
-s

p
e

ci
fi

c
La

n
g

u
ag

e
 (

D
SL

)

Figure 5.1: The incentive management platform. The princ Framework, presented in
this chapter, is shown fully outlined. The remaining tools (dashed-outlined) are presented
in subsequent chapters.

In Chapter 4 we introduced a Rewarding Model (RMod) capable of encoding incentives
in form of scheduled application of rewarding actions applied over an abstract model. We
then showed through simulation that the model was capable of detecting individuals with
disfynctional behavior and reducing their influence. In this chapter we present the design
of the executive framework making use of the introduced RMod and allowing application
of rewarding actions on real-world socio-technical systems.

73

5.1 Usage Context
Figure 5.1 shows the architecture and the intended usage of this framework, named princ
(standing for PRogrammable INCentives). To better explain the intended usage princ
is shown here together with the remaining incentive management tools presented in this
thesis.

The incentive management platform shown in the figure is intended to be used by
two types of users:

(a) incentive designers – domain experts that design and implement incentive scheme
for an organization

(b) incentive operators – organization members responsible for managing the every-day
running and adaptation of the scheme.

An incentive designer (Designer) is a multidisciplinary domain expert in the areas
spanning management, economy, game theory and psychology. The Designer is hired by
the crowdsourcing platform to design a set of appropriate incentive mechanisms for the
given business model of the platform, taking into consideration context-specific properties
pertinent to the targeted population of workers. An example of how this process is
performed for two different experimental platforms can be found in [Feh13, Del15].

The role of an incentive operator (Operator) has not been defined in the existing
literature, as its existence is subject to the existence of the novel type of incentive
management platforms that we describe in this paper. While a Designer can be a person
external to the socio-technical platform, the Operator is a member of the management of
the socio-technical platform in charge of monitoring the application of incentives and
taking operative decisions on adaptations of various incentive parameters.

To exemplify the expected type of functionality an Operator would be performing, let
us assume the existence of a socio-technical platform offering the service a crowdsourced
software development to its customers. The Operator’s role would be to monitor the
efficacy of incentive schemes in use and adjust them when needed. For example, the
operator could learn that teams in which testers were incentivized to report more bugs
throughout the entire development process resulted worse than those incentivized to
report (less, but) more severe/dangerous ones in more mature product phases. Based
on this experience, the Operator can adjust the scheme (e.g., bug thresholds and onus
amounts) to put more emphasis on quality rather than on quantity as soon as the product
has entered a fairly stable stage.

Both the Designer and the Operator can use the simulation modeling methodology
introduced in Section 4.3 to aid the design, composition and adjustment of the incentive
scheme. Operators in particular can benefit from the speed that the social simulation
offers (compared to the conventional incentive mechanism design) when adaptations of
the incentive scheme(e.g., parameter variations, turning on/off additional mechanisms)
are necessary to counteract disruptive or newly-emerging dysfunctional behavior.

We will further showcase the distinction between the two roles in Chapter 7. At this
point it suffices to stress that both Designer and Operator use a platform-independent,

74

largely declarative domain-specific language to encode/adjust incentive schemes that
are provided as input to the incentive management platform. The schemes are then
automatically translated to executable (imperative) code interacting with princ. This
is done by scheduling a number of future rewarding actions to be executed on RMod,
modifying the internal state of RMod, which is then propagated to the external system
through a messaging middleware. At the same time, the state of RMod is updated via
events originating from the external system.

5.2 Internal Architecture

The Rewarding Model (RMod) lies at the heart of princ framework and encodes the
imperative, system-specific version of the incentive scheme. It constantly mirrors the
state of the external system and executes incentive mechanisms on it. The Mapping
Model (MMod) defines the mappings needed to properly interpret the system-independent
version of the strategy in the context of a specific social computing platform (external
system). The mapping itself is performed by the Mapping Manager.

The Rewarding Manager implements the RMod, performs and interleaves all event-
based operations on RMod and ensures its consistency and integrity (e.g., by rejecting
disallowed structural modifications or preventing modification of the records of past
behavior).

The Direct Model Manipulation Manager (D3M) provides direct RMod manipulation
functionalities without relying on the event mechanism and without enforcing any
consistency checks. The direct access to the RMod is needed for offering the necessary
functionalities internally within princ, but also to allow more efficient monitoring and
testing. D3M is therefore used to load initial state of the system, and to save snapshots
of the system’s current state.

The communication between princ and the external system is two-way and message-
based. The external system continuously feeds the framework with the necessary worker
performance data and state changes and receives rewarding action notifications from
princ. For example, princ may notify the external system that a worker earned a bonus,
suggest a promotion or a punishment. Similarly, it may need to send an admonition
message to the worker, or display him/her a motivating visual information (e.g., rankings).
The external system ultimately decides which notifications to conform to and which to
discard, and reports this decision back in order to allow keeping the RMod in consistent
state.

The princ framework can host RMods for multiple external systems at the same time.
As long as the communication middleware is capable of routing the event updates and
rewarding action messages to proper destinations, we are able to effectively externalize
the incentive management as a service. In Chapter 6 we present the design of one such
middleware – SmartCOM.

75

5.2.1 Rewarding Model (RMod)

The full description and evaluation of the RMod is provided in Section 4.2. princ
incorporates the described model and introduces additional functionality needed to
exploit this functionality.

5.2.2 Mapping Model (MMod)

In order for princ to couple with an external socio-technical system the incentive designer
and an integration engineer need to provide mappings that enable the application of
generic incentive strategies on top of the particular context of the external system. These
mappings are provided through the Mapping Model.

The functionalities of MMod include:

• Definition of system-specific artifacts, actions, attributes and relation types.
These definitions inform princ of the unique names and types of different company-
specific artifacts, actions, attributes and relation types that need to be stored and
represented in princ for subsequent reasoning over conditions for applying rewards.
Actions represent different events happening in the external system. Artifacts
represent objects of the actions (Section 5.2.3). For example, a design company
may want to define an artifact to represent the various graphical items that its
users produce during design contests, and an action to denote the act of submitting
a design artifact for evaluation.

• Definition and parameterization of metrics, structural patterns and incentive mech-
anisms.
Metrics are attributes that are calculated by princ from other attributes provided
by the external system. They are used to express different performance aspects
of individuals or groups of workers. For example, a context-independent incentive
strategy may rely on worker’s trust metric in a reward application condition.
However, for different companies, the trust metric is calculated differently. For
example, the trust of a worker may depend on the percentage of the peer-approved
tasks in the past (as in Section 5.3), or it may involve a calculation based on trust
values of nearest neighbors.
princ offers encoding predefined metrics as built-in (library) functions (e.g., trust,
productivity, effort), thus cutting the time needed to adapt a generic incentive
strategy to a particular scenario. Predefined metrics then only need to be pa-
rameterized. In cases where a built-in metric definition is unable to express a
system-specific aspect, clients can provide their own definition. This is usually
the case with company-specific predicates, which we can define in MMod. One
common use of predicates is to define criteria of team membership. A criterion can
be structural (e.g., all workers managed by ‘John Doe’), logical (e.g., workers with
the title ‘Senior Java developer’), temporal (e.g., workers active in the past week)
or composite (e.g.,‘Senior Java developers’ active in the past week).

76

In the same way, predefined structural patterns and entire incentive mechanisms
can be parameterized in MMod. For example, the library pattern COLLABORATORS
(Worker W, RelationType RT, Weight w) returns for a given Worker node W a
set of workers that are connected with W via RT-typed relations, having the weight
greater than w, where w is a client-provided value. In case a translated incentive
strategy relied on using this library pattern, the client could be asked to provide
only a value for w, while princ would initialize the other parameters during the
execution.

• Message mappings.
When a condition for performing a rewarding action is fulfilled, princ needs to
inform the external system. For each rewarding action we need to specify the type
of message(s) used to inform the external system and the data they will contain.
The data contained may include metric values to be used as a justification for
executing a reward/punishment, or a structural pattern suggesting a structural
transformation to the external system. Also, we need to specify which messages
princ expects to get as an answer to the suggested action. Only in case of a
positive feedback will princ proceed to update its internal model. Otherwise, the
rewarding action is ignored.

Socio-technical System

Workforce
Management

Module
Mapping
specification

Mapping Model
(MMod)

Rewarding Model
(RMod)

Inc.
Mech.
LibraryIncentive

designer

PIECEWORK_RWD
(id,uid)
{
 task = BUG_REPORT(id);
 performed = SUB(id);
 evaluated = VER(id);
 score = SCORE(id);
 rew_action =
 AWARD_PTS(uid,score,
 STEP(score)
);
}

R
ew

a
rd

in
g

M
an

a
ge

r

M
ap

p
in

g
M

an
a

ge
r

Figure 5.2: Adapting a general piece-work incentive mechanism for software testing
company use-case.

Example.

A software testing company wants to setup quickly an incentive mechanism that awards
every bug submitter a certain number of points for every verified bug. The amount of
points assigned is company-specific and depends on bug severity. There is a number of
real crowdsourcing companies that rely on such mechanisms (e.g., translation companies
and design companies).

A pre-designed library incentive mechanism PIECEWORK_RWD(· · ·) works with the
concept of a ‘task’. Once the task is ‘performed’, an ‘evaluation’ process on its quality is

77

started. The evaluation phase ends with obtaining a ‘score’. The ‘rewarding action’ is
then executed if a predicate taking the evaluation score as one of its input parameters
returns true.

In this particular case the testing company can define an artifact named BUG_REPORT
to represent a bug report in our system, containing a bug ID, severity, and other fields.
The act of submitting a bug report can be defined as the SUB(id) action, the act of
verifying a bug report as the VER(id) action. What is left to do is to simply map these
actions, artifacts and metrics to the incentive mechanism parameters (Figure 5.2). In
this case, the concept of ’task’ is mapped to the BUG_REPORT artifact. Performing of the
task is signaled by a message containing the SUB(id) action. The voting phase ends with
the arrival of the VER(id) action. From then on, the corresponding score can be accessed
as the metric SCORE(id).

Assignment of rewards to the bug submitters can also be automatically handled by
one of the library rewarding actions we indicate in the mapping. For example, the action
AWARD_PTS(userID, score, mappingFunction(score)) simply informs the company’s
system of how many points the user should be awarded, based on his artifact’s score
and a mapping function. The mapping function in this case can be a step function or a
piecewise-linear function.

5.2.3 Interaction Interfaces

The framework provides two APIs for manipulation of the internal state: a) An API for
direct manipulation of RMod and MMod (DMMI); and b) A message API for event-based
RMod manipulation (MSGI), meant for the external system.

DMMI is intended for internal use within the princ framework. This API exposes
directly the functionalities which are not supposed to be used during the normal operation
of the framework since the consistency of the model’s state cannot be guaranteed. External
use should therefore be limited to handling uncommon situations or performing monitoring.
MSGI is intended for exchange of notifications about external system state changes or
suggested rewarding actions. (Un-)marshalling and interpreting of messages is handled
by the Rewarding Manager. The functionalities offered by the APIs are summarized in

API Functionality Description

MSGI
State updates Notify framework of external structural/temporal/attribute

changes.
Rewarding Suggest a rewarding action to the external system.
Notifications Mutually exchange artifact, action and attribute updates/events.

DMMI

Database API Manipulate DB records. Execute DB scripts.
Rules API Directly execute RMod rules and queries.
Timeline API Modify past and future iteration parameters.
Structure API Directly perform graph transformations.
Mappings Change mappings in runtime (dynamically).

Table 5.1: Functionalities exposed through the APIs

78

Table 5.1. Abstract representation of the message format is shown in Figure 5.3. This
format can be used for both incoming and outgoing messages.

The Action defines the message identifier, type, timestamp and importance. In case
of an incoming message, the type can represent the following: (a) A system-specific
activity that needs to be recorded (e.g., task completion, sick leave) for later evaluation;
(b) Update of an attribute (e.g., hourly wage offered); or (c) Update of the worker/team
structure.

The Artifact specifies the object of the action. It contains the new value of the object
that needs to be communicated to the other party. In case of an incoming message, the
Artifact can correspond to: (a) an activity notification (expressed as an artifact defined in
MMod); (b) an attribute update; (c) a structural update; or (d) an iteration update. In
case of an outgoing message, the artifact can correspond to: (a) an activity notification;
(b) a metric update; or (c) a rewarding action notification.

+id

Worker

+id

Team

*
*

+id
+name
+type
+importance
+timestamp

Action

*

*

*
*

+id
+name
+value

Artifact

* 1

ArtifactAction
1
2
3
4
5

MMod

Timeline

Structure

GlobalData

Worker
1
2
3
4
5
6
7
8
9
0
1
2

RMod

Figure 5.3: Abstract representation of the MSGI message format.

Structural updates can be expressed either as library-defined structural modification
patterns or as completely new descriptions of the graph (sub)structure defined in a formal
language. Iteration updates notify the system of the (re-)scheduling of future iterations
and the duration changes of the currently active ones. Worker and Team parts of the
message specify the workers the message applies to. As already explained, the team
identifiers are defined in MMod and serve to target all individual workers fulfilling a
condition, or as a simple shorthand notation.

5.3 Prototype & Evaluation

The implemented prototype1 consists of the framework components framed with full
borderlines in Figure 5.1. The prototype was implemented in C#, using Microsoft SQL
Server database. Structural modifications are performed using the GrGen.NET [JBK10]
library. GrGen is a versatile framework for performing algebraic graph transformations,

1https://github.com/tuwiendsg/PRINC

79

https://github.com/tuwiendsg/PRINC

including a graph manipulation library and a domain-specific language for specifying
declarative graph pattern matching and rewriting. We used a number of pre-compiled
graph transformation patterns, which are able to capture structural requirements of the
incentive mechanisms we intend to support.

The prototype uses the imperative rewarding rules and MMod mappings provided by
the user via initialization scripts. For the proof-of-concept purposes, they are specified
as C# code. The implemented message-based API supports binary2 or XML messages,
following the format presented in Section 5.2.3. Structural patterns can be expressed in
GrGen’s domain-specific language, or in the DOT language3.

The prototype includes the RMod component already described and evaluated in
Section 4.2. The remaining evaluation in this section focuses on Mapping Model. See
Section 5.2.2. (MMod). It is intended to show how through MMod it is possible to use
previously defined library incentive elements and parametrize them for use for a typical,
real-world incentive scheme. A rich library of incentive elements can in this way be used
as the foundation for the rest of the incentive management platform tools.

Out of the strategies surveyed in [STD13a] we decided to model and implement the
following subset of the incentive strategy of the Locationary company (fully presented in
Section 3.4.2). Locationary was a company that used to sell access to a global business
directory. In order to have a competitive advantage over a number of companies already
offering traditional and internet business directories they needed to maximize the number,
accuracy and freshness of their entries. For this reason, they sought to incentivize workers
spread around the world to add and actively update local business data.

For adding/updating the entries in the business directory the workers were being
issued ‘lottery tickets’. Tickets were allowing the workers to enter into occasional cash
prize draws. Chances of winning were proportional to the number of tickets held.
This mechanism incentivized the increased activity of the workers, but also encouraged
dysfunctional behavior – the inputting of fake/incorrect data. The mechanism that was
introduced to counteract this unwanted behavior was the ‘deferred compensation’. The
workers were only allowed to enter the prize draws if they had gathered enough tickets
(ticket quota) and if their trust score was high enough. The trust metric was proportional
to the percentage of the approved entries, motivating workers to enter correct data.

The primary reason for choosing these particular incentive mechanisms for showcasing
the mapping and parameterization functionalities of MMod was that they demonstrate
particularly well how through reusing and adapting a number of generic incentive elements
effective incentive mechanism can quickly be put into place and combined together.

In Section 5.2.2 we described how a general rewarding mechanism for piece-work can be
adapted to fit the needs of a software testing company. Here we use the same mechanism
to reward workers with lottery tickets, and the same rewarding action AWARD_PTS(· · ·)
to simulate cash payouts.

A lottery is a frequently used mechanism when the per-action compensation amount
is too low to motivate workers due to a high number of incentivized actions. Listing 5.1

2https://github.com/google/protobuf
3 http://en.wikipedia.org/wiki/DOT_language

80

https://github.com/google/protobuf
http://en.wikipedia.org/wiki/DOT_language

% Library definitions in RMod
interface T_LOTTERY_TCKT % Predefined artifact interface .
{

id;
uid; % Owner ID.
value = 1; % Ticket value . Default is 1.

}

LOTTERY % Predefined (library) incentive mechanism .
{

id; % Auto -generated , or assigned during the runtime .
tickets []; % Collection of T_LOTTERY_TCKT objects .
...
type; % To choose from various sub - types .
timing ; % Periodic , conditional or externally - triggered .
numberOfDraws ; % How many tickets should be drawn .
external_trigger ; % User - declared action triggering a lottery draw.
ticketType ; % User - defined artifact that represents a ticket .

% Must be derived from the predefined
% T_LOTTERY_TCKT interface .

rew_action ; % Action to execute upon each owner
% of a winning ticket .

prize_calculation ; % Metric used to calculate the total reward
% amount for a draw. Usually proportional
% to the number of the tickets in the draw.

entrance_cond ; % Predicate used to evaluate whether a worker
% is allowed to enter the draw.

...
}

Listing 5.1: Definitions of library incentives.

shows the pseudo-code declaration of a general lottery mechanism we implemented as
part of our incentive mechanism library. In order to use this mechanism, we simply need
to parameterize the general mechanism by providing the necessary mappings (values,
metrics, actions and predicates), as shown in Listing 5.2. Once the incentive strategy is
running, we can easily adapt it by changing which metrics, predicates and actions map
to it.

This example also shows how we can combine different incentive mechanisms. For
example, the predicate that controls worker’s participation in a lottery draw requires
the worker to possess a certain quota of tickets. The threshold is managed by another
parameterized incentive mechanism, namely LOTTERY_QUOTA. To express trust we use
one of the predefined metrics. The remaining mechanisms are similarly implemented,
demonstrating that our approach is capable of functionally modeling realistic incentive
strategies.

81

% User definitions in MMod
action RUN_LOTTERY (int id);
artifact LOCATIONARY_TICKET extends T_LOTTERY_TCKT {...};

metric CALC_PRIZE (int id , float prizePerTicket) % A user - defined
{ % metric .

LOTTERY L = getLottery (id);
return prizePerTicket * L. tickets . count ;

}

predicate ENTER_LOTTERY_PREDICATE (int lotteryId , int userId) % User defined
{ % predicate .

return TRUST (userID) > 0.65 && % Trust and
LOTTERY_QUOTA (userId); % lottery quota

} % are library
% elements .

% User mappings in MMod
LOCATIONARY_LOTTERY = LOTTERY % Parameterizing

{ % a general inc.
... % mechanism .
timing = " triggered ";
numberOfDraws = 1;
external_trigger = RUN_LOTTERY ;
ticketType = LOCATIONARY_TCKT ;
rew_action = AWARD_PTS (ticket .uid , amount , amount); % Previously

% explained .

prize_calculation = CALC_PRIZE (id , 0.0025) ; % Here we use a
% custom metric .

entrance_cond = ENTER_LOTTERY_PREDICATE (id , ticket .uid);
}

Listing 5.2: Defining customized incentive mechanisms with library elements.

82

CHAPTER 6
Communication Middleware for

Application of Incentives

In order to support coupling of the incentive management framework presented in Chap-
ter 5 (see Fig. 5.1) with different underlying socio-technical systems, to support selective
and safe accessing and management of personal worker data, and to support delivery of
certain types of rewarding actions (e.g., motivating messages, display of rankings, badge
delivery) directly to workers an additional communication and virtualization layer was
needed. This layer was named SmartCOM middleware.

The middleware was designed1 in the context of the EU FP7 “SmartSociety” project2
to accomplish various goals, but here we present only the functionality and design traits
relevant to the usage in the incentive management context:

(a) Message queuing, routing, transformation and delivery.

(b) Support for different messaging formats to support coupling with different platforms
and but also allowing direct communication with human participants through
popular protocols (e.g., email, Android notifications, Twitter).

(c) Privacy and anonymity isolation layer, decoupling princ from working with sensitive
user data.

1 Disclaimer: Parts of SmartCOM design and implementation were co-authored by Dipl.-Ing.
Philipp Zeppezauer, as part of his master thesis work under author’s co-supervision. The results were
published in the joint publications [ZSTD14, ZST+14]. The material presented in this chapter is not
claimed as a contribution of this thesis, but is presented for completeness purposes, since specifics relevant
to SmartCOM’s use in an incentive management context were not presented in the original publications.
Parts of the material from the cited joined publications is used in this chapter.

2http://www.smart-society-project.eu

83

http://www.smart-society-project.eu

Incentive
Management

Platform
SmartCOM

Socio-technical
System

(e.g., SmartSociety)

e.g., RESTe.g., protobuffer

e.g.,
Android
notification

workers

privacy
policies

Peer
Store

communication path

concrete communication
channel/protocol

privacy policy enforcement

Figure 6.1: SmartCOM’s application context.

Figure 6.1 shows the intended usage of the middleware in the incentive management
context, performing the three stated functionalities.

Most of these functionalities, taken individually, can be compared with existing
solutions. However, to the best of our knowledge, no existing system incorporates a
similar union of functionalities as SmartCOM. Popular open-source and proprietary
Enterprise Service Buses (ESBs) and integration frameworks provide the same support
and flexibility for custom adapters (Sec. 6.1.2) as SmartCOM does. On the other hand,
many ESBs lack the support of multi-tenancy (e.g., Apache ServiceMix3 and JBossESB4)
or do have restrictions on implementing custom adapters (e.g., JBossESB). Others do
not support the dynamical enforcement of policies (e.g., WSO2 ESB 5) and there is in
general no support of the group-level addressing at all which is one of the key features
of SmartCOM. Furthermore the support of humans interacting with the system is
generally not considered. Some existing solutions (e.g., [ABS+14]) virtualize human
peers as Web Services, restricting the use of other communication channels, protocols, or
external tools. For example, Social Computing platforms like Jabberwocky [ABMK11]
or TurKit [LCMG09] utilize human capabilities to solve problems. However, they rely
on existing crowdsourcing platform’s communication model with all the restrictions this
brings along; for example, support for inter-peer communication and collaboration is
very restricted.

In the remainder of this chapter, we present the design and implementation of key
SmartCOM components and demonstrate how they fulfills the required functionalities.
Due to its size, the full specification is provided as an external technical report6

3 http://servicemix.apache.org/
4 http://jbossesb.jboss.org/
5 http://wso2.com/products/enterprise-service-bus/
6https://github.com/tuwiendsg/SmartCom/blob/master/doc/technical-report.pdf

84

http://servicemix.apache.org/
http://jbossesb.jboss.org/
http://wso2.com/products/enterprise-service-bus/
https://github.com/tuwiendsg/SmartCom/blob/master/doc/technical-report.pdf

6.1 Middleware Design and Architecture

SMARTCOM

Peer Adapters

Human

Software

Mobile App

Human

FTP

Feedback
Adapters

Communication Engine

Messaging and Routing Manager

Adapter Manager

Executing
platform

App1

App2

App3

Adapter
Execution

Engine

Adapter
Handler

Address
Resolver

Message
Handler

Routing
Rule

Engine

Feedback
Handler

Mail
Adapter

MobileApp
Adapter

Email

REST
Adapter

Email

Dropbox
Adapter

FTP
Adapter

Mailinglist
Adapter

Dropbox

Collective
#1

M
es

sa
ge

 B
ro

ke
r

Worker (peer)
store

Authentication & Privacy Manager

Auth.
Request
Handler Authentication Provider

sessions

Figure 6.2: Internal architecture of SmartCOM middleware.

Figure 6.2 shows the internal architecture of the SmartCOM middleware. The
primary function of the middleware is exchange of messages between peers and the
executing platform, as well as among peers themselves. The term peer is used to denote
both human entities (e.g., workers) and software entities (e.g., external Web Services)
that act as communication endpoints (senders/receivers of messages). The executing
platform (in our case both princ and the socio-technical system) is the software entity
performing computational processes involving peers, for which SmartCOM provides
communicational support. The term collective is used to denote a set of peers requiring
multicast routing and delivery at given time. For example, in a incentive context, a
collective can represent a team of workers that need be contacted concurrently via
different communication channels and protocols to deliver informational or motivational
messages.

The executing platform passes the messages intended for collectives to SmartCOM
(i.e., to the Communication Engine component) through a public API. The task of the
Communication Engine is to virtualize the notions of peers and collectives to the executing
platform, determine the recipients and delivery routes and instantiate an ‘adapter’ to
perform the delivery. The term adapter denotes the middleware component in charge of
handling the communication.

85

6.1.1 Message Handling

Messages are handled by the Messaging and Routing Manager. Principal message
handling and routing algorithms are described in Appendix A, Section A.I.

6.1.2 Adapters

In order to use a specific communication channel, an associated adapter needs to be
instantiated. The communication between peers and the adapters is unidirectional
— output adapters are used to send messages to the peers; input adapters are used to
receive messages from peers. SmartCOM originally provides some common input/output
adapters (e.g., SMTP/POP, Dropbox, Twitter). The role of adapters should be considered
from functional and technical perspectives.

Functionally, the adapters allow for:

(a) Hybridity – by enabling different communication channels to and from peers;

(b) Scalability – by enabling SmartCOM to cater to the dynamically changing number
of peers;

(c) Extensibility – new types of communication and collaboration channels can easily
be added at a later stage transparently to the middleware’s users.

(d) Usability – human peers are not forced to use dedicated applications for collabora-
tion, but rather freely communicate by relying on familiar third-party tools.

(e) Load Reduction and Resilience – by requiring that all the feedback goes exclusively
and unidirectionally through external tools first, only to be channelled/filtered later
through a dedicated input adapter, the SmartCOM is effectively shielded from
unwanted traffic load, delegating the initial traffic impact to the infrastructure of
the external tools. At the same time, failure of a single adapter will not affect the
overall functioning of the middleware.

Technically, the primary role of adapters is to perform the message format trans-
formation. Optional functionalities include: message filtering, aggregation, encryption,
acknowledging and delayed delivery. Similarly, the adapters are used to interface Smart-
COM with external software services, allowing the virtualization on third party tools as
common software peers. The Adapter Manager is the component responsible for manag-
ing the adapter lifecycle (i.e., creation, execution and deletion of instances), elastically
adjusting the number of active instances from a pool of available adapters. This allows
scaling the number of active adapter instances out as needed. This is especially important
when dealing with human peers, due to their inherent periodicity, frequent instability
and unavailability, as well as for managing a large number of connected devices, such as
sensors. The Adapter Manager consists of following subcomponents:

• Adapter Handler : managing adapter instance lifecycle. It handles the following
adapter types:

86

1. Stateful output adapters – output adapters that maintain conversation state
(e.g., login information). For each peer a new instance of the adapter will be
created;

2. Stateless output adapters – output adapters that maintain no state. An
instance of an adapter can send messages to multiple peers;

3. Input pull adapters – adapters that actively poll software peers for feedback.
They are created on demand by applications running on the HDA-CAS
platform and will check regularly for feedback on a given communication
channel (e.g., check if a file is present on an FTP server);

4. Input push adapters – adapters that wait for feedback from peers.

• Adapter Execution Engine: executing the active adapters.

