
Cloud Services Elasticity Control:
from requirements specification

to operations management

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Dipl. Ing. Georgiana Copil
Matrikelnummer 1227555

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Schahram Dustdar
Zweitbetreuung: Priv.-Doz. Dr. Hong-Linh Truong

Diese Dissertation haben begutachtet:

Univ. Prof. Schahram Dustdar Univ. Prof. Nectarios Koziris

Wien, 12. Februar 2016
Georgiana Copil

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Cloud Services Elasticity Control:
from requirements specification

to operations management

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Dipl. Ing. Georgiana Copil
Registration Number 1227555

to the Faculty of Informatics
at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar
Second advisor: Priv.-Doz. Dr. Hong-Linh Truong

The dissertation has been reviewed by:

Univ. Prof. Schahram Dustdar Univ. Prof. Nectarios Koziris

Vienna, 12th February, 2016
Georgiana Copil

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl. Ing. Georgiana Copil
Wagramerstrasse 56, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Februar 2016
Georgiana Copil

v

Acknowledgements

This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790) and by TU Wien’s Adaptive Distributed Systems
Doctoral College.

I am very grateful to my adviser, Professor Schahram Dustdar and my co-adviser,
Priv.-Doz. Hong-Linh Truong for having me in Distributed Systems Group (DSG), and
for their continuous support to achieve this work. Many thanks to the DSG colleagues,
for the very nice work environment, and for the many motivational chats that every PhD
student needs. I owe a great deal of what I am today to the group where I had my first
contacts with research, DSRL of Cluj-Napoca, led by Professor Ioan Salomie.

I would like to thank the CELAR team, for the many telcos, debates and feedback,
especially to the LinC team of University of Cyprus for a very nice collaboration to
achieve part of this thesis work.

I am very thankful to Professor Nectarios Koziris, for being my examiner.
Finally, I thank my family, for their unconditional support. This thesis is dedicated

to you.

vii

Kurzfassung

Utility basiertes Computing, wie etwa Cloud Computing, ist eine treibende Kraft für die
Etablierung stark verteilter Anwendungen (z.B., microservice-basierte Anwendungen).
Cloud Computing ermöglicht es unterschiedlichen Gruppen von Akteuren aus einer
Vielzahl von Konfigurationen zu wählen um ihre Anwendungen zu betreiben (z.B.,
öffentlich-private bzw. multi-Cloud Bereitstellung). Zusätzlich können Applikationen an
unterschiedliche Technologie- und Geschäftsperspektiven optimal angepasst werden. Nach
Entwicklung der Anwendung können Interessenvertreter entscheiden ihre Anwendung
als Cloud Dienste (d.h., Software als Service) anzubieten und profitieren damit von
den bereitgestellten Cloud Diensten (die z.B., Ressourcen je nach Bedarf bereitzustellen
in der Form von Infrastruktur als Service oder Plattform als Service). Um die ganze
Bandbreite an Cloud Diensten zu nutzen, müssen Interessengruppen ihre Anwendungen
entsprechend anpassen und dabei die Last, sowie die Anforderungen der Benutzer,
berücksichtigen. Dabei ist es wichtig die gewünschte Qualität zu einem möglichst niedrigen
Preis für die bereitgestellten Cloud Ressourcen zu erreichen. Um jedoch diese Vorgaben
zu erfüllen, müssen Betreiber solcher Anwendungen entweder fachkundige Personen, die
Überwachung und Anpassung übernehmen, bezahlen, oder vorhandene Lösungen die
von Cloud Anbietern bereitgestellt werden, verwenden. Diese Lösungen bieten allerdings
nur einfache Skalierungsmöglichkeiten, die es nicht erlauben komplexe Anwendungen,
Anwendungseinstellungen, und Abhängigkeiten zwischen Anwendungskomponenten zu
betrachten.

In dieser Arbeit wird ein Framework zur Elastizitätssteuerung von Cloud Diens-
ten vorgestellt. Beginnend mit den Elastizitätsanforderungen wird die Sprache SYBL
vorgestellt. SYBL unterstützt Akteure bei der Beschreibung von Anwendungsanforderun-
gen durch Verwendung mehrerer Abstraktionsgrade. Mit dieser Sprache als Grundlage
wird das Werkzeug rSYBL vorgestellt um die Elastizität von Cloud Diensten zu steu-
ern. Dabei werden Verhalten sowie spezifizierte Anforderungen betrachtet. Um diese
Steuerung zu verbessern, wird das Verhalten von Cloud Diensten über die Zeit und
mittels mehrfacher Abstraktionsgrade geschätzt, welche auf Mechanismen basieren, die
ebenfalls in rSYBL integriert werden. Das Framework wird weiter ausgebaut um das
Operationsmanagement zur Laufzeit zu unterstützen und dabei Elastizitätsinteressen
zu berücksichtigen. Dies erlaubt die Integration von unterschiedlichen Akteuren in den
ganzen Elastizitätskontrollprozess. Unter Verwendung eines illustrativen Szenarios wird
jeder der vorgeschlagenen Mechanismen überprüft und analysiert. Die gewonnenen Er-

ix

gebnisse zeigen, dass rSYBL in der Lage ist, während der Laufzeit, Cloud Dienste, unter
Verwendung von Überwachungsinformationen und Elastizitätsanforderungen, zu steuern.

Abstract

Utility based computing, such as cloud computing, is a driving force for the adoption
of highly distributed applications (e.g., microservices-based applications). Through
the use of cloud computing, application stakeholders can choose from a multitude of
configurations for their application deployment, e.g., public-private deployments, multi-
cloud deployments, and can adapt to whatever is best for their application from the
technology and business perspectives. After the application deployment, stakeholders may
choose to offer the application as a cloud service (i.e., Software as a Service), benefiting
from cloud providers services (e.g., resources on-demand offered by Infrastructure as a
Service providers or platforms on-demand offered by Platform as a Service providers). For
fully using cloud-offered services, the application needs to be adapted by its stakeholders,
considering the load, and their users’ requirements, to obtain the desired quality at the
minimum price to be paid to cloud providers in exchange for their resources. However, for
achieving this, the application owner needs to pay a specialized person for monitoring and
adapting whenever needed the application, or to use existing solutions offered by cloud
providers which enable solely simple scaling, without considering complex applications,
application-level configurations, and dependencies among application components.

In this thesis, a framework for elasticity control of cloud services is proposed. Starting
from high-level requirements, a language, SYBL, is proposed, which supports service
stakeholders in describing their requirements at multiple levels of abstraction. With
this language as a basis, a framework, rSYBL, is proposed, in order to control cloud
service elasticity considering its behavior and the specified requirements. For improving
the control, the behavior of cloud services, in time, at multiple levels of abstraction, is
estimated, based on mechanisms that are also integrated in rSYBL. The framework is
further extended for supporting operations management at runtime, considering elasticity
concerns, integrating stakeholders/employees in the whole control process. Using an
illustrative case study, each of the proposed mechanisms is evaluated. Results show that
rSYBL is able to control cloud services, during runtime using monitoring information
and requirements coming from stakeholders.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xv

List of Tables xviii

1 Introduction 3
1.1 Problem Statement . 4
1.2 Research Questions . 5
1.3 Scientific Contributions . 6
1.4 Thesis Organization . 8

2 Background 11
2.1 Cloud Computing . 11
2.2 Control Mechanisms . 17
2.3 IT Service Management . 19

3 On Elasticity Control 23
3.1 Overview . 23
3.2 Cloud Computing and Elasticity . 24
3.3 Philosophical and Societal Views towards Requirements Specification and

Engineering . 26
3.4 Ethics and Quality in the Cloud . 27
3.5 Cloud Service Elasticity: Perspectives . 28

4 Model and Case Study 29
4.1 Cloud Service Model . 29
4.2 Case Study Application . 34

5 Elasticity Requirements Language 37

xiii

5.1 Overview . 37
5.2 Elasticity Requirements . 38
5.3 SYBL Syntax and Semantics . 40
5.4 Experiments . 49

6 rSYBL : a Framework for multi-level Cloud Service Elasticity Control 55
6.1 Overview . 55
6.2 Managing Elasticity Capabilities from Cloud Providers 56
6.3 Multi-level Elasticity Control . 57
6.4 Experiments . 63

7 A Complex Use-Case for rSYBL Elasticity Controller: Heteroge-
neous Control for Cloud Services 71
7.1 Overview . 71
7.2 Motivation, Background and Related Work 72
7.3 Multi-cloud elasticity control . 74
7.4 Prototype and Experiments . 79

8 Evaluating Cloud Service Elasticity Behavior 85
8.1 Overview . 85
8.2 Cloud Service Structural and Runtime Information 87
8.3 Evaluating Cloud Service Elasticity Behavior 91
8.4 Controlling Elasticity with Elasticity Behavior Estimation 95
8.5 Experiments . 97

9 Elasticity Operations Management 111
9.1 Overview . 111
9.2 Motivation . 112
9.3 Analyzing Interactions in Elasticity Operations Management 114
9.4 Elasticity Operations Management Platform 117
9.5 Prototype and Experiments . 123

10 Related Work 131
10.1 Elasticity Requirements Language . 131
10.2 Elasticity Control Mechanisms . 132
10.3 Elasticity Behavior Estimation . 133
10.4 Heterogeneous Elasticity Control . 134
10.5 Elasticity Operations Management . 135

11 Conclusions and Future Work 137
11.1 Conclusions . 137
11.2 Future Work . 140

Bibliography 143
Using rSYBL framework . 157

List of Figures

1.1 Service models and stakeholders in cloud computing 4
1.2 Thesis flow . 8

2.1 NIST cloud computing reference architecture overview 14
2.2 . 15
2.3 MELA snapshot on structuring monitoring information 16
2.4 Generic feedback control . 17
2.5 IT service management phases . 20

4.1 Emerging cloud services control . 29
4.2 Linking structural, elasticity and infrastructure system information 31
4.3 Constructing runtime dependency graph . 33
4.4 Case study application . 34

5.1 Illustrative service structure and its deployment 39
5.2 Common dimensions for service elasticity . 41
5.3 SYBL based control at runtime . 47
5.4 Application structure used for experiment . 50
5.5 Evolution of Data End Service Topology in elasticity space 52
5.6 CPU usage correlation with the number of VMs used 53

6.1 Feedback loop for controlling cloud service elasticity 57
6.2 Elasticity control - from requirements to enforced plans 58
6.3 An example of an action plan . 58
6.4 Cloud service and possible conflicting elasticity requirements 60
6.5 M2M DaaS with SYBL elasticity requirements 62
6.6 Event Processing Service Topology on Flexiant public cloud 64
6.7 Event Processing Service Topology on OpenStack-based private cloud 64
6.8 Elasticity Evolution of Event Processing Service Topology of the M2M Cloud

Service: throughput versus cost on Event Processing Service Topology 66
6.9 Elasticity evolution of cloud service: cost-per-client-per-hour versus throughput 67
6.10 Cloud service structure and elasticity directives 67
6.11 Metrics (CPU usage, cost and latency) and elasticity actions for service units

in Data End Service Topology . 69

xv

6.12 Requirements fulfillment on Flexiant and OpenStack 70

7.1 Motivating scenario . 73
7.2 Cloud service model . 74
7.3 rSYBL multi-cloud control framework . 76
7.4 Multi-cloud control snapshot . 81
7.5 Multi-cloud executed M2M DaaS cost in time 82
7.6 Multi-cloud control sensitivity . 83

8.1 Cloud service information for estimating elasticity behavior 88
8.2 Elasticity capabilities exposed by different elastic objects 89
8.3 Elastic cloud service evolution . 90
8.4 Modeling cloud service behavior process . 90
8.5 Clustering process . 92
8.6 Relevant timeseries selection . 92
8.7 Relevant timeseries sections to points . 93
8.8 ADVISE integration into rSYBL . 95
8.9 Workload applied on the three services . 96
8.10 Effect of ECP1 on the application server tier 101
8.11 Effect of ECP4 on the entire video streaming service 101
8.12 Effect of ECP7 on M2M DaaS . 102
8.13 Effect of ECP6 on the event processing service topology 103
8.14 Effect of ECP8 on the Data Controller Service Unit 103
8.15 Effect of ECP10 on the Document Store Controller 104
8.16 Effect of ECP9 on the Document Store Node 104
8.17 Effect of ECP10 on the Data Node . 105
8.18 ECP5 estimation time under different Cutoff values 106
8.19 Estimation variance for ECP5 under different Cutoff values 107
8.20 Event Processing Topology control . 108
8.21 Ping-pong effect . 109

9.1 Motivating scenario . 113
9.2 Role interaction flow . 115
9.3 eOMP design . 118
9.4 Interaction dialogs . 120
9.5 Elasticity controller bringing the roles into the control loop 121
9.6 eOMP snapshot: initial information . 124
9.7 eOMP snapshot: current roles and responsibilities 125
9.8 eOMP snapshot: implicit initial dialog requesting services information 125
9.9 Conflicting requirements resolution . 126
9.10 eOMP snapshot: replace requirements . 126
9.11 eOMP snapshot: requirements modified in rSYBL controller 127
9.12 eOMP snapshot: unhealthy service part notification 127
9.13 eOMP snapshot: unhealthy service part notification 128

9.14 eOMP snapshot: unhealthy service part dialog 128
9.15 eOMP snapshots: statistical information regarding interactions 128

1 rSYBL initialization steps . 157
2 Multi-cloud example . 167

List of Tables

2.1 Levels of autonomy . 18

5.1 Example of predefined functions . 42
5.2 Examples of predefined environment variables 43

6.1 Experiment settings . 63
6.2 Cost and execution time for Data Service Topology units 68
6.3 Cost and execution time: comparison on different workloads 68

7.1 Examples of elasticity primitive operations 78
7.2 Currently supported primitives . 79

8.1 Elasticity control processes available for the cloud services 98
8.2 Elasticity metrics per cloud service for different service parts 99
8.3 Elasticity control processes time statistics . 100
8.4 ECPs effect estimation quality statistics . 106

9.1 Examples of elasticity modifications and roles interested 117
9.2 Interactions for requesting modification in control 120

xviii

Publications

This thesis is based on work published in scientific conferences, workshops, journals and
books. For reasons of brevity, these core papers, which build the foundation of this thesis,
are listed here once, and will generally not be explicitly referenced again. Parts of these
papers are contained in verbatim.

1. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar. "rSYBL:
a Framework for Specifying and Controlling Cloud Services Elasticity", ACM
Transactions on Internet Technology (TOIT),2015.

2. Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan, George
Pallis, Schahram Dustdar, Marios Dikaiakos. "Evaluating Cloud Service Elastic-
ity Behavior", International Journal of Cooperative Information Systems, 2015
(invited).

3. Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, "Supporting Cloud Service
Operation Management for Elasticity", the 13th International Conference on Service
Oriented Computing. Goa, India, 16-19 November, 2015

4. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "On
Controlling Cloud Services Elasticity in Heterogeneous Clouds", 6th Cloud Con-
trol Workshop, 7th IEEE/ACM International Conference on Utility and Cloud
Computing, 8-11 December, London, 2014.

5. Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan, George
Pallis, Schahram Dustdar, Marios Dikaiakos. "ADVISE - a Framework for Evaluat-
ing Cloud Service Elasticity Behavior" the 12th International Conference on Service
Oriented Computing. Paris, France, 3-6 November, 2014. (Best paper award)

6. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "Multi-
Level Elasticity Control of Cloud Services", the 11th International Conference on
Service Oriented Computing. Berlin, Germany, on 2-5 December, 2013.

7. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL+
MELA: Specifying, Monitoring, and Controlling Elasticity of Cloud Services", the
11th International Conference on Service Oriented Computing. Berlin, Germany,
on 2-5 December, 2013.

1

8. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL:
an Extensible Language for Controlling Elasticity in Cloud Applications", 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), May 14-16, 2013, Delft, the Netherlands.

9. Georgiana Copil, Daniel Moldovan, Duc-Hung Le, Hong-Linh Truong, Schahram
Dustdar, Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas, George
Pallis, Marios D. Dikaiakos, Craig Sheridan, Evangelos Floros, Christos KK Lover-
dos, Kam Star, Wei Xing, On Controlling Elasticity of Cloud Applications in
CELAR, Emerging Research in Cloud Distributed Computing Systems, Advances
in Systems Analysis, Software Engineering, and High Performance Computing
(ASASEHPC) Book Series.

2

CHAPTER 1
Introduction

Cloud computing has been receiving significant attention over the last years. The
computing world has been progressing towards the dream of having computing as
utility [103], starting from shared computing models and virtualization as a time sharing
mechanism, e.g., IBM’s Remote Job Entry [16] and VM OS [87] from the 70s, to
today’s cloud computing model. According to NIST, cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction. [86]. The cloud computing model is composed of three main service models,
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS), capturing the capability of deploying, for customers from fundamental computing
resources, to libraries and tools/platforms supported by the provider, and to provider’s
applications. The characteristics of cloud computing are presented in detail in Section
2. Probably the biggest benefit that cloud computing brings is that the services are
bought on-demand. This means that, when a business needs infrastructure resources,
or software platform and their licenses, for a limited amount of time, these can be
bought on-demand, only for the time that they are needed. This is highly convenient
for businesses, which have higher flexibility in terms of IT investments, and can provide
their users expected Quality of Service, even for unexpected loads (e.g., sale periods
that usually entail applications outages1). A Goldman Sachs study published in January
2015 reveals that, in the period 2013-2018, infrastructure and platforms are expected to
grow at 30% compound annual growth rate, as opposed to overall enterprise IT which is
expected to grow at 5% [45]. This growth is a response to the growing trend of moving
applications in the cloud [50], or of developing the so-called born-in-the-cloud services [54].

Figure 1.1 shows the layers of cloud computing offerings, starting from the infras-
tructure and up to services. The platform layer can be built standalone (i.e., using

1https://www.internetretailer.com/2015/03/11/\/-apples-itunes-and-app-
stores-experience-outages-worldwide

3

https://www.internetretailer.com/2015/03/11/\/-apples-itunes-and-app-stores-experience-outages-worldwide
https://www.internetretailer.com/2015/03/11/\/-apples-itunes-and-app-stores-experience-outages-worldwide

its own hardware resources), or it can use a private or a public IaaS cloud, in order
to deploy the software/tools that should be offered as a service. Likewise, the service
layer can be built standalone, or it could be based on IaaS or PaaS clouds. Since this
is a service-based model, stakeholders play a central role. Since this is a hierarchical
construction, customers of lower level layers can act as providers to upper layers (e.g.,
PaaS provider can act as customer to IaaS provider, and provider to SaaS provider).
Another type of stakeholder is the customer to the SaaS provider, that is oblivious to
whether or not the service s/he is using is using cloud services. In this kind of scenario,
it can be quite an effort, for SaaS provider or PaaS providers to manage their services,
respectively platforms, and to offer them at the desired quality under certain cost limits.

Figure 1.1: Service models and stakeholders in cloud computing

1.1 Problem Statement
In this context, we can see that when application owners would like to deploy their
applications in the cloud and offer them as a service, when trying to use IaaS or PaaS cloud-
offered services, they would need to hire cloud computing consultants or organizations
specialized in this kind of development and operations activities. For deploying an
application in the cloud, one needs to understand which cloud to use, what the available
resources are, and which resources are best for the application at hand, given the budget
allocated for hosting it in the cloud.

Once this step is completed, at runtime, application owners, who have now become
service providers, need to understand how to manage their new service2 over IaaS or PaaS

2We refer from hereon to any service, application, or system, deployed on a single or multiple cloud

4

environments. Focusing on this run-time perspective, we can see that it is very important
how the application behaves, since that determines the Quality of Service offered to
service customers. This behavior is affected by the load (e.g., the number of customers
currently active and the operations they perform), and by the cloud-offered services that
are currently used (e.g., how many VMs are used, which is the network performance, how
much storage is available). With current state of the art management and monitoring tools
(e.g., Amazon AutoScale3, Google Autoscaler4 or Google Cloud Monitoring5), the service
provider gets reports on resource usage, and needs to decide whether further resources are
necessary. Therefore, the service provider should understand how resource usage affects
application-level metrics (e.g., response time), and specify rules for adding/removing
IaaS/PaaS services. This specification process can be quite cumbersome, since it implies
writing numerous "if-then-else" style policies for all resource-level metrics. Moreover, in
the case of complex services, whoever is managing the service should understand the
impact of his/her actions upon various service parts. For instance, when removing a
node from a database cluster, the result might be of decreasing throughput in the service
business end component.

One of the key arguments for cloud computing is the property of elasticity [35], that
is, the ability of cloud services to acquire and release cloud-offered services on-demand,
in response to run-time fluctuating workloads. For achieving such elasticity, services need
automated controllers that know when new cloud-offered services (e.g., VMs, disks, or
software platforms) are needed, and how to contact respective cloud provider in order
to purchase them. Although currently cloud providers offer possibilities for customers
to control their applications (e.g., Amazon AutoScale3, or Google Autoscaler4), they
consider only system-level metrics (e.g., CPU usage, or memory usage). Existing research
on cloud services control focuses on providing best trade-off for users, between cost and
resource usage [63,94,120]. However, controlling the elasticity of complex services implies
understanding the service structure, the connections existent among different service
parts, the artifacts necessary to be controlled for each service part, and the application
specific metrics that reflect better the behavior of the cloud service.

1.2 Research Questions

The problems described in Section 1.3 motivate the research conducted as part of this
thesis. More concretely, the following questions are researched in this work.

Research Question I
How could requirements be specified, with the least effort from service provider side,

but still giving sufficient information for controlling the service?

infrastructures as cloud service, and to any service offered by cloud providers (i.e., IaaS, PaaS, and SaaS),
cloud-offered service.

3http://aws.amazon.com/autoscaling/
4https://cloud.google.com/compute/docs/autoscaler/
5https://cloud.google.com/monitoring/

5

http://aws.amazon.com/autoscaling/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/monitoring/

As discussed in Section 1.3, the current ways of specifying requirements are very
difficult to be used by service provider, since they entail detailed resource requirements
specification, and feature very limited abstractions. The service provider needs to be able
to specify details that are relevant for him/her, regarding service performance, or service
cost. Moreover, when the service has a very complex structure, the service provider
might need to specify requirements on the different parts of the service. Although some
research work, discussed in Chapter 10, exists on elasticity requirements specification, it
doesn’t consider service complexity, and mostly follows the mechanisms offered by cloud
providers.

Research Question II
How can we control the elasticity of complex services deployed in the cloud?
The challenge here is controlling the cloud service considering high-level elasticity

requirements, described above. As described in Section 1.3, most research focuses on
controlling very specific service types (e.g., web applications [63], workflows [81]), and
doesn’t consider the subjective requirements when it comes to performance and cost
(e.g., the current budget that the service provider allocates per service customer might
be less then optimal when it comes to the overall performance, but s/he is not willing to
pay more than that). Moreover, for controlling the service one needs to understand the
service behavior, i.e., how various control actions affect, in time, different service parts.

Research Question III
How could elasticity control be integrated in service operations management?
The third research question assumes the previous two research questions are already

solved. In this case, let us consider real-life services, which are provided by organiza-
tions with multiple employees, each with their own responsibilities. Normally, these
organizations follow IT Service Management standards or best practices (e.g., ITIL [10]).
Therefore, it needs to be investigated, which is the role the automated elasticity controller
plays within the organization, and how are normal employees interactions affected by the
fact that the service is running in the cloud, and it is controlled at runtime by automated
software.

1.3 Scientific Contributions

In what follows we briefly present the scientific contributions made to the state of the
art, in our quest of solving research questions stated in Section 1.2.

Contribution I
An elasticity requirements specification language

As discussed in Section , given the business perspective in cloud service elasticity,
service providers could have different requirements, even for the same service type,

6

considering their business strategies and expected customers. Moreover, both determining
and specifying resource-level requirements can be quite cumbersome. For this, we
introduced SYBL (Simple Yet Beautiful Language) elasticity requirements specification
language, which enables the specification of high-level elasticity requirements, at multiple
levels of abstraction. The language is currently used in CAMF6 Eclipse plugin, which
enables the description and deployment of applications over various cloud providers.
Contribution I was originally presented in [25].

Contribution II
A framework for controlling service elasticity

For fulfilling the requirements specified through the SYBL language, we introduced
a model in order to be able to represent structural information, runtime information,
and elasticity information concerning the service. A framework, rSYBL, which is based
on this model and new elasticity control mechanisms were introduced, for being able to
control service elasticity at multiple levels of abstraction. Contribution II was originally
presented in [24].

Contribution III
Mechanisms for determining cloud service elasticity behavior

For accurately controlling cloud service elasticity, one needs to understand the behavior
of different parts of the service, and the impact of various actions upon various parts
of the service. Moreover, it is important understanding whether or not an enforced
action would result in requirements violations, even for short periods of time (e.g., until
the system stabilizes). For this, we have introduced a clustering-based approach, and
a corresponding framework (ADVISE), which is able to estimate the behavior, in time,
of different parts of the service, not only of the one on which the action is enforced.
Contribution III was originally presented in [27], and awarded "best paper award".