• Address Resolver : mapping adapter instances with peers’ external identifiers (e.g.,
Skype/Twitter username) in order to initiate the communication.

Input messages from peers (e.g., subtask results) or external tools (e.g., Dropbox file
added, email received on a mailing list) are consumed by the adapters either by a push
notification or by pulling in regular intervals (more details in Section 6.2). Principal
adapter handling algorithms are described in [Zep14, ZST+14].

6.1.3 Privacy and Anonymity Features

The Authentication Manager is used to identify peers and verify the authenticity of their
messages in the system while minimizing the exposure of personal data of the peers
involved in communication. This means that the external software platforms, such as
princ can delegate the full responsibility of authentication and privacy management to
SmartCOM, and work only with human peer profiles that disclose as little information
as required for the platform to perform the functionality. In case of incentive management,
this means having the ability to work with a unique alias of the worker and read the
required performance metrics and, possibly, interactions and relationships with other
managed workers through their anonymized aliases.

In order to obtain anonymized human peer profiles SmartCOM relies on existence of
an external peer store called PeerManager7 that maintains and manages information about
human- or machine-based peers in a privacy-preserving framework. PeerManager is able to
store sensitive information about human participants for different applications/platforms
concurrently, applying a entity-centric semantic enhanced model [GDM13] that defines
an extensible set of entity schemas providing the templates for an attribute-based
representation of peers’ characteristics, which effectively allows it to expose peer profiles

7Disclaimer: PeerManager is used as an external tool obtained through collaboration on the joint
research project ‘SmartSociety’. It does not represent a contribution of this thesis nor of its author.
Documentation available at: http://www.smart-society-project.eu/publications/deliverables/d_
4_2/

87

http://www.smart-society-project.eu/publications/deliverables/d_4_2/
http://www.smart-society-project.eu/publications/deliverables/d_4_2/

Name:	 Mario	 Rossi;	 Marito;	 	
Gender:	 Male	
Date	 of	 Birth:	 1991-‐05-‐12	
Address:	 Via	 Piave	 5,	 Trento	
Age:	 33	
Posi6on:	 46.064199,	 11.127730	
Smoker:	 No	
Communica6on	 channels:	
[<email,	 mr123@gmail.com>,	
<cellphone,	 +39	 3480070998>]	
...	

Peer’s Information Peer’s Profiles

Ride	 Sharing	 profile	

User:	 Mario	 Rossi	
Age	 range:	 between	 25	 and	 35	 	
City:	 Trento	
Smoker:	 No	
Communica6on	 channels:	 [<cell	 phone>]	

AskSmartSociety!	 profile	

User:	 Marito	
City:	 Trento	
Communica6on	 channels:	 [<cell	 phone>]	

Figure 6.3: Simplified example of a peer with multiple profiles. Each profile is revealed
to a different application.

The PM defines a privacy protection model that pays special attention to different
privacy principles enacted by the EU Data Protection Directive 95/46/EC8 affecting
storage and processing of personal data. Specifically, the model defines privacy regulations
and considerations described in [HJCA+15], such as purpose specification and binding,
that are enforced upon search queries, allowing to reveal only partial or (semantically)
obfuscated information, used for replying to specific information requests, thus enforcing
data minimization. Figure 6.3 (from [SMS+15]) shows a simplified example of a human
peer subscribed to participate in two platform applications, revealing different information
(by using different profiles) in each case. This allows, e.g., a human peer to reveal its
age range (as a way to obfuscate the exact date of birth), while the same information is
completely hidden when participating in a different application.

By relying on PeerManager as the external peer store, the Authentication Manager is
able to maintain multiple identities corresponding to different profiles of the same person,
and route the messages to/from him/her accordingly. In an

Authentication request messages are collected by the Authentication Request Handler.
After the successful authentication, the manager creates a security token that can be used
by peers and SmartCOM to provide security features (e.g., message authentication or
message encryption). This token is only valid a certain period of time. The time period
between the creation of the token and the invalidating thereof is called session. The
result of the authentication is passed to the Control Queue in form of a response message.
The Authentication Provider can be used by the Messaging and Routing Manager to
verify the authenticity of a message – if required.

The Authentication Manager uses a Session Data Storage to handle the sessions of
peers. Sessions consist of a session token that can be used by peers to authenticate
messages, and a timestamp. If a message arrives with a token of an invalid session, the
peer has to be informed to renew its token. Such messages should be discarded or at

8http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31995L0046

88

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31995L0046

least retained until the peer authenticates itself again.

Additional Privacy Functionalities

SmartCOM supports specifying and observing delivery and privacy policies on message,
peer and collective level: Delivery policies stipulate how to interpret and react to possible
communication exceptions, such as: failed, timed out, unacknowledged or repeated
delivery. Privacy policies restrict sending or receiving messages or private data to/from
other peers, collectives or external applications under different circumstances. Apart
from offering predefined policies, SmartCOM also allows the users to import custom,
application- or peer-specific policies. As noted, both types of policies can be specified
at different levels. For example, a peer may specify that he can be reached only by
peer ‘manager’ via communication channel ‘email’, from 9am to 5pm in collective ‘Work’.
The same person can set to be reachable via ‘SMS’ any time by all collective members
except ‘manager’ in collective ‘Bowling’. Similarly, a collective delivery policy stating that
when sending instructions to a collective it suffices that the delivery to a single member
succeeds to consider the overall delivery successful on the collective level. SmartCOM
takes care of combining and enforcing these policies transparently in different collective
contexts.

6.2 Implementation & Evaluation

SmartCOM prototype was implemented in the Java programming language. One
can interact with it through a set of provided APIs. The prototype comes with some
implemented standard adapters (e.g., Email, Twitter, Dropbox) that can be used to
test, evaluate and operate the system. Additional third-party adapters can be loaded
as plug-ins and instantiated when needed. SmartCOM uses MongoDB9 as a database
system for its various subsystems. Depending on the usage of the middleware, either
an in-memory or dedicated database instances of MongoDB can be used. To decouple
execution and communication we use Apache ActiveMQ10 as the message broker. The
source code is provided in SmartCOM’s GitHub repository11.

As the envisioned positioning of SmartCOM in the overall architecture of the
incentive management platform requires that all information exchange takes place through
it, the prototype was put through a performance evaluation to demonstrate that it is
capable of withstanding high message loads (peaks) that could occur at specific times
when an incentive may need be applied to a large group of workers simultaneously (e.g.,
a deadline).

The following performance evaluation was made on a 64-bit Intel Core2 Duo machine
with 2x 2.53 GHz, 4.00 GB DDR2-RAM. The simulation configuration is as follows:

9http://www.mongodb.org
10http://activemq.apache.org
11https://github.com/tuwiendsg/SmartCom

89

http://www.mongodb.org
http://activemq.apache.org
https://github.com/tuwiendsg/SmartCom

• One implementation of a Stateless Output Adapter (one instance shared by all
peers).

• 10 Input Push Adapter to receive input from peers.

• Output and Input Adapters communicate directly using a in-memory queue to
simulate a peer with a response time of zero.

• Worker threads (‘Workers’) simulate the concurrently executing incentive mech-
anisms sending incentive messages (rewarding actions) to the ‘peers’ (simulated
human workers).

• One million messages are sent for each evaluation test run to get a meaningful
average number of messages sent/received.

• Only sent and received messages are considered as ’handled’, no internal messages.

Figure 6.4 depicts the setup for the performance evaluation as described above.

Workers
Communication

Middleware
Peers

Worker

Stateless
Output
Adapter

Input
Adapter

WorkerWorker

simulated

10 instances

1 instance
(scales)

1 mio messages

Figure 6.4: Setup for the performance evaluations.

1 10 100 1000

0

1000

2000

3000

4000

5000

6000

Peers

M
es

sa
ge

s/
se

co
n

d

1 Worker

5 Worker

10 Worker

20 Worker

50 Worker

100 Worker

Figure 6.5: Simulated message throughput. ‘Workers’ are concurrent threads simulating
concurrent applications of rewarding actions to human ‘peers’.

The performance was evaluated for every combination of 1, 5, 10, 20, 50 and 100
worker threads sending 1 · 106 messages concurrently, uniformly distributed to 1, 10, 100,
and 1000 peers waiting for messages and replying to them. Each test run was executed

90

10 times to obtain average throughput results. Figure 6.5 presents the results of the test
runs. The test runs can be reproduced using the stated setup data to configure the Java
application located at GitHub12. As can be seen, the average throughput remains between
5000 and 3000 messages per second. The performance decrease with higher amounts of
peers is result of increased memory requirements rather than computational complexity.
The limiting factor here is the used ActiveMQ message broker which only allows a
maximum of approximately 20000 messages per second. The system has an upper bound
of 5000 messages per second since each message is handled multiple times by the message
broker and the SmartCOM. This limitation applies to a single SmartCOM instance,
but multiple SmartCOM instances can be deployed to balance the load if needed, sharing
the database and peer store access. The chosen numbers of worker threads and peers
cover the reasonably expected maximum numbers of concurrently executing incentive
mechanisms and concurrently targeted humans, respectively. Performance (scalability) is,
thus, not expected to become a primary concern of SmartCOM, especially considering
the inherent latency of human peers and variance of response times which are both much
higher in real-world than in simulated conditions.

12https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/main/java/at/ac/
tuwien/dsg/smartcom/demo/PerformanceDemo.java

91

https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/main/java/at/ac/tuwien/dsg/smartcom/demo/PerformanceDemo.java
https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/main/java/at/ac/tuwien/dsg/smartcom/demo/PerformanceDemo.java

CHAPTER 7
Programming Model and

Domain-Specific Language for
Incentive Management

In this chapter we present the programming and execution model, semantics and syntax
of pringl1 – a domain-specific language for modeling incentives for socio-technical
systems. We describe pringl’s modeling paradigm, and demonstrate its expressiveness
by modeling a set of realistic incentive mechanisms.

In order to enact a pringl-encoded incentive on a socio-technical platform (i.e.,
apply the incentives on real crowd workers), we need a simplified and uniform model of
platform’s workers, and the metrics and relationships that describe them. We call such a
model together with the framework that manages it an abstraction interlayer (Fig. 7.1).
More precisely, we use the term abstraction interlayer to denote any middleware sitting
on top of a socio-technical system, exposing to external users a simplified model of its
employed workforce and allowing monitoring of the workers’ performance metrics. The
existence of an abstraction interlayer allows the incentive designer to write fully-portable
incentives.

The princ framework presented in Chapter 5 lacked a comprehensive, human-readable
way of encoding incentive mechanisms. However, princ possesses all the characteristics of
an abstraction interlayer. It features the general model (RMod) for representing the state
of a socio-technical system, reflecting its quantitative, temporal and structural aspects.
princ’s mapping model (MMod) defines the mappings needed to properly express the
platform-specific versions of metrics, actions, artifacts and attributes into their RMod
cognates. Finally, princ coupled with SmartCOM takes care of exchanging messages
with, and receiving update events from the underlying socio-technical platform, thus
enabling the RMod abstract model to mirror the state of the underlying system. This in

1PRogrammable INcentive Graphical Language (PRINGL)

93

turn allows us to express incentive mechanisms decoupled from the underlying platform:
to apply an incentive it suffices to alter the RMod state, while the task of mirroring this
change onto the actual socio-technical platform is delegated to princ and SmartCOM.

In this chapter we assume the existence of princ as abstraction interlayer. The
business logic code provided in the examples in Section 7.4 is C# code executable
on princ. In theory, pringl can work without an abstraction interlayer. However,
this would imply that all message handling with the underlying crowdsourcing system
and complex monitoring logic would have to be written from scratch and placed into
the incentive logic elements (Sec. 7.2.3). This contradicts one of the principal motives
for introduction of pringl, and is more disadvantageous than building a completely
system-specific incentive management solution.

7.1 Overview
Figure 7.1 shows an overview of pringl’s architecture and usage in the overall context of
the incentive management platform. pringl is designed to be used by the same types of
users as princ (introduced in Section 5.1) – incentive designers and incentive operators.
An incentive designer models an incentive scheme provided in natural language by a
domain expert as a pringl program using pringl’s visuo-textual syntax. The visually-
expressed part of the syntax is completely system-independent, while system-specific
business logic can be expressed as source code in an arbitrary programming language
supported by the abstraction interlayer (see Sec. 7.2.3, Incentive Logic).

Starting from a pringl program the pringl code generator produces the following
artifacts, encoded in a conventional programming language:

• An incentive model expressed in terms of incentive elements, basic pringl types
and operators. This model also integrates the business logic code provided by the
incentive designer. The incentive element definitions from this model can optionally
be compiled into libraries for later reuse.

• Code for communication with the abstraction interlayer and application of the
incentives.

• Code for manipulation of the incentive model.

These artifacts can be used to quickly build applications offering incentive management
capabilities, e.g., a GUI-based application offering an incentive operator the possibility to
change the runtime parameters. As previously explained, the abstraction interlayer takes
care to communicate with the concrete socio-technical system, forward the rewarding
actions and receive the updates.

7.1.1 Requirements

As pringl is a domain-specific language, the focus of the design requirements lies primarily
on coverage of the domain and usability to the stakeholders within that domain. The

94

Activity 2

In
ce

n
ti

ve
 M

a
n

ag
e

r

Structure

incentive
designer

PRINGL

G
U

I

In
ce

n
ti

ve
 M

o
d

e
l (

IM
o

d
)

executive
layer

typedef
library

language layer

V
is

u
al

 S
yn

ta
x

Se
m

a
n

ti
cs

So
ci

o
-t

e
ch

n
ic

a
l S

ys
te

m

PRINC

formal
layer

C
o

m
p

ile
r

R
e

w
a

rd
in

g
M

a
n

ag
e

r

M
a

p
p

in
g

M
a

n
ag

e
r

D
ir

e
ct

 M
o

d
e

l
M

a
n

ip
u

la
ti

o
n

M

a
n

ag
e

r

executive
layer

R
e

w
a

rd
in

g
M

o
d

e
l

(R
M

o
d

)
M

a
p

p
in

g
M

o
d

el

(M
M

o
d

)

formal
layer

conceptual
layer

Timeline

Attributes

G
ra

p
h

 T
ra

n
s.

M

o
d

e
l

DB

data
layer

Execution Model

Visual/Textual Representation

 Incentive Elements (Complex Types)

Incentive Mechanism

Inc.LogicFilter Action

Basic Types & Operators

Set

Time

Temporal
Specifiers

Structural

Aggregate

Primitive types

Abstraction Interlayer

Model
Manipulation API

 System Model

Event/Metric Mappings

incentive
designer

incentive
strategy

PRINGL program

 executable incentive
operator

incentive
library

C#

e.g.

generated
codeP

R
IN

G
L

b
u

si
n

es
s

lo
g

ic
P

R
IN

C

abstraction stack actorsartifacts implementation technology

Visual Studio
.pringl Project

Visual Studio
C# Project

.NET assembly

VS
Modeling

SDK

PRINGL
metamodel

domain
expert

1

#region IncentiveLogic
 public static partial class IncLogic {
 public static Worker _w;
 public static IEnumerable<Worker> _ws;
 public static IHasParameters _parent;
 ...
 [P_Logic]
 public static bool WasTooLong(int iters)
 ...

PRINC interlayer

C#

.NET assembly

Simulated workers

digraph{
Worker2 -:ManagedBy-> Worker3;
Worker1 -:ManagedBy-> Worker3;
Worker0 -:ManagedBy-> Worker3;}

digraph{
Worker3 -:ManagedBy-> Worker2;
Worker1 -:ManagedBy-> Worker2;
Worker0 -:ManagedBy-> Worker2;}

PRINGL structural
incentive

Activity 1

Packaging

Activity 2

Web-centric
Business Process

Incentive Management

Team Provisioning

team A' team A'' team B
incentivize
motivate
adapt Monitoring

metrics'

A'

metrics"

A"

 Socio-technical System
reward worker

Communication Middleware

S
m

a
rt

C
O

M

Figure 7.1: Incentive management platform tools, showing an overview of pringl’s pro-
graming model elements, architecture, users, operative environment and implementation
(marked in blue).

design of the language was guided by the following requirements, formulated according
to the guidelines outlined in [MH10]:

1. Usability – provide an intuitive, user-friendly modeling DSL for incentive operators.

2. Expressiveness – provide an expressive environment for programming complex
real-world incentive strategies for incentive designers.

3. Groundedness – allow the use of de facto established terminology, components and
methods for setting up incentive strategies.

4. Reusability – support and promote reuse of existing incentive business logic.

5. Portability – support system-independent incentive mechanisms, agnostic of type
of labor or workers, and of underlying systems.

95

7.2 Programming Model

To meet the specified requirements pringl was conceived as a hybrid visual/textual
programming language, where incentive designers can encode core incentive elements,
while incentive operators can provide concrete runtime parameters to adapt them to
a particular situation. The language supports programming of the real-world incen-
tive elements described in [STD13a, TCZ12] and allows composing complex incentive
schemes out of simpler elements. Such a modular design also promotes reusability since
the same incentive elements with different parameters can be used for a class of similar
problems, stored in libraries and shared across platforms.

pringl allows incentive designers to model natural-language, realistic incentive
schemes (i.e., business logic) into a platform-independent specification through a number
of incentive elements represented by a visual syntax (graphical elements with code
snippets). The incentive scheme represents the whole of business logic needed for
managing incentives in an organization. The scheme is expressed in pringl as a number
of prioritized incentive mechanisms representing a pringl program. Each mechanism can
them be further decomposed into a number of constituent incentive elements described
in the following subsections. The designer programs new incentive elements or reuses
existing ones from an incentive library to compose new, more complex ones. The following
sections describe the incentive elements and operations on them.

7.2.1 Primitive Incentive Elements & Operators

Primitive Incentive Elements

From business logic perspective, primitive incentive elements represent the basic entities
(workers, relationships and time units) that we use when composing incentive rules. From
programming language perspective, they can be considered as atomic types that are used
in user-provided or library code that specifies business logic. We use the two term: ‘type’
and ‘incentive element’ interchangeably. Apart from the four conventional primitive
types: string, bool, int and double, pringl defines the types shown in Table 7.1.
They do not have a direct visual representation. Only primitive elements can be used as
inputs and outputs of complex incentive elements (Section 7.2.2).

pringl provides a number of operators for manipulating the introduced primitive
types.

Built-in Operators

• Set operators. – Union, intersection and complement on Collection<T>.

• Time operators. If working with adjustable intervals, it is advisable to use operators
wherever possible as they are evaluated at run time and guarantee that any external
changes (e.g., deadline extensions) will be taken into account. A common use-case
would see a user initializing an Interval from an iteration, and using interval

96

Type Description
Worker Represents an individual worker and his/her performance metrics.
PoiT Represents a point in time. It can be instantiated by providing a fixed

datetime or obtained as result of application of time operators.
Interval Represents a named, addressable time interval. An interval can be: a) fixed;

and b) adjustable. Fixed intervals have predefined starting and ending times,
provided by two PoiTs, that cannot subsequently be altered. Adjustable inter-
vals reflect the external system’s changes intervals, e.g., deadline extensions
(cf. iterations [STD13b]). Changes are allowed to affect only points in future.

Collection<T> An iterable collection of a primitive type T is also considered a primitive
type.

Table 7.1: Primitive types.

operators to specify points in time in which an action is needed. Time operators
are commonly used with temporal specifiers.

– StartOf(Interval i) – returning the Collection<PoiT> containing a single
time point representing the interval’s currently expected starting time.

– EndOf(Interval i) – returning the Collection<PoiT> containing a single
time point representing the interval’s currently expected ending time.

– PartOf(Interval I, double p) – p[0, 1] returning the PoiT at percentage
p of the interval. PartOf(i, 0) == StartOf(i)PartOf(i, 1) == EndOf(i)

– MultiPoint(Interval i, int k) – returns a Collection<PoiT> of points
evenly distributed between StartOf() and EndOf().

– AllOf(Interval i) – returns a Collection<PoiT> of points representing all
time points (depending on the resolution of the underlying system) contained
in the interval.

• Temporal specifiers. These are special operators used to instruct the execution
environment when to perform certain actions or evaluate predicates. As such, they
cannot be directly used in user-provided programming code, but are rather offered
as a choice through a visual GUI element (drop-down box) where needed. Internally,
they are represented as built-in functions that operate on a collection of PoiTs that
is provided by the environment at runtime.

– Always(Collection<PoiT>) – “at each PoiT in collection”.
– Sometimes(Collection<PoiT>) – “at least once in collection”.
– Once(Collection<PoiT>) – “exactly once in collection”.
– Never(Collection<PoiT>) – “never in collection”.
– First(Collection<PoiT>) – “oldest in collection”.

97

– Last(Collection<PoiT>) – “newest in collection”.

• Structural operators. They perform structural queries/modifications by exa-mining/re-
chaining the relationships between worker nodes in the abstraction interlayer (graph)
model by using graph transformations2 [BH02].

– Querying:

∗ neighborsOf(Worker w, string relationType, int numHops,
bool directed) – returns a Collection<Worker> filled with workers
numHops hops away from Worker w over un-/directed relationType rela-
tionships.

∗ managersOf(Worker w) – returns Collection<Worker> filled with man-
ager(s) of worker W. The relationship type representing the managerial
relation is obtained from the abstration interlayer.

∗ subordinatesOf(Worker w) – analogous to managersOf.

– Modifying:

∗ changeManager(Worker w, string teamLabel) – rechains the implic-
itly determined managerial relations within the members of the tealLabel
team to point to the new manager.

• Aggregation operators. They perform calculations on performance metrics or events
over a Collection<PoiT>s, in a fashion similar to SQL’s aggregate functions. The
collection of time points over which the operators calculate is provided by the
runtime environment at each invocation. They can only be used in predicate logic
blocks P that are directly or indirectly reachable through declaration relationships
originating from a WorkerFilter F element.

– @AVG(double m) – returns the average value of the metric m over the given
time point collection.

– @COUNT(string evt) – returns the number of occurrences of event evt in the
timespan delimited by the first and last PoiT in the given input collection.

– @MAX(double m) – returns the largest value of the metric m over the given
time point collection.

– @MIN(double m) – returns the smallest value of the metric m over the given
time point collection.

– @SUM(double m) – returns the sum of the values of the metric m over the
given time point collection.

98

ComplexType

name
params
output

WorkerFilterIncentiveLogic

Time
Logic

Structure
Logic

Predicate
Logic

Filter
Logic

Action
Logic

T

S

P

F

A

*

Composite
W.F.

SimpleW.F.

predicate

time_restr
temp_spec
auxiliary

FL

Composite
Rew.Act.

*

SimpleR.A.

temp_spec

filter
exec_cond
exec_times

delay
action_logic

Inc.Mechanism

IM

RewardingAction

A

Incentive
Scheme

exec_cond
filter

priority
rew_action
inc_cond

MyLogicMyLogicMyLogic
MyLogicMyLogicMyFilter

MyLogicMyLogicMyAction
MyLogicMyLogicMyMech

u
se

r
ty

p
es

P
R

IN
G

L
 m

et
at

y
p

es

0..*

1..*

Figure 7.2: Complex incentive elements class hierarchy.

7.2.2 Complex Incentive Elements

Complex types enable pringl’s core functionality and are represented by corresponding
graphical elements. Their key property is that more complex types can be obtained
by visually combining simpler ones. Visual, rather than purely textual representation
was chosen to allow users to build up complex incentive schemes by visually suggesting
and restricting the choice of the possible components, thus facilitating the process of
construction of incentive mechanisms. Complex incentive elements are managed through
the following operations:

Operations on Complex Incentive Elements

Definition – Complex types are defined by inheriting the following abstract metatypes:
IncentiveLogic, WorkerFilter, RewardingAction and IncentiveMechanism (Fig 7.2).
A new complex type inherits the predefined, addressable fields from the metatype it
redefines. In order for a type definition to be complete, the fields must be filled out with
appropriate values. Some fields are filled out automatically by pringl depending on the
context where they are used (auto parameters); others must be filled out by the user
(user-fields). The user-fields are: a) name, which specifies the name of the new complex
type; b) arbitrary number of primitive-type input parameters (params) that can be used
in evaluations and passed to other incentive elements; c) type-specific fields3, specifying
how a particular functionality of the newly defined complex type is going to be executed
– by indicating another incentive element to invoke, or by providing an executable code

2Please note that the list of structural operators is non-exhaustive at the moment and serves purely
for demonstrational purposes.

99

snippet. Definition is performed through appropriate graphical constructs being placed
onto the working area. A new type definition retains its parent-metatype’s graphical
representation. For the non-auto input params (b), pringl visually exposes appropriate
number of GUI form fields accepting the inputs that are to be filled out manually by the
user. The input can contain expressions with primitive types and/or references to other
accessible fields. To fill out type-specific fields (c), the user is expected to visually link
the appropriate incentive element type, thus effectively declaring/instantiating it (see
below).

Declaration/Instantiation – When defining new complex types, the user indicates
(declares) which field/subcomponent instances will be required for pringl runtime to
instantiate the newly defined object by placing the corresponding graphical (blue-filled)
element in the appropriate context within the working area, connecting it with appropriate
connector from the parent type definition, and overriding parameter values from the
parent type definition, if needed. The auto parameters are loaded at instantiation by
pringl transparently to the user. For example, in case of T (Section 7.2.3) all named
Intervals and all workers are passed as input parameters and made available through
predefined variable names (preceded with underscore). This removes the need of having to
know how to access certain data from a type definition, thus making it self-contained and
portable. The user-defined fields are initialized with values calculated from the expression
contained in the type definition and values provided by the user or propagated from
the composing elements. Type instances are addressable objects that can be referenced
(e.g., to read a field value) or invoked (see below) from the programming code and other
elements.

Indirect invocation – The IncentiveLogic, WorkerFilter and RewardingAction
instances can also be ‘invoked’ just by being referenced from expressions in user-code.
When the pringl code generator encounters an instance reference in an expression it
transparently replaces it with an invocation of the default method for that type. Default
methods for filters and rewarding actions return the resulting Collection<Worker>.
The default method of a IncentiveLogic type is a function having input and output
parameters as specified in its definition, and the user-provided code as the function body.
The input parameters are provided by pringl runtime, so there is no need to pass any
non-user parameters from the user code. Expressions containing indirect invocations
can be used as field values (see Ex. 2, Fig. 7.12) or arbitrarily within the user-provided
business-logic code in IncentiveLogic elements (see Ex. 3, Fig. 7.10, ¬). Indirect
invocation feature allows the user to pass instance references instead of output types of
their default methods; for example, we can pass a filter instance to an IncentiveLogic
element expecting a single input parameter of type Collection<Worker>. As these are
common situations, indirect invocation helps cut down on verbosity of user code.

Static invocation – In addition to indirect invocation, IncentiveLogic elements
can be invoked statically with arbitrary input parameters from the user code. In
order to make the static invocation, the IncentiveLogic type name is appended with
.invokeWith([<param-list>]); see Ex. 3, Fig. 7.10, ¬.

100

7.2.3 Defining Complex Incentive Elements

Incentive Logic

These constructs encapsulate different aspects of business logic related to incentives in
reusable bits (e.g., determine whether a condition holds, read a metric value, or perform a
simple action). They can be thought of as functions/delegates with predefined signatures
allowing only certain input and output parameters. They are invoked from other pringl
constructs, including other IncentiveLogic elements. Implementation is dependent
on the abstraction interlayer, but not necessarily on the underlying socio-technical
platform, meaning that many libraries can be shared across different platforms, promoting
reusability of proven incentives, uniformity and reputation transfer. The Designer is
encouraged to implement incentive logic elements as small code snippets with intuitive
and reusable functionality. Depending on the intended usage, incentive logic elements
have different subtypes: Action, Structural, Temporal, Predicate, Filter. Subtypes are
needed to impose necessary semantic restrictions, e.g., the subtype prescribes different
input parameters and allows pringl to populate some of them automatically4. Similarly,
different subtypes dictate different return value types. These features encourage high
modularization and uniformity of incentive logic elements. Descriptions of the incentive
logic subtypes are provided in Table 7.2. Incentive logic element definition is expressed
in pringl with the visual syntax element shown in a Fig. 7.3, with appropriate subtype
symbol shown in the upper left corner. As is the case with other incentive element
definitions (presented in subsequent sections), the incentive logic element incorporates
the distinguishing geometrical shape (diamond in this case), as well as auto-populated
and user-defined parameters. Differently than other elements, it contains a field into
which the Designer inputs executable code in a conventional programming language. The
code captures the business logic specific to the incentive that is being modeled, but must
conform to the rules imposed by the incentive logic subtype. As a shorthand, textual,
inline notation for incentive logic elements we use a diamond shape surrounding the letter
indicating the subtype, e.g., T for temporal logic.

P

 // Business logic expressed in
 // interlayer-executable programming code

name: IncentiveLogic
params: Type1 _param1 (auto),

Type2 param2
output: OutputType

Figure 7.3: Visual element representing an IncentiveLogic definition.

4Marked with auto in figures

101

Su
bt
yp

e
Sy

m
bo

l
E
nv

ir
on

m
en
t-
pr
ov

id
ed

in
pu

t
A
llo

w
ed

ou
tp
ut

In
te
nd

ed
us
ag
e

Ti
me
Lo
gi
c

T
al
ln

am
ed

In
te
rv
al
s,

al
lW

or
k-

er
s,

re
fe
re
nc
e
to

gl
ob

al
st
at
e

Co
ll
ec
ti
on

<P
oi
T>

To
re
tu
rn

tim
e
in
te
rv
al
s/
po

in
ts

at
w
hi
ch

a
pr
ed
ic
at
e
sh
ou

ld
be

ev
al
u-

at
ed

or
an

ac
tio

n
pe

rf
or
m
ed
.

St
ru
ct
ur
eL
og
ic

S
re
fe
re
nc
e

to
th
e

st
ru
ct
ur
al

m
od

el
,

re
fe
re
nc
e

to
gl
ob

al
st
at
e

Co
ll
ec
ti
on

<W
or
ke
r>

fo
r

qu
er
ie
s:

fo
un

d
w
or
ke
rs
;

fo
r

tr
an

s-
fo
rm

at
io
ns
:

aff
ec
te
d

on
es

To
pe

rf
or
m

gr
ap

h
qu

er
ie
s/
tr
an

sf
or
-

m
at
io
ns

on
th
e

m
od

el
re
pr
es
en
t-

in
g
wo

rk
fo
rc
e
st
ru
ct
ur
e
an

d
re
la
tio

n-
sh
ip
s.

A
tr
an

sf
or
m
at
io
n

S
is
on

ly
al
lo
w
ed

to
be

in
vo

ke
d
fr
om

A
.
A

qu
er
y

S
ca
n
on

ly
be

in
vo

ke
d
fr
om

P
an

d
F
.

Pr
ed
ic
at
eL
og
ic

P
cu
rr
en
tly

ev
al
ua

te
d

W
or
ke
r,

al
l
W
or
ke
rs
,
cu
rr
en
tly

ev
al
u-

at
ed

Po
iT

,r
ef
er
en

ce
to

gl
ob

al
st
at
e

bo
ol

To
ev
al
ua

te
w
he
th
er

a
pr
ed
ic
at
e

ho
ld
s
at

gi
ve
n
m
om

en
t.

Fi
lt
er
Lo
gi
c

F
cu
rr
en
tly

ev
al
ua

te
d

In
te
rv
al
,

al
ln

am
ed

In
te
rv
al
s,

cu
rr
en
tly

ev
al
ua

te
d
W
or
ke
r,

al
l
W
or
k-

er
s,

re
fe
re
nc
e
to

gl
ob

al
st
at
e

ar
bi
tr
ar
y

To
pr
ov

id
e
bu

sin
es
s
lo
gi
c
fo
r
ev
al
u-

at
in
g
pa

st
w
or
ke
r
pe

rf
or
m
an

ce
.

Ac
ti
on
Lo
gi
c

A
W
or
ke
rs

to
be

re
w
ar
de
d/

pu
n-

ish
ed

,r
ef
er
en

ce
to

gl
ob

al
st
at
e

Co
ll
ec
ti
on

<W
or
ke
r>

(a
ffe

ct
ed
)

To
pe

rf
or
m

re
w
ar
di
ng

ac
tio

ns
ov
er

w
or
ke
rs

or
gl
ob

al
va
ria

bl
es
.

Ta
bl
e
7.
2:

In
ce
nt
iv
eL
og
ic

su
bt
yp

es

102

Worker Filter

The function of a WorkerFilter element is to identify, evaluate and return matching
workers for subsequent processing based on user-specified criteria. The criteria are most
commonly related (but not limited) to worker’s past performance and team structure.
The workers are matched across different time points from the input collection of Workers
that is provided by the pringl environment at runtime. By default, all the workers in
the system are considered. The output is a collection of workers satisfying the filter’s
predicate.

If we denote the input set of Workers of a WorkerFilter X with Ix, and the output
set with Ox, then the functionality of X can be defined as the function fx:

fx : Ix → Ox

Ix = input(x)
Ox = {e ∈ Ox | e ∈ Ix ∧ px(e) = true}

where px is the filter’s predicate. Therefore, the functionality of a filter is to re-
turn a subset of workers from the input set, i.e., to perform a set restriction. Both
SimpleWorkerFilter and CompositeWorkerFilter are subtypes of the abstract metatype
WorkerFilter (Fig. 7.2), and can be used interchangeably where a worker filter is needed.
A SimpleWorkerFilter element definition is expressed in pringl with the visual syntax
element shown in a Fig. 7.4, while a right-pointed shape F is used as the inline, shorthand,
textual denotation. Filter’s type-specific fields are filled out visually by the user, by
connecting them with appropriate incentive elements. Field descriptions are provided in
Table 7.3.

Field Description
time_restr An optional T returning a collection of time points which should be considered

when evaluating workers. If omitted, the default value is a collection containing
only a single PoiT representing the present moment.

temp_spec An optional temporal specifier (Section 7.2.1) determining how to interpret the
filter predicate values across different time points. If unspecified, the predicate
is evaluated only for the last (most recent) PoiT in the collection.

auxiliary An optional F that is used to fetch some global metrics needed for worker
evaluation, and possibly provide some intermediate results to be used for
evaluating the filter predicate.

predicate A required P providing the predicate that will be evaluated against each
worker in specified time points.

Table 7.3: SimpleWorkerFilter fields.

103

P

T

PredicateLogic

TempLogic SimpleFilter

time_rest: TempLogic

temp_spec: null

auxiliary: null

predicate: PredicateLogic

params:
- Type1 param1
- Type2 param2

Figure 7.4: Visual element used for SimpleWorkerFilter definition.

Composite Filters

In Figure 7.5 we illustrate how a composite filter can be defined in pringl. It consists
of graphical elements representing instances of previously defined, or library-provided
WorkerFilters. The elements are connected with directed edges denoting the flow of
Workers. There must be exactly one filter element without input edges representing the
initial filter, and exactly one filter element without output edges representing the final
filter in a composite filter definition. When a CompositeWorkerFilter is instantiated
and executed, pringl provides the input for the initial filter, and returns the output
of the final filter as the overall output of the composite filter. As any other pringl
composite type, a composite filter can also expose propagated or user-defined parameters.

MyCompositeFilter

A:FType1 B:FType2

C:FType3

D:FType4

<<initial>>

<<final>>

∩
intersection
(restriction)

union ∪

\
complement

MyCompositeAction

B:T2a:A1

<<initial>>

A:T1

<<initial>>

C:T3

<<final>>

D:T4

<<final>>

3 5

0

Figure 7.5: An example CompositeWorkerFilter definition.

A directed edge A −→ C implies that C takes as input A ’s output (the workers
matching the criteria of A). The output of C is a set containing workers fulfilling both
filters’ conditions, thus effectively representing A ∩ C operation. If an edge is marked
as negating (9), then A 9 returns the set complement of A ’s input, i.e., input(A) \
A . When multiple edges enter a single filter element, then the union (∪) of workers
coming over the edges is used as the input for the filter element. When multiple edges go
out of a single element, then the same output set of workers is passed to each receiving

104

end. Sometimes, we need a filter to forward a same set of workers to multiple filters or
to collect workers from multiple filters without performing additional restrictions; the
pass-through filter (predefined PassThru type) contains no logic, except for a predicate
always returning true.

Rewarding Action

Its function is to notify the abstraction interlayer (and consequently the crowdsourcing
platform) that a concrete action should be taken against specific workers at a given time,
or that certain specific actions should be forbidden to some workers during a certain time
interval. The rewarding actions can include, but are not limited to, the following: adjust
reward rates (e.g., salary, bonus), assign digital rewards (e.g., points, badges, stars),
suggest promotion/demotion or team restructuring, display a selected view of rankings
to selected workers. The choice of the available actions is dependent of the set supported
by the interlayer and the actual crowdsourcing platform. The abstraction interlayer
is responsible for translating the action into a system-specific message and delivering
it to the underlying crowdsourcing platform. pringl expects the underlying system
to acknowledge via abstraction interlayer that the suggested action was accepted and
applied to a worker, because its outcome may affect other incentive mechanisms. We use a
trapezoid shape shown in Fig. 7.6 to denote the definition of a SimpleRewardingAction.
For the shorthand notation, we use A , both for simple and composite rewarding action
elements.

T

TemporalLogic

A

ActionLogic

SimpleAction

 filter: null

 exec_cond: null

 exec_times: TemporalLogic

 temp_spec: null

params:
+ Type1 param1
- Type2 param2

 delay: (auto)

 action_logic: ActionLogic

Figure 7.6: Visual element used for SimpleRewardingAction definition.

In pringl’s programming model the output of a RewardingAction is a Collection<Worker>
containing affected workers, i.e., those to which the action was successfully applied. In-
forming the abstraction layer is performed a side-effect of executing the rewarding action.
In order to perform the action, the runtime environment needs to know to which workers
the action applies, so a worker filter needs to be used (filter field). In some cases, the
workers that are rewarded/punished may be the same as initially evaluated ones. In that
case we can reuse the original filter used for evaluation. In other cases, workers may be

105

Field Description
filter An optional F determining the workers to which to apply the action. If omitted,

the worker collection is by default provided by the runtime environment from
the output of the original evaluation filters.

exec_cond An optional P establishing whether the currently evaluated worker earned
the reward/punishment or not. If omitted, considered ‘true’ by default.

exec_times An optional T returning Collection<PoiT> determining the possible execu-
tion points. If omitted, the environment assumes current PoiT and executes
immediately.

temp_spec An optional temporal specifier further restricting the original collection of
execution PoiTs. Defaults to Always() if omitted.

delay A hidden parameter set by the environment and used for recalculating execution
times in composite rewarding actions. It contains a non-negative integer time
offset added to the execution PoiTs. The actual time unit is determined as
the basic time unit of the underlying layer (an RMod tick in our case). The
default value is zero.

action_logic Amandatory reference to an A element containing the system-specific business
logic that invokes the rewarding action.

Table 7.4: SimpleRewardingAction fields.

rewarded based on the outcome of evaluation of other workers (e.g., team managers for
the performance of team members). pringl’s runtime also needs to determine the timing
for action application (temp_spec and exec_times fields). We use temporal specifiers
(see Sec. 7.2.1) to determine the exact time moment(s) of the time series. For defining
incentives involving deferred compensation [STD13a] we also need to specify an additional
predicate that will be evaluated at the execution time establishing whether a worker
fulfilled the reward criteria during the period from when the incentive was scheduled
until the execution point (exec_cond field). The actual action to execute is determined
by the action_logic field, pointing to a concrete A element. To execute the action
pringl needs to invoke the appropriate action in the abstraction interlayer which will
then send out a system-specific message to the underlying socio-technical platform. Field
descriptions are summarized in Table 7.4.

Composite Actions

Similarly to composite filters, a CompositeRewardingAction definition consists of graph-
ical elements representing instances of previously defined RewardingActions. It must
contain exactly one initial action a0, and exactly k0 final actions, where k0 is the number
of a0’s outgoing edges. The elements are connected with directed edges denoting at the
same time: a) Worker flow; and b) time delay. There must be no cycles in the graph,
i.e., the flow must be a tree with the root in the initial action, with each final action
being the leaf. As any other pringl composite type, a composite action can also expose

106

MyCompositeAction

B:T2a:A1

<<initial>>

A:T1 C:T3

<<final>>

D:T4

<<final>>

3 5

0

p
q

(k,m)

(k,m)
(p)

(p)

(k)

output
(k, m, p)

non-affected
(l, n, q)

input
(k, l, m, n)

k

l

m

n

Figure 7.7: An example CompositeRewardingAction definition with branch delays
shown.

propagated or user-defined parameters.
Worker flow. A RewardingAction returns affected workers and passes them over

outgoing edges. Affected workers are those workers on which the action was successfully
applied by the underlying system. The definition of a successful application is system-
specific. Therefore pringl expects the underlying system to acknowledge via abstraction
interlayer that the suggested action was accepted and successfully applied to a worker.
The passing of workers is similar to that of composite filters. The two major differences
are:

1. The absence of graph cycles prevents the union (∪) operation on passed worker
sets.

2. Any RewardingAction element can decide whether to use the provided input
workers, or completely ignore them, and identify the input workers by itself. For
example, a SimpleRewardingAction does it by initiating the optional filter field.
This limitation allows the worker flow to be changed at arbitrary places in the
composition.

Figure 7.7 shows an example of CompositeRewardingAction definition. It also shows
an example of worker-passing. The initial action A is given the set (k, l,m, n) as input.
The execution of A ends with successful rewarding of workers (k,m). This intermediate
set is immediately added to the resulting output set. The same intermediate set of
workers is passed to actions B and D . Action D ends with rewarding only one of those
workers – (k). k is already part of the output, so nothing else happens on this execution
branch. The action B , on the other hand, discards the input worker set (k,m), and
determines its own input set (p, q). After execution, B returns just (p), which is also
added to the aggregate output set and passed further as input to C , which also happens
to award p successfully.

107

Time delay. Each edge can optionally specify a time delay as a non-negative integer
without the unit. If omitted, zero is assumed. The actual unit is determined transparently
to the user as the basic time unit of the abstraction interlayer. pringl forwards the
delay value to the action that the edge point to.

If this action is a SimpleRewardingAction, this equals to adding the specified time
offset to the hidden delay parameter. Later, when executing the action, pringl will add
the value of the delay parameter to each PoiT returned by action’s exec_times T . If
the delay is forwarded to a CompositeRewardingAction, then the delay is forwarded to
its initial action.

The execution of a composite action starts by first breaking it into linear execution
paths containing constituent simple actions. For each execution path pringl then takes
into account specified delays for each simple action and immediately schedules it with
the abstraction interlayer. However, as in this case we need to pass worker sets between
actions happening at different times pringl needs to store the intermediate results
(worker sets) that actions scheduled for a future moment will collect when executed
(memoization). In case more than one action is scheduled for execution at the same time,
the order is unspecified.

Example

The notion of affected workers is important for incentivizing, because a choice on whether
or not to perform a subsequent rewarding action may depend on whether previous actions
were successfully applied. Consider a company that wants to reward workers either with
free days or with a monetary reward. The choice is left to the worker. Free days are
offered first. Only workers that refuse the free days will be awarded monetary rewards.

We define a new composite rewarding action BonusOrDays (Figure 7.8) that, for the
sake of demonstration, assumes the existence of a RewardAtEndProject action (similar
to the one from the original paper) to award monetary bonuses, as well as a newly-defined
action FreeDays to award free working days to the workers.

The output of a:FreeDays is the set of workers who accepted the 3 free days offered.
However, due to a complement edge (9) connecting a and b, the output set of a is
subtracted from the original input set. Therefore, the input of b:RewardAtEndProject
are only those workers who declined to accept working days as award, and want to be
evaluated at the end of project and paid a bonus according to their performance.

Incentive Mechanism

IncentiveMechanism is the main structural and functional incentive element. It
uses the previously defined complex types to select, evaluate and reward workers of the
crowdsourcing platform. As a self-sufficient and independent unit, it does not have any
inputs or outputs. It can be stored and reused through instantiations with different
runtime parameters. A complete incentive scheme can be specified by putting together
multiple incentive mechanisms, prioritizing them, and turning them on/off when needed.
As other complex types, incentive mechanism also has dedicated GUI elements for

108

BonusOrDays

<<initial>>

a:FreeDays

<<final>>
30

b:RewardAtEndProject

A

AwardFreedays

FreeDays

 filter: null

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int action_logic.amount

 delay: (auto)

 action_logic: AwardFreeDays

 2

… Collection<Worker> result …
if (RMod.Notify(_w, MSG_FREEDAYS, amount)) {
 result.Add(_w); //affected workers
}
return result;

A
name: AwardFreeDays
params: Worker _w (auto),

int amount
output: Collection<Worker>

params:
+ int action_logic.amount 3

Figure 7.8: A CompositeRewardingAction letting the workers choose one of the rewards.

definition and instantiation (Fig. 7.9), as well as a shorthand notation used in this paper
– IM. Table 7.5 defines the functionality of IM’s fields. We show examples of the usage of
IMs and other incentive elements in the following section.

Incentive Schemes (Incentive “Programs”)

The incentive strategy is the whole of business logic needed for managing incentives
in an organization. The strategy in pringl is built bottom-up, by first defining small,
reusable chunks of business logic as different complex types. When compiled, the new
types are stored to the incentive library (Fig. 7.1) with fully qualified names in hierarchical
namespaces. From the library they can be instantiated with different parameters and
reused in definitions of other complex types, including incentive mechanisms. The
mechanisms are combined to obtain an incentive scheme (Fig 7.10, °) – a set of high-level
rules representing the incentive strategy. An incentive scheme is the equivalent of a visual
DSL program. As any program, it can be run with different parameters and used on
different systems with similar characteristics.

109

WorkerFilter

RewardingAction

IncentiveElement

 filter: WorkerFilter

 exec_cond: null

 appl_restr: default

 inc_cond: null

 rew_action: RewardingAction

 priority: 0

params:
+ Type1 param1
+ Type2 param2

Figure 7.9: An example IncentiveMechanism definition.

Field Description
exec_cond An optional P element used as execution condition for the entire mechanism. Used to check

global and time constraints. The condition is commonly used to prevent unwanted multiple
executions of the same mechanism. Defaults to true if omitted.

appl_restr Specifies how often a mechanism can be executed in a given interval. The runtime environment
then alters the exec_cond accordingly, transparently to the user. This field can be used to turn
mechanisms on or off to obtain different incentive scheme configurations.

filter An optional F specifying the default target Workers for the A specified in field rew_action. If
not provided, if defaults to the collection of all the workers in the system. The filter is used to
evaluate workers’ past or current performance.

inc_cond An optional P used to interpret the workers returned by the filter and decide whether to proceed
with the rewarding. This condition is meant to be used when the evaluated and targeted worker
groups are not the same. In that case, we need to decide whether the results of the evaluation
performed through the filter should cause the invocation of the action(s). Returns true if omitted.

rew_action A mandatory A assigning the reward or penalty.
priority An optional int indicating the priority of mechanism’s execution. Zero by default.

Table 7.5: Description of IncentiveMechanism fields.

Figure 7.10 shows how incentive strategies are constructed. First, missing or specific
business logic fragments are defined and compiled into appropriate IncentiveLogic
elements (Figure 7.10, ¬). In the following steps, after being visually declared, these and
other existing library elements can be instantiated for use in definitions of SimpleWorker-
Filters and SimpleRewardingActions (Fig 7.10,). Similarly, filter and rewarding
action type definitions are further used for defining new composoite filters and actions
(®) and IncentiveMechanisms (¯).

Moving up from step ¬ towards ° the need of knowing princ/ pringl internals
decreases and reduces to understanding the meaning of exposed runtime parameters
on a purely visual dashboard. Steps ¬ - ¯ can be skipped altogether if the necessary
type definitions are already available from the library. The goal of pringl is exactly
to promote the reusing of well-defined and common business logic related to incentive
management.

Using the graphical elements the user specifies the necessary runtime parameters for

110

different instances he uses. The GUI environment collects the parameters from all the
constituent sub-components and propagates them upwards, possibly until the top-most
component’s graphical form.The user sets through the GUI whether to propagate a
parameter (+/- symbols, Fig 7.10), and therefore delegate the responsibility for filling
it out to an upper level, or provide a value at the current level and hide it from upper
layers. If a propagated parameter is supplied with different values on different levels, then
the rule is that the topmost value overrides all the others. For example, if a parameter
is propagated from the L level (¬) to the incentive scheme level (°), then the value
defined at the level ° is used.

This is possible to do for all the elements that are used to perform predetermined roles
(e.g., rewarding action of an IM, or the auxiliary logic of a F). In this case the runtime
environment itself creates the instances and can therefore pass the parameters from
the GUI. When the environment does not control the creation of instances (e.g., when
IncentiveLogic elements are declared for arbitrary use from code) the programmer
must set them in the provided code directly.

111

T

ProjectEnd

A

AwardBonus

RewardAtEndProject

 filter: null

 exec_cond: null

 exec_times: ProjectEnd

 temp_spec: null

params:
+ string project

+ double action_logic.amount
- string exec_times.projName

 delay: (auto)

 action_logic: AwardBonus

this.project

"MyProject"

incentive
operator

other:OtherType

p1
p2
p3

bonusMech:EndProjectBonus

projectName
metricName

bonusAmount
months

0.1

12

"effort"

"MyProject"

Priority 0

mech_k0

Priority k

mech_kn

P

T

F

Pred1

TeamAvg

PastProjects BetterThanAvg

time_rest: PastProjects

temp_spec: SOMETIMES

auxiliary: TeamAvg

predicate: Pred1

params:
+ int time_rest.months
+ string predicate.metricName

T

PastProjects

P

Pred2

CheckAlreadyRewarded

time_rest: PastProjects

temp_spec: NEVER

auxiliary: null

predicate: Pred2

params:
+ int time_rest.months
+ string predicate.bonusEvt

P

 return RMod.getWorkerMetric(_w, metricName) >
 TeamAvg.invokeWith(); //static inv.

name: Pred1
params: Worker _w (auto),

int months,
string metricName

output: bool

 return RMod.getWorkerMetric(_w, metricName) >
 _parent.auxiliary; //indirect inv.

OR

 return RMod.getIterations(months,…)
 .ForEach(x => EndOf(x));

T
name: PastProjects
params: int months
output: Collection<PoiT>

 return (new List<PoiT>()).Add(
EndOf(RMod.getIteration (projName,…)));

T
name: ProjectEnd
params: string projName
output: Collection<PoiT>

P

 return RMod.getEvent(evtName,_w,_time) != null;

name: Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName

output: bool

… Collection<Worker> result …
if (RMod.Notify(_w., MSG_BONUS, amount))
{
 result.Add(_w); //affected workers
}
return result;

A
name: AwardBonus
params: Worker _w (auto),

double amount
output: Collection<Worker>

 return Collabs.invokeWith().Average();

F
name: TeamAvg
params: Worker _w (auto)
output: double

 return neighborsOf(_w, "collab", 1);

F
name: Collabs
params: Worker _w (auto)
output: Collection<Worker>

1

2

3

4

5

incentive
designer Incentive Logic

Filters & Actions

Composite Filters & Actions

Inc. Mechanisms

Inc. Scheme

MyExampleFilter

RewardAtEndProject

EndProjectBonus

 filter: MyExampleFilter

 exec_cond: null

 appl_restr: default

 inc_cond: null

 rew_action: RewardAtEndProject

 priority: 0

this.projectName

this.bonusAmount

this.metricName

this.months

params:
+ string projectName
+ string metricName
+ double bonusAmount
+ int months

- int filter.bta.time_rest.months
- string filter.bta.predicate.metricName
- string rew_action.project
- double rew_action.action_logic.amount

LEGEND:

+ -

italic

itblue

n

C#

- Declaration/Instantiation

- Definition simple/composite

- Instantiation

- Priority setting

- Composition

- Parameter propagation

- PRINGL-imposed

- PRINGL-provided

- Parameter input box

- Abstraction level

- Programming code

- User(s)

- Parameter propagation

bta:BetterThanAvg

<<initial>>

MyExampleFilter

car:CheckAlreadyRewarded

<<final>>

this.bta.time_rest.months

"EVT_BONUS"

params:
+ int bta.time_rest.months
+ string bta.predicate.metricName
- int car.time_rest.mths
- string car.predicate.bonusEvt

Figure 7.10: Incentive scheme from Example 3, illustrating the decreasing of complexity
going from modeling of (low-level) incentive elements by incentive designers to adjusting
existing incentive schemes by incentive operators.

7.3 Execution Model

The execution of a pringl program (incentive scheme) is performed in cycles, as follows:
All IMs are triggered for execution whenever a triggering signal from the abstraction

interlayer is received. It is the responsibility of the Designer to ensure through priorities
and execution conditions that a specific order of execution of IMs is achieved. The order
of execution of IMs with the same priority is not predetermined. Execution conditions
of the IMs with higher priorities are evaluated first. Only after the higher-priority IMs
have executed are the conditions of lower-priority ones evaluated. This allows the higher
priority mechanisms to preemptively control the execution of lower-priority ones by
changing condition variables through side effects. The execution time of any single IM is
limited by design to a maximum time Tmax

IM . It is the time needed to pass the message
to the underlying crowdsourcing platform. Therefore, a single execution cycle of an
incentive scheme of n mechanisms can last at most Tmax

sc = n × Tmax
im . It is necessary

that Tmax
sc < Ttck, where Ttick is the basic time of the abstraction interlayer (tick in

case of princ). The execution of an IM begins by evaluating exec_cond. If true, the
associated filter is passed the collection of all the workers in the system and invoked.
The resulting workers are then passed to the incentive_cond to decide whether the
execution should proceed with rewarding. If it returns true, rew_action is invoked. If
the action does not override its filter field pringl passes the collection of workers
returned by the IM’s filter field.