Contribution IV
Mechanisms for controlling cloud service elasticity in heterogeneous clouds
When increasing the support for cloud services, we observed that IoT services need to

run across multiple clouds (i.e., the so called cloudlets or mini-clouds and public/private
clouds). Therefore, the controller needs to support the heterogeneity of various APIs
through which virtual resources should be controlled, and understand relationships among
these clouds. In this sense, rSYBL has been extended, for supporting heterogeneous
enforcement mechanisms, by enriching the model it is based on and adapting the control
algorithm for taking into consideration how control in one cloud might affect the parts of

6http://linc.ucy.ac.cy/CAMF/
6tuwiendsg.github.io/rSYBL
6tuwiendsg.github.io/ADVISE

7

http://linc.ucy.ac.cy/CAMF/
tuwiendsg.github.io/rSYBL
tuwiendsg.github.io/ADVISE

the service deployed in a different cloud. Contribution |V was originally presented in [26]

Contribution V
A framework for cloud service operations management for elasticity

Although above contributions do ease controlling services in cloud-based environments,
when considering large organizations, following various standards and having fixed
processes in-place, using this kind of controller seems rather ad-hoc. As opposed to
having a single organization employee using the elasticity controller and discussing with
other employees regarding the desired performance, the desired cost, or the possible
changes which may appear (e.g., cloud provider changing its schema), we proposed
integrating the elasticity controller in organization’s processes for IT Service Operation
Management. An elasticity Operations Management Framework (eOMP) was designed
and implemented, supporting interactions between the elasticity controller and various
organization employees according to their responsibilities and authority. Contribution V
was originally presented in [28].

1.4 Thesis Organization

Figure 1.2: Thesis flow

Figure 1.2 gives an insight into the flow of this thesis. The remainder of this thesis is
organized as follows:

• Chapter 2 provides context for this thesis, describing background information on
concepts and techniques used.

• Chapter 3 discusses how the research questions and the techniques used in this
thesis relate to schools of thought in science.

• Chapter 4 presents the model of the service, and the case study which will be
used (partially or completely) for exemplifying concepts or for evaluation purposes
throughout this thesis.

• Chapter 5 presents the elasticity requirements specification language

8

• Chapter 6 introduces the rSYBL framework, and the elasticity control mechanisms
which the framework is based on.

• Chapter 7 describes the approach used for estimating elasticity behavior of the
cloud service

• Chapter 8 presents the mechanisms introduced for supporting heterogeneous control
for cloud services

• Chapter 9 introduces the elasticity Operations Management framework, showing
how various employees with various responsibilities can interact with the elasticity
controller and can collaborate for customizing and supervising the elasticity control
in real-time.

• Chapter 10 concludes this thesis, and discusses future work based on the work
performed as part of the thesis.

9

CHAPTER 2
Background

In this chapter we present basic concepts that will be used in the thesis, as well as existing
tools/research that were used. We first describe the cloud computing models, focusing on
the service models it is composed of, on stakeholders that interact in this context, and
on current cloud providers’ offerings. We present MELA [89], a tool for cloud service
monitoring and analysis, which is being used by rSYBL elasticity controller presented in
this thesis. Next, we present an overview of control mechanisms and machine learning
techniques, which were used for rSYBL. The last section of this chapter presents concepts
from IT Service Operation Management, which were used for Contribution V (see Section
1.3).

2.1 Cloud Computing
In recent years, cloud computing has been present in our lives at various levels: phones
send video recordings or images "on the cloud", most applications, be they mobile or
desktop, save user data "on the cloud", even banks are moving towards cloud 1. In this
section we are focusing on explaining what cloud computing is, detailing its model, the
stakeholders collaborate in the context of cloud computing, and cloud standards. Next,
tools used throughout this thesis are introduced.

Armbrust et al. describe the cloud in their 2009 vision paper [46] as having, the
following novelty aspects: the illusion of infinite computing resources to be offered, the
elimination of an up-front commitment by customers, and the ability of paying for use
for computing resources or platforms which are used.

NIST defines the cloud as having five essential characteristics [86]:

• on-demand self-service - the cloud consumers can consume their services automati-
cally, without needing to interact with cloud provider employees

1http://www.forbes.com/sites/tomgroenfeldt/2014/06/26/some-banks-are-
heading-to-the-cloud-more-are-planning-to/

11

http://www.forbes.com/sites/tomgroenfeldt/2014/06/26/some-banks-are-heading-to-the-cloud-more-are-planning-to/
http://www.forbes.com/sites/tomgroenfeldt/2014/06/26/some-banks-are-heading-to-the-cloud-more-are-planning-to/

• broad network access - the computing resources or platforms can be accessed from
any device connected to the Internet

• resource pooling - the resources (e.g., virtual processor, storage, network resourced)
are pooled and managed by the cloud provider

• rapid elasticity - the capacity of the used virtual resources can grow and shrink
rapidly. This way the self-service and resource pooling are enablers for rapid
elasticity, managed from the customer size.

• measured service - the resource usage is monitored and reported by cloud providers.

2.1.1 Cloud Service and Deployment Models

The virtual resources are offered in the cloud according to three different service models:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS). As shown in Figure 1.1, the three are hierarchically build (i.e., one can provide
service to another one). In the IaaS model, the provider can provision "processing, storage,
networks, and other fundamental computing resources" [86]. On these, the consumer
is able to deploy and run arbitrary software. In the PaaS model, PaaS consumers can
deploy their own applications "using programming languages, libraries, services and tools
supported by the provider" [86]. In the SaaS model, SaaS consumers can use "provider’s
applications running on a cloud infrastructure" [86]. Guided by these models, and based
on cloud computing, several initiatives appeared of offering everything as a service (XaaS)
(e.g., sensing as a service [132] [104], everything as a service [11]).

2.1.2 Cloud Standards

Given the novelty of cloud computing, the standards in this domain are still evolving,
and new ones are appearing. Moreover, given cloud’s popularity, an abundance of
organizations, and multiple sub-groups, have been interested in defining standards or
best practices, each from a different perspective2: Distributed Management Task Force
(DMTF), European Telecomunications Standards Institute (ETSI), Global Inter-Cloud
Technology Forum (GICTF), Open Grid Forum (OGF), Object Management Group
(OMG), Open Cloud Consortium (OCC), Organization for the Advancement of Structured
Information Standards (OASIS), Storage Networking Industry Association (SNIA), Cloud
Work Group (CWG), Association for Retail Technology Standards (ARTS), TM Forum,
and OpenCloud Connect. The cloud hype has created an abundance of standards and
open source activity, which has also lead to market confusion. To address this, the Cloud
Standards Customer Council (CSCC), an end user advocacy group with the goal of
accelerating cloud’s successful adoption, oriented towards the customer. CSCC has issued
a series of documents3 describing best practices in cloud computing, and roadmaps for
cloud security, or for migrating applications to the cloud.

2http://cloud-standards.org/
3http://cloud-council.org/resource-hub.htm

12

http://cloud-standards.org/
http://cloud-council.org/resource-hub.htm

Cloud Service Description

Open Virtualization Format
The Open Virtualization Format (OVF) [100] was introduced by Distributed Manage-

ment Task Force (DMTF), and is an open-source standard for packaging and distributing
software and applications for virtual machines (VM). The standard, when proposed in
2007 by VMware, Dell, HP, IBM, Microsoft and XenSource, was initially intended for
virtual machines. An OVF package consists of a folder containing several packages and
artifacts, and an XML descriptor, which describes the packaged virtual machine.

Cloud Infrastructure Management Interface
The Cloud Infrastructure Management Interface (CIMI) [32] was introduced by

Distributed Management Task Force (DMTF), and is an open standard for managing
cloud infrastructure. CIMI standardizes interactions between cloud environments to
achieve interoperable cloud infrastructure management. Although it has the advantage
of clear specifications and of being a very concrete standard, the drawback is that unique
services offered only by some cloud providers are simply ignored. However, CIMI has clear
templates (e.g., for provisioning new resources such as machines, volumes, or networks)
and interaction protocols (e.g., it even offers REST services description), having several
implementations (e.g., Apache DeltaCloud4, OW2 Sirroco5, or StratusLab6).

Open Cloud Computing Interface
The Open Cloud Computing Interface (OCCI) is a set of specifications delivered by

the Open Grid Forum, for cloud computing service providers. OCCI is more generic than
CIMI, providing a skeleton on the basis of which one can extend it even for Platform
as a Service. There are multiple implementations for OCCI (Ruby-based rOCCI7, or
Python-based pySSF8), or projects where OCCI was used for modeling the services
(OpenNebula 9, CloudStack10, or European Grid Infrastructure11).

Cloud Application Management for Platforms
The Cloud Application Management for Platforms (CAMP) [18] proposed by OASIS

is intended to provide descriptions for PaaS cloud services. They propose a protocol
for cloud customers to package and deploy their applications, defining interfaces for
provisioning, monitoring and control. In this specification, the details of the infrastructure
are hidden from the consumer, which only needs to define its artifacts and specify which

4https://deltacloud.apache.org/
5http://wiki.sirocco.ow2.org/
6http://stratuslab.org/
7http://github.com/gwdg/rOCCI
8https://github.com/tmetsch/pyssf
9http://opennebula.org/

10https://cloudstack.apache.org/
11http://www.egi.eu/

13

https://deltacloud.apache.org/
http://wiki.sirocco.ow2.org/
http://stratuslab.org/
http://github.com/gwdg/rOCCI
https://github.com/tmetsch/pyssf
http://opennebula.org/
https://cloudstack.apache.org/
http://www.egi.eu/

are the services used from the provider offerings. Implementations of CAMP include
Project Solum12 and Brooklyn13.

Topology and Orchestration Specification for Cloud Applications
The Topology and Orchestration Specification for Cloud Applications (TOSCA) [98]

is an OASIS standard meant for large-scale applications, for which the cloud customer
needs to describe multiple artifacts and complex relationships among them. TOSCA
contains a series of features, like policies specification, or specification of complex action
plans which can be described as process models, described using BPMN terminology.
However, TOSCA is not yet widely used commercially, since vendors have been developing
their own specifications, in parallel with the TOSCA standard (e.g., OpenStack Heat14
or Amazon AWS CloudFormation Template15).

Cloud Computing Reference Architectures

Figure 2.1: NIST cloud computing reference architecture overview

Several cloud computing reference architectures exist, e.g., NIST Cloud Computing
Reference Architecture [96], IBM Cloud Computing Reference Architecture [61], or Oracle
Cloud Computing Reference Architecture [99]. The NIST architecture, shown in 2.1 is the

12http://solum.io/
13https://brooklyn.incubator.apache.org/
14http://docs.openstack.org/developer/heat/
15http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

14

http://solum.io/
https://brooklyn.incubator.apache.org/
http://docs.openstack.org/developer/heat/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

most used, it being initially defined in 2011. The architectures model the cloud services,
and cloud computing main actors. NIST defines the following action types: (i) Cloud
Consumer, which is a person using services from Cloud Providers, (ii) Cloud Provider, a
person making the service available to interested parties, (iii) Cloud Auditor, which is an
entity that can conduct independent assessment of cloud services, infrastructure systems
operations and security of the cloud implementation, (iv) Cloud Broker, that manages
the interaction in terms of performance and delivery of cloud services, also negotiating
relationships between Cloud Providers and Cloud Consumers and (v) Cloud Carrier, an
intermediary providing connectivity between Cloud Providers and Cloud Consumers (e.g.,
Internet provider).

(a) IBM cloud computing reference
architecture overview (b) Oracle cloud computing reference architecture overview

Figure 2.2

IBM cloud computing reference architecture (see Figure 2.2a) adds to the cloud
computing traditional service models Business-Process-as-a-Service, and two verticals
for Common Cloud Management Platform, Operational Support Services and Business
Support Services. This architecture contains only three types of actors, Cloud Service
Creator, who is creating the service leveraging functionality offered by Cloud Service
Provider, Cloud Service Provider who owns a common cloud management platform, and
has the responsibility of providing cloud services, and Cloud Service Consumer, who uses
cloud service integration tools and consumer in-house IT in order to use the cloud service.

Oracle cloud computing reference architecture (see Figure 2.2b) is more detailed in
terms of connections existent among IaaS, SaaS and PaaS, introducing Cloud Builder
that builds and operates the cloud infrastructure and platforms as a service, Cloud
Application Builder(s), which develop applications for the cloud, and deploy them on the
PaaS platform and offer as SaaS services, and Application Management which includes
self-service capabilities to provision and manage applications deployed in the cloud.
More importantly, the Oracle cloud computing reference architecture contains contracts,

15

binding agreements between Cloud Builder, Cloud Application Builder or SaaS consumer.

2.1.3 Cloud Tools

In this thesis several tools were used, in order to be able to understand the service, and
develop the techniques that were mentioned as scientific contribution in Chapter 1.3. For
monitoring and analyzing the service behavior, MELA [89] was used, while for enforcing
control strategies on the cloud service, several tools were used like Salsa [73], JClouds16,
Flexiant Cloud Orchestrator (FCO)17.

MELA: Cloud Service Monitoring and Analysis

Figure 2.3: MELA snapshot on structuring monitoring information

For understanding the service behavior, one needs to monitor it. Several solutions,
like Ganglia18, Nagios19, or JCatascopia [119], facilitate monitoring resource usage, and
expose various plug-ins mechanisms for adding different types of metrics. However, the
virtual resources that these tools are monitoring are volatile, and it is quite difficult to
understand the meaning that a value of a metric for a single resource has on the overall
performance of the application.

MELA is a mature tool for monitoring and analysis of elastic cloud services20,
structuring and enriching information collected from existing monitoring solutions (e.g.,
Ganglia, JCatascopia). In MELA several concepts are introduced for representing the
cloud service behavior analysis: Elasticity Boundary, Elasticity Space, and Elasticity
Pathway. The Elasticity Boundary gives a metric’s minimum and maximum values, for
which all requirements were fulfilled. The Elasticity Space is the union of all boundaries
for all cloud service’s metrics. The Elasticity Pathway gives the evolution of the elasticity

16https://jclouds.apache.org/
17https://www.flexiant.com/flexiant-cloud-orchestrator/
18http://ganglia.sourceforge.net/
19https://www.nagios.org/
20http://tuwiendsg.github.io/MELA/

16

https://jclouds.apache.org/
https://www.flexiant.com/flexiant-cloud-orchestrator/
http://ganglia.sourceforge.net/
https://www.nagios.org/
http://tuwiendsg.github.io/MELA/

space over time. Figure 2.3 shows a snapshot from MELA user interface, structuring
monitoring information on multiple levels of abstraction, and defining new metrics (e.g.,
cost per client per hour) considering the lower level ones.

2.2 Control Mechanisms
In computer science, various areas deal with adaptation/management/control of software,
or hardware systems. For controlling cloud services, we look into techniques that facilitate
the control of the service, while considering the problems stated in Section 1.3.

2.2.1 Closed-loop control

Control theory is in charge with controlling the behavior of dynamic systems. These
systems are supposed to have an input, a way to interact with them for altering their
behavior (i.e., enforcing actions on the system), and an output, which is a way of
monitoring the system. There are two main types of control systems: (i) open-loop
control system, and (ii) closed-loop control system. Open loop control systems compute
their control strategies using only the current state and the model of the system, without
having a feedback from the system. Closed loop control systems are also taking monitoring
information from the system, thus closing the control loop. Figure 2.4 depicts a closed
loop control, where the controller enforces, as system input, actions for modifying system’s
behavior. The system output is captured as a feedback, and sent to the controller to use
it in the closed-loop transfer function for computing new actions to enforce.

Figure 2.4: Generic feedback control

2.2.2 Levels of automation in control

Full automation is mostly possible for simple tasks. For controlling complex systems,
humans are still considered playing various parts in the system control, depending on the
Level of Automation. Throughout the years, the participation of humans to automated
processes has been classified in various taxonomies.

When considering the ones described above for controlling complex systems, sometimes
levels 10 from Sheridan taxonomy and 5 from Endsley taxonomy are not realizable. This
is why, the automation levels immediately below are sometimes used. This type of
control is referred in the literature as supervisory control [111]. In this model, the human

17

s
Taxonomy Level Description

Sheridan [113]

1 The computer offers no assistance, and humans must
take all decisions

2 The computer offers a complete set of possible deci-
sions

3 The computer offers a selection of possible decisions
4 he computer suggests one single decision
5 The computer executes a suggestion if the human

approves it
6 The computer allows humans to veto the decisions for

a restricted time
7 The computer executes the automatically the decision

and informs the human
8 The computer executes the decision and informs the

human only if asked
9 The computer executes the decision and decides

whether it should inform the human
10 The computer decides everything and acts au-

tonomously, ignoring the human

Endsley [37]

1 The computer offers no assistance, humans should
take all decisions and enforce all actions

2 The computer offers recommendations, and the hu-
man takes the decisions

3 Consensual artificial intelligence, with the consent of
the human required to carry out actions

4 Monitored artificial intelligence, with system au-
tonomously implementing actions unless vetoed by
humans

5 Full automation, with no human interaction

Table 2.1: Levels of autonomy

supervisor monitors the behavior of the automation performing the task (i.e., controlling
the system), and detects or is reported failures and abnormalities. In other words,
supervisory control offers automation of all functions, with human override capability.

2.2.3 (Cloud) Requirements Specification: Service Level Agreement
and Scaling Policies

Quality requirements coming from users or system owners normally guide any kind of
management/adaptation/control process enforce upon the system. Quality of service
traditionally refers to network quality, but is a term being applied also generally for
quality of offered services/applications. Service level agreements are contracts among

18

service provider and service user, specifying the agreed characteristics of the service, like
quality, costs, or responsibilities. In cloud computing, service level agreement doesn’t
play a central role in the cloud provider offerings, being quite shallowly described (e.g.,
just in terms of availability).

Several standards have been designed for SLA description, like Web Service Level
Agreement [60]. For cloud computing SLA, effort has been put towards standardizing
SLA description (e.g., white paper from EU on cloud SLA standardization 21) with no
concrete result up until now. WSLA comprises (i) a description of the parties, and their
roles, (ii) a description of parameters/metrics and details on how to measure them, and
(iii) service level objectives, which are guarantees of certain SLA states for particular
periods. In cloud computing, cloud providers define generic agreements, to be used for
all their services (e.g., AWS Agreement 22).

For managing/controlling services, current cloud providers are using input from the
users in the form of policies. For instance, in Google Autoscaler, the user can specify
policies of scaling considering average CPU utilization, considering custom metrics or
based on HTTP load balancing serving capacity23. Similarly, Amazon AutoScaling24
facilitates the description of scaling policies depending on various custom metrics, but
allows two types of scaling: simple scaling, with increasing/decreasing current capacity of
the group based on single scaling adjustment, and step scaling, which increases/decreases
current capacity based on a set of scaling adjustments, that vary based on the size of the
alarm breach.

2.3 IT Service Management

IT Service Management is the process of planning and controlling the quality and quantity
of provided IT services, and can be defined as "a subset of Service Science that focuses
on IT operations such as service delivery and service support" [48]. Most known ITSM
framework is IT Infrastructure Library (ITIL) [10], containing a set of well defined,
generic, processes, procedures and tasks, for businesses. Other ITSM frameworks include
COBIT 25, ISO/IEC 20000-1:2011 [17], or Microsoft Operations Framework26.

Focusing on ITIL, it defines the following processes (see Figure 2.5) Service Strategy,
Service Design, Service Transition and Service Operation. Since in this thesis we are
focusing on run-time elasticity control, our focus from IT Service Management will be
Operation Management.

21http://ec.europa.eu/digital-agenda/en/news/cloud-service-level-agreement-
standardisation-guidelines

22http://aws.amazon.com/ec2/sla/
23https://cloud.google.com/compute/docs/autoscaler/
24http://aws.amazon.com/autoscaling/
25http://www.isaca.org/cobit/pages/default.aspx
26https://technet.microsoft.com/en-us/solutionaccelerators/dd320379.aspx

19

http://ec.europa.eu/digital-agenda/en/news/cloud-service-level-agreement-standardisation-guidelines
http://ec.europa.eu/digital-agenda/en/news/cloud-service-level-agreement-standardisation-guidelines
http://aws.amazon.com/ec2/sla/
https://cloud.google.com/compute/docs/autoscaler/
http://aws.amazon.com/autoscaling/
http://www.isaca.org/cobit/pages/default.aspx
https://technet.microsoft.com/en-us/solutionaccelerators/dd320379.aspx

Figure 2.5: IT service management phases

2.3.1 Operation Management

The main objective of service operation is to carry out the activities and processes
required to deliver and manage services at agreed levels to business users
and customers27. Service operation processes include Request Fulfillment, Incident
Management, Problem Management, Access Management and Event Management.

Request fulfillment processes have as scope dealing with requests coming from the
users, assisting with general information, and complains. Incident management has as
goal to restore service operation at normal functioning, and to minimize the impact of
incidents on business operations. The problem management is in charge with minimizing
the adverse impact of incidents on the business, and to prevent recurrence of incidents.
Access management is in charge with protecting confidentiality, integrity and availability,
and managing the way security incidents and problems related to access management
are recorded. Event management provides the ability to detect, interpret and initiate
appropriate actions for events, and provides operational information as well as warnings
and exceptions to aid automation.

The following roles are more relevant to operation management28, from the complete
list of roles in ITSM [21]:

• Access Manager - grants rights to use the service, while preventing non-authorized
users

• Facilities Manager - manages the physical environment where the IT infrastructure
is located.

27https://www.ucisa.ac.uk/~/media/Files/members/activities/ITIL/
service_operation/ITIL_Introducing%20Service%20Operation%20pdf.ashx

28http://wiki.en.it-processmaps.com/index.php/ITIL_Roles$#$ITIL_roles_and_boards_-
_Service_Operation

20

https://www.ucisa.ac.uk/~/media/Files/members/activities/ITIL/service_operation/ITIL_Introducing%20Service%20Operation%20pdf.ashx
https://www.ucisa.ac.uk/~/media/Files/members/activities/ITIL/service_operation/ITIL_Introducing%20Service%20Operation%20pdf.ashx
http://wiki.en.it-processmaps.com/index.php/ITIL_Roles$#$ITIL_roles_and_boards_-_Service_Operation
http://wiki.en.it-processmaps.com/index.php/ITIL_Roles$#$ITIL_roles_and_boards_-_Service_Operation

• Incident Manager - responsible for the effective implementation of the Incident
Management process and carries out the corresponding reporting.

• IT Operations Manager - takes overall responsibility for Service Operation activities.

• IT Operator - perform the day-to-day operational activities (e.g., backups, ensuring
scheduled jobs are performed, installing new hardware/software in the data center).

• Problem Manager - responsible for managing the lifecycle of all problems, minimize
the impact of incidents or even prevent them where possible.

21

CHAPTER 3
On Elasticity Control

This chapter is a reflection on the thesis topic in relation to two major schools of thought
in philosophy of science: dialectics and constructivism. I gratefully thank Prof. Christiane
Floyd for the most insightful lecture on philosophy of science, and the opportunity of
writing this under her guidance at the beginning of my PhD studies.

3.1 Overview
This chapter presents an analysis of elasticity with the purpose of controlling cloud
service elasticity, taking into account that a standard definition for elasticity has not yet
been defined in cloud computing. We showcase a multi-perspective analysis of elasticity,
and construct service elasticity as reality in the cloud, through language description.
The detail description of the language can be found in Chapter 5. For the analysis, we
take insights from two major schools of thought in philosophy of science: dialectics with
main focus on the Scandinavian school of thought that promotes multiple perspectives in
informatics, and constructivism.

3.1.1 Hegelian Dialectics and Multiple Perspectives from the
Scandinavians

Hegelian dialectics proposes a dual model based on thesis and antithesis which em-
phasises discourse as a method of promoting synthesis. With relation to dialectics,
multi-perspective reflection in science promotes mediating between different views of the
same problem for achieving a better model. Multi-perspective reflection is presented
by Nygaard [97] as one of the four main aspects of sciences, next to phenomenology,
analysis and synthesis. Cloud computing can be considered as being part of informatics,
business and even society, due to its social impact. We consider it however as being a
sub-domain of informatics, but due to its many influences on other sciences, the types of
stakeholders affected and their perspectives differ greatly. We adopt Nygaard’s definition

23

for perspectives [97], seen as different world views that can coexist with each other. This
definition contrasts with the paradigm definition for which Nygaard adopts Thomas
Kuhn’s view [14] of basic perspectives within a science, which are irreconcilable with
others.

3.1.2 Constructivism

In the radical constructivist view of Ernst von Glaserfeld, the science and the cognition
helps with the organization of the experiential world, not the discovery of ontological
reality [51]. The constructivist view also promotes multiple perspectives in constructing
the world, since a constructed world belongs to the individual, but through social
interaction individual worlds form a consensual domain [52].

In the view of the constructivist Heinz von Foerster [44], scientific hypotheses are
stories, invention of poets which compete for getting public’s approval. We construct our
own world and the validity of our world depends on the data we use: The world, as we
perceive it, is our own invention1.

We use a constructivist approach on elasticity understanding: analyzing different
perspectives of the reality, in this case composed of stakeholders’ views and current
technologies, we choose characteristics for service elasticity construction, which will help
in the definition of the new language.

3.2 Cloud Computing and Elasticity

Cloud computing is envisioned by Wang et al. [126] as providing user centric interfaces,
on-demand service provisioning, QoS guaranteed offer and most importantly, ensuring
scalability and flexibility. The enumerated properties were seen as main characteristics
of cloud computing when this computing perspective appeared. However, the last two
properties, scalability and flexibility, as well as QoS guaranteed offering are difficult to
be ensured. Firstly, this is due to the fact that for the cloud provider (the stakeholder
offering cloud services) it is challenging to know what scalability, flexibility and elasticity
is for the cloud customer. Moreover, the cloud provider has to ensure maintaining quality
properties while guaranteeing all the defining properties of cloud computing.