A F executes by checking for each worker from the input collection whether it fulfills
the provided predicate. This is done for each PoiT returned by time_restr (T). The
results are then interpreted in accordance with the provided temp_spec. For example, if
the specifier is Once() then it suffices that the worker fulfilled the predicate in at least
one of the PoiTs in order to be placed in the resulting collection. In case of composite
filters the constituent sub-filters are executed in the defined order. The initial sub-filter
(marked «initial») receives the initial collection of workers from the environment, which
is then passed on to subsequent filters. The resulting collection of workers from the
«final» sub-filter is returned as the overall result. The «initial» filter is given different
default inputs by the pringl environment depending on where the composite filter is
instantiated. The anonymous :Passthru sub-filter instances are special pringl sub-filter
types passing the union of workers from all input edges onto all output edges without
performing any filtering.

A simple A is executed if the exec_cond (P) returns true. In this case, the
execution PoiTs for the action are obtained from exec_times (T) and then interpreted
in accordance with the temp_spec. Once the times are determined, the environment
schedules the action in the abstraction interlayer (in our case princ’s Timeline) and
provides the actual code that performs the action from the action_logic (A). However,
during the entire runtime pringl keeps track of the scheduled action, in order to honor
temporal specifications and to detect re-scheduling due to Interval redefinitions. The
workers to which the action applies are taken from the associated filter. As explained,
if the local filter is omitted, pringl assumes the workers from the parent IM ’s filter.

113

The execution of a composite action starts by first breaking it into linear execution
paths containing constituent simple actions. For each execution path pringl takes into
account specified delays and adjusts the T elements in constituent actions to account for
provided delays, which are then (re-)scheduled with the abstraction interlayer. However,
as in this case we need to pass worker sets between actions happening at different times
pringl stores the intermediate results (worker sets) that actions scheduled for a future
moment will collect when executed (memoization). In case more than one action is
scheduled for execution at the same time, the order is unspecified.

Executing incentive logic elements L equals to invoking the instance similarly to
a conventional function. The environment passes both the auto parameters and any
user-defined ones. If user-defined parameters are omitted when a L is invoked from
the code by indirect invocation the parameters are obtained from the visually exposed
parameter fields. However, when supplied, the arguments provided in the code override
those provided in the fields. If the parameter value cannot be resolved in either way, the
invocation fails.

Parameters are collected and propagated automatically from instances created to fulfill
complex type field roles. In that case the runtime environment controls the instantiation
and therefore knows to which instances to pass the parameters from the GUI. When
the environment does not control the creation of instances (e.g., when IncentiveLogic
elements are declared for arbitrary use from code) the programmer must set them in the
provided code directly.

Overall, pringl’s execution is ‘best effort’. This means that pringl expects the
interlayer to pass to the underlying socio-technical system the rewarding actions to
be taken, but will not expect them to be necessarily observed. Acknowledgments are
used to keep track of successfully applied rewarding actions. If any error is encountered
during the execution, the currently invoking incentive mechanism fails gracefully, but the
execution of other mechanisms continues. The incentive scheme’s execution needs to be
stopped explicitly.

7.4 Evaluation

A domain-specific language (DSL) can be evaluated both quantitatively and qualitatively.
Quantitative analysis of the language is usually performed once the language is considered
mature [MH10], since this type of evaluation includes measuring characteristics such
as productivity and subjective satisfaction, that require an established community of
regular users [SDKP06].

During the initial development and prototyping phase, the common approach is to
use the qualitative evaluation [MH10], which, in general, can include: comparative case
studies, analysis of language characteristics and monitoring/interviewing users. Analysis
of language characteristics was chosen as the preferred method in our case, since it was
possible to perform it on the basis of the findings gathered through analysis of numerous
existing incentive models and presented in Chapter 3. Due to difficulties in engaging a
relevant number of domain experts willing to take part in monitoring we were unable to

114

perform this type of user-based evaluation at this point. Comparative analysis was not
applicable in this case, due to nonexistence of similar languages.

The qualitative evaluation of pringl is performed with respect to the language
requirements elicited in Section 7.1.1. We constructed an example suite covering realistic
incentive elements identified in Chapter 3. By implementing and analyzing different
incentive use-cases from the suite we showcase the usage of pringl and argue for the
coverage of the requirements. Concretely, the requirements are evaluated as follows:

• The diversity of examples in the suite and the fact that they were obtained from
the broad survey of realistic incentive practices testify for pringl’s groundedness
and expressiveness.

• Through elaborate discussion of particular implementation details of different suite
examples we demonstrate pringl’s reusability and portability.

• While lacking the necessary conditions and metrics to conclusively show the usability
of the language, the implemented set of examples allows us to conclusively argue
for certain aspects of usability, such as ‘usefulness’ and ‘portability’ (as defined in
[SDKP06]).

Table 7.6)5 shows the coverage of the chosen examples with respect to introduced
incentive categories and their constituent parts. Some examples are presented partially
to illustrate/highlight the claimed capabilities that the particular example is supposed to
cover.

7.4.1 Example 1 – Employee Referral

A company introduces employee referral process6 in which an existing employee can
recommend new candidates and get rewarded if the new employee spends a year in the
company having exhibited satisfactory performance.

Solution: In order to pay the referral bonuses (deferred compensation) the company
needs to: a) identify the newly employed workers; and b) assess their subsequent
performance. Let us assume that the company already has the business logic for assessing
the workers implemented, and that this logic is available as the library filter GoodWorkers.
In this case, we need to define one additional simple filter NewlyEmployed, and combine
it with the existing GoodWorkers filter. In Figure 7.11 we show how the new composite
ReferralFilter is constructed. The F instance n:NewlyEmployed makes use of: a)
T PastMonths returning PoiTs representing end-of-month time points for the given
number of months (12 in this particular case); and b) predicate P Pred2 checking if
the employee got hired 12 months ago. Pred2’s general functionality is to check whether

5 Note that the Indirect and Subjective evaluation methods have been omitted from Table 7.6. Former,
because it implies use of sophisticated evaluation algorithms, but implementation-wise would not differ
from the Quantitative evaluation. Latter, because is not easy to uniformly model in software, as it implies
subjective human opinions that are unknown at design-time.

6http://en.wikipedia.org/wiki/Employee_referral

115

http://en.wikipedia.org/wiki/Employee_referral

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5
Incentive Category
PPP X

Quota/Discretionary X

Deferred Compensation X

Relative Evaluation X

Promotion X

Team-based Compensation X

Psychological X X

Rewarding Action
Quantitative X X

Structural X

Psychological X X

Evaluation Method
Quantitative X X X

Peer Voting X

Table 7.6: Coverage of incentive categories, rewarding actions and evaluation methods by
the provided examples.

the abstraction interlayer (RMod) registered an event of the given name at the specified
time.

Discussion: The shown implementation fragment illustrates how easy it is to expand
on top of the existing functionality. Under the assumption that there exists a metric
for assessing the workers’ performance, and that it can be queried for past values (cf.
princ’s Timeline), introducing the ‘employee referral’ mechanism is a matter of adding
a handful of new incentive elements.

7.4.2 Example 2 – Peer Voting

Equally reward each team member if both of the following conditions hold: a) each team
member’s current effort metric is over a specific threshold; and b) the average vote of the
team manager, obtained through anonymous voting of its subordinates, is higher than 0.5
[0–1].

Solution: As shown in Fig. 7.12 we compose the incentive scheme consisting of two
IMs – i1:PeerAssessIM, in charge of peer voting; and i2:RewardTeamIM in charge of
performing team-based compensation. IM i1 will execute first due to the higher priority,
and set the global variable done, through which the execution of i2 can be controlled
(P PeerVoteDone). IM PeerAssessIM uses the F TeamMembers to exclude the manager
from the rest of team mambers. The TeamMembers is a composite filter composed of
two subfilters F GetManager F GetTeam, borrowed from Ex.5, Fig. 7.15. The resulting
workers are passed to A DoPeerVote which performs the actual functionality of peer

116

ReferralFilter

n:NewlyEmployed

g:GoodWorkers

<<initial>>

<<final>>

 // return k (k=months) PoiTs
representing last days of k past months.

T
name: PastMonths
params: int months
output: Collection<PoiT> P

 return RMod.getEvent(evtName,_w,_time) != null;

name: Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName

output: bool

P

T

Pred2

PastMonths

NewlyEmployed

time_rest: PastMonths

temp_spec: FIRST

auxiliary: null

predicate: Pred2

params:
- int time_rest.months
- string predicate.evtName

 12

 "EMPLD"

Figure 7.11: A CompositeWorkerFilter for referral bonuses.

voting. The referenced rewarding action is simple; it just passes to A PeerVote the
workers that need to participate. The A PeerVote is performed by dispatching messages
to the workers and receiving and aggregating their feedback through the abstraction
interlayer. Once the peer voting has been performed, the manager’s assessment is stored
in _global.mark, and the flag _global.done is set to allow execution of IM i2. Once
set to execute, the IM i2 first reads all the team members via F GetTeam. Whether they
ultimately receive the reward depends on the evaluation of the inc_cond field. The field
contains a conjunction of two indirectly invoked P elements (Sec. 7.2.2). The condition
expresses the two constraints from the incentive formulated in natural language. If it
resolves to ‘true’, the A DoRewardTeam applies a predefined monetary reward, sharing
it equally among all team members (via A RewardTeam).

Discussion: The key question here is how to support incentives requiring direct
human feedback, such as peer voting. Such interactions require support from the
abstraction interlayer. To support this functionality, the abstraction interlayer can either
rely on the functionality offered by the underlying crowdsourcing platform, or provide
this functionality independently to safeguard the voting privacy and incite expression of
honest opinions. In [ZSTD14] we presented SmartCOM – a framework for virtualization
and communication with human agents. In this example we model the latter option in
pringl, assuming the use of princwith SmartCOM for interaction with workers.

117

R
e
w
a
r
d
T
e
a
m
I
M

f
i
l
t
e
r
:

G
e
t
T
e
a
m

e
x
e
c
_
c
o
n
d
:

P
e
e
r
V
o
t
e
D
o
n
e

a
p
p
l
_
r
e
s
t
r
:

d
e
f
a
u
l
t

i
n
c
_
c
o
n
d
:

W
r
k
M
e
t
r
i
c
O
K

&
&

M
g
r
M
a
r
k
O
K

r
e
w
_
a
c
t
i
o
n
:

D
o
R
e
w
a
r
d
T
e
a
m

p
r
i
o
r
i
t
y
:

0

p
a
r
a
m
s
:

+

i
n
t

t
e
a
m
I
D

-

i
n
t

f
i
l
t
e
r
.
t
e
a
m
I
D

-

d
o
u
b
l
e

r
e
w
_
a
c
t
i
o
n
.
r
e
w

t
e
a
m
I
D

P
e
e
r
A
s
s
e
s
s
I
M

f
i
l
t
e
r
:

T
e
a
m
M
e
m
b
e
r
s

e
x
e
c
_
c
o
n
d
:

n
u
l
l

a
p
p
l
_
r
e
s
t
r
:

d
e
f
a
u
l
t

i
n
c
_
c
o
n
d
:

n
u
l
l

r
e
w
_
a
c
t
i
o
n
:

D
o
P
e
e
r
V
o
t
e

p
r
i
o
r
i
t
y
:

1

p
a
r
a
m
s
:

+

i
n
t

t
e
a
m
I
D

-

i
n
t

f
i
l
t
e
r
.
t
e
a
m
I
D

-

W
o
r
k
e
r

r
e
w
_
a
c
t
i
o
n
.
m
g
r

t
e
a
m
I
D

D
o
P
e
e
r
V
o
t
e

T
e
a
m
M
e
m
b
e
r
s

f
i
l
t
e
r
.
m
g
r
.
F
i
r
s
t
(
)

A

f
o
r
e
a
c
h

(
W
o
r
k
e
r

w

i
n

_
w
s
)

R
M
o
d
.
N
o
t
i
f
y
(
w
,

M
S
G
_
V
O
T
E
,

m
g
r
)
;

/
/
v
o
t
e

o
n

t
h
e

m
a
n
a
g
e
r

i
n
t

f
d
b
c
k
;

d
o
u
b
l
e

v
o
t
e
;

i
n
t

c
n
t

=

_
w
s
.
C
o
u
n
t
(
)
;

w
h
i
l
e
(
c
n
t
-
-

>

0
)

{

/
/
a
s
s
u
m
e

e
v
e
r
y
o
n
e

v
o
t
e
s

R
M
o
d
.
R
e
c
e
i
v
e
(
M
S
G
_
F
E
E
D
B
A
C
K
,

o
u
t

f
d
b
c
k
)
;

/
/
b
l
o
c
k
i
n
g

v
o
t
e

+
=

f
d
b
c
k
;

}

v
o
t
e

/
=

_
w
s
.
C
o
u
n
t
(
)
;

/
/
a
s
s
u
m
e

!
=

0

_
g
l
o
b
a
l
.
m
a
r
k

=

v
o
t
e
;

/
/
t
h
e

a
v
g
.

r
a
t
i
n
g

o
f

t
h
e

m
a
n
a
g
e
r

_
g
l
o
b
a
l
.
d
o
n
e

=

t
r
u
e
;

r
e
t
u
r
n

_
w
s
;

n
a
m
e
:

P
e
e
r
V
o
t
e

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

W
o
r
k
e
r

m
g
r

o
u
t
p
u
t
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

P
r
i
o
r
i
t
y

1

i
1
:
P
e
e
r
A
s
s
e
s
s
I
M

_
g
lo
ba
l
.
t
ea
mI
D

t
e
a
m
I
D

P
r
i
o
r
i
t
y

0

i
2
:
R
e
w
a
r
d
T
e
a
m
I
M

_
g
lo
ba
l
.
t
ea
mI
D

t
e
a
m
I
D

g
l
o
b
a
l
:

i
n
t

t
e
a
m
I
D

4
5
7
2

b
o
o
l

d
o
n
e

f
a
l
s
e

d
o
u
b
l
e

m
a
r
k

0
.
0

P
e
e
r
V
o
t
i
n
g
I
n
c
e
n
t
i
v
e
S
c
h
e
m
e

P

r
e
t
u
r
n

_
g
l
o
b
a
l
.
m
a
r
k

>

0
.
5
;

n
a
m
e
:

M
g
r
M
a
r
k
O
K

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

1
0
0
0
0
.
0

D
o
R
e
w
a
r
d
T
e
a
m

f
i
l
t
e
r
:

n
u
l
l

e
x
e
c
_
c
o
n
d
:

n
u
l
l

e
x
e
c
_
t
i
m
e
s
:

n
u
l
l

t
e
m
p
_
s
p
e
c
:

n
u
l
l

p
a
r
a
m
s
:

+

d
o
u
b
l
e

r
e
w

-

d
o
u
b
l
e

a
c
t
i
o
n
_
l
o
g
i
c
.
r
e
w
a
r
d
E
U
R

d
e
l
a
y
:

(
a
u
t
o
)

a
c
t
i
o
n
_
l
o
g
i
c
:

R
e
w
a
r
d
T
e
a
m

A

R
e
w
a
r
d
T
e
a
m

r
e
w

n
a
m
e
:

R
e
w
a
r
d
T
e
a
m

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

d
o
u
b
l
e

r
e
w
a
r
d
E
U
R

o
u
t
p
u
t
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

A

d
o
u
b
l
e

r

=

r
e
w
a
r
d
E
U
R

/

_
w
s
.
C
o
u
n
t
(
)
;

f
o
r
e
a
c
h

(
W
o
r
k
e
r

w

i
n

_
w
s
)

R
M
o
d
.
N
o
t
i
f
y
(
w
,

M
S
G
_
B
O
N
U
S
,

r
)
;

_
g
l
o
b
a
l
.
d
o
n
e

=

f
a
l
s
e
;

r
e
t
u
r
n

_
w
s
;

n
a
m
e
:

W
r
k
M
e
t
r
i
c
O
K

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

P

f
o
r
e
a
c
h

(
W
o
r
k
e
r

w

i
n

_
w
s
)

{

i
f

(
(
d
o
u
b
l
e
)

R
M
o
d
.
g
e
t
W
o
r
k
e
r
M
e
t
r
i
c
(
w
,
"
e
f
f
o
r
t
"
)

>

0
.
5
)

r
e
t
u
r
n

f
a
l
s
e
;

}

r
e
t
u
r
n

t
r
u
e
;

D
o
R
e
w
a
r
d
T
e
a
m

P

M
g
r
M
a
r
k
O
K

P

W
r
k
M
e
t
r
i
c
O
K

P

P
e
e
r
V
o
t
e
D
o
n
e

G
e
t
T
e
a
m

m
g
r
:
G
e
t
M
a
n
a
g
e
r t
:
G
e
t
T
e
a
m

<
<
i
n
i
t
i
a
l
>
>

<
<
f
i
n
a
l
>
>

T
e
a
m
M
e
m
b
e
r
s

p
a
r
a
m
s
:

-

i
n
t

m
g
r
.
t
e
a
m
I
D

-

i
n
t

t
.
t
e
a
m
I
D

+

i
n
t

t
e
a
m
I
D

t
e
a
m
I
D

t
e
a
m
I
D

P

r
e
t
u
r
n

_
g
l
o
b
a
l
.
d
o
n
e
;

n
a
m
e
:

P
e
e
r
V
o
t
e
D
o
n
e

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

D
o
P
e
e
r
V
o
t
e

f
i
l
t
e
r
:

n
u
l
l

e
x
e
c
_
c
o
n
d
:

n
u
l
l

e
x
e
c
_
t
i
m
e
s
:

n
u
l
l

t
e
m
p
_
s
p
e
c
:

n
u
l
l

p
a
r
a
m
s
:

+

W
o
r
k
e
r

m
g
r

-

W
o
r
k
e
r

a
c
t
i
o
n
_
l
o
g
i
c
.
m
g
r

d
e
l
a
y
:

(
a
u
t
o
)

a
c
t
i
o
n
_
l
o
g
i
c
:

P
e
e
r
V
o
t
e

A

P
e
e
r
V
o
t
e

m
g
r

Fi
gu

re
7.
12

:
A
n
in
ce
nt
iv
e
sc
he

m
e
ex
am

pl
e
co
m
bi
ni
ng

pe
er

vo
tin

g
an

d
te
am

-b
as
ed

co
m
pe

ns
at
io
n.

118

7.4.3 Example 3 – Bonus

Award a 10% bonus to each worker W that sometimes in the past 12 months had higher
value of metric ‘effort’ than the average of workers related to W via relationship of type
‘collab’, and not rewarded in the meantime.

Solution: Figure 7.10 shows the bottom-up implementation of this incentive (¬-
°). First, at level ¬ we define novel or context-specific business logic fragments as
IncentiveLogic L elements. This level relies on the abstraction interlayer to read the
updated worker metrics, obtain data about recorded events, or send system messages.
At we define new F and A types. Similarly, F and A definitions are further used
for defining new composite filters and actions (®) and IncentiveMechanisms (¯). By
setting the parameter fields the designer specifies the necessary runtime parameters
for different instances. Apart from constants, a field can contain references to other
fields ‘visible’ from that element. The environment collects the field values (parameters)
from all the constituent sub-components and propagates them upwards, possibly until
the top-most component’s GUI form. Through the +/- symbols the designer controls
whether to propagate a parameter and, thus, delegate the responsibility for filling it
out to the upper level, or provide a value at the current level and hide it from upper
levels. Parameter propagation is one of pringl’s usability features. In Fig. 7.10 we show
an example of parameter propagation (marked in orange). Element T PastProjects
(¬) exposes the parameter months. The same parameter is then re-exposed by F
BetterThanAvg () that uses PastProjects as its time restriction. The parameter is
further propagated up through F MyExampleFilter until it finally gets assigned the
value in IM EndProjectBonus (¯).

Discussion: This incentive mechanism was chosen to highlight a number of important
concepts. Every underlined term in the natural language formulation of this incentive
mechanism is a specific value of a different parameter that can be changed at will. In
pringl terms, this means that incentive operator can easily switch between different
(library) incentive elements of the same type/signature and tweak the parameters to obtain
different incentive mechanism instances. In this way, incentive designers or operators can
adapt generic mechanisms to fit their needs. If we analyze the generic version of this
incentive mechanism, we can see that it embodies the principles of pay-per-performance
incentives based on the value of a quantifiable metric, but coupled with the additional
condition that is evaluated relatively to co-workers. In addition, the mechanism contains
two temporal clauses (’in past 12 months’ and ‘in the meantime’), making it also a
representative of a quota-system type of incentive.

The example also demonstrates reusability – the L PastProjects is reused twice
in two different F s. Also, steps Fig 7.10: ¬–¯ can be skipped altogether if the necessary
type definitions are already available from the incentive library. As we can see, at levels
–° only visual programming is required. This means that there is no need to know any
interlayer internals, apart from understanding the meaning of propagated parameters. So,
if different platforms offer standardized implementations of the commonly used incentive
logic, the incentive elements become completely portable.

119

7.4.4 Example 4 – Rankings

Let us assume that the imaginary platform from Example 3 wants to extend the existing
incentive scheme with an additional incentive mechanism in an (admittedly over-simplified)
attempt to raise competitiveness of underperforming workers: Show the list of the awarded
employees and their performance (rankings) to those workers that did not get the reward
through application of IM EndProjectBonus in Ex. 3 (Fig. 7.10).

Solution: Figure 7.13 shows the additional elements needed to support the new
mechanism. The composite F NonRewardedOnes reuses the existing F MyExampleFilter
from Ex. 3 as initial subfilter, and returns the set complement, i.e., the non-rewarded
workers to which the rankings need to be shown. In order to display the rankings, we
copy-paste the existing A RewardAtEndProject from Ex. 3 and change only the value
of the field action_logic to point to the the newly defined A ShowRankings, also
shown in Fig. 7.13. Let us name the newly obtained A RankingsAtEndProject. In
the same fashion, we copy-paste the existing IM EndProjectBonus from Ex. 3, make
its filter and rew_action fields point to the newly defined F NonRewardedOnes and
A RankingsAtEndProject, respectively. The obtained IM performs the requested
functionality.

Discussion: This example shows a common, realistic scenario, where additional
incentive mechanisms need to be added to complement the existing ones. In this case, the
added mechanism acts on the underpeforming workers psychologically by showing them
how they fare in comparison to the rewarded workers. Such mechanisms can be used to
motivate better-performing underperformers (‘lucky losers’), while having a de-motivating
effect on the worst performing ones. As we have shown, such a mechanism can be easily
and quickly constructed in pringl with a minimal effort.

7.4.5 Example 5 – Rotating Presidency

Teams of crowd workers perform work in iterations. In each iteration one of the
workers acts as the manager of the whole team. This scheme motivates the best workers
competitively by offering them a more prestigious position in the hierarchy. However, in
order to keep team connectedness in a longer run, foster equality and fresh leadership ideas,
a single person is prevented from staying too long in the managerial position. Therefore,
in the upcoming iteration the team becomes managed by the currently best-performing
team member, unless that team member was already presiding over the team in the past k
iterations.7

Solution: For demonstration purposes, we are going to model on-the-spot all the type
definitions necessary for implementing the rotating presidency incentive scheme. However,
in practice it is reasonable to expect that a significant number of commonly-used type
definitions would be available from a library, cutting down the incentive modeling time.

Contrary to Example 3, this time we adopt a top-down approach in modeling. In order
to express the high-level functionality of the rotating presidency scheme the Designer
uses pringl’s visual syntax to define an incentive scheme named RotatingPresidency

7An iteration can represent a project phase, a workflow activity or a time period.

120

 foreach (Worker w in _ws) {
 w.send(ShowRankings(_parent._parent.filter.bto));
 }
 return _ws;

A
name: ShowRankings
params: Collection<Worker> _ws (auto)

output: Collection<Worker>

T

ProjectEnd

A

ShowRankings

RankingsAtEndProject

 filter: null

 exec_cond: null

 exec_times: ProjectEnd

 temp_spec: null

params:
+ string project

+ double action_logic.amount
- string exec_times.projName

 delay: (auto)

 action_logic: ShowRankings

this.project

"MyProject"

bto:MyExampleFilter

<<initial>>

NonRewardedOnes

:PassThru

<<final>>

params:
+ int bto.time_rest.months
+ string bto.predicate.metricName

 filter: NonRewardedOnes

 exec_cond: null

 appl_restr: default

 inc_cond: null

 rew_action: RankingsAtEndProject

 priority: 0

this.metricName

this.months

params:
+ string metricName
+ int months

- int filter.bto.time_rest.months
- string filter.bto.predicate.metricName

RankingsAtEndProject

NonRewardedOnes
EndProjectRankings

Figure 7.13: Additional incentives elements needed to augment the incentive scheme from
Example 3 (Fig. 7.10) in order to display motivational rankings to the non-rewarded
workers from Example 3.

(Fig 7.14, top right) containing (referencing) two IM instances – i1 and i2, with the same
priority (0). The RotatingPresidency scheme definition also contains a set of global
parameters that are used for configuring the execution of the scheme: teamID uniquely
defines the team that we want the scheme applied to, while iters specifies the maximum
number of consecutive iterations a team member is allowed to spend as a manager. By
choosing different parameter values an incentive operator (Operator) can later adjust the
scheme for use in an array of similar situations in different organizations.

The two incentive mechanisms that the scheme references – i1 and i2, are instances
of the IM types RewardBest and PreventTooLong, respectively (Fig 7.14, bottom). The
IM RewardBest installs the best worker as the new manager if (s)he is not the manager
already. The IM PreventTooLong will replace the current manager if the worker stayed
too long in the position, even if the manager resulted again as the best performing team
member. ‘Installing’ or ‘replacing’ a manager is actually performed by re-chaining of
management relations in the structural model of the team by applying appropriate graph
transformations [JBK10] through the abstraction interlayer.