3.2.1 Multiple Perspectives of/for Cloud Computing

Cloud computing is a model with major interest not just for parties from the domain
of informatics, but also from completely different sides like privacy, legal or business
domains. In informatics, the interest mainly refers to defining and using cloud computing
in the best possible way from the point of view of resources allocated, or performance.
On the other hand, business stakeholders are interested in a different type of quality than
the one informatics people refer to: quality of experience, as perceived by the user of their
products that are hosted on the cloud. Moreover, the relation between the prices paid for

1http://www.univie.ac.at/constructivism/HvF.htm

24

http://www.univie.ac.at/constructivism/HvF.htm

cloud resources, and the quality obtained in return is essential to business stakeholders.
This relation can be seen from the viewpoint of legal domain, posing several questions:
(i) does the user get what he/she pays for? (ii) making a parallel to fuel market, how
to regulate the cloud computing market? These are valid and important questions, but
for finding answers, cloud computing professionals have to undergo several crucial steps.
They firstly need to give cloud users the possibility of describing his/her requirements in
terms of quality, cost, and resources, and not just in generic terms but also in correlation
to the states of the service to be deployed on the cloud. Secondly, it needs to provide
monitoring mechanisms in terms of quality, cost and resources, for a higher transparency
both towards the user and towards the stakeholders supervising contract compliance
(just as the money transfer can be monitored through the banks, the vice-versa transfer
of quality and resources should be monitored). We therefore have multiple perspectives
to consider in the cloud computing domain when contributing to its evolution.

3.2.2 Cloud Stakeholders

Language description implies a study of the users, in this case, cloud stakeholders, and
their needs. A dialectic view towards cloud stakeholders would separate them into two:
on one hand, the cloud customers and on the other hand, the cloud providers. This way
of seeing the involved parties is rooted in the usual differences between the buyer and the
seller: both want to give as little as possible while obtaining as much as possible. The
parties have to discuss, debate, and most importantly, to negotiate a common agreed
solution. In the recent years, numerous efforts have been put towards cloud service level
agreement (SLA) negotiation and management [23, 123], but there is still plenty of room
left.

Moreover, we may want to see cloud stakeholders from more perspectives, due to their
complexity and due to the impact of this domain in business and on the society as whole.
In cloud computing domain, a stakeholder is any user of services or services hosted on the
cloud, to scientists promoting standards or even to investors in cloud provider companies.
From different viewpoints, they are all interested in cloud computing, its evolution and
performance. Marston et al. [84] give the following categories of stakeholders in cloud
computing: (i) consumers (in other literature, cloud customers) are the subscribers who
purchase the user of the cloud system, (ii) providers who own and operate the cloud
computing systems, (iii) enablers who sell products that facilitate the cloud computing
adoption and (iv) regulators who are objective stakeholders pervading across the other
stakeholders and making sure that the agreed-upon contracts are fulfilled.

3.2.3 Elasticity in Cloud

Dustdar et al. [36] propose elastic processes, elasticity being a defining property of cloud
computing which consists in the ability of a provider to manage resources allocated by
scaling them up and down on an on-demand basis. However, it is practically impossible
for the provider to guess how and when the service should be scaled, while respecting
service security and without having any elasticity requirements specification from the

25

customer side. Elasticity specifications could describe the manner in which the hosted
service should behave under different conditions (see Section 3.5 for a more detailed
view). Several other service elasticity issues are beyond our current goal and can be
encountered in the process of creating an elastic service, for instance how much can the
service scale (i.e., if we allocate more resources, by horizontal or vertical scaling, will the
service be able to fully make use of them?) or how to decide on workload distribution for
the service.

3.3 Philosophical and Societal Views towards
Requirements Specification and Engineering

Requirements description, analysis and engineering have had a long evolution to come
to be part of the science of informatics. The Scandinavian school of thought played an
important role in promoting the societal impact as a part of informatics. The impact the
information systems have on the society is not yet fully part of the informatics science, but
requirements engineering and methodologies for system design that consider user options
are a great step forwards. Kristen Nygaard [97] proposed for the informatics science to
also include the societal impact of programmers, which should consider all stakeholders
perspectives when designing an information system. Holbaek-hanssen, Handlykken and
Nygaard, part of the same Scandinavian school of thought, give an important description
to information systems: A system is a part of the world that a person (or group of persons,
during some time interval and for some reason) chooses to regard as a whole consisting
of components, each component characterized by properties that are selected as being
relevant and by actions relating to these properties and those of other components [57]. In
other words, a system gets to be a system only if someone looking at it chooses the system
perspective, by considering the world or current context as being composed of components.
Otherwise, the current context can be described as a business environment, a household,
etc. Therefore, the perspective through which we get to look at a context is definitive
for understanding and describing it. Moreover, considering numerous perspectives when
designing a model (system, component, computing artifact, etc.) will enrich both the
model capabilities, and the situations in which it can be used. Just as for the definition
of a system, language design needs to consider all stakeholders’ perspectives and to meet
all their needs. A more detailed discussion on stakeholders interested in service elasticity,
their perspectives and needs will follow in Section 3.5.

Defining/introducing a language through which one can describe service elasticity
gives the limits on which the elastic service can exist. This idea has one of its roots
in Christiane Floyd’s work regarding software development as reality construction [43].
Christiane Floyd adopts Hanz von Foester’s perspective on reality as community, and
sets the dialogue as the basis for any construction work, from dialogue resulting the
adoption of other’s perspectives. Software development is seen as the design of a world
that links the social world of services to be developed, with the technical world of service
implementation. This design entails a series of decisions from the perspective we take for
considering requirements to the methods we choose to apply.

26

3.4 Ethics and Quality in the Cloud

3.4.1 Elasticity as a Property Promoting Quality

Service elasticity has been so far presumed as true, simply from the fact that the service
was being deployed on the cloud. This is unfortunately not true, since elasticity implies
the property of automatic scalability according to the service’s reality. Service reality
differs depending on the stakeholder describing the specific service. In other words, it is
subjective stakeholder’s perspective.

Specifying what elasticity entails, and what are the mechanisms of obtaining this
property, is a defining step towards obtaining quality in cloud computing. It is difficult
both for the cloud customer and the cloud provider to choose fixed performance, resource
and cost numeric values, and stick to them. For the cloud provider, it is impossible to
keep these metrics at a fixed level, while for the cloud customer it is extremely difficult
to specify them since the metrics depend greatly on the workload. Moreover, these
metrics and their sub-metrics (e.g., cost has as sub-metric the cost per IO). Clearly
defining what are the desired characteristics of the service, and how it should behave
under predefined condition, would enable keeping the service at expected quality for all
the involved stakeholders.

3.4.2 Ethics in the Cloud - (EaaS a.k.a. Ethics as a Service?)

Cloud computing is intended to be the domain which links society with the information
domain. Paying for services, resources, etc., in an on-demand basis, easily accessible by
anyone, with no need of informatics knowledge, would have seemed several years ago
as a sci-fi story. One of the main problems with this ideal world is that people do not
trust it yet, and this is mainly due to the fact that there are no regulation entities, that
can guarantee regular users that they will get what they pay for. This can be seen as a
domain-specific problem, but also as a legal issue or ethics problem.

We therefore encounter several issues which lead to this lack of trust: (i) the cloud
users have no mechanism of intuitively specifying their requirements in terms of service
behavior (service elasticity) over time, (ii) there is no cloud authority to mediate these
real-world transactions that exchange money for services, (iii) the pricing schemes that
the cloud provider use are unknown to the common users - users do not know what they
are actually charged for, they usually just receive the bill.

Enabling the customers to describe their requirements through a language can help
promoting ethics and quality in the cloud, by enabling stakeholders to specify what
should be considered about their service, what should be monitored and what are the
mechanisms that they consider necessary for keeping the service in a "good" state both
from the quality and cost perspective. It also helps constructing a new "reality", a new
way of seeing elastic services, by merging views of different stakeholder types involved
and projecting it to a specification language.

27

3.5 Cloud Service Elasticity: Perspectives
Cloud service automatic scalability is a property towards which cloud community evolved
with small steps, from the initial cloud proposal [86] that proposed rapid elasticity.

Elasticity in the cloud is an essential property, defined by stakeholders’ decisions
from design to operation phases. This thesis provides an insight into how we control
services, with focus on stakeholders’ expectations and knowledge. As we will detail in
Chapter 5, we look on how the service behaves and can be controlled from a multi-
dimensional perspective: cost, quality and resources elasticity [36]. This means that we
are not interested only to optimize cost with respect to service performance, but on a
personalized control, depending on the needs of each stakeholder. Different stakeholders
interested in service elasticity have views which depend on the stakeholder type and
his/her interests (e.g., a cloud provider is usually interested in how resources are scaled
for providing the promised quality while a cloud customer can be interested in the relation
between cost elasticity and quality elasticity). Moreover, for controlling complex services,
the control strategy might differ for different parts of the service (e.g., if the data cluster
holds huge amounts of data, and is the most important part of the service, its cost can be
very high when compared to frontend). When dealing with many stakeholders in charge
directly (e.g., service manager, system administrator) or indirectly (e.g., cloud provider)
of the service their service behavior goals need to be reconciled, and the service has to
be controlled towards a common desiderate.

With focus on this multi-perspective view, this thesis offers an insight into challenges
that appear when controlling cloud services, and proposes mechanisms, languages, and
tools for addressing them.

28

CHAPTER 4
Model and Case Study

The focus in this chapter is firstly modeling the significant information that characterizes
a cloud service, and secondly the case study that will be used throughout this thesis. The
information that is important for describing cloud services is analyzed, and a model is
introduced for being able to consistently represent this information. Furthermore, the case
study application is described. The whole case study, or parts of it, is used throughout
the thesis for motivating or evaluating presented work.

4.1 Cloud Service Model

4.1.1 Service Units

Figure 4.1: Emerging cloud services control

Many types of scientific, enterprise and government cloud services have been emerg-
ing [6, 62], which mix a series of component types, e.g., Machine-to-Machine (M2M)
sensors, Web services/containers, and middleware. As shown in Figure 4.1, we can
have, conceptually, a multitude of components running in the cloud, each with various
capabilities. In cloud technologies, on the one hand, each of these components can be

29

re-configured during runtime. On the other hand, the cloud infrastructure consists of
computing resources that are executed and have associated capabilities for creating/mod-
ifying them. These capabilities are offered at runtime as a service, and thus we call them
”service units” [115].

Currently, most cloud control techniques scale only horizontally and at resource level
the service unit (e.g., adding a new VM with the whole stack). However, understanding
service units and their capabilities entails a highly granular control, using various types of
control actions (e.g., change distribution mechanism for load balancing, change heap size,
or change version), and combinations among them. These control actions can facilitate
the fulfillment of a high range of requirements desired by cloud service stakeholders.

Finding the needed configurations for each situation, each artifact, while considering
the complexity of the entire service is of utter importance for ensuring that we have an
elastic cloud service during runtime. These configurations highly depend on the subjective
requirements of the stakeholder for the service s/he has deployed, on the complexity of
the service, and on the offerings of the cloud providers in terms of both software and
infrastructure resources.

4.1.2 Cloud Service Structure

For specifying elasticity requirements at different levels, and then controlling elasticity
at multiple levels we need to know the structure and particularities of the cloud service.
Current cloud service specification standards like TOSCA [98] and CIMI [32] facilitate the
service description prior to the deployment, the description containing all the information
needed for the deployment process. However, as the purpose of these languages is not
to describe the cloud service runtime behavior, they cannot describe mechanisms to
achieve elasticity at the different levels. In order to generate and enforce control decisions
during runtime, an elasticity controller would need to understand multiple types of
information, e.g., information regarding cloud service units and the relation among them,
information on the virtual resources used, or information regarding the cloud service
developer/provider requirements. Therefore, we develop a representation model for our
cloud service control, which overcomes the above-mentioned issues, and uses concepts
proposed in the mentioned standards, like Service Topology or Cloud Service. This section
discusses how various metrics and capabilities are associated to different parts of the
cloud service or of the cloud infrastructure, and proposes a model for cloud service
representation, which at runtime has the form of a dependency graph.

The cloud service description shown in Figure 4.2 is designed to provide to a cloud
service controller with support for managing the cloud service. It holds different types of
information: (i) structural/static information, (ii) virtual infrastructure related informa-
tion, and (iii) elasticity related information. The cloud service can be seen as a graph
composed of all this information, where each of the above concepts are nodes of the
graph, descriptive information regarding the concept being modeled as node attributes
and the relationships among them as edges connecting the various nodes.

The structural information describes the logical units out of which the cloud service
is composed, and the relations between them:

30

Figure 4.2: Linking structural, elasticity and infrastructure system information

• The Cloud Service represents the entire application or system, and can be further
decomposed into service topologies and service units (e.g., a game, a web application,
or a scientific application). The term cloud service that we choose to use is in
accordance with existent cloud service architectures and standards (e.g., IBM Cloud
Computing Reference Architecture [61] and TOSCA [98]).

• The Service Unit [115] represents any kind of artifact, component or service offering
computation and data capabilities (e.g., a web service, or a data analysis service).

• The Service Topology represents a logical grouping of service units that are seman-
tically connected and that have elasticity capabilities as a group (e.g., a tier of a
cloud service, or a part of a workflow).

• The Code Region represents a particular sequence of code for which the user can
have elasticity requirements (e.g., a data analytics algorithm).

The infrastructure related information enables the elasticity controller to be aware
which unit is deployed on which VM, or which cloud provider:

• OS Processes represent any kind of processes belonging to a cloud service that
can be associated either with code regions or with service units (e.g., a web server
process).

• Virtual Machine (VM) and Virtual Storage are any IaaS services of type virtual
machine and respectively storage that are purchased from the IaaS provider.

31

• The Virtual Cluster is a grouping of virtual machines or storage which have different
properties (e.g., availability zone), and is offered as a service by the cloud provider.

This information regarding the infrastructure on which the cloud service is running is
important in deciding how to control the service, since many of the actions depend on
what the cloud provider offers. The above concepts (e.g., OS processes, or virtual cluster)
are used to describe virtual resources in different cloud infrastructures1. This information
regarding the infrastructure on which the cloud service is running is important in deciding
how to control the service, since many of the actions depend on what the cloud provider
offers.

The elasticity-related information facilitates the description of elasticity behavior for
service units, service topologies or entire cloud service:

• Elasticity Metrics represent metrics targeted by elasticity requirements or lower-level
metrics that are used for computing targeted metrics (e.g., cost vs. performance,
cost vs. throughput, or cost vs. availability). Elasticity metrics can be associated
with any cloud service part (e.g., service unit, service topology, or code region).

• Elasticity Requirement, represents any request coming from the user regarding
elasticity of the cloud service (e.g., "the cost should not increase by more than 20%
when the performance increases by less than 5%"). These requirements can be
specified through SYBL and can be associated with any cloud service part.

• Elasticity Capability, represents any action/ mechanism/ operation through which
the elasticity of the cloud service, of the service topology or of service units can
be manipulated (e.g., the elastic reconfiguration of the data service topology for
higher availability, or the elastic creation of new processing jobs for a map-reduce
application).

• Elasticity Relationship, represents any connection between any two cloud service
parts, which can be annotated with elasticity requirements (e.g., the connection
between two service units needs to be of high reliability). We choose using the
relationship term for being in accordance with cloud service specification standards
(e.g., TOSCA).

We populate the graph constructed according to the model presented above with informa-
tion from different sources (e.g., information from cloud providers regarding cloud infras-
tructure, pre-deployment information such as TOSCA description, or post-deployment
associations between the static description and the virtual cloud infrastructure). There-
fore, we do not assume that stakeholders will provide complete information at all the
levels of the cloud service.

1Even though some names might differ, the actual concepts present high degree of similarity. E.g.,
Flexiant2 uses Server for referring to VMs, offering Disks on the storage side, while Google Compute
Engine0 is offering various types of Instances (VMs), and Storage)

32

Figure 4.3: Constructing runtime dependency graph

4.1.3 Runtime Dependency Graph of Elastic Cloud Services

In order to describe the cloud service during runtime, a runtime elastic dependency graph
is used. This dynamic graph captures all the information about the abstract model and
runtime information like elasticity metrics, requirements and deployment topology during
runtime and is constructed by the control system. Figure 4.3 shows how the runtime
dependency graph is constructed. If we take the example of a Web service (the left side
of Figure 4.3), the cloud user views his/her Web service as a set of services (in this case
Service C1, Service C2, and Service C3), some of them grouped together for monitoring
purposes (in this case Service Group which consists of Service C1 and Service C3). The
metrics targeted in userâĂŹs elasticity requirements in this stage are high level metrics,
referring to the quality, cost and resources of services, of groups of services or even of the
entire Web service.

At runtime, the dependency graph is constructed (right part of the figure). Service
instances are deployed on virtual machines, in different virtual clusters or even different
cloud providers, being viewed by the runtime control system through the light of our
model (e.g., Service C1 becomes Service Unit1, possibly having more than one instances
deployed on more than one virtual machines), and the accessible metrics are low level
ones. For the system to control such service it needs to know how to aggregate metrics
for obtaining the higher level ones which are targeted by the user, and how services
are linked together for having the capacity to properly control them. For bridging this
information gap between the user and runtime perspective we use the dependency graph,
which facilitates the control system of the cloud service to take control actions considering
the complete description of the cloud service.

The runtime dependency graph is associated with metrics information from two
views. Firstly, it is associated with metrics from the service user perspective that can
view the cloud service as a Web service and has a high level view concerning metrics.
Next, the graph is associated with metrics from the control system perspective which
views cloud services in a uniform manner using our abstract model and has an initial
low level view concerning metrics, composed of information provided by cloud APIs
and monitoring tools. These two views on metrics are mapped by our elasticity control
runtime, aggregating low-level metrics for computing higher level ones. For instance,

33

availability at service level would be computed from availability at each service part and
the cost is aggregated from static information from the cloud provider on cost per I/O
and VM cost, and the run-time service topology and loads.

4.1.4 Cloud Service Model Mapping on Existing Standards

Using the SOA reference architecture as the underlying architecture for the IBM CCRA
[61], OpenGroup defines cloud services as being similar to SOA services in terms of
governance, integration, interfacing with the consumer and construction. This is why the
services (which are also referenced as cloud applications or artifacts [61]) are shown as
being composed of service units. However, a distinction is made between cloud services
which can be viewed as software, platform, infrastructure or business, and applications
added by cloud service customers on the cloud using any of these services.

For this model we do not make a distinction between cloud services which are offered
to the cloud consumer and the applications deployed on the cloud since both of them
need to be elastically controlled and can be modeled considering the basic unit defining
them, be it service unit, queue, Web service, etc. The cloud services are usually defined
considering the aforementioned architectures and a description language (i.e., TOSCA).
By specifying the application structure and the metrics he/she is interested in, the cloud
service can be translated into our own model since many of the concepts used in our model
(like service topology, service unit, etc.) were inspired from the existent architectures
and languages. However, this mapping from description languages to our abstract model
is out of the scope of this thesis.

4.2 Case Study Application

Figure 4.4: Case study application

The case study application is a Machine-to-Machine Data as a Service (M2M DaaS)
application2, developed as a pilot application for research in Distributed Systems Group,
TU Wien. The application, shown in Figure 4.4, is supports both cloud and IoT
case studies, simulating through the Local Processing Service Topology, IoT

2https://github.com/tuwiendsg/DaaSM2M

34

https://github.com/tuwiendsg/DaaSM2M

gateways which get the data from IoT sensors through an ActiveMQ3 queue. The Local
Processing Service Topology contains a lightweight Java process (i.e., Local
Processing Service Unit) which evaluates the buffered data, and considering its
speed, decides whether it should send it forward to the cloud.

In the cloud, we have an Event Processing Service Topology, which consists
of a HAProxy4 balancer (i.e., Load Balancer Service Unit), and web service (i.e.,
Event Processing Service Unit) which processes information coming from the
Local Processing Service Topology. This data is processed and stored in a
Cassandra NoSQL database cluster5 (i.e., Data End Service Topology). The Event
Processing Service Unit automatically creates new column families, depending
on the structure of the data sent from the Local Processing Service Unit.

This application can be used both partially and as a whole, by simply replacing the
other part of the application with a workload generator. For instance, on application’s
GitHub repository there are three configurations available: (i) the entire application,
(ii) the Event Processing Service Topology and the Data End Service Topology, and
(iii) the Data End Service Topology. Of course, each of these configurations also have
appropriate workload generators, the first one replacing the IoT devices or customers,
the second one replacing cloud customers and Local Processing Service Topology, and
the third one replacing the Event Processing Service Topology. Throughout the thesis
this application is used either as a whole, or in one of the three configurations, in order
to better emphasize the presented scientific contributions.

The application’s behavior can be changed during runtime as follows:

• one can add/remove Local Processing Service Unit artifacts (with the
necessary resources associated)

• change the balancing type on HAProxy

• add/remove Event Processing Service Unit artifacts (with the necessary
resources associated)

• add/remove Cassandra nodes (i.e., Data End Service Unit)

• re-balance Cassandra cluster (i.e., Data End Service Topology)

All elasticity capabilities above are composed of several primitive actions (e.g., for
removing a Cassandra node, one has to first decommission data to other nodes, then
remove network interfaces, virtual machines, or disks), and are modeled according to
the model presented in Section 4.1. Further details concerning this application (e.g.,
elasticity requirements) will be discussed in the following chapters.

3http://activemq.apache.org/
4http://www.haproxy.org/
5http://cassandra.apache.org/

35

http://activemq.apache.org/
http://www.haproxy.org/
http://cassandra.apache.org/

CHAPTER 5
Elasticity Requirements Language

This chapter presents the SYBL language, through which cloud stakeholders can specify
multi-dimensional elasticity requirements (i.e., concerning cost, quality, and resources)
at various levels of abstraction (i.e., code region, service unit, service topology, cloud
service).

5.1 Overview
Although elasticity plays an important role in nowadays cloud computing infrastructures,
it is typically regarded only from the resources elasticity point of view [19, 85, 109].
For instance, Amazon1 provides the autoscale service, which allows the definition of
policies for automatically scaling the service. ElasticHosts 2 and CloudSigma3 are two
of the providers which have, as selling point for their infrastructures, assuring elasticity.
However, elasticity is a multi-dimensional view, such as one can scale up/down the quality
or the cost of the services, rather than just the resources, as shown in recent studies [35].
Unfortunately, little focus has been devoted to defining elasticity and controlling it from
a multi-perspective view and to allowing customers to specify complex and changing
elasticity requirements throughout their service’s execution on a cloud infrastructure.

In our work, we consider elasticity a multi-dimensional issue, defined by the relation
between elastic properties classified into three main dimensions namely cost, quality and
resource. In this view, the user should be able to specify constraints and relations for
the aforementioned dimensions. To this end, our approach is to develop programming
elasticity directives. Programming directives are well known, simple-to-use, and efficient
means of controlling work distribution and communication at runtime. We believe that
similar directives but for controlling elasticity can also hide the complexity of writing
and executing elasticity strategies from the user.

1http://aws.amazon.com/autoscaling/
2https://www.cloudsigma.com
3https://www.cloudsigma.com

37

http://aws.amazon.com/autoscaling/
https://www.cloudsigma.com
https://www.cloudsigma.com

In this chapter, we contribute the detailed design and implementation of SYBL
(Simple Yet Beautiful Language) – a novel language for controlling elasticity in cloud
services – and its runtime system for controlling elasticity in cloud services. SYBL can
be used for three specification levels: cloud service level, service topology level, service
unit level and programming level. The elasticity specification at service level gives a
high level description of user’s preferences regarding the service to be deployed on the
cloud infrastructure. With a higher level of granularity, service unit level elasticity
requirements refer to the service units constituting the service, while programming
level elasticity requirements specification deals with code-level elasticity requirements
description. The service unit level elasticity requirements have been tackled by existing
research work so far [19, 47, 91], but without a clear focus on cloud service elasticity. To
the author’s knowledge, programming level elasticity requirements specification has not
been approached before, mostly due to the complexity of elasticity in cloud computing.

Service developers, software providers, IaaS or PaaS end-users and cloud providers
can use SYBL. This facilitates the control of elasticity of a multitude of services in which
SYBL can be used. For example, a cloud customer can try to achieve trade-offs on cost
and quality, or just try to minimize the price that customers have to pay. On the other
side, SYBL can be used by cloud providers to specify generic elasticity strategies for the
cloud services hosted on their infrastructures. Therefore, SYBL enables many types of
users to specify the elasticity behavior of a service without having to use complex cloud
APIs or monitoring tools.

5.2 Elasticity Requirements

Elasticity is usually referred-to just in terms of resources, without considering implications
from the point of view of other properties a service may have [19,85,91]. When talking
about elasticity we refer to the capacity of a service to change or to be changed according
to the context in which it resides. Elasticity targets not just resources and their capacity
to scale, but also their relations with the different types of costs and quality, and the
capacity of an service to oscillate between different states (each state being described
by resources, cost, quality and their attributes) for obtaining best quality at best price
possible.

For describing what types of elasticity control could be required and the complexity of
elasticity requirements, we examine elasticity requirements from different types of clients.
Let us consider a generic service model of which the structure is given in Figure 5.1.
The service has different service units, including an event processing service unit, and a
data end service topology, being a part of the application described in Section 4.2. Each
service unit consists of multiple processes, which at runtime may need to scale depending
on user requirements that are parameterized by the number of users, the difficulty of
computations and the type of processes. Each process of the service unit has certain
elasticity requirements at deployment. Depending on the user-defined specifications, the
processes can be scaled individually either by creating more process instances in the same
or different virtual machines, or by allocating more or less computing resources.

38

Figure 5.1: Illustrative service structure and its deployment

The elasticity requirements are demands formulated by users, containing conditions
that are necessary for the service to be elastic. Elasticity can be a subjective notion
and depends on the type of users and the granularity at which he/she wants to specify
the service’s elasticity. On one hand, the purpose of elasticity requirements varies from
controlling costs to achieving higher quality or even specifying demands on the relation
between cost, resources and quality, for example:

• Cost-related elasticity requirements: A cloud customer may specify that when the
total cost is higher than 80 Euro, there should be a scale-in action for keeping costs
in acceptable limits.