When the incentive condition (inc_cond field) of IM PreventTooLong evaluates to
true, this means that the actual manager occupied the position for too long, and that
it should be now replaced by the second-best worker. pringl does this by invoking
the specified A RewSecondBest and passing it the collection of workers returned by
the F Candidates. The F Candidates returns potential candidates for the manager
position – the best performing Worker and the current manager. The same filter is
referenced from both IMs. However, the IM PreventTooLong invokes F Candidates
through a complex incentive condition field, referring to two P elements, which both

121

RewSecondBest

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager

SecondBestTeamWrk

teamID

teamID

SetManager

A

 filter: SecondBestTeamWrk

RewBest

 filter: BestTeamWrk

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int teamID
- int filter.teamID
- int action_logic.teamID

 delay: (auto)

 action_logic: SetManager

A

SetManager

BestTeamWrk

teamID

teamID

Priority 0

RotatingPresidency

i2:PreventTooLong

filter.teamID
inc_cond.iters _global.iters

_global.teamID

i1:RewardBest

_global.teamIDfilter.teamID
inc_cond.iters _global.iters

global:
int teamID 4572
int iters 2

Candidates

RewSecondBest

PreventTooLong

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: !NotSame && WasTooLong

 rew_action: RewSecondBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
- int inc_cond["WasTooLong"].iters
+ int iters

P

NotSame

filter.teamID

P

WasTooLong

iters

Candidates

RewBest

RewardBest

 filter: Candidates

 exec_cond: null

 appl_restr: default

 inc_cond: NotSame

 rew_action: RewBest

 priority: 0

params:
+ int filter.teamID
- int rew_action.teamID
+ int inc_cond.iters

P

NotSame

filter.teamID

Figure 7.14: Modeling the rotating presidency incentive scheme in pringl. Segment
showing the incentive scheme (top right), rewarding actions (top center and left), and
incentive mechanisms (bottom).

need be visually declared. pringl allows this as a shorthand notation instead of forcing
the user to create a container P element to perform the same logical function. In
this case, the exposed parameters cannot be simply referenced by using the field name,
but rather the parameters are accessed through an associative array (C# Dictionary)
bearing the same name as the field, while the names of the used P elements serve
as key names. For example, to access the P WasTooLong’s parameter iters from IM
PreventTooLong where P WasTooLong is used in the inc_cond field, we must write:
inc_cond["WasTooLong"].iters As it can be visually tiring to read the lengthy fully-
qualified names of propagated parameters, we often stop propagating such parameters
and propagate a new, local one with the same name, whose value we then copy to the
long-named parameter (e.g., just iters instead of inc_cond["WasTooLong"].iters).

Both IMs get executed always as the nullified exec_cond fields default to true.
However, IM PreventTooLong’s incentive condition (inc_cond field) contains: !NotSame
&& WasTooLong. It ensures that the A RewSecondBest of IM PreventTooLong will
never get executed at the same time as the A RewBest of the IM RewardBest.

Two rewarding actions are instantiated and invoked from the IMs. The A RewBest
monitors the ‘effort’ metric and rewards the best worker in the current iteration. The
A RewSecondBest replaces the current team manager with the second-best performing
worker when needed. The IM inc_cond fields make sure that the two actions do not get
executed in the same iteration. The fact that a rewarding action instantiates its own
filter means that it discards the workers passed to it by the pringl environment from
the encompassing IM’s filter field and rewards those returned by the local filter.

In both actions most fields are nullified, meaning that the pringl execution envi-

122

ronment will assume the default field value. This means that the action_logic A
SetManager will be unconditionally scheduled for execution.

We now show how the previously referenced filters are defined. We will first describe
the definitions of the three simple filters (Fig 7.15, right) and then use them to visually
assemble the definitions for another four composite filters (Fig 7.15, left).

• GetTeam: Returns all the workers belonging to the team with the specified teamID.
The filtering is performed by running each of the workers from the input set against
the predicate P IsTeamMember and including it in the output if fulfilling the
predicate.

• GetBest: Returns the worker having achieved the highest value of the ‘effort’ metric
by invoking the F GetWrkBestMetric and then just formally matching it with
the IsBest predicate. In this example we use the ‘effort’ metric [RTD14], but any
other compatible performance metric could have been used and exposed as a global
parameter. This filter does not care to which team the evaluated worker belongs –
if used independently, it would evaluate all the workers in the system. This is why
we always use it in composite filters, where we initially restrict its input set with
another filter.

In our example this filter encapsulates and hides the metric it uses for evaluating
the workers. In principle, it would make sense to propagate the metric name
upwards and thus make it user-settable, consequently making the whole scheme
more general. However, for readability purposes we decided not to propagate this
parameter in this example.

• GetManager: Invokes a F GetMgrByRelations that performs a graph query
[JBK10] on the team model through the abstraction interlayer to determine the
manager within the provided input set of workers.

Candidates

:Passthru

<<initial>>

<<final>>

:Passthru

b:BestTeamWrk

a:CurrentMgr

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

a:BestTeamWrk

b:GetBest

<<initial>>

<<final>>

SecondBestTeamWrk

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

BestTeamWrk

a:GetTeam

b:GetBest

<<initial>>

<<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

CurrentMgr

a:GetTeam

b:GetManager

<<initial>>

<<final>>

params:
- int a.teamID
- int b.teamID
+ int teamID

teamID
teamID

GetTeam

time_rest: null

temp_spec: default

auxiliary: null

predicate: IsTeamMember

params:
+ int teamID
- int predicate.teamID teamID

IsTeamMember
P

P

IsBest

GetBest

time_rest: null

temp_spec: default

auxiliary: GetWrkBestMetric

predicate: IsBest

params:
- string
auxiliary.metricName "effort"

GetWrkBestMetric

F

GetManager

time_rest: null

temp_spec: default

auxiliary: GetMgrByRelations

predicate: IsManager

params:
- int auxiliary.teamID
+ int teamID
- int mgrID

teamID

0

GetMgrByRelations

F

IsManager

P

Figure 7.15: Modeling the rotating presidency example: Segment showing simple filters
(right) and composite ones (left).

123

Composite filter type definitions are constructed visually. The following composite
filters are defined:

• CurrentMgr: Returns the current manager of the team. The F a:GetTeam returns
all the workers belonging to the team with the teamID, while the F b:GetManager
uses managerial relationships to determine the manager among those workers8.

• BestTeamWrk: Returns the best individual from a previously identified collection
of team members. The F b:GetBest determines what ‘best worker’ means in this
case.

• SecondBestTeamWrk: As the name suggests, returns the second best worker in the
team. The subfilter a returns the best worker of the team and passes it forward to
the subfilter b via a negated edge (9). This means that b now receives as input:
input(a) \ a, i.e., in this particular case the collection of all workers belonging to
the team minus the best worker. Subfilter b returns the best worker from this
collection, and thus effectively the second best worker of the team.

• Candidates: This filter simply uses the previously defined filters CurrentMgr and
BestTeamWrk and returns the set union of their results.

8While managerial relations in principle need not be stored as a graph, and can thus be identified
much more easily, we still use the graph managerial relations as an easily understandable example of how
any graph-encoded structural property can be used in incentive management.

124

P

s
t
a
t
i
c

D
i
c
t
i
o
n
a
r
y
<
W
o
r
k
e
r
,

i
n
t
>

l
e
a
d
e
r
H
i
s
t
o
r
y
;

.
.
.

i
f

(
_
w
s
.
C
o
u
n
t
(
)

=
=

2
)

{

i
f

(
l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
o
n
t
a
i
n
s
K
e
y
(
_
w
s
.
F
i
r
s
t
(
)
)
)
{

l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
l
e
a
r
(
)
;

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
L
a
s
t
(
)
]

=

1
;

}
e
l
s
e
{

l
e
a
d
e
r
H
i
s
t
o
r
y
.
C
l
e
a
r
(
)
;

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]

=

1
;

}

}
e
l
s
e

/
/
c
u
r
r
e
n
t

m
a
n
a
g
e
r

w
a
s

a
l
s
o

t
h
e

b
e
s
t

i
f

(
l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]
)

<

i
t
e
r
s
)

{

l
e
a
d
e
r
H
i
s
t
o
r
y
[
_
w
s
.
F
i
r
s
t
(
)
]
+
+
;

r
e
t
u
r
n

f
a
l
s
e
;

}
r
e
t
u
r
n

t
r
u
e
;n
a
m
e
:

W
a
s
T
o
o
L
o
n
g

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

i
t
e
r
s

o
u
t
p
u
t
:

b
o
o
l

S

/
/

N
o
n
-
c
o
m
p
i
l
e
d

G
r
G
e
n
.
N
E
T

r
u
l
e
:

r
u
l
e

S
E
T
_
M
A
N
A
G
E
R
(
v
a
r

t
e
a
m
I
D
:
i
n
t
,

v
a
r

n
e
w
M
g
r
I
D
:
i
n
t
)
{

n
e
w
M
g
r
:
W
o
r
k
e
r
;

i
f

{
n
e
w
M
g
r
.
m
a
r
k
e
d

=
=

t
e
a
m
I
D

&
&

n
e
w
M
g
r
.
i
d

=
=

n
e
w
M
g
r
I
D
;
}

n
o
t
N
e
w
M
g
r
:
W
o
r
k
e
r
;

i
f

{
n
o
t
N
e
w
M
g
r
.
m
a
r
k
e
d

=
=

t
e
a
m
I
D

&
&

n
o
t
N
e
w
M
g
r
.
i
d

!
=

n
e
w
M
g
r
I
D
;
}

<
-
o
l
d
R
e
l
a
t
i
o
n
:
M
a
n
a
g
e
d
B
y
-
>

n
o
t
N
e
w
M
g
r
;

n
e
g
a
t
i
v
e

{
n
o
t
N
e
w
M
g
r
-
:
M
a
n
a
g
e
d
B
y
-
>
n
e
w
M
g
r
;
}

m
o
d
i
f
y

{

n
o
t
N
e
w
M
g
r

-
:
M
a
n
a
g
e
d
B
y
-
>

n
e
w
M
g
r
;

d
e
l
e
t
e
(
o
l
d
R
e
l
a
t
i
o
n
)
;

}

}

n
a
m
e
:

S
E
T
_
M
A
N
A
G
E
R

p
a
r
a
m
s
:

i
n
t

t
e
a
m
I
D
,

i
n
t

n
e
w
M
g
r
I
D

o
u
t
p
u
t
:

v
o
i
d

s
m

P

v
a
r

t
e
a
m
s

=

(
D
I
C
T
)
_
w
.
G
e
t
D
a
t
a
(
"
t
e
a
m
s
"
,

C
O
M
P
O
S
I
T
E
)
;

r
e
t
u
r
n

t
e
a
m
s
.
C
o
n
t
a
i
n
s
K
e
y
(
t
e
a
m
I
D
.
T
o
S
t
r
i
n
g
(
)
)
;

n
a
m
e
:

I
s
T
e
a
m
M
e
m
b
e
r

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

b
o
o
l

A

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

a
f
f
e
c
t
e
d

=

s
m
(
t
e
a
m
I
D
,
_
w
s
.
F
i
r
s
t
(
)
.
I
D
)
;

r
e
t
u
r
n

a
f
f
e
c
t
e
d
;

n
a
m
e
:

S
e
t
M
a
n
a
g
e
r

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

g
m

P

r
e
t
u
r
n

(
(
i
n
t
)
_
p
a
r
e
n
t
.
g
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
)

=
=

_
w
.
I
D
)
;

n
a
m
e
:

I
s
M
a
n
a
g
e
r

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

b
o
o
l

i
f

(
(
i
n
t
)
_
p
a
r
e
n
t
.
g
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
)

!
=

0
)

r
e
t
u
r
n
;

f
o
r
e
a
c
h

(
W
o
r
k
e
r

w

i
n

_
w
s
)

{
w
.
m
a
r
k
(
t
e
a
m
I
D
)
;
}

_
p
a
r
e
n
t
.
s
e
t
P
a
r
a
m
(
"
m
g
r
I
D
"
,

g
m
(
t
e
a
m
I
D
)
)
;

F
n
a
m
e
:

G
e
t
M
g
r
B
y
R
e
l
a
t
i
o
n
s

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

v
o
i
d

P

r
e
t
u
r
n

(
_
w

=
=

G
e
t
W
r
k
B
e
s
t
M
e
t
r
i
c
.
t
h
e
B
e
s
t
)
;

n
a
m
e
:

I
s
B
e
s
t

p
a
r
a
m
s
:

W
o
r
k
e
r

_
w

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

S

/
/

N
o
n
-
c
o
m
p
i
l
e
d

G
r
G
e
n
.
N
E
T

r
u
l
e
:

r
u
l
e

M
A
N
A
G
E
R
(
v
a
r

t
e
a
m
I
D
:
i
n
t
)
:
(
N
o
d
e
)
{

m
a
n
a
g
e
r
:
W
o
r
k
e
r
;

i
f

{

m
a
n
a
g
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;

}

w
o
r
k
e
r
:
W
o
r
k
e
r
;

i
f

{

w
o
r
k
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;

}

w
o
r
k
e
r

-
:
M
a
n
a
g
e
d
B
y
-
>

m
a
n
a
g
e
r
;

n
e
g
a
t
i
v
e

{

o
t
h
e
r
M
a
n
a
g
e
r
:
W
o
r
k
e
r
;

i
f

{

o
t
h
e
r
M
a
n
a
g
e
r
.
m
a
r
k
e
d
=
=
t
e
a
m
I
D
;
}

m
a
n
a
g
e
r

-
:
M
a
n
a
g
e
d
B
y
-
>

o
t
h
e
r
M
a
n
a
g
e
r
;

} m
o
d
i
f
y

{ r
e
t
u
r
n

(
m
a
n
a
g
e
r
.
i
d
)
;

}
}

n
a
m
e
:

G
E
T
_
M
A
N
A
G
E
R

p
a
r
a
m
s
:

i
n
t

t
e
a
m
I
D

o
u
t
p
u
t
:

i
n
t

F
n
a
m
e
:

G
e
t
W
r
k
B
e
s
t
M
e
t
r
i
c

p
a
r
a
m
s
:

C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

s
t
r
i
n
g

m
e
t
r
i
c
N
a
m
e

o
u
t
p
u
t
:

v
o
i
d

s
t
a
t
i
c

W
o
r
k
e
r

t
h
e
B
e
s
t
;

.
.
.

d
o
u
b
l
e

b
e
s
t
R
e
s
u
l
t

=

_
w
s
.
M
a
x
(
x

=
>

(
d
o
u
b
l
e
)
x
.
G
e
t
D
a
t
a
(
m
e
t
r
i
c
N
a
m
e
,

D
O
U
B
L
E
)
)
;

t
h
e
B
e
s
t

=

_
w
s
.
F
i
r
s
t

(
x

=
>

(
d
o
u
b
l
e
)
x
.
G
e
t
D
a
t
a
(
m
e
t
r
i
c
N
a
m
e
,

D
O
U
B
L
E
)

=
=

b
e
s
t
R
e
s
u
l
t
)
;

i
f

(
_
w
s
.
C
o
u
n
t
(
)

>

1
)

r
e
t
u
r
n

t
r
u
e
;

e
l
s
e

r
e
t
u
r
n

f
a
l
s
e
;

P
n
a
m
e
:

N
o
t
S
a
m
e

p
a
r
a
m
s
:
C
o
l
l
e
c
t
i
o
n
<
W
o
r
k
e
r
>

_
w
s

(
a
u
t
o
)

o
u
t
p
u
t
:

b
o
o
l

Fi
gu

re
7.
16

:
M
od

el
in
g
th
e
ro
ta
tin

g
pr
es
id
en

cy
ex
am

pl
e:

Se
gm

en
t
sh
ow

in
g
th
e
in
ce
nt
iv
e
lo
gi
c
el
em

en
ts
.

125

Incentive logic elements, shown in Figure 7.16, contain the low-level business logic
and code9 that communicates with the abstraction interlayer. Designer takes care to
implement incentive logic elements as small code snippets with intuitive and reusable
functionality. A short description of the functionality of the employed elements is provided
in Table 7.7.

Element Symbol Description
IsTeamMember P Determines whether a worker belongs to a team.
IsManager P Checks if the currently evaluated worker has the ID pre-

viously determined to belong to the team manager by F
GetMgrByRelations.

IsBest P Checks if the currently evaluated worker is the same as the one
identified by the GetWrkBestMetric.

NotSame P Determines if the input contains two manager candidates.
WasTooLong P Keeps track of how many times a worker was in the manager

position, and returns true if the worker is not supposed to
become manager in the upcoming iteration.

GetWrkBestMetric F Reads the value of the ‘effort’ metric for each of the passed
workers in _ws and updates the best worker.

GetMgrByRelations F Invokes the read-only structural query S GET_MANAGER.
SetManager A Invokes the modifying structural query S SET_MANAGER.
GET_MANAGER S Contains a compiled non-modifying GrGen.NET graph query,

here expressed in GrGen rule language. The rule only considers
the nodes marked by the teamID tag (see GetMgrByRelations).
The rule matches and returns a node that other nodes point
to via ManagedBy-typed relations, but itself is not managed by
another team member.

SET_MANAGER S Contains a compiled modifying GrGen.NET graph query match-
ing the old and the new manager, and re-chaining the ManagedBy
relations to point to the new manager node.

Table 7.7: Incentive logic elements used in the rotating presidency example.

Discussion: This example combines the promotion and psychological incentives.
The promotion is performed through a structural rewarding action, and is designed to
foster competitiveness and self-prestige. At the same time, team spirit and good working
environment are being promoted by limiting the number of consecutive terms, thus
giving a chance to other team members. This example shows a fully implemented and
executable incentive scheme. Although the model may seem complex at the first glance,
it is worth noting that the type definitions of the two actions (Fig 7.14, top) are almost
identical, differing only in the filter they use – with former using the F BestTeamWrk and

9In this paper we use C# in all but S elements, which are shown in the original GrGen.NET rule
language: http://www.info.uni-karlsruhe.de/software/grgen/

126

http://www.info.uni-karlsruhe.de/software/grgen/

the latter the F SecondBestTeamWrk. This means that once the Designer has modeled
one of them, the other one can be created by copy-pasting and referencing a different
filter. Similarly, if at a later time the underlying crowdsourcing platform decided to use a
different A to reward the best workers (e.g., to pay out money instead of rotating team
managers) the Designer would only need to partially adapt the scheme by referencing a
different A from the A ’s action_logic fields. Such adaptations can also be performed
by incentive operators with minimal understanding of the underlying code.

Filters like GetTeam, GetBest and GetManager perform very common incentive func-
tionality. In practice, this means that such components could be readily available as
library elements. Of course, if we need to use a company-specific flavor, we can easily
replace the default one with a proprietary element. For example, a F GetManager may
be available with a default auxiliary field F that looks for a manager in the team
model by inspecting the node tags for a given manager tag. In that case, to adapt such
a filter for our rotating presidency example the Designer would need to exchange the
default, tag-based F with a structural one, such as GetMgrByRelations.

7.5 Implementation

Figure 7.1 (Sec. 7.1) shows the overview of implemented components (outlined in blue).
pringl’s language metamodel was implemented in Microsoft’s Modeling SDK for Vi-
sual Studio 2013 (MSDK). The metamodel is provided in Appendix B.I. Source code,
screenshots and additional info is available here10 MSDK allows defining visual DSLs
and translating them to an arbitrary textual representation. Using MSDK we generated
a Visual Studio plug-in providing a complete IDE for developing pringl projects. In
it, an incentive designer can create a dedicated Visual Studio pringl project and im-
plement/model real-world strategies using the visuo-textual elements introduced in this
paper (Figure 7.17). The graphical elements provided in the implemented Visual Studio
pringl environment, although not as visually appealing as those presented in this paper,
functionally and structurally match them fully. pringl models are stored in .pringl
files that get automatically transformed to the corresponding C# (.cs) equivalents. The
generated code can then be used in the rest of the project as regular C# code or compiled
in .NET assemblies (e.g., libraries or executables).

As a proof of concept, demonstrating the feasibility of implementation of the intro-
duced programming and execution model, we implemented the “rotating presidency”
example (Ex. 5) from Section 7.4.5. Figure 7.17 shows a screenshot of implemented rotat-
ing presidency example using the VS pringl IDE as well as the intended use of generated
code artifacts. The implemented incentive elements correspond to the individual element
descriptions presented in Section 7.4.5 (Ex. 5). The entire scheme was modeled using
the generated pringl tools, demonstrating the feasibility of the proposed architectural
design. The C# code obtained from the implemented model can be used to produce a
custom-made incentive management application using princ as the acting interlayer.

10http://dsg.tuwien.ac.at/research/viecom/PRINGL/

127

http://dsg.tuwien.ac.at/research/viecom/PRINGL/

The implemented example supports an arbitrary number and structure of Workers
(represented as graph nodes) and their ‘effort’ metrics. Worker nodes are inter-connected
with arbitrary-typed graph edges representing different relations. Our pringl-encoded
incentive scheme will only consider the workers belonging to the team denoted by the
teamID identifier, and only the managerial relations represented by ManagedBy-typed
edges. Events notify princ when iterations end and ‘effort’ metrics change. The code
generated from the implemented example monitors these events and executes the incentive
mechanisms that make sure the best-performing worker is installed as the manager, but
for not more than two consecutive iterations, subject to being replaced by the runner up
in such a situation. The pringl source code (.pringl file) for this example is provided in
the Appendix B.II.

7.6 Discussion
In Sections 2.2 and 4.3 we explained the necessity of composition and frequent adjustments
of incentive elements and mechanisms. In this respect, the roles of Incentive Designer and
Incentive Operator may be seen as critical to the success of any future socio-technical
platform. For companies concerned to control costs having an Operator in the loop
controlling the cost of incentives and adapting them may be the decisive factor for the
adoption of incentive management. An Operator can also provide early warning of
dysfunctional behavior of workers.

pringl’s design requirements were formulated to respond to these demands and make
pringl a useful tool for the Incentive Designer/Operator. The evaluation performed so
far indicates that pringl is able to fulfill adequately most of the listed requirements.
However, it is also clear that the objective usability of the language needs to be tested
and quantitatively proven in field. This would include training a number of incentive
designers/operators to code in pringl and running a user study to gather subjective
opinions about its applicability, usefulness, expressiveness, speed/ease of programming.
As this is not possible without a fully functional socio-technical platform, we were
prevented from performing it so far. However, we regard this as an important step in our
future work.

The language itself is independent of the size of workforce and the number of incentive
actions it needs to manage (as these are of concern to the underlying components, such
as RMod), so scalability is not a potential issue. The evaluation of pringl’s performance
was not of interest to us at this phase, as it primarily depends on the technologies and
components used in the incentive management platform, some of which are at a prototype
phase. Furthermore, in absence of any related domain-specific languages or modeling
approaches, no comparative analysis was possible.

The remaining limitations are discussed in Section 8.2 in relation to the overall
incentive management platform.

128

#region IncentiveLogic
 public static partial class IncLogic {
 public static Worker _w;
 public static IEnumerable<Worker> _ws;
 public static IHasParameters _parent;
 ...
 [P_Logic]
 public static bool WasTooLong(int iters)
 ...

PRINC interlayer

C#

.NET assembly

Simulated workers

digraph{
Worker2 -:ManagedBy-> Worker3;
Worker1 -:ManagedBy-> Worker3;
Worker0 -:ManagedBy-> Worker3;}

digraph{
Worker3 -:ManagedBy-> Worker2;
Worker1 -:ManagedBy-> Worker2;
Worker0 -:ManagedBy-> Worker2;}

PRINGL structural
incentive

Figure 7.17: Implementing the rotating presidency incentive scheme (Example 5) using
generated pringl Visual Studio environment. Generated C# code is performs calls to
princ APIs, which ultimately perform structural changes on the worker graph (part of
RMod).

129

CHAPTER 8
Conclusion & Research Outlook

8.1 Discussion
The remarkable success in widespread adoption and use of social networks made it evident
that large numbers of geographically distributed people can successfully engage with
information systems and other people using the information systems as intermediaries.
Initially, the intermediating role was limited to facilitating communication between
people only. With time, however, it became apparent that people could be engaged
in (large-scale) productive and collaborative activities. The term crowdsourcing was
coined to describe the process of performing tasks by splitting them into a number of
independent subtasks and assigning them across a set of independent workers managed by
an information system (crowdsourcing platform). Even though the precise definitions of
‘crowdsourcing’ may differ, in practice the term remained limited to (potentially large) but
easily parallelizable task being performed by largely unqualified workers. The probable
explanation for this is that the successful commercial exploitation of crowdsourcing
required early adopters, and attracting paying customers was more likely if the prices
for performing a task were considerably lower than engaging a team of professionals
to perform it. This also made the associated risks of failure more acceptable to the
customers. However, this also meant that when the total amount would get split among
all the performing workers, the wages pro worker remained extremely below the average
hourly wage for most parts of the world. This in turn meant that tasks processed via
crowdsourcing platforms remained simple and non-challenging compared to types of tasks
performed in traditional (non-virtual) companies and organizations, since the majority
of workforce was not schooled/trained enough to perform such tasks. In addition, the
platforms themselves did not offer the technical facilities that would enable more complex
coordination, communication and socialization among workers, or any hierarchies or
possibilities of advancement.

However, even with such simplistic workforce management, crowdsourcing systems
started employing a number of incentive mechanisms, some of them being adapted forms

131

of traditional corporate incentives, the others being web-specific (e.g., FourSquare badges)
(Section 3.4).

At the same time, the research community was active in trying to design systems
that would go beyond crowdsourcing, engaging humans (together with software services)
in more complex collaborative patterns. As outlined in the roadmap paper [KNB+13],
a number of innovative properties were identified as necessary to be supported by the
emerging systems if they are to become attractive to a wider and more competitive
workforce. Systems like [ABMK11, MB11, TDKC15, SMS+15] are among the first
examples of systems supporting some of these properties. They are often described with
more generic terms, such as socio-technical systems or (hybrid) collective adaptive systems
to emphasize support for a richer set of functionalities, types of workers/participants and
collaborative patterns than those supported by crowdsourcing systems.

As the complexity of human participation increases, it exerts more influence on
the socio-technical environment, because the overall execution depends ever more on
human behavior which is inherently difficult to predict, formally describe and control.
Furthermore, humans are highly adaptive, driven at different times and in different
occasions by different motives (ranging from self-interest to charity). This poses a
great challenge when trying to incorporate humans as processing units into existing
orchestration and execution formalisms. While the existing approaches (Section 2.2)
may work well for business processes which are prescribed and separated into single
activities executed by roles, in cases where the collaboration is less constrained or not
known in advance this may not be possible or effective. However, this is a problem that
also traditional companies experienced when the increased complexity of labor made
measuring the ‘signals’ difficult, triggering a number of disfynctional behaviors to emerge.
We wrote about these in Section 3.1. The response in this case was the the development of
a number of different incentive mechanisms and their combination into incentive schemes.

There is an ever-going discussion on the efficacy and justification of the use of
incentives. As elaborated in Section 2.1.3 different empirical findings demonstrated that
specific incentives do effectively block certain disfunctional behaviors. Also, it was shown
that incentives exhibit secondary selective effects, making them even more important in
large-scale collaborations as a testimony of the quality of workers’ performance. The fact
that around 80% of big and medium-sized US companies employ incentives [Feh13] is a
good indicator of their effectiveness. On the other hand, our own survey (Section 3.4.2)
showed that less than 10% of the surveyed web-based and crowdsourcing companies
employed incentives. The majority of those that did employ them used a very limited
number of incentive mechanisms.

The survey also showed that the current commercial landscape is dominated by
crowdsourcing platforms dealing with simple tasks, which therefore require less complex
incentives, because the signals are more easily measurable. This leads to a kind of a
negative feedback loop, where the lack of incentive management tools limits the companies
in offering more advanced incentive schemes which might motivate and attract more
professional workers and enable processing of more complex tasks. In order to break
the negative loop a company would have to develop not only the entire functionality for

132

complex task processing, communication,coordination and orchestration, but also the
full incentive management functionality. All of the listed functionalities are challenging
research problems, appreciated even more by the author of the thesis through his
participation in the SmartSociety project. This thesis was an attempt to describe,
analyze and provide solutions for the latter of the listed functionalities – the incentive
management.