• Quality-related elasticity requirements: A cloud user may need to monitor different
quality parameters, which should be in acceptable limits. For instance, a software
provider can specify constraints on the response time depending on the number of
users currently accessing the provided software. A developer could specify that the
result from a data analytics algorithm must reach a certain data accuracy under a
cost constraint without caring how many resources should be used for executing
the code of that algorithm.

• Elasticity requirements on the relation between cost and quality: A cloud provider
could specify its pricing schema or price computation policies, for example that
when availability is higher than 99% the cost should increase by 10%.

39

On the other hand, the user needs different granularities at which he/she can specify
elasticity requirements, therefore, having specifications enforced at different levels, as
opposed to usual approaches in resource allocation and reallocation such as to control
resources only at the whole service or service unit level [19,56,91]. To this end, elasticity
control should be supported at the following levels:

• Service level elasticity requirements: elasticity requirements can be applied on the
overall availability of the whole service, aggregating data about different service
units and the communication between them. The service cost refers to the full cost
of operating it: cost of service units’ usage, communication between service units
and storage.

• Service unit level elasticity requirements: the user could specify different require-
ments based on the service unit type, i.e. the nature of requirements for the
computation engine that are different from the requirements for the front-end
service unit. The user can control the cost associated with a service unit, which
means aggregating the cost of processes, storage and communication associated to
the service unit but residing on different virtual machines.

• Programming level elasticity requirements: the user could need to specify that for
some specific code the CPU size and memory should be really high, when the cost
is high. In this case, when specifying requirements about the cost, the developer
refers to the cost for running the specific portion of code.

To support the above-mentioned requirements, we characterize elasticity properties
into a "resources-cost-quality" representation in Figure 5.2 where each axis contains
sub-dimensions of cloud service requirements specification. The user should be given
the opportunity of specifying the service’s behavior, most specifically in what direction
it should automatically scale in different cases in the space defined by the three axes
(resource, cost and quality). Many properties from each of the elasticity dimensions
are strongly interdependent, an elasticity property belonging to one axis being a multi-
dimensional function of properties belonging to the other two axes.

We, therefore, need a novel approach towards elasticity control specifications. Our
approach is to use programming directives that can be used to monitor and specify
different elasticity constraints and strategies. Programming directives for controlling
elasticity should be easy to use. However, they should be generic and extensible.

5.3 SYBL Syntax and Semantics

The initial idea of using elasticity directives for cloud computing is first described in [34],
targeting programming level directives in elastic computing. The directive-based elasticity
specification can substantially reduce the overhead by delegating the control to underlying
elasticity middleware. SYBL is designed for that purpose in order to meet requirements
mentioned in Section 5.2. Before describing in detail how we design and implement

40

Figure 5.2: Common dimensions for service elasticity

directives for elasticity control, we will overview the concepts of elasticity programming
directives in this section.

SYBL enables elastic specifications at different granularities, depending on the user’s
demands and perspective: service, service unit and programming (see Figure 5.1). As
opposed to usual mechanisms of reallocations, where rules (mostly SLAs) are specified
at a per-service level, SYBL provides greater elasticity granularity. At the highest level,
the service level, global characteristics can be described. At the service unit level we can
express a lower level description for black box service units or elasticity requirements
focusing at a level lower than service but higher than code, while the programming level
enables the user to specify elasticity requirements at code level. One may argue on the
need of service level specifications, when the user can specify broadly all the requirements
at programming and service unit level. This service level meets cloud users who may
want to deploy their service as a black-box, or cloud providers who receive the service as
a black box without having any permission to access it. By providing these finer-grained
specification levels, we enable the user to decide where elasticity specifications could or
should be placed, considering service’s elasticity requirements.

The SYBL language, being a directive-based one, is easy to understand and use,
while aiming of high expressiveness. The elasticity specification described in the previous
section would be a strategy "averageCost > 30 Euro: scaleIn". This would simplify the
complexity of using the cloud API and multiple monitoring tools calls to implement
elasticity control as well as enable the multi-dimensional elasticity control, which are
not well supported currently. Using programming level elasticity directives, the user can
focus on defining the strategy and on the appropriate measures he/she should take.

SYBL empowers the user to design elasticity specifications that reference other

41

specifications. After defining a complex constraint, the user can simply specify strategies
about its violation or fulfillment, without having to re-describe it as a condition for the
new strategies. It also enables a hierarchical description of elasticity specifications, for
cases of overlapping constraints or strategies or unclear elasticity descriptions.

5.3.1 Language Constructs

Predefined Functions

SYBL includes several predefined functions which regard two different kinds of informa-
tion: information on the current environment and on the elasticity specifications. The
environment comprises different types of static and dynamic cloud information. When we
refer to the environment, we have to consider the level at which each of these predefined
functions or variables appear. As described before, the information differs in the different
levels of elasticity requirements, and therefore the environment that comprises all the
information at a given moment in time will also differ based on these levels. Accessing
information on the current environment enables the user to be aware of capabilities of
the underlying cloud computing infrastructure and the current service behavior.

Function Description
GetEnv Current cloud infrastructure environment
Violated Checks whether the constraint sent as parameter is vio-

lated
Enabled Checks whether an elasticity specification is enabled or

not
Priority Returns the priority of an elasticity specification

Table 5.1: Example of predefined functions

SYBL contains several predefined functions like GetEnv which can be used to obtain
the current environment (taking also into account the level from which it is called),
V iolated/Fulfilled returns true or false, depending on whether or not the constraint
received as a parameter is fulfilled, the Priority function associates to each elasticity
specification a priority (see Table 5.1). The environment variables refer to general
information like the currently considered compute bid, the cost spent, etc. (see Table
5.2). The environment variables depend on the level at which they appear in elasticity
specifications. The environment variables have at their source more complex function
calls which are used frequently. For example, optimal_cloud_provider variable
hides a call to GetEnv().findOptimalCloudProvider().

Equations 5.1 and 5.2 formally describe the set of variable and functions predefined
in SYBL, which will be later used for the description of monitoring, constraints, and
strategies.

DefFunctions := {GetEnv,Balance, V iolated,Enabled, Priority} (5.1)

EnvV ariables := {compute_bid, total_cost, optimal_cloud_provider} (5.2)

42

Environment variable Description
optimal_cloud_provider The cloud provider that the decision service units

finds to be best suited
compute_bid The current bid for the current cloud provider
total_cost The cost - depends on the level at which variables are

being referenced

Table 5.2: Examples of predefined environment variables

Monitoring Directives

The monitoring directives start with the MONITORING keyword and assign to a new
variable some types of cloud information to be monitored (see Equation 5.3). The
monitoring variable is assigned existing information or formulas constructed for combining
several types of cloud information.

Mi := MONITORING varName = xj |MONITORING varName = formula(x1...xn)
wherexj ∈ c, c ∈ ServiceDescriptionInfo(5.3)

Constraints directives

A constraint describes the limits in which the current service’s description can oscillate.
As shown in Equation 5.4 a constraint directive starts with the keyword CONSTRAINT,
and uses mathematical signs (<,>,>=, <=, ! =,==) for reflecting which values are
admissible. Constraints can be established on a simple type of cloud information or on a
complex type of cloud information determined by formulas (formulai or formulaj).

Ci := CONSTRAINT p ∈ formulai(x) rel formulaj(y)
where x, y ∈ ServiceDescriptionInforel ∈ {≤,≥, 6=,=} (5.4)

Strategies Directives

A strategy describes a recipe to be followed in case the triggering condition becomes true.
A strategy starts with the keyword STRATEGY and usually has the form Condition:Action
or WAIT Condition (see Equation 5.5). The first pattern triggers the execution control
action (e.g., deploy, migrate, delete, scale) specified in case the condition is true, while
the second pattern waits for the condition to be true. The condition can also refer to
fulfillment or violation of constraints, and actions to be taken in those cases.

Si := STRATEGY CASE [Condition : Action]|WAIT Condition | STOP | RESUME|
EXECUTE strategyName parameter1...n

whereCondition : DefFunctions→ {true, false} (5.5)

43

5.3.2 BNF Form of SYBL

SYBL facilitates the description of elasticity requirements at different levels, depending
on the service provider’s knowledge on the cloud service and on his/her perspective: cloud
service, service topology, service unit, elasticity relationship, and programming/code
region level. SYBL is implemented as directives in different languages, enabling easy
description of the requirements, and delegating the actual difficult part of controlling the
cloud service to the SYBL runtime (rSYBL), which is the controller of the cloud service.

Listing 9.1 shows in BNF the constructs of the SYBL language. The monitoring
directives start with the MONITORING keyword and specify new variables to be monitored.
A constraint defines elasticity requirements for the cloud service state, defining the limits
of cloud service behavior. A strategy specifies requirements on the elasticity behavior of the
service. It specifies both control strategies to be enforced under specific conditions, and
WAIT, STOP or RESUME actions for the controller, which can be paused/stopped/resumed
when specified conditions hold. Therefore, with these two constructs at the center of the
SYBL language, constraints and strategies, depending on the service provider/developer
knowledge about the service, we enable various elasticity state and behavior specification
mechanisms, the controllers interpreting the language, detailed in Section 6.3, being in
charge with determining the specific control mechanisms which enable such service states
or behaviors.

Listing 5.1: SYBL in Backus Naur Form (BNF)
Constra int := constraintName : CONSTRAINT ComplexCondition
Monitoring := monitoringName : MONITORING varName=MetricFormula
Strategy := strategyName : STRATEGY CASE ComplexCondition :

a c t i on (parameterLis t) |
strategyName : STRATEGY WAIT ComplexCondition |
strategyName : STRATEGY STOP ComplexCondition |
strategyName : STRATEGY RESUME ComplexCondition

MetricFormula := metr ic | number | metricFormula MathOperator
metr ic | metricFormula MathOperator number

ComplexCondition := Condit ion | ComplexCondition
BitwiseOperator

Condit ion | (ComplexCondition BitwiseOperator Condit ion)
Condit ion := metr ic Relat ionOperator number | number

Relat ionOperator metr ic | Vio lated (name) | F u l f i l l e d (name
)

MathOperator := + | − | ∗ | /
BitwiseOperator := OR | AND | XOR | NOT
Relat ionOperator := <|>|>=|<=|==|!=

SYBL hides the complexity of enforcing a variety of complex calls, to different
APIs (e.g., cloud provider APIs, or bash configurations) with the help of elasticity
capabilities defined in the model in Section 4.1. It facilitates the service provider/developer

44

to focus more on the elasticity requirements that would help his/her application to
behave as desired. For referring to the current used infrastructure or platforms, it
offers several predefined functions and environment variables with pre-defined semantics.
The environment comprises different types of static and dynamic cloud information, its
capabilities (e.g., whether or not it can modify the service during runtime and in what
extent), as well as service-related information. When referring to the environment (e.g.,
through the predefined function GetEnv), the stakeholder needs to consider the level
at which functions or variables appear, since information and extent of control varies
with the level at which the SYBL elasticity requirement is specified. For instance, at
service topology level the service provider/developer would get environment information
regarding his/her service topology, which might be running in a different region than the
rest of the cloud service.

5.3.3 Elasticizing Cloud Services with SYBL Elasticity Requirements

The SYBL language is not strictly linked to any specific implementation language (e.g.,
they can be seen as Java annotations, C# annotations, or Python decorators). Moreover,
the SYBL elasticity requirements can be injected into any cloud service description
language (e.g., TOSCA) or can be specified separately through XML description. Current
language interpretation mechanism is implemented in Java, and supports TOSCA-injected,
XML-based, or Java annotation-based elasticity requirements specification.

For example, Listing 5.2 shows a constraint specified for the service topology with ID
WebService Topology. The elasticity requirement sets the preferred response time
below 450 ms. We define this elasticity requirement as a subtype of Java Annotation,
triggered at runtime when the annotated method is executed, and caught and interpreted
using AspectJ.

Listing 5.2: Example of elasticity requirements as Java Annotations
@SYBL_ServiceTopologyDirective (annotatedEntityID=

"WebServiceTopology " , c on s t r a i n t s=
"Co3 :CONSTRAINT␣responseTime␣<␣450␣ms ; ")

Listing 5.3 shows a strategy for the service topology with ID DataEnd Topology.
The elasticity requirement is a conditional strategy, which enforces the action scalein
for the service topology when both responseTime and the average throughput are above
predefined values.

Listing 5.3: Example of elasticity requirements in XML
<SYBLSpeci f icat ion id="DataEndTopology " type=" Serv iceTopology ">

<Strategy Id=" St1 ">
<Condit ion>

<BinaryRes t r i c t i on Type=" smallerThan ">
<LeftHandSide>

<Metric>throughputAverage</Metric>

45

</LeftHandSide>
<RightHandSide>

<Number>300</Number>
</RightHandSide>

</Bina ryRes t r i c t i on>
<BinaryRes t r i c t i on Type=" smallerThan ">

<LeftHandSide>
<Metric>responseTime</Metric>

</LeftHandSide>
<RightHandSide>

<Number>360</Number>
</RightHandSide>

</Bina ryRes t r i c t i on>
</Condit ion>

<ToEnforce ActionName=" s c a l e i n " />
</Strategy>

</SYBLSpeci f icat ion>

The constraint shown in Listing 7.1 specifies that the cost for the PilotCloudService
should be below 100$. The SYBL elasticity requirements can be easily integrated within
TOSCA policies, and interpreted by the elasticity controller.