The main idea of the research effort behind this thesis was to bring the benefits
of incentive management closer to the emerging socio-technical systems and provide a
set of tools for defining and applying incentives, composed of existing/proven incentive
elements, thus relieving the socio-techincal platforms (or the companies) of this task.
The incentive elements were based on existing practices in traditional and crowdsourcing
companies. They were designed to be as portable and as reusable as possible, allowing
us to offer incentive management as an external service to various platforms. Once again,
it must be emphasized that the focus was not on designing novel incentive mechanisms,
nor evaluating the effectiveness of existing ones in concrete situations.

A prominent contribution of this thesis is the domain-specific language pringl, being
the one part intended for interaction with users, and thus reflecting design decisions taken
when modeling incentive elements. As such, it required most time to develop, and was,
accordingly, given most space in the thesis. As explained in Section 7.4, the language was
evaluated qualitatively through a number of real-world examples. A quantitative usability
evaluation is expected to follow after the planned integration with the SmartSociety
platform (Sec. 8.3). This will allow the full end-to-end evaluation. Currently, all the
contributions of the thesis were implemented and evaluated at prototype level.

Another important aspect that is often neglected when dealing with incentives
in the research domain is the notion of privacy and ethics. The envisaged complex
socio-technical systems will inevitably deal with a lot of personal data and influence
the professional careers of the participating workers. Therefore, providing methods to
implement incentives following ethical guidelines while handling personal information
transparently becomes of great importance. While former is a research problem that we
intend to deal with in the future, the foundations for the latter were already set in this
work through the introduction of the SmartCOM middleware that was designed in the
context of the SmartSociety platform. The use of such a middleware in the abstraction
interlayer is crucial for offering incentives as a service, because it adds a guarantee that
the externalized incentive mechanisms will not be able to misuse or access unwanted data,
contributing potentially to an easier adoption of the concept of incentives-as-a-service in
the future (in the same way as PayPal speeded up the adoption of online payments).

8.2 Limitations

8.2.1 Artifact-centric incentives

The expressiveness of the language and the incentive model coincides with the incentive
elements identified in the survey. This means that although we can reasonably argue

133

that the introduced model covers most contemporary incentive mechanisms used both
in traditional companies and crowdsourcing platforms, no claim of universal coverage
can be made. Furthermore, as existing incentives used in socio-technical systems are
derived from the incentives used in conventional companies they are always associated
with humans that they target1 (i.e., their behavior). While this approach works well
for processes similar to traditional business processes and/or platforms that have the
goal of establishing a long-term relationship with the workers (like SmartSociety), in
cyber-physical environments the number of digital artifacts is often exceeding the number
of participants. In such cases, interactions with workers may be highly irregular and
transient. Therefore, incentives targeting workers might not achieve the expected result, or
the choice of existing incentives becomes severely limited (mostly to Pay-Per-Performance
incentives). Instead, in such environments, the digital artifact (and not the worker)
is the long-lived entity, and can be used as the carrier of the incentive. We already
identified and formulated this problem in [STD15a] and presented some ideas on how we
can approach it. As stated in Section 8.3 this will be one of the topics of our long-term
future work.

8.2.2 Automated incentive adjustment

Another potential limitation of the presented incentive management platform is that it
is unable to automatically adjust incentives to the changes in monitored collaborative
processes. Instead, the existence of an Incentive Operator as the ultimate source of
expertise for the given application scenario is assumed. The Operator is provided with
the necessary tools for incentive management (the platform) and is expected to perform
the adaptation of incentive schemes through addition/removal (turning on/off) of specific
incentive mechanisms and adjustment the parameter values. Certainly, as a general
concept, designing an automated incentive scheme adjustment seems like a plausible idea.
However, it is questionable how feasible it would be in practice.

If the adaptability were to be described with a set of (rule-based) adaptation policies,
these would have to be based on some existing empirical data. However, no general
quantifiable results are available (cf. [Feh13]). For example, it was observed that when
approaching a quota threshold the performance of majority of workers increases, and
then drops after surpassing the quota [Pre99], but one cannot make a general claim
nor express in concrete terms how much the effort would change. Furthermore, these
empirical findings are obtained under controlled circumstances with only one incentive in
place. With multiple incentive mechanisms in place the findings could become irrelevant,
or the experiments should be performed for the given combination of incentives.

An alternative idea would be to use machine learning from past worker behavior in
similar circumstances to try to foresee the future behavior of workers and adjust the
incentive mechanisms accordingly; or select workers that are expected to respond well
to a fixed set of incentives. For example, for a fixed type of long-running tasks (such as
software development), such an approach could be used on the same platform for new

1For that same reason, the F elements introduced in this thesis return only Worker objects.

134

tasks to be processed with new worker teams. As the work on a task is progressing, the
incentive mechanisms can be adjusted based on previous experiences with similar tasks.
Going back to the example used to introduce the role of Incentive Operator in Section 5.1,
let us assume the task is to develop a new blogging web application. If the platform
holds the records for a number of previous similar tasks (i.e., similarly-sized development
teams working with same technologies under the same development methodology), in
theory the decision to incentivize more quality rather than quantity after some point
can also be made automatically. The necessary precondition for automated incentive
adjustment is the existence of data-sets for training, which are currently missing, so this
can be an area worthy of further investigation in the future.

8.2.3 Specificity of metrics

Portability of incentive mechanisms encoded in the incentive model proposed in this
thesis is effectively limited by the portability/generality of metrics it relies upon. For
example, the filter F GetBest introduced in Section 7.4.5 is portable as long as the effort
metrics it relies upon is provided with consistent semantics by different platforms. This
is a problem not specific to incentive management only. Other related areas dealing with
context-specific, such as trust and reputation management, suffer from similar problems.
The solution to this problem was often approached by building ontologies of trust-related
entities and associated metrics (e.g., [BMP09, SNHB10]). The solution of this problem
goes beyond the scope of this thesis. For the targeted scenarios, we assume the existence
of fundamental performance and trust/reputation metrics, such as those introduced in
[RTD14].

8.3 Future Work

In this section we briefly summarize the key points that were already identified throughout
the thesis as the main directions of future work.

As a short-term goal, we foresee the addition of an incentives-as-a-service component
to the SmartSociety platform, consisting of the princ frameworkk with a pringl-based
frontend, connected with the SmartSociety platform over SmartCOM middleware acting
as the abstraction interlayer. The full integration will further require: a) the definition
of incentive scheme(s) for one or multiple scenarios supported by the SmartSociety
platform, derived from case studies performed by project partners [Del15]; b) integration
of high-level constructs for controlling the interaction with the incentive service from the
SmartSociety programming model that is currently under development [SSD+15]; and c)
running an in-field functional evaluation of the fully integrated system.

Medium-term goals would include the full (more than a prototype) implementation
of the pringl code generator, offering the complete described language expressiveness
to the incentive Designer along a platform to run the modeled schemes. This will allow
running a user study to evaluate the usability of pringl DSL quantitatively and measure
subjective user satisfaction, as described in Section 7.4.

135

As long-term directions for further development, we foresee extending the incentive
model and pringl’s programming model to support definition and execution of artifact-
based incentives, and investigating the feasibility of automated incentive adjustment.
Another interesting research direction is the personalization of incentives. This is mostly
interesting for psychological incentives, since intrinsic motivation may vary significantly
across individuals, social and cultural groups, limiting the efficacy of psychological
incentives.

136

Bibliography

[ABMK11] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The
jabberwocky programming environment for structured social computing.
In Proc. 24th Annual ACM Symposium on User Interface Software and
Technology, UIST ’11, pages 53–64. ACM, 2011.

[ABS+14] Vasilios Andrikopoulos, Antonio Bucchiarone, Santiago Gomez Saez, Dimka
Karastoyanova, and Claudio Antares Mezzina. Towards modeling and execu-
tion of collective adaptive systems. In Service-Oriented Computing–ICSOC
2013 Workshops, pages 69–81. Springer, 2014.

[Ada11] Eytan Adar. Why i hate mechanical turk research (and workshops). In
Proc. of CHI’11 Workshop on Crowdsourcing and Human Comp., Vancouver,
Canada, 2011. ACM.

[Arm10] Michael Armstrong. Armstrong’s Handbook of Reward Management Practice:
Improving Performance Through Reward. Kogan Page Publishers, London,
3rd edition, 2010.

[BBC+14] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Andrea Mauri, and Ric-
cardo Volonterio. Pattern-based specification of crowdsourcing applications.
In Proc. 14th Intl. Conf. on Web Engineering (ICWE) 2014, pages 218–235,
2014.

[BCBM12] Daniel W. Barowy, Charlie Curtsinger, Emery D. Berger, and Andrew
McGregor. Automan: A platform for integrating human-based and digital
computation. SIGPLAN Not., 47(10):639–654, October 2012.

[BFGK13] Alessandro Bozzon, Piero Fraternali, Luca Galli, and Roula Karam. Modeling
crowdsourcing scenarios in socially-enabled human computation applications.
Journal on Data Semantics, pages 1–20, 2013.

[BH02] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transfor-
mation: A software engineering perspective. In Andrea Corradini, Hartmut
Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph Trans-
formation, volume 2505 of LNCS, pages 402–429. Springer, 2002.

137

[BM98] M.C. Bloom and G.T. Milkovich. The relationship between risk, incentive
pay, and organizational performance. The Academy of Management J.,
41(3):283–297, 1998.

[BMP09] KamaljitKaur Bimrah, Haralambos Mouratidis, and David Preston. Trust
ontology for information systems development. In Chris Barry, Michael
Lang, Wita Wojtkowski, Kieran Conboy, and Gregory Wojtkowski, editors,
Information Systems Development, pages 767–779. Springer US, 2009.

[CTD13] Muhammad Z. C. Candra, Hong-Linh Truong, and Schahram Dustdar.
Provisioning quality-aware social compute units in the cloud. In 11th Intl.
Conf. on Service Oriented Computing (ICSOC 2013), Berlin, Germany,
December 2-5, 2013. Springer.

[DB11] Schahram Dustdar and Kamal Bhattacharya. The Social Compute Unit.
Internet Computing, IEEE, 15(3):64–69, 2011.

[Del15] Smartsociety consortium, deliverable 5.3 - specification of advanced in-
centive design and decision-assisting algorithms for cas. http://www.
smart-society-project.eu/publications/deliverables/D_5_3, 2015.

[DEM12] Christoph Dorn, George Edwards, and Nenad Medvidovic. Analyzing design
tradeoffs in large-scale socio-technical systems through simulation of dynamic
collaboration patterns. In Robert Meersman, Hervé Panetto, Tharam S.
Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani Pearson,
Alois Ferscha, Sonia Bergamaschi, and Isabel F. Cruz, editors, OTM Confer-
ences (1), volume 7565 of Lecture Notes in Computer Science, pages 362–379.
Springer, 2012.

[DR85] E.L. Deci and R.M Ryan. Intrinsic Motivation and Self-Determination in
Human Behavior. Plenum Press, 1985.

[DS14] J.P. Diller and S.S.M. Song. Method of and a system for ranking members
within a services exchange medium, April 15 2014. US Patent 8,700,614.

[Feh13] Dennis D. Fehrenbacher. Design of Incentive Systems. Contributions to
Management Science. Springer, 2013.

[FGP+09] G Frackowiak, M Ganzha, M Paprzycki, M Szymczak, Y Han, and M Park.
Adaptability in an Agent-Based Virtual Organization – Towards Implementa-
tion. In José Cordeiro, Slimane Hammoudi, Joaquim Filipe, Wil Aalst, John
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, and Clemens Szyperski,
editors, Web Information Systems and Technologies, volume 18, pages 27–39.
Springer Berlin Heidelberg, 2009.

[FJ01] B.S. Frey and R. Jegen. Motivation crowding theory. Journal of Economic
surveys, 15(5):589–611, 2001.

138

http://www.smart-society-project.eu/publications/deliverables/D_5_3
http://www.smart-society-project.eu/publications/deliverables/D_5_3

[GDM13] Fausto Giunchiglia, Biswanath Dutta, and Vincenzo Maltese. From knowl-
edge organization to knowledge representation. In ISKO UK Conference,
2013.

[GMS14] Daniel G. Goldstein, Randolph Preston McAfee, and Siddharth Suri. The
wisdom of smaller, smarter crowds. In Proc. ACM Conf. on Economics and
Computation, EC ’14, pages 471–488. ACM, 2014.

[GT05a] N Gilbert and K Troitzsch. Simulation for the social scientist. Open
University Press, McGraw-Hill Education, 2005.

[GT05b] Nigel Gilbert and Klaus Troitzsch. Simulation for the social scientist.
McGraw-Hill International, 2005.

[Gun06] Marjaana Gunkel. Country-Compatible Incentive Design. DUV, Wiesbaden,
2006.

[HA07] Bernhard Hoisl and Wolfgang Aigner. Social Rewarding in Wiki Systems
– Motivating the Community. In Proceedings of HCI International - 12th
International Conference on Human-Computer Interaction (HCII 2007),
pages 362–371. Springer, 2007.

[HDG00] Robert L. Heneman, Katherine E. Dixon, and Maria T. Gresham. Team pay
for novice, intermediate, and advanced teams. Advances in Interdisciplinary
Studies of Work Teams, (7):141–160, 2000.

[HF13] Shih-Wen Huang and Wai-Tat Fu. Don’t hide in the crowd!: Increasing
social transparency between peer workers improves crowdsourcing outcomes.
In Proc. SIGCHI Conf. on Human Factors in Comp. Systems, CHI ’13,
pages 621–630. ACM, 2013.

[HHTG13] Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. Analyzing costs and
accuracy of validation mechanisms for crowdsourcing platforms. Math. and
Comp. Modelling, 57(11–12):2918 – 2932, 2013.

[HJCA+15] Mark Hartswood, Marina Jirotka, Ronald Chenu-Abente, Alethia Hume,
Fausto Giunchiglia, Leonardo A. Martucci, and Simone Fischer-Hübner.
Privacy for peer profiling in collective adaptive systems. In Privacy and
Identity Management for the Future Internet in the Age of Globalisation.
Springer, 2015.

[HM91] B. Holmstrom and P. Milgrom. Multitask principal-agent analyses: Incentive
contracts, asset ownership, and job design. JL Econ. & Org., 7(January
1991):24, 1991.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105, 2004.

139

[HPTA14] M. Hosseini, K. Phalp, J. Taylor, and R. Ali. The four pillars of crowdsourcing:
A reference model. In Research Challenges in Information Science (RCIS),
IEEE Intl. Conf., pages 1–12, May 2014.

[HRMF14] Ting-Kai Huang, Bruno Ribeiro, Harsha V. Madhyastha, and Michalis
Faloutsos. The socio-monetary incentives of online social network malware
campaigns. In Proc. ACM Conf. on Online Social Networks, COSN ’14,
pages 259–270. ACM, 2014.

[HS96] J.J. Heckman and J. Smith. What do bureaucrats do? The effects of
performance standards and bureaucratic preferences on acceptance into the
JTPA program. Advances in the Study of Entrepreneurship Innovation and
Economic Growth, 7:191–217, 1996.

[JBK10] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. GrGen. NET. Intl.
J. on Software Tools for Technology Transfer, 12(3):263–271, 2010.

[Kau11] Sebastian Kaune. Performance and Availability in Peer-to-Peer Content
Distribution Systems: A Case for a Multilateral Incentive Approach. Phd
thesis, TU Darmstadt, 2011.

[KNB+13] Aniket Kittur, Jeffrey V. Nickerson, Michael Bernstein, Elizabeth Gerber,
Aaron Shaw, John Zimmerman, Matt Lease, and John Horton. The future of
crowd work. In Proc. of the 2013 Conf. on Computer supported cooperative
work, CSCW ’13, pages 1301–1318. ACM, 2013.

[KO02] Máire Kerrin and Nick Oliver. Collective and individual improvement
activities: the role of reward systems. Personnel Review, 31(3):320–337,
2002.

[Laz00] E.P. Lazear. Performance Pay and Productivity. American Economic Review,
90(5):1346–1361, 2000.

[Laz07] E.P. Lazear. Personnel economics: The economist’s view of human resources.
Journal of Economic Perspectives, 21(4):91–114, 2007.

[LCMG09] Greg Little, Lydia B. Chilton, Rob Miller, and Max Goldman. Turkit: Tools
for iterative tasks on mechanical turk. In In Human Computation Workshop
(HComp2009), 2009.

[Lit10] Greg Little. Exploring iterative and parallel human computation processes.
In Ext. Abstracts on Human Factors in Comp. Sys., CHI EA ’10, pages
4309–4314. ACM, 2010.

[LM02] Jean-Jacques Laffont and David Martimort. The Theory of Incentives.
Princeton University Press, New Jersey, 2002.

140

[MB11] Patrick Minder and Abraham Bernstein. Crowdlang - first steps towards
programmable human computers for general computation. In In Proceedings
of the 3rd Human Computation Workshop (HCOMP 2011), AAAI-Press,
San Francisco, CA, USA, January 2011.

[MB12] Patrick Minder and Abraham Bernstein. Crowdlang: A programming
language for the systematic exploration of human computation systems.
In Karl Aberer, Andreas Flache, Wander Jager, Ling Liu, Jie Tang, and
Christophe Guéret, editors, Social Informatics, volume 7710 of LNCS, pages
124–137. Springer, 2012.

[MD15] Pietro Michelucci and Janis L. Dickinson. The power of crowds. Science,
351(6268):32–33, 2015.

[MH10] Parastoo Mohagheghi and Øystein Haugen. Evaluating domain-specific
modelling solutions. In Juan Trujillo, Gillian Dobbie, Hannu Kangassalo,
Sven Hartmann, Markus Kirchberg, Matti Rossi, Iris Reinhartz-Berger,
Esteban Zimányi, and Flavius Frasincar, editors, Advances in Conceptual
Modeling – Applications and Challenges, volume 6413 of LNCS, pages 212–
221. Springer, 2010.

[MHOG14] David Martin, Benjamin V. Hanrahan, Jacki O’Neill, and Neha Gupta. Being
a turker. In Proceedings of the 17th ACM Conference on Computer Supported
Cooperative Work and Social Computing, CSCW ’14, pages 224–235, New
York, NY, USA, 2014. ACM.

[MKC+13] Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E. Schwamb,
Chris J. Lintott, and Smith Arfon M. Volunteering Versus Work for Pay:
Incentives and Tradeoffs in Crowdsourcing. In Proc. First AAAI Conf. on
Human Computation and Crowdsourcing, pages 94–102, Palm Springs, CA,
USA, 2013. AAAI.

[MM] Daniele Miorandi and Lorenzo Maggi. Programming social collective intelli-
gence. IEEE Technology and Society, page (forthcoming).

[MN09] Charles M. Macal and Michael J. North. Agent-based modeling and simula-
tion. Proceedings of the 2009 Winter Simulation Conference (WSC), pages
86–98, December 2009.

[MN10] Charles M Macal and Michael J North. Tutorial on agent-based modelling
and simulation. Journal of Simulation, 4(3):151–162, 2010.

[MSK02] Manfred Milinski, Dirk Semmann, and Hans-Jurgen Krambeck. Reputation
helps solve the ‘tragedy of the commons’. Nature, 415(6870):424–426, January
2002.

141

[Mum05] Dennis K. Mumby. Theorizing resistance in organization studies: A dialectical
approach. Management Communication Quarterly, 19(1):19–44, 2005.

[MW09] Winter Mason and Duncan J. Watts. Financial incentives and the "perfor-
mance of crowds". In Proc. ACM SIGKDD Workshop on Human Computa-
tion, HCOMP ’09, pages 77–85. ACM, 2009.

[PCE10] Matthew J. Pearsall, Michael S. Christian, and Aleksander P. J. Ellis. Moti-
vating interdependent teams: Individual rewards, shared rewards, or some-
thing in between? Journal of Applied Psychology, 95(1):183–191, 2010.

[Pre99] Canice Prendergast. The provision of incentives in firms. J. of economic
literature, 37(1):7–63, 1999.

[Pri76] Derek De Solla Price. A general theory of bibliometric and other cumulative
advantage processes. Journal of the American Society for Information
Science, 27(5):292–306, September 1976.

[RD00] Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motivations:
Classic definitions and new directions. Contemporary Educational Psychology,
25(1):54 – 67, 2000.

[RHF13] Huaming Rao, Shih-Wen Huang, and Wai-Tat Fu. What will others choose?
how a majority vote reward scheme can improve human computation in
a spatial location identification task. In Björn Hartman and Eric Horvitz,
editors, Proc. of the First AAAI Conf. on Human Computation and Crowd-
sourcing, HCOMP 2013, November 7-9, 2013, Palm Springs, CA, USA.
AAAI, 2013.

[RKZF00] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Repu-
tation systems: Facilitating trust in Internet interactions. Communications
of the ACM, 43(12):45–48, 2000.

[RM] Bettina Rockenbach and Manfred Milinski. The efficient interaction of
indirect reciprocity and costly punishment. Nature, 444(7120):718–723.

[RTD14] Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar. On the elasticity
of social compute units. In Matthias Jarke, John Mylopoulos, Christoph
Quix, Colette Rolland, Yannis Manolopoulos, Haralambos Mouratidis, and
Jennifer Horkoff, editors, Advanced Information Systems Engineering, volume
8484 of LNCS, pages 364–378. Springer, 2014.

[SDD13] Ognjen Scekic, Christoph Dorn, and Schahram Dustdar. Simulation-based
modeling and evaluation of incentive schemes in crowdsourcing environments.
In Robert Meersman, Hervé Panetto, Tharam Dillon, Johann Eder, Zohra
Bellahsene, Norbert Ritter, Pieter De Leenheer, and Deijing Dou, editors,
On the Move to Meaningful Internet Systems: OTM 2013 Conf.s, volume
8185 of LNCS, pages 167–184. Springer, 2013.

142

[SDKP06] Ahmed Seffah, Mohammad Donyaee, Rex B. Kline, and Harkirat K. Padda.
Usability measurement and metrics: A consolidated model. Software Quality
Control, 14(2):159–178, June 2006.

[SHY+08a] Kenichiro Sato, Ryo Hashimoto, Makoto Yoshino, Ryoichi Shinkuma, and
Tatsuro Takahashi. Incentive Mechanism Considering Variety of User Cost
in P2P Content Sharing. In Global Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

[SHY+08b] Kenichiro Sato, Ryo Hashimoto, Makoto Yoshino, Ryoichi Shinkuma, and
Tatsuro Takahashi. Incentive Mechanism Considering Variety of User Cost
in P2P Content Sharing. In Global Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

[Ski54] Skinner, b. f. science and human behavior. new york: The macmillan company,
1953. 461 p. Science Education, 38(5):436–436, 1954.

[SKM04] Dirk Semmann, Hans-Jürgen Krambeck, and Manfred Milinski. Strategic
investment in reputation. Behavioral Ecology and Sociobiology, 56(3):248–252,
July 2004.

[SMS+15] O. Scekic, D. Miorandi, T. Schiavinotto, D.I. Diochnos, A. Hume, R. Chenu-
Abente, H.-L. Truong, M. Rovatsos, I. Carreras, S. Dustdar, and Giunchiglia
F. Smartsociety – a platform for collaborative people-machine computation.
In Proc. of the 8th IEEE International Conference on Service Oriented
Computing and Applications (SOCA’15), Rome, Italy, October 2015.

[SNHB10] Wanita Sherchan, Surya Nepal, Jonathon Hunklinger, and Athman Bouguet-
taya. A trust ontology for semantic services. 2014 IEEE International
Conference on Services Computing, 0:313–320, 2010.

[SRTD14] Ognjen Scekic, Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar.
Social interaction analysis for team collaboration. In Reda Alhajj and
Jon Rokne, editors, Encyclopedia of Social Network Analysis and Mining.
SpringerScience+Business Media, NewYork, 2014.

[SSD10] Florian Skopik, Daniel Schall, and Schahram Dustdar. Modeling and mining
of dynamic trust in complex service-oriented systems. Information Systems,
35(7):735–757, November 2010.

[SSD+15] O. Scekic, T. Schiavinotto, D.I. Diochnos, M. Rovatsos, H.-L. Truong,
I. Carreras, and S. Dustdar. Programming model elements for hybrid
collaborative adaptive systems. In Proc. of the 1st IEEE International
Conference on Collaboration and Internet Computing (CIC’15), Hangzhou,
China, October 2015.

143

[STD12] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Modeling rewards
and incentive mechanisms for social bpm. In Alistair Barros, Avigdor Gal,
and Ekkart Kindler, editors, Business Process Management, volume 7481 of
LNCS, pages 150–155. Springer Berlin Heidelberg, 2012.

[STD13a] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Incentives and
rewarding in social computing. Comm. of the ACM, 56(6):72, 6 2013.

[STD13b] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Programming
incentives in information systems. In Camille Salinesi, Moira C. Norrie, and
Óscar Pastor, editors, Advanced Information Systems Engineering, volume
7908 of LNCS, pages 688–703. Springer, 2013.

[STD14a] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. A collaboration
model for community-based software development with social machines. In
Proc. of the 10th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing, Miami, FL, USA, October 2014.

[STD14b] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Managing
incentives in social computing systems with pringl. In Boualem Benatallah,
Azer Bestavros, Yannis Manolopoulos, Athena Vakali, and Yanchun Zhang,
editors, Web Inf. Systems Engineering (WISE’14), volume 8787 of LNCS,
pages 415–424. Springer, 2014.

[STD15a] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Supporting
multilevel incentive mechanisms in crowdsourcing systems: an artifact-centric
view. In Cloud-based Software Crowdsourcing, pages 95–114. Springer, 2015.

[STD15b] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Pringl – a domain-
specific language for incentive management in crowdsourcing. Computer
Networks, 9 July 2015.

[TCZ12] O. Tokarchuk, R. Cuel, and M. Zamarian. Analyzing crowd labor and
designing incentives for humans in the loop. Internet Computing, IEEE,
16(5):45–51, 2012.

[TDKC15] Stefano Tranquillini, Florian Daniel, Pavel Kucherbaev, and Fabio Casati.
Modeling, enacting, and integrating custom crowdsourcing processes. ACM
Trans. Web, 9(2):7:1–7:43, May 2015.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Ex-
perimental evaluation in computer science: A quantitative study. J. Syst.
Softw., 28(1):9–18, January 1995.

[TZ09] Anh Tran and Richard Zeckhauser. Rank as an Incentive: Evidence from a
Field Experiment. 2009.

144

[Vas12] Julita Vassileva. Motivating participation in social computing applications:
a user modeling perspective. User Modeling and User-Adapted Interaction,
22(1-2):177–201, 2012.

[VCV06] Marco Van Herpen, Kees Cools, and Mirjam Van Praag. Wage Structure and
the Incentive Effects of Promotions. Kyklos, 59(3):441–459, August 2006.

[WD99] Crayton C. Walker and Kevin J. Dooley. The Stability of Self-Organized
Rule-Following Work Teams. Computational & Mathematical Organization
Theory, 5(1):5–30, 1999.

[Weg12] Ryan Wegner. Multi-agent malicious behaviour detection. Phd thesis, Uni-
versity of Manitoba, 2012.

[WM00] Claus Wedekind and Manfred Milinski. Cooperation Through Image Scoring
in Humans. Science, 288(5467):850–852, May 2000.

[YST+10] Kazufumi Yogo, Ryoichi Shinkuma, Tatsuro Takahashi, Taku Konishi, Satoko
Itaya, Shinichi Doi, and Keiji Yamada. Differentiated Incentive Rewarding for
Social Networking Services. 2010 10th IEEE/IPSJ International Symposium
on Applications and the Internet, pages 169–172, July 2010.

[Zep14] Philipp Zeppezauer. Virtualizing communications for hybrid and diversity-
aware collective adaptive systems, 2014. Parallelt. [Übers. des Autors]
Virtualizing Communications for Hybrid and Diversity-Aware Collective
Adaptive Systems; Wien, Techn. Univ., Dipl.-Arb., 2015.

[ZST+14] Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, Dimitrios I. Diochnos,
Michael Rovatsos, Tommaso Schiavinotto, Iacopo Carreras, and Daniele
Miorandi. Smartsociety consortium, deliverable 7.1 - virtualization techniques
and prototypes. http://www.smart-society-project.eu/publications/
deliverables/D_7_1/, 2014.

[ZSTD14] Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram Dust-
dar. Virtualizing communication for hybrid and diversity-aware collective
adaptive systems. In Proc. of 10th Intl. Workshop on Engineering Service-
Oriented Applications, WESOA’14, pages 56–67. Springer, 11 2014.

145

http://www.smart-society-project.eu/publications/deliverables/D_7_1/
http://www.smart-society-project.eu/publications/deliverables/D_7_1/

Appendices

A SmartCOM Algorithms

A.I Message Handling

Every incoming message, regardless of whether it is from an internal component, an
application or a peer is handled by the handleMessage function. Algorithm A.1 depicts
the principal routing procedure.

First, the message is assigned with a unique message identifier which is used to track
the message within SmartCOM. Additional to the explicit receiver of the message (can
also be empty), further receivers - if there are any - are determined by the Routing Rule
Engine based on routing rules. Finally the presented algorithm forwards the message to
the corresponding receivers.

Algorithm A.2 describes how the messages are forwarded to a collective while Al-
gorithm A.3 describes how the messages are forwarded to single peers. The function
calls registerCollectiveMessageDeliveryAttempt and registerPeerMessageDeliveryAttempt
indicate the registration of a policy handler that observes whether a delivery policy has
been enforced for an outgoing message or if there was an error during communication.

First, the algorithm retrieves the collective info from the peer store (CollectiveInfo-
Callback API). This object contains information about the delivery policy of the collective
as well as the peers that are currently part of the collective. If required (indicated by the
variable createHandlers) a collective message delivery attempt is registered. Thereafter
the message is delivered to every peer which is currently part of the collective. Note that
this membership is subject to constant change.

Peer info is retrieved first. It consists of the delivery policy, privacy policies and
contact addresses for adapters (which are not used in this algorithm). First, the algorithm
checks if a message is allowed to be sent to a peer at the moment based on its privacy
policies. If required (indicated by the variable createHandlers) a peer message delivery
attempt is registered. The list consists of Ids of adapters which can send the message to
this peer. Finally, using the Message Broker the message is sent to the peer over each
adapter (indicated by its Id) that has been returned previously by the routing engine.

147

Algorithm A.1: Handling of messages in the Messaging and Routing Manager.
1 Function handleMessage is

input : Message (msg)
2 if message Id is empty then
3 create unique message ID;
4 end
5 createPolicyHandlers = false;
6 if message receiver is not null then
7 add the message receiver to the receiver list;
8 createPolicyHandlers = true;
9 end

/* check if there are further receivers */
10 get further receivers from the routing engine (based on routing rules);
11 add them to the receiver list;
12 if receiver list is empty then
13 send error message to NotificationCallback;
14 return;
15 end
16 for each receiver in receiver list do
17 if receiver is component then
18 forward message to component;
19 continue;

20 else if receiver is collective then
21 deliverToCollective(msg, receiver, createPolicyHandlers); // Alg. A.2
22 else
23 try
24 deliverToPeer(msg, receiver, createPolicyHandlers); // Alg. A.3
25 catch
26 send error message to the sender of the message;
27 createPolicyHandlers = false;
28 end
29 end

148

Algorithm A.2: Sending messages to a collective.
1 Function deliverToCollective is

input : Receiver (collective)
Message (msg)
Boolean value whether to create delivery policy handler

(createHandlers)
2 retrieve collective info (collInfo) from CollectiveInfoCallback;
3 if createHandlers then

// to trace the enforcement of delivery policies
4 registerCollectiveMessageDeliveryAttempt(msg, collInfo.deliveryPolicy);
5 end
6 for each peer in collInfo.peers do
7 try
8 deliverToPeer(msg, receiver, createHandlers); // see Alg. A.3
9 catch

10 enforceCollectiveDeliveryPolicy(new error message);
11 if collInfo.deliveryPolicy is TO_ALL_MEMBERS then

/* delivery failed because the massage could not be sent
to everyone */

12 break;
13 end
14 end
15 end

149

Algorithm A.3: Sending messages to peers.
1 Function deliverToPeer is

input : Receiver (peer)
Message (msg)
Boolean value whether to create delivery policy handler

(createHandlers)
2 retrieve peer info (peerInfo) from PeerInfoCallback;
3 for each policy in peerInfo.privacyPolicies do

// check if policy allows sending messages
4 if !policy.condition(msg) then
5 throw an exception;
6 end
7 end
8 if createHandlers then

// to trace the enforcement of delivery policies
9 registerPeerMessageDeliveryAttempt(msg, peerInfo.deliveryPolicy);

10 end
11 determine list of adapters (adapterList) from routing engine;
12 if adapterList is empty then
13 throw exception;
14 end
15 for each adapter in adapterList do
16 send output message to adapter using the message broker;
17 end
18 end

150

B PRINGL Models

B.I PRINGL Metamodel

Diagram Elements

PRINGLDiagram
Diagram

Domain Properties

CompositeFilterShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeFilterIconDeco…

InnerFilterShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

CompositeActionShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeActionIconDeco…

InnerActionShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

FilterFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

ActionFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

DelayDecorator

FilterShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

RewActionShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

InstanceReferenceConnector
Connector

Domain Properties

Decorators

IncMechShape
CompartmentShape

Domain Properties

Decorators

Compartments

Params

InstanceShape
GeometryShape

Domain Properties

Decorators

NameDecorator

IconDecoratorAction

IconDecoratorFilter

IconDecoratorLogic

IncLogicShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PDecorator

SDecorator

TDecorator

ADecorator

FDecorator

Compartments

Params

IncMechInstanceShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PriorityDecorator

Compartments

Params

Classes and Relationships

DomainRelationship

IncentiveStrategyHasIncentiveElements

PRINGLInstance
DomainClass

Domain Properties

 Metatype : PRINGLM…

 SubMetatype : PRIN…

IncMechInstance
DomainClass

Domain Properties

priority : Int16

Type : String

fullName : String

PRINGLParameter
DomainClass

Domain Properties

Type : String

InitialValue : String

Propagation : Char

Name : String

Filter
DomainClass

Domain Properties

time_restr : String

temp_spec : String

auxiliary : String

predicate : String

RewAction
DomainClass

Domain Properties

filter : String

exec_cond : String

exec_times : String

temp_spec : String

action_logic : String

IncMech
DomainClass

Domain Properties

exec_cond : String

appl_restr : String

filter : String

inc_cond : String

rew_action : String

prority : String

CompositeFilter
DomainClass

Domain Properties

CompositeAction
DomainClass

Domain Properties

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

IncentiveStrategy
DomainClass

Domain Properties

DomainClass

Domain Properties

Name : String

InnerFilterInstance
DomainClass

Domain Properties

 Position : InnerShape…

Type : String

fullName : String

InnerActionInstance
DomainClass

Domain Properties

 Position : InnerShapeFl

Type : String

fullName : String

DomainClass

Domain Properties

ActionFlowTo

0..*

FilterFlowTo

0..*

InnerAction…

0..*

InnerFilterI…

0..*

PRINGLPara…

0..*

IncentiveStr…

1..1

IncentiveEle…

0..*

Figure B.1: Partial screenshot of the implemented pringl DSL metamodel. (upper
section)

151

Diagram Elements

PRINGLDiagram
Diagram

Domain Properties

CompositeFilterShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeFilterIconDeco…

InnerFilterShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

CompositeActionShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeActionIconDeco…

InnerActionShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

FilterFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

ActionFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

DelayDecorator

FilterShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

RewActionShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

InstanceReferenceConnector
Connector

Domain Properties

Decorators

IncMechShape
CompartmentShape

Domain Properties

Decorators

Compartments

Params

InstanceShape
GeometryShape

Domain Properties

Decorators

NameDecorator

IconDecoratorAction

IconDecoratorFilter

IconDecoratorLogic

IncLogicShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PDecorator

SDecorator

TDecorator

ADecorator

FDecorator

Compartments

Params

IncMechInstanceShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PriorityDecorator

Compartments

Params

Classes and Relationships

DomainRelationship

IncentiveStrategyHasIncentiveElements

PRINGLInstance
DomainClass

Domain Properties

 Metatype : PRINGLM…

 SubMetatype : PRIN…

IncMechInstance
DomainClass

Domain Properties

priority : Int16

Type : String

fullName : String

PRINGLParameter
DomainClass

Domain Properties

Type : String

InitialValue : String

Propagation : Char

Name : String

Filter
DomainClass

Domain Properties

time_restr : String

temp_spec : String

auxiliary : String

predicate : String

RewAction
DomainClass

Domain Properties

filter : String

exec_cond : String

exec_times : String

temp_spec : String

action_logic : String

IncMech
DomainClass

Domain Properties

exec_cond : String

appl_restr : String

filter : String

inc_cond : String

rew_action : String

prority : String

CompositeFilter
DomainClass

Domain Properties

CompositeAction
DomainClass

Domain Properties

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

IncentiveStrategy
DomainClass

Domain Properties

DomainClass

Domain Properties

Name : String

InnerFilterInstance
DomainClass

Domain Properties

 Position : InnerShape…

Type : String

fullName : String

InnerActionInstance
DomainClass

Domain Properties

 Position : InnerShapeFl

Type : String

fullName : String

DomainClass

Domain Properties

ActionFlowTo

0..*

FilterFlowTo

0..*

InnerAction…

0..*

InnerFilterI…

0..*

PRINGLPara…

0..*

IncentiveStr…

1..1

IncentiveEle…

0..*

Figure B.2: Partial screenshot of the implemented pringl DSL metamodel. (middle
section)

152

Diagram Elements

PRINGLDiagram
Diagram

Domain Properties

CompositeFilterShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeFilterIconDeco…

InnerFilterShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

CompositeActionShape
GeometryShape

Domain Properties

FillColor : Color

 FillGradientMode : Linear…

Decorators

Name

 CompositeActionIconDeco…

InnerActionShape
ImageShape

Domain Properties

Decorators

Name

InitialStateDecorator

FinalStateDecorator

FilterFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

ActionFlowConnector
Connector

Domain Properties

Decorators

ComplementDecorator

DelayDecorator

FilterShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

RewActionShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

IconDecorator

Compartments

Params

InstanceReferenceConnector
Connector

Domain Properties

Decorators

IncMechShape
CompartmentShape

Domain Properties

Decorators

Compartments

Params

InstanceShape
GeometryShape

Domain Properties

Decorators

NameDecorator

IconDecoratorAction

IconDecoratorFilter

IconDecoratorLogic

IncLogicShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PDecorator

SDecorator

TDecorator

ADecorator

FDecorator

Compartments

Params

IncMechInstanceShape
CompartmentShape

Domain Properties

Decorators

NameDecorator

PriorityDecorator

Compartments

Params

Classes and Relationships

DomainRelationship

IncentiveStrategyHasIncentiveElements

PRINGLInstance
DomainClass

Domain Properties

 Metatype : PRINGLM…

 SubMetatype : PRIN…

IncMechInstance
DomainClass

Domain Properties

priority : Int16

Type : String

fullName : String

PRINGLParameter
DomainClass

Domain Properties

Type : String

InitialValue : String

Propagation : Char

Name : String

Filter
DomainClass

Domain Properties

time_restr : String

temp_spec : String

auxiliary : String

predicate : String

RewAction
DomainClass

Domain Properties

filter : String

exec_cond : String

exec_times : String

temp_spec : String

action_logic : String

IncMech
DomainClass

Domain Properties

exec_cond : String

appl_restr : String

filter : String

inc_cond : String

rew_action : String

prority : String

CompositeFilter
DomainClass

Domain Properties

CompositeAction
DomainClass

Domain Properties

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

DomainClass

IncentiveStrategy
DomainClass

Domain Properties

DomainClass

Domain Properties

Name : String

InnerFilterInstance
DomainClass

Domain Properties

 Position : InnerShape…

Type : String

fullName : String

InnerActionInstance
DomainClass

Domain Properties

 Position : InnerShapeFl

Type : String

fullName : String

DomainClass

Domain Properties

ActionFlowTo

0..*

FilterFlowTo

0..*

InnerAction…

0..*

InnerFilterI…

0..*

PRINGLPara…

0..*

IncentiveStr…

1..1

IncentiveEle…

0..*

Figure B.3: Partial screenshot of the implemented pringl DSL metamodel. (lower
section)

153

B.II “Rotating presidency” Model in implemented PRINGL

i1:RewardBest0

Params

-filter.teamID:int = 4572

-inc_cond.iters:int = 2

i2:PreventTooLong0

Params

-filter.teamID:int = 4572

-inc_cond.iters:int = 2

RewardBest

Params

+filter.teamID:int

-rew_action.teamID:int = filter.teamID

+inc_cond.iters:int

Candidates

NotSame

RewBest

PreventTooLong

Params

+filter.teamID:int

-rew_action.teamID:int = filter.teamID

-inc_cond["WasTooLong"].iters:int = iters

+iters:int

RewSecondBest

WasTooLong

RewBest

Params

+teamID:int

-filter.teamID:int = teamID

-action_logic.teamID:int = teamID

BestTeamWrk SetManager RewSecondBest

Params

+teamID:int

-filter.teamID:int = teamID

-action_logic.teamID:int = teamID

CurrentMgr

a:GetTeam b:GetManager

SecondBestTe…

WasTooLong

Params

+iters:int

SecondBestTeamWrk

a:BestTeamWrk b:GetBest

Candidates

p1:Passthru a:CurrentMgr

b:BestTeamWrk

p2:Passthru

BestTeamWrk

a:GetTeam b:GetBest

GetTeam

Params

+teamID:int

-predicate.teamID:int = teamID

GetBest

Params

-auxiliary.metricName:string = "effort"

GetManager

Params

-auxiliary.teamID:int = teamID

+teamID:int

-mgrID:int = 0

IsTeamMember

SetManager

Params

+teamID:int

GetWrkBestM…

IsBest

GetMgrByRela…

IsManager

Params

+teamID:int

Params

+teamID:int

+newMgrID:int

Params

+teamID:int

NotSame

Params

Params

+metricName:string

Params

+teamID:int

IsBest

Params

Params

+teamID:int

Figure B.4: Example 5from Section 7.4.5 modeled with implemented PRINGL Visual
Studio plugin.

154

Listing B.L1: Example 5 from Section 7.4.5 – XML description of the incentive scheme
<?xml version ="1.0" encoding ="utf -8"?>
<incentiveStrategy xmlns:dm0="http :// schemas.microsoft.com/VisualStudio

↪→ /2008/ DslTools/Core" dslVersion="1.0.0.0" Id="2dcbc39f -22ae -42b2 -
↪→ ae48 -9 fdcf45fdd58" strategyName="RotatingPresidency" xmlns="http ://
↪→ schemas.microsoft.com/dsltools/PRINGL">

<incentiveElements >
<incentiveStrategyHasIncentiveElements Id="41212765 -aecd -4a15 -b002

↪→ -682 b1ce2a4ae">
<incMechInstance Id="492db129 -8eed -4c73 -b870 -8 f5328fc9131" name="i1

↪→ " priority="0" type="RewardBest">
<pRINGLParameter >

<elementHasParameters Id="be223f5d -88bf -41ce -9ad7 -fbc1e4e93815"
↪→ >

<pRINGLParameter Id="bc8aaf03 -0978 -4e16 -8fc2 -67 bb6cb181a7"
↪→ type="int" initialValue="4572" propagation="-" name="
↪→ filter.teamID" />

</ elementHasParameters >
<elementHasParameters Id="42b73150 -99f1 -47e6 -9c08 -165 d5ad38b55"

↪→ >
<pRINGLParameter Id="2ab2c174 -ef3f -4be0 -9365- ae88dce0530d"

↪→ type="int" initialValue="2" propagation="-" name="
↪→ inc_cond.iters" />

</ elementHasParameters >
</ pRINGLParameter >

</ incMechInstance >
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="4dfde389 -870c-400f-83a5 -

↪→ cfd76c6b55ae">
<incMechInstance Id="166df587 -87ea -49ab -b958 -370356 c4a4e6" name="i2

↪→ " priority="0" type="PreventTooLong">
<pRINGLParameter >

<elementHasParameters Id="68e68913 -38c7 -45eb -98e3 -51249 b3fa281"
↪→ >

<pRINGLParameter Id="8ecaa3a3 -7a1b -4e90 -a7bd -43865 eebd762"
↪→ type="int" initialValue="4572" propagation="-" name="
↪→ filter.teamID" />

</ elementHasParameters >
<elementHasParameters Id="0e38b6bc -9ccf -4510 -83b2 -bd1333c78862"

↪→ >
<pRINGLParameter Id="115030dd -b320 -409c-837e-663 cb27c2a53"

↪→ type="int" initialValue="2" propagation="-" name="
↪→ inc_cond.iters" />

</ elementHasParameters >
</ pRINGLParameter >

</ incMechInstance >
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="4161a095 -2604 -42c5 -92c3

↪→ -0309 d4ffd87e">
<incMech Id="983fb58e -3bf5 -43b6 -87b4 -3 e2f056b04ba" name="RewardBest

↪→ " exec_cond="null" appl_restr="default" filter="Candidates"
↪→ inc_cond="NotSame" rew_action="RewBest" prority="0">

<pRINGLParameter >

155

<elementHasParameters Id="75ac443e -03c4 -4e2e -a463 -8 ae372715489"
↪→ >

<pRINGLParameter Id="e3b30e64 -68db -44d5 -9bd5 -34 cc15003e33"
↪→ type="int" propagation="+" name="filter.teamID" />

</ elementHasParameters >
<elementHasParameters Id="b37c8a35 -91ff -40ad -97d8 -891 ed2ee7c9e"

↪→ >
<pRINGLParameter Id="9570b56f -afd6 -4b40 -9a5b -196 a7da9217a"

↪→ type="int" initialValue="filter.teamID" propagation="-"
↪→ name="rew_action.teamID" />

</ elementHasParameters >
<elementHasParameters Id="3348f441 -1209 -4fe6 -9241 -34 de87163352"

↪→ >
<pRINGLParameter Id="b8791eb5 -499e-452d-99f7 -9 a850d3dfafb"

↪→ type="int" propagation="+" name="inc_cond.iters" />
</ elementHasParameters >

</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="762f7518 -3056 -4f11 -85b2 -9
↪→ d638999a1f6">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/Candidates" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="1dd4b5c3 -eef1 -463f-a9dd -

↪→ d29871d35d37">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/NotSame" />
</ definitionReferencesInstance >
<definitionReferencesInstance Id="b83f51bb -1c6e -4027-ba4c -

↪→ e3ecdaeda07c">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/RewBest" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ incMech >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="f7eeb5c0 -4d5e -490f-ba9e -

↪→ ea59c8b63320">
<pRINGLInstance Id="5955aa51 -145b-4732 -8959 -8 b0815cf5e5f" name="

↪→ Candidates" metatype="Filter" subMetatype="None" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="694b989a -ca3d -46c2 -8d5b -8

↪→ dec31232baf">
<pRINGLInstance Id="f6a156ba -b7ee -4a22 -9824 -3 e52f511fcab" name="

↪→ NotSame" metatype="Logic" subMetatype="PredicateLogic" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="acd06ee4 -8157 -4a69 -9eb4 -3

↪→ f20cbba0749">
<pRINGLInstance Id="9a8fb4c3 -7e30 -47d2 -a01f -5 f497b6e4521" name="

↪→ RewBest" metatype="Action" subMetatype="None" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="d7ca455a -e960 -4541-bdb9 -

↪→ a36893497f3c">

156

<incMech Id="74559555 -719c-4ae1 -9bff -762 b124b008c" name="
↪→ PreventTooLong" exec_cond="null" appl_restr="default" filter=
↪→ "Candidates" inc_cond="!␣NotSame␣&&␣WasTooLong"
↪→ rew_action="RewSecondBest" prority="0">

<pRINGLParameter >
<elementHasParameters Id="e6400fc9 -e163 -46f4 -9472 -11 f36d138102"

↪→ >
<pRINGLParameter Id="0b2e032b -f888 -4db3 -91b1 -9 b62b06b0aff"

↪→ type="int" propagation="+" name="filter.teamID" />
</ elementHasParameters >
<elementHasParameters Id="d9596f1b -a820 -49ce -9095 -9 fd6ddc2d58a"

↪→ >
<pRINGLParameter Id="ed8f055f -b7a8 -48da -a3cf -9000 c09f5b00"

↪→ type="int" initialValue="filter.teamID" propagation="-"
↪→ name="rew_action.teamID" />

</ elementHasParameters >
<elementHasParameters Id="cb76ba3b -c915 -4dfb -99fe -aab628a212c0"

↪→ >
<pRINGLParameter Id="ed987037 -6d9c -4352 -8793 -3397511 eb946"

↪→ type="int" initialValue="iters" propagation="-" name="
↪→ inc_cond ["WasTooLong" ;]. iters" />

</ elementHasParameters >
<elementHasParameters Id="0ba92c72 -ce82 -4604 -8c17 -6 b99564eed60"

↪→ >
<pRINGLParameter Id="7cddbf96 -2805 -4b57 -ab2c -386312 e81d34"

↪→ type="int" propagation="+" name="iters" />
</ elementHasParameters >

</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="75ef8e04 -3d9c -4d41 -915b-
↪→ bcb13ffe7c70">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/RewSecondBest" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="b29c2345 -449a-45ad -a4ce -

↪→ b05500a05314">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/NotSame" />
</ definitionReferencesInstance >
<definitionReferencesInstance Id="6e4872ae -982e-4bac -964b-30

↪→ e4de83047b">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/Candidates" />
</ definitionReferencesInstance >
<definitionReferencesInstance Id="4c1ee0d0 -c8ed -4a5a -83c8 -6222

↪→ b938beec">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/WasTooLong" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ incMech >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="4f8a63f0 -cb53 -46aa -aaca

157

↪→ -8704533 ffdef">
<pRINGLInstance Id="78f8228f -6e57 -4e9e -8f35 -aede68e13937" name="

↪→ RewSecondBest" metatype="Action" subMetatype="None" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="a816fc50 -03ab -439d-9306 -07

↪→ ca2c2cceb9">
<pRINGLInstance Id="41c29e95 -c85d -4408 -87dc -794 bc4a03320" name="

↪→ WasTooLong" metatype="Logic" subMetatype="PredicateLogic" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="d58172c9 -437a-4bd7 -b776 -2

↪→ f2b606a5fa5">
<rewAction Id="5d9262d7 -44c0 -444d-b8ad -5 ca9088b7504" name="RewBest"

↪→ filter="BestTeamWrk" exec_cond="null" exec_times="null"
↪→ temp_spec="null" action_logic="SetManager">

<pRINGLParameter >
<elementHasParameters Id="08e9fb91 -ead7 -478f-a05e -b8765422c72d"

↪→ >
<pRINGLParameter Id="3197a5b5 -4f5f -4fd8 -9604 -301 f7ba3915e"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >
<elementHasParameters Id="fd6c0f77 -485b-42ff -a6a9 -faac49388aa1"

↪→ >
<pRINGLParameter Id="ba835691 -c0e3 -44c9 -a22a -a36619ad55a8"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ filter.teamID" />

</ elementHasParameters >
<elementHasParameters Id="fa532ac8 -79b0 -4ef4 -ab13 -83 e60dc4eba8"

↪→ >
<pRINGLParameter Id="45e975fe -d985 -46da -a5e1 -e5775de8b889"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ action_logic.teamID" />

</ elementHasParameters >
</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="94bc7ac2 -8dbc -4aae -a669 -4778
↪→ bee9dd18">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/BestTeamWrk" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="a76e3222 -5b9e -4415-b7a3 -

↪→ ff9583dc248f">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/SetManager" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ rewAction >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="645f8fe8 -0de2 -4d6c -84e4

↪→ -564 a9736eca9">
<pRINGLInstance Id="4cbdd0c7 -5cbe -4d43 -9bbc -c8c54b1bc61e" name="

↪→ BestTeamWrk" metatype="Filter" subMetatype="None" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="e529084c -b115 -4273-a0fc -

158

↪→ e35b12a177d2">
<pRINGLInstance Id="4cdaa32b -e19f -4e08 -b839 -1 df317aa727b" name="

↪→ SetManager" metatype="Logic" subMetatype="ActionLogic" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="6671d3ef -aa47 -48c1 -b232 -

↪→ c75a8d4ccc0f">
<rewAction Id="c1392cd4 -4496 -45de -bfc7 -d5beed730e02" name="

↪→ RewSecondBest" filter="SecondBestTeamWrk" exec_cond="null"
↪→ exec_times="null" temp_spec="null" action_logic="SetManager">

<pRINGLParameter >
<elementHasParameters Id="815a56ae -895e-4dea -acb1 -d2b423c171ab"

↪→ >
<pRINGLParameter Id="f937be5f -576d-4100-b894 -49 ba64475de3"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >
<elementHasParameters Id="f6380f21 -9db7 -4650-a877 -16 c91a0f5400"

↪→ >
<pRINGLParameter Id="2f1a5bce -9b96 -4501-a89b -251 e2b49dfbf"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ filter.teamID" />

</ elementHasParameters >
<elementHasParameters Id="cc15012f -44a2 -44dd -83ae -4 e020ee7e41b"

↪→ >
<pRINGLParameter Id="c4c2e8e5 -d6ee -499c-99b1 -8625461147 bb"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ action_logic.teamID" />

</ elementHasParameters >
</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="b66a6ef2 -3ba3 -4db8 -b25c -
↪→ e2c2b5d0aa30">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/SecondBestTeamWrk" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="016d6e96 -f1d2 -4577-b6e0 -3806

↪→ c14dd2e4">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/SetManager" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ rewAction >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="e61721a4 -1a9b -4bf4 -b204 -

↪→ f98475b005f0">
<compositeFilter Id="1acc4949 -c752 -4678 -9ecd -05 d945a265b2" name="

↪→ CurrentMgr">
<innerFilterInstances >

<containerHasInnerFilterInstances Id="dd99c989 -7f04 -426a-a685 -2
↪→ d20ec000c7b">

<innerFilterInstance Id="00806b4e -ad8d -4b54 -a40f -3 c007548ad7f
↪→ " name="a" position="Initial" type="GetTeam">

<filterFlowTo >
<innerFilterFlow Id="7cdd4860 -55b3 -4578 -988c -85260 c216b73

159

↪→ " isComplemented="false">
<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -

↪→ ae48 -9 fdcf45fdd58/CurrentMgr/b" />
</ innerFilterFlow >

</ filterFlowTo >
</ innerFilterInstance >

</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="5ac9822e -727f-4863-b997 -9

↪→ e8142527f89">
<innerFilterInstance Id="8b14fe56 -10d3 -45eb -8528 -9 e0cdfff2a7d

↪→ " name="b" position="Final" type="GetManager" />
</ containerHasInnerFilterInstances >

</ innerFilterInstances >
<pRINGLParameter >

<elementHasParameters Id="ec1ac694 -de2a -466f-ae73 -8493 b03ba9c6"
↪→ >

<pRINGLParameter Id="5ed80b21 -b948 -4993-bd48 -c9e2ccb3679e"
↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ a.teamID" />

</ elementHasParameters >
<elementHasParameters Id="8462f902 -a3d1 -4ae9 -b727 -53 dc4c193bea"

↪→ >
<pRINGLParameter Id="b2292a7a -2e81 -49fc -a144 -a39ffad93a62"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ b.teamID" />

</ elementHasParameters >
<elementHasParameters Id="5978c43a -1764 -4710 -bdc0 -b8ec9b8621f1"

↪→ >
<pRINGLParameter Id="eca11e47 -7255 -410a-ac4a -9180 f9505781"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ compositeFilter >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="9b4fe392 -fe20 -4262-b34d -7

↪→ bf5af106c51">
<pRINGLInstance Id="7cc8a7c2 -fbd8 -45cc -8cbc -d1d4cf1a2dcb" name="

↪→ SecondBestTeamWrk" metatype="Filter" subMetatype="None" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="1680e455 -1532 -46c1 -818c-

↪→ dcf6f085d7d4">
<incLogic Id="93164578 -45ec -4943-b7a5 -b8d13c703525" name="

↪→ WasTooLong" subMetatype="PredicateLogic" outputType="bool"
↪→ code="/*␣WasTooLong␣BEGIN␣*/␣static␣Dictionary<Worker ,␣int
↪→ >␣leaderHistory␣=␣new␣Dictionary<Worker ,␣int>();␣if␣
↪→ (_ws.Count ()␣==␣2)␣{␣␣if␣(leaderHistory.ContainsKey(_ws.First
↪→ ()))␣␣{␣␣␣leaderHistory.Clear();␣␣␣leaderHistory[_ws.Last()]␣
↪→ =␣1;␣␣}␣␣else␣␣{␣␣␣leaderHistory.Clear ();␣␣␣leaderHistory[_ws
↪→ .First ()]␣=␣1;␣␣}␣}␣else␣{␣␣if␣(leaderHistory[_ws.First ()]<
↪→ ;␣iters)␣␣␣{␣␣␣leaderHistory[_ws.First ()]++;␣␣␣return␣false;␣
↪→ ␣}␣}␣return␣true;␣␣/*␣WasTooLong␣END␣*/">

<pRINGLParameter >
<elementHasParameters Id="fc915d78 -341b-4284-b4a8 -72 c928724d9c"

160

↪→ >
<pRINGLParameter Id="fa29533d -0b8e -418d-853e-89 e7b3b8cfca"

↪→ type="int" propagation="+" name="iters" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="35262008 -5091 -4fa4 -8461 -70

↪→ f9a28859b6">
<compositeFilter Id="bf7bc8f5 -430f-4f46 -a7cc -c2fcaf514976" name="

↪→ SecondBestTeamWrk">
<innerFilterInstances >

<containerHasInnerFilterInstances Id="64c8d46d -0373 -447b-8ee1
↪→ -77 ebb51a1c53">

<innerFilterInstance Id="2d2efc5d -e3d4 -42f9 -873d-f3ead2b2c60e
↪→ " name="a" position="Initial" type="BestTeamWrk">

<filterFlowTo >
<innerFilterFlow Id="499560b6 -9353 -4642 -bf27 -4 fcadb919d31

↪→ " isComplemented="true">
<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -

↪→ ae48 -9 fdcf45fdd58/SecondBestTeamWrk/b" />
</ innerFilterFlow >

</ filterFlowTo >
</ innerFilterInstance >

</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="4098e334 -e849 -4eea -ad35 -

↪→ a37adf8a25c7">
<innerFilterInstance Id="830facad -2983 -437d-87bc -deb68a618177

↪→ " name="b" position="Final" type="GetBest" />
</ containerHasInnerFilterInstances >

</ innerFilterInstances >
<pRINGLParameter >

<elementHasParameters Id="7c3c9090 -650d-4d6f -a58c -ed1aed9c28da"
↪→ >

<pRINGLParameter Id="4f34c4a7 -1f01 -4625 -8105 -4 ce54cadba7a"
↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ a.teamID" />

</ elementHasParameters >
<elementHasParameters Id="0c7e7391 -b6f5 -4f71 -8c12 -0 dba6a416944"

↪→ >
<pRINGLParameter Id="24dd52ef -c5e0 -494e -8715 -5819 d34c1357"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ b.teamID" />

</ elementHasParameters >
<elementHasParameters Id="7fb2292a -1da0 -40a2 -a3b5 -0 b588b2eed60"

↪→ >
<pRINGLParameter Id="bc65ff5b -56cf -4079-be78 -f34f6658178c"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ compositeFilter >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="1fa479d0 -6437 -4e7d -a321 -

161

↪→ ee944ff00437">
<compositeFilter Id="34c89378 -9a70 -454d-adaf -05 a257d66ced" name="

↪→ Candidates">
<innerFilterInstances >

<containerHasInnerFilterInstances Id="fb1c052e -1c80 -4b11 -8abe -
↪→ abdea2ccc029">

<innerFilterInstance Id="8a851d05 -eb76 -4fb6 -b9a0 -c23e95a62484
↪→ " name="p1" position="Initial" type="Passthru">

<filterFlowTo >
<innerFilterFlow Id="c4923a7a -a7b0 -4623-bfc3 -a105c81b0aaf

↪→ " isComplemented="false">
<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -

↪→ ae48 -9 fdcf45fdd58/Candidates/a" />
</ innerFilterFlow >
<innerFilterFlow Id="8a3d0bd2 -09d7 -4423 -8941 -87 b76afdcadf

↪→ " isComplemented="false">
<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -

↪→ ae48 -9 fdcf45fdd58/Candidates/b" />
</ innerFilterFlow >

</ filterFlowTo >
</ innerFilterInstance >

</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="f24db1bf -f122 -4509 -87e6 -

↪→ d880585fe037">
<innerFilterInstance Id="ba972da3 -deeb -4162-b174 -3 a7905baf26e

↪→ " name="a" type="CurrentMgr">
<filterFlowTo >

<innerFilterFlow Id="b3f4d715 -4277 -4fab -b8b3 -660 ab3ae6a5c
↪→ " isComplemented="false">

<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -
↪→ ae48 -9 fdcf45fdd58/Candidates/p2" />

</ innerFilterFlow >
</ filterFlowTo >

</ innerFilterInstance >
</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="1d9aa599 -3245 -45f9 -9f89 -6

↪→ f57a0d4cad0">
<innerFilterInstance Id="2680d058 -9f71 -4a70 -bc15 -e8d50329ec2a

↪→ " name="b" type="BestTeamWrk">
<filterFlowTo >

<innerFilterFlow Id="01848dd9 -75bd -47df -ab4a -a38821cdd7ea
↪→ " isComplemented="false">

<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -
↪→ ae48 -9 fdcf45fdd58/Candidates/p2" />

</ innerFilterFlow >
</ filterFlowTo >

</ innerFilterInstance >
</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="99817452 -f697 -442e-a97e -

↪→ ce2f624d568e">
<innerFilterInstance Id="0648fcb1 -0249 -4da8 -af16 -11 f21c99b05a

↪→ " name="p2" position="Final" type="Passthru" />
</ containerHasInnerFilterInstances >

162

</ innerFilterInstances >
<pRINGLParameter >

<elementHasParameters Id="e973c616 -86be -49cf -9f76 -6 aaeafc29f62"
↪→ >

<pRINGLParameter Id="c66bf554 -5806 -41f0 -ae13 -5 c173d99d435"
↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ a.teamID" />

</ elementHasParameters >
<elementHasParameters Id="974c97fd -38b7 -4c2c -8094 -739 a3533aacc"

↪→ >
<pRINGLParameter Id="638e9c4d -6b53 -405e-b1d3 -23 fe5c6ca9d4"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ b.teamID" />

</ elementHasParameters >
<elementHasParameters Id="fccef187 -1a82 -4040-ac96 -339 e867dcf85"

↪→ >
<pRINGLParameter Id="6c80a610 -3e36 -4a7b -bb6e -e5f28654f961"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ compositeFilter >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="c0bb7fc0 -c146 -4305-aaea -

↪→ d6c070789030">
<compositeFilter Id="298b0628 -0a6b -401f-b623 -0 cded195f898" name="

↪→ BestTeamWrk">
<innerFilterInstances >

<containerHasInnerFilterInstances Id="d0ea6466 -bc26 -4151-be3e
↪→ -54093 ac40a7f">

<innerFilterInstance Id="a607cb0d -9906 -47d7 -b3b0 -8558 b7a50f74
↪→ " name="a" position="Initial" type="GetTeam">

<filterFlowTo >
<innerFilterFlow Id="37562012 -eed7 -4671-b680 -c191c6bf47f2

↪→ " isComplemented="false">
<innerFilterInstanceMoniker name="/2dcbc39f -22ae -42b2 -

↪→ ae48 -9 fdcf45fdd58/BestTeamWrk/b" />
</ innerFilterFlow >

</ filterFlowTo >
</ innerFilterInstance >

</ containerHasInnerFilterInstances >
<containerHasInnerFilterInstances Id="0e58f588 -dc52 -4d0a -aaa4 -9

↪→ c9fffb62d5e">
<innerFilterInstance Id="864546c7 -dd66 -4edd -b586 -7 b788ee1474c

↪→ " name="b" position="Final" type="GetBest" />
</ containerHasInnerFilterInstances >

</ innerFilterInstances >
<pRINGLParameter >

<elementHasParameters Id="11565e37 -16b3 -4aae -8fde -43 d6907a25a9"
↪→ >

<pRINGLParameter Id="a64c19c7 -65e3 -4fca -993c-72 ded133a6b0"
↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ a.teamID" />

</ elementHasParameters >

163

<elementHasParameters Id="3da948e0 -4016 -4171 -b04e -90 f1a5e888ae"
↪→ >

<pRINGLParameter Id="4eea26ae -79af -4ab7 -a5e8 -ca6ec3725f8b"
↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ b.teamID" />

</ elementHasParameters >
<elementHasParameters Id="bc24fe41 -7d16 -4635-bd65 -f74b35632577"

↪→ >
<pRINGLParameter Id="346cfc73 -e728 -4ee1 -8f1b -66 e9bcccdad7"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ compositeFilter >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="4f677662 -5d1b -4d0f -99f9 -

↪→ f5abf87fd2bd">
<filter Id="73afe080 -aeec -423e-bcbc -35 bb4fa237bf" name="GetTeam"

↪→ time_restr="null" temp_spec="default" auxiliary="null"
↪→ predicate="IsTeamMember">

<pRINGLParameter >
<elementHasParameters Id="3f52ee34 -32b8 -4f86 -8088- ba654b839185"

↪→ >
<pRINGLParameter Id="429a78f1 -1344 -47d9 -ab1a -3517216 c875b"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >
<elementHasParameters Id="01d096b2 -184c-42a6 -9b79 -d75e455ea1c9"

↪→ >
<pRINGLParameter Id="e5beefcd -da27 -45f2 -b88e -0 e8a19faa9e6"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ predicate.teamID" />

</ elementHasParameters >
</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="f2d17ae3 -2203 -4f0f -a4bd -7041
↪→ be0ff739">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/IsTeamMember" />

</ definitionReferencesInstance >
</ pRINGLInstance >

</ filter >
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="c5e618f5 -f4e0 -4863-aa8c

↪→ -47152 a022afb">
<filter Id="3c3c4003 -a213 -4c8a -befe -2 c69d815e741" name="GetBest"

↪→ time_restr="null" temp_spec="default" auxiliary="
↪→ GetWrkBestMetric" predicate="IsBest">

<pRINGLParameter >
<elementHasParameters Id="75febffa -0ea7 -4028-bf43 -9 b64e8f1d742"

↪→ >
<pRINGLParameter Id="810dc801 -60b9 -4c4f -bcab -88 a15d58e83e"

↪→ type="string" initialValue=""effort""
↪→ propagation="-" name="auxiliary.metricName" />

</ elementHasParameters >

164

</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="662a210c -4346 -4d81 -8947 -691
↪→ d8969f524">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/GetWrkBestMetric" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="a4be4efb -bc20 -48ee -ade8 -15

↪→ e49332710f">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/IsBest" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ filter >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="7e575c2d -7826 -4abe -9860 -54

↪→ b869b0fac0">
<filter Id="6dc1fb7c -6cd5 -4a62 -9345- d761a8df9dfb" name="GetManager"

↪→ time_restr="null" temp_spec="default" auxiliary="
↪→ GetMgrByRelations" predicate="IsManager">

<pRINGLParameter >
<elementHasParameters Id="8b511ab6 -eb23 -4f11 -98aa -07 eefa25489e"

↪→ >
<pRINGLParameter Id="7e82611b -5b14 -45d2 -9380 -4 e35871314c0"

↪→ type="int" initialValue="teamID" propagation="-" name="
↪→ auxiliary.teamID" />

</ elementHasParameters >
<elementHasParameters Id="409cd665 -5768 -4377 -bfbe -0 e704500b650"

↪→ >
<pRINGLParameter Id="119925bf -62d4 -4c5b -b2b3 -2 cb355fc8fb2"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >
<elementHasParameters Id="6af42219 -c448 -4ede -a2a4 -d63c931a821e"

↪→ >
<pRINGLParameter Id="65ced596 -3bb8 -46bd -bdc2 -464 da13bf843"

↪→ type="int" initialValue="0" propagation="-" name="mgrID
↪→ " />

</ elementHasParameters >
</ pRINGLParameter >
<pRINGLInstance >

<definitionReferencesInstance Id="7a19218d -c0c6 -4129-a998 -5
↪→ e97f51dba39">

<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9
↪→ fdcf45fdd58/GetMgrByRelations" />

</ definitionReferencesInstance >
<definitionReferencesInstance Id="c904e0a4 -faff -45a6 -897a -37844

↪→ f65b35a">
<pRINGLInstanceMoniker name="/2dcbc39f -22ae -42b2 -ae48 -9

↪→ fdcf45fdd58/IsManager" />
</ definitionReferencesInstance >

</ pRINGLInstance >
</ filter >

</ incentiveStrategyHasIncentiveElements >

165

<incentiveStrategyHasIncentiveElements Id="23f63e91 -dfdd -4309 -8bf4 -
↪→ df89101b1ff9">

<pRINGLInstance Id="7c28c07b -c7c5 -46b0 -ac3c -7 ddad7f5f221" name="
↪→ IsTeamMember" metatype="Logic" subMetatype="PredicateLogic"
↪→ />

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="8fc3c69e -11fc -4a28 -a80a -

↪→ d97d8fd0541e">
<incLogic Id="346089b1 -9499 -440f-80f7 -64 dc70ee1713" name="

↪→ SetManager" subMetatype="ActionLogic" outputType="IEnumerable
↪→ <Worker>" code="/*␣BEGIN␣SetManager␣*/␣Collection<
↪→ Worker>␣affected␣=␣sm(teamID ,_ws.First().ID);␣return␣
↪→ affected;␣/*␣END␣SetManager␣*/">

<pRINGLParameter >
<elementHasParameters Id="4e128e41 -6678 -4430 -bd94 -f222faccaaa7"

↪→ >
<pRINGLParameter Id="057c7ef8 -a21f -4b18 -bc21 -1210196 c23e4"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="07c35bbe -413a-43ed -8a9d

↪→ -285219 f11409">
<pRINGLInstance Id="86c4f99e -0b73 -4c30 -972f -01254690 f6a7" name="

↪→ GetWrkBestMetric" metatype="Logic" subMetatype="FilterLogic"
↪→ />

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="9637523b-fd13 -4122 -9edb -

↪→ da399e514369">
<pRINGLInstance Id="f8975814 -86be -4251 -8aff -6376 cb60dc8c" name="

↪→ IsBest" metatype="Logic" subMetatype="PredicateLogic" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="b63b07b4 -ca65 -44c3 -bb65

↪→ -8354 a6e45f2b">
<pRINGLInstance Id="fd265e8a -20dc -4772-a7e9 -9 be5e17b70f8" name="

↪→ GetMgrByRelations" metatype="Logic" subMetatype="FilterLogic"
↪→ />

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="79357124 -eb71 -47b4 -8db5 -

↪→ ee3785388aba">
<pRINGLInstance Id="fcbf0d07 -c211 -45c3 -bd5e -7 edca123cef3" name="

↪→ IsManager" metatype="Logic" subMetatype="PredicateLogic" />
</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="1d63ab43 -0c3c

↪→ -4220 -9179 -5379097 c0bdd">
<incLogic Id="c2667156 -ec0b -47f7 -9883- b9432e9b1a59" name="

↪→ IsTeamMember" subMetatype="PredicateLogic" outputType="bool"
↪→ code="/*␣␣BEGIN␣IsTeamMember␣*/␣var␣teams␣=␣(DICT)_w.GetData
↪→ ("teams",␣COMPOSITE);␣return␣teams.ContainsKey(
↪→ teamID.ToString ());␣/*␣END␣IsTeamMember␣*/">

<pRINGLParameter >
<elementHasParameters Id="6e3ae621 -935a-4ac0 -8572- e2c753e17783"

166

↪→ >
<pRINGLParameter Id="503ad2c3 -e898 -4d1f -a832 -c2418df0765a"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="2febb1f2 -da83 -44d4 -bf70 -4

↪→ f9bea9b7d60">
<incLogic Id="0266b097 -18c3 -4850 -87cd -7 dc6ed2f21ca" name="

↪→ SET_MANAGER" subMetatype="StructureLogic" outputType="void"
↪→ code="/*␣␣BEGIN␣SET_MANAGER */␣/* GRGEN:SET_MANAGER */␣/*␣END␣
↪→ SET_MANAGER */">

<pRINGLParameter >
<elementHasParameters Id="87d1c383 -7c98 -4640-a71e -3175 bdf0fb58"

↪→ >
<pRINGLParameter Id="bd24bfd0 -96c7 -4fe4 -89c0 -c4fa648a48c7"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >
<elementHasParameters Id="d06eb973 -b8b2 -4fb7 -937c-31 ba03e403ff"

↪→ >
<pRINGLParameter Id="b825f36b -ccc8 -4012 -9872 -7 bd7b120b252"

↪→ type="int" propagation="+" name="newMgrID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="2590ae5a -c409 -47f0 -a453 -

↪→ a03cb730b326">
<incLogic Id="8e08b4f2 -1c5c -4cf6 -a4d4 -d250f0789f7f" name="

↪→ GetMgrByRelations" subMetatype="FilterLogic" outputType="void
↪→ " code="␣/*␣␣BEGIN␣GetMgrByRelations␣*/␣if␣((int)_parent.
↪→ getParam ("mgrID")␣!=␣0)␣return;␣foreach␣(Worker␣w␣
↪→ in␣_ws)␣{w.mark(teamID);}␣_parent.setParam ("mgrID",
↪→ ␣gm(teamID));␣/*␣END␣GetMgrByRelations */">

<pRINGLParameter >
<elementHasParameters Id="a77104ac -ce01 -4383 -9612 - dfa13a546177"

↪→ >
<pRINGLParameter Id="d3cce9ae -2c18 -4c51 -bbd0 -93 b1a2f72ade"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="9efbd047 -fbf3 -4da5 -ae77 -1

↪→ d8282687a08">
<incLogic Id="d79671fb -bddb -4f59 -bd10 -f0a21d75d05c" name="NotSame"

↪→ subMetatype="PredicateLogic" outputType="bool" code="/*␣
↪→ NotSame␣BEGIN␣*/␣if␣(_ws.Count()␣>␣1)␣␣␣return␣true;␣␣␣␣
↪→ else␣␣return␣false;␣/*␣NotSame␣END␣*/" />

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="797a6426 -71ad -4280 -8eee -03

↪→ ad6f6797fe">

167

<incLogic Id="90d85ba5 -9854 -45e6 -bb80 -bf85a15fb2ba" name="
↪→ GetWrkBestMetric" subMetatype="FilterLogic" outputType="void"
↪→ code="/*␣␣BEGIN␣GetWrkBestMetric␣*/␣static␣Worker␣theBest;␣
↪→ double␣bestResult␣=␣_ws.Max(x␣=>␣(double)␣x.GetData(
↪→ metricName ,␣DOUBLE));␣theBest␣=␣_ws.First(x␣=>␣(double)␣x.
↪→ GetData(metricName ,␣DOUBLE)␣==␣bestResult);␣/*␣
↪→ GetWrkBestMetric␣END␣*/">

<pRINGLParameter >
<elementHasParameters Id="0c708e67 -962e-461c -8645 -93148 ea01c57"

↪→ >
<pRINGLParameter Id="ec9e8318 -4c28 -4b39 -9405- dbd2d5f66034"

↪→ type="string" propagation="+" name="metricName" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="ef4b8508 -9777 -4fb9 -949e-

↪→ ed0bf61b468c">
<incLogic Id="064c0f5b -a33a -4b95 -8b70 -2 ec2ee9f5ac1" name="IsManager

↪→ " subMetatype="PredicateLogic" outputType="bool" code="␣/*␣␣
↪→ BEGIN␣IsManager␣*/␣return␣((int)_parent.getParam ("mgrID&
↪→ quot;)␣==␣_w.ID);␣/*␣END␣IsManager */">

<pRINGLParameter >
<elementHasParameters Id="a9a2d242 -baa7 -4a89 -9ced -3320 b4bba15b"

↪→ >
<pRINGLParameter Id="e5ab2f6c -ebcf -402a-9a5b -f055f7d8b450"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="b2f54279 -3a10 -4145-a334

↪→ -7275 df020b9b">
<incLogic Id="a73d33bb -5c99 -4fc3 -a755 -728 f6cefc0a1" name="IsBest"

↪→ subMetatype="PredicateLogic" outputType="bool" code="/*␣␣
↪→ BEGIN␣IsBest␣*/␣return␣(_w␣==␣GetWrkBestMetric.theBest);␣/*␣
↪→ END␣IsBest␣*/" />

</ incentiveStrategyHasIncentiveElements >
<incentiveStrategyHasIncentiveElements Id="5497bb44 -02fb -4fd8 -9456-

↪→ bde402720800">
<incLogic Id="a7663160 -3053 -42fe -bb83 -0 fbff6c908c2" name="

↪→ GET_MANAGER" subMetatype="StructureLogic" outputType="int"
↪→ code="/*␣␣BEGIN␣GET_MANAGER */␣/* GRGEN:GET_MANAGER */␣/*␣END␣
↪→ GET_MANAGER */">

<pRINGLParameter >
<elementHasParameters Id="687af626 -809a-40ae -a728 -42729 bbaae94"

↪→ >
<pRINGLParameter Id="4bdf927b -b506 -4760-bcd0 -65 ed7df435ba"

↪→ type="int" propagation="+" name="teamID" />
</ elementHasParameters >

</ pRINGLParameter >
</ incLogic >

</ incentiveStrategyHasIncentiveElements >

168

</ incentiveElements >
</ incentiveStrategy >

169

Glossary

authority The entity engaging the workers for productive purposes, administering
incentives upon them.

dysfunctional behavior Worker behavior targeted by incentive mechanisms, often
occurring as a reaction to the application of other incentive mechanisms.

gamification is the use of game elements (e.g., point, competitions, rules and other game
mechanics) in non-gaming environments and activities, with the aim of attracting
and motivating users to perform the activity in the given environment, which could
otherwise prove non-interesting.

incentive Any activity or scheme employed by the authority to stimulate (motivate)
increased level of certain work-related activities (e.g., productivity, speed, quality
of work, number of participants) or to discourage certain activities (e.g., drop-out
rate), before the actual execution of those activities.

incentive element An atomic component (construct) in terms of which incentive mech-
anisms can be expressed.

incentive mechanism A concrete rule for assigning/applying the rewards targeting a
specific (group of) workers, based on certain logical, temporal and spatial criteria;
A concrete implementation of an incentive for a given application context.

incentive scheme Combined global effect of the application of a set of incentive mech-
anisms..

principal See Authority.

reward Any kind of recompense for worthy services rendered or retribution for wrongdo-
ing exerted upon workers during the execution of the activity or after its completion.
A reward can be made equivalent of an economic value (money or physical goods),
or a social status like prestige, rank, or expertise.

171

Acronyms

DSL Domain-Specific Language.

MMod Mapping Model. See Section 5.2.2..

PRINGL PRogrammable INcentive Graphical Language.

RMod Rewarding Model. See Section 4.2..

SCU Social Compute Unit.

SDT Self-Determination Theory.

173

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Problem
	Scientific Contributions
	Research Methodology
	Organization of the Thesis

	Theoretical Background & Related Work
	Theories of Motivation and Incentives
	Related Work

	Modeling Incentives
	Existing Incentive and Rewarding Practices
	Classification of Incentive Mechanisms
	Composition of Incentive Mechanisms
	Identifying Composing Parts of Incentive Mechanisms
	A Survey of Incentive Mechanisms in Real-World Social Computing Platforms

	Modeling Incentives for Use in Socio-Technical Systems
	Comprehensive Incentive Model
	Rewarding Model
	Simulation Model

	Supporting Automated Incentive Management in Social Computing
	Executive Framework for Incentive Management
	Usage Context
	Internal Architecture
	Prototype & Evaluation

	Communication Middleware for Application of Incentives
	Middleware Design and Architecture
	Implementation & Evaluation

	Programming Model and Domain-Specific Language for Incentive Management
	Overview
	Programming Model
	Execution Model
	Evaluation
	Implementation
	Discussion

	Conclusion & Research Outlook
	Discussion
	Limitations
	Future Work

	Bibliography
	Appendices
	SmartCOM Algorithms
	PRINGL Models

	Glossary
	Acronyms