Listing 5.4: Example of elasticity requirements as TOSCA Policies
<tosca :Se rv i c eTemplate name=" P i l o tC loudServ i c e ">

<to s c a :Po l i c y name=" St1 " pol icyType=" SYBLStrategy ">
St1:STRATEGY minimize (Cost) WHEN high (ov e r a l lQua l i t y)

</ t o s c a :Po l i c y> . . .

5.3.4 SYBL Runtime

The SYBL runtime takes elasticity specifications and carries out elasticity control at
runtime. In the SYBL runtime, elasticity requirements expressed through SYBL will be
interpreted, processed by the Control Service and then enforced by the use of cloud APIs.
The Control Service is the central part of the runtime system, being the service unit
which handles the actual coordination between the specified state of the service from
user’s perspective, and the current service elasticity state.

The deployment of SYBL runtime system from Figure 5.3 mainly concerns the SYBL
programming directives, which are more difficult to be enforced since they need to be
caught with higher precision, but also applies to service unit and service level directives.
The SYBL Local Interpreter is instantiated within each process containing SYBL directives.
The SYBL Local Interpreter catches the SYBL directives, interprets them and forwards
the requests to the Local Service. The latter is a part of the Control Service, is deployed
and resides on the VM and enforces the different elasticity requirements coming from

46

processes of the same service. The main Control Service communicates with Local
Services and correlates received information for enabling the enforcement of requirements
at service unit level and service level, even when the artifacts or processes do not reside on
the same VM. The Control Service also communicates with cloud APIs and monitoring
tools for having an up-to-date knowledge about the service elasticity state.

Figure 5.3: SYBL based control at runtime

The Control Service uses monitoring tools and cloud APIs for providing the neces-
sary functionality. The multitude of cloud APIs and monitoring tools that elasticity
requirements depend on can seem overwhelming. The need for more than one tool with
which the SYBL runtime interacts is obvious, since a single tool could not provide a
complete description of the cloud infrastructure capabilities and generic mechanisms
of monitoring and interacting with the cloud infrastructure. For instance, Nagios4 and
Ganglia5 are many times used together due to the fact that they compensate each-other
in the information provided and the mechanism of collecting data.

These tools are in a continuous change and this is why the language should not be
bound to a specific cloud API. However, the Control Service should be able to interface

4https://www.nagios.org
5http://ganglia.sourceforge.net/

47

https://www.nagios.org
http://ganglia.sourceforge.net/

to the tools specific to different cloud providers (e.g. via plug-in mechanisms). SYBL
is designed to be extensible: that is, to have the capacity of enveloping new concepts
without much difficulty. SYBL users can easily add metrics and concepts they need to
focus on, the extensibility property being one of the strong points of SYBL language.

5.3.5 Examples of Elasticity Control

The following SYBL examples do not refer to a specific language implementation, the
intention being simply to show that short and simple SYBL elasticity requirements hide
the actual complex implementation and enforcement layers.

Listing 5.5 shows how a cloud provider can actualize the price perceived for the
current service depending on service’s availability so far. The strategy Str1 specifies
the price for the case in which the availability is greater than 98%. The strategy Str2
overrides the previous specification, stating that an availability larger than 99% should
set the price at 300 Euro.

Listing 5.5: SYBL elasticity requirements - cloud provider
#SYBL. Se rv i c eLeve l
Str1 : STRATEGY CASE av a i l a b i l i t y >98% s e tP r i c e (10)
Str2 : STRATEGY CASE av a i l a b i l i t y >99% s e tP r i c e (30)
P r i o r i t y (Str1)<Pr i o r i t y (Str2)

Listing 5.6 shows possible elasticity requirements from the service developer side.
Constraint ServiceUnit2.Cons5 specifies that the CPU usage in the computation engine
should be less than 80% for avoiding performance degradation due to high CPU load.
Constraints Cons3 and Cons4 overlap in the sense that both refer to the costs, but at
different levels: Cons4 specifies that the cost of hosting the Data End Service Unit
should be less than 60 Euro, while Cons3 refers to the cost of hosting the entire service.
The programming level elasticity requirement encompasses the sequence of code, which
for this case can be a data analysis algorithm, setting constraints about data accuracy
and costs, without having specific resource-related requirements.

Listing 5.6: SYBL elasticity requirements - developer
#SYBL. Se rv i c eLeve l
Mon1 : MONITORING rt = Qual i ty . responseTime
Cons1 : CONSTRAINT r t < 2 ms . when nbOfUsers < 1000
Cons2 : CONSTRAINT r t < 4 ms . when nbOfUsers < 10000
Cons3 : CONSTRAINT tota lCos t < 80 Euro
Str1 : STRATEGY CASE Vio lated (Cons1) OR Vio lated (Cons2) :

ScaleOut
P r i o r i t y (Cons1)=3, P r i o r i t y (Cons2)=5
#SYBL. Se rv i c eUn i tLeve l
Serv iceUnitID = Serv i ceUni t3 ; Name= DataEndServiceUnit
Cons4 : CONSTRAINT tota lCos t < 60 Euro

48

#SYBL. Serv iceTopologyLeve l
Serv iceUnitID = Serv i ceUni t2 ; Name= DataEndServiceTopology
Cons5 : CONSTRAINT cpuUsage < 80%
#SYBL. ProgrammingLevel
Cons6 : CONSTRAINT dataAccuracy>90% AND cost <400

These examples show the ease of specifying elasticity requirements with SYBL and the
power that lays underneath the simple description. All these elasticity requirements are
enforced with no effort from the user side, and transformed into calls to different APIs
and tools that help at enforcing these elasticity requirements.

For cases where users (software providers and cloud providers) have a black box
service/service unit for which they need to specify elasticity requirements, elasticity
specifications can be annotated inside the XML-based descriptions of the service/service
unit (e.g. OVF). Listing 5.7 shows how a specific elasticity specification can be integrated
into the already existing sections of the OVF format. The resource ranges can be
integrated into the already existing OVF structure, e.g. the specification bellow states
that the minimum amount for memory (OFV resource type with value 4) should be
greater than 384 MB. The elasticity requirements for quality and cost are added as an
XML structure in the additional section of OVF.

Listing 5.7: Example of elasticity constraints in OVF
<VirtualHardwareSect ion><Item ovf :bound="min ">

<rasd : In s tance ID>0</ rasd : In s tance ID>
<rasd :Re s e rva t i on>384</ ra sd :Re s e rva t i on>
<rasd:ResourceType>4</ rasd:ResourceType>

</Item> </VirtualHardwareSect ion>

5.4 Experiments
We have developed a prototype of SYBL6 containing a partial implementation of its
runtime system. We currently support the SYBL elasticity specifications for processes
residing inside the same VM, the implementation of the Control Service (Figure 5.3)
being in our focus as future work. We support SYBL elasticity specifications as Java
annotations processed at runtime by AspectJ or as SYBL enriched XML descriptions,
which are interpreted and then enforced through the Local Service. We tested the current
prototype on our local cloud running OpenStack7, . In the current implementation,
Ganglia8 provides information on computing resources allocated to virtual machines
and their usage, the number of packets sent and received by each virtual machine, etc.
JClouds 9 is used mainly for scaling the current instances and for controlling them.

6Detailed prototype implementation and further experiments can be found at
http://dsg.tuwien.ac.at/prototypes/SYBL/index.html.

7https://www.openstack.org/
9https://jclouds.apache.org/

49

https://www.openstack.org/
https://jclouds.apache.org/

5.4.1 Experimental Application

The structure of our experimental application is shown in Figure 5.4 and described
in Section 5.2. In our experiments we focus on illustrating the feasibility of SYBL
specifications. The application is composed of the Data End Service Topology
presented in Chapter 8.2, for which we use for generating workload the YCSB benchmark
[22].

Figure 5.4: Application structure used for experiment

For this chapter’s experiments we focus on the Data End Service Topology described in
Section 4.2 and its ability to be dynamically controlled by the SYBL user. As data engine
we use Cassandra - a NoSQL distributed database system, while at the business side we
use the YCSB d benchmark for simulating different types of workload (configuration
(iii) from Section 4.2). The application is mainly composed of a virtual machine hosting
the business end of the application and a cluster of virtual machines hosting Cassandra
nodes. The workloads used represent a combination of read, write, scan and update
operations, actually characterizing real-life applications. For example, a read-oriented
workload can be related to an application focused on photo-tagging, where the largest
part of the operations is reading tags. The user of this service may have the following
elasticity requirements:

• Service level elasticity requirement: the user may need for the overall cost of his
service being hosted for this experiment to be less than 20 Euro

• Service unit level elasticity requirement: the user could specify strategies for the

50

case in which the average number of IOs is too small, this way generating one more
business service unit and therefore more workload

• Programming level elasticity requirement: the user may want for his service data-end
to scale dynamically when running the workload, for keeping the CPU usage in
admissible values.

5.4.2 SYBL Annotations-based Elasticity Requirements

The SYBL annotation (see Listing 5.8) states at service unit level that in case the average
number of IOs is less than 50 service should scale out (strategy St1) for introducing a
higher workload. Strategies St2 and St3 of the service unit level annotation enforce the
two constraints specified, for keeping resource utilization in acceptable ranges.

Listing 5.8: Service unit-level SYBL annotation
@SYBL_ServiceUnitContext (c on s t r a i n t s=
"Co1 :CONSTRAINT␣memory . usage<80%␣AND␣cpu . usage <80%;
Co2 :CONSTRAINT␣memory . usage>20%␣AND␣cpu . usage>20%"
, s t r a t e g i e s=
" St1 :STRATEGY␣CASE␣IO . averageNb <50: ScaleOut ;
St2 :STRATEGY␣CASE␣Vio lated (Co1) : ␣ScaleOut ;
St3 :STRATEGY␣CASE␣Vio lated (Co2) : ␣ Sca l e In ")

The programming level SYBL specification from Listing 5.9 annotates a method executing
workload that generates database operations. The user specifies an elasticity requirement
that the data source should automatically scale and keep the CPU usage on the data
engine at predefined levels. From the three specified constraints just two are always
enabled. This is due to the higher priority of constraint Co3 next to the constraint Co1.
The strategies refer to the constraints giving scaling advises with respect to the data
source for the two mentioned cases. As a result of producing the workload referred by
this method, the database will scale dynamically as we will see in the next subsection.

Listing 5.9: Programming-level SYBL annotation
@SYBL_ProgrammingContext (type=AnnotType .DURING,
c on s t r a i n t s="Co1 :CONSTRAINT␣cpuUsageData␣<␣ 65 ;

␣␣Co2 :CONSTRAINT␣cpuUsageData␣>␣ 30 ;
Co3 :CONSTRAINT␣cpuUsageData␣<␣85␣WHEN␣ cos t ␣>␣70 " ,
monitor ing ="Mo1 :MONITORING␣ cos t ␣=␣ co s t . i n s t an t ;

␣␣Mo2 :MONITORING␣dataThroughput␣=␣ throughput . datasource ;
␣␣Mo3 :MONITORING␣cpuAllocatedData ␣=␣cpu . s i z e . datasource ;
␣␣Mo4 :MONITORING␣cpuUsage␣=␣cpu . usage ;
␣␣Mo5 :MONITORING␣cpuUsageData␣=␣cpu . usage . datasource " ,
s t r a t e g i e s=
" St1 :STRATEGY␣CASE␣Vio lated (Co2) : ␣ sca le InDataSource ;

␣␣St2 :STRATEGY␣CASE␣Enabled (Co1) ␣AND␣Vio lated (Co1) :

51

␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ scaleOutDataSource ;
␣␣St3 :STRATEGY␣CASE␣Enabled (Co3) ␣AND␣Vio lated (Co3) :
␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ scaleOutDataSource ; " ,
p r i o r i t i e s=" P r i o r i t y (Co3) ␣>␣ Pr i o r i t y (Co1) ")

Figure 5.5: Evolution of Data End Service Topology in elasticity space

5.4.3 Results

Based on elasticity directives specified in Listing 5.9, the elasticity runtime behavior of
the data engine is scaled on multiple instances hosting Cassandra nodes, considering the
CPU usage and cost metrics. Figure 5.5 shows the elasticity evolution in terms of cost,
quality and resources, each three-dimensional point being a three-dimensional state of
the data source part of the service. The quality in this case refers to the throughput,
the resources refer to the allocated CPU size while the cost is estimated based on the
resources allocated. The chart shows how based on the SYBL elasticity annotations the
service evolves in the elasticity space, adjusting the resources, cost and quality to the
user’s elasticity requirements. Figure 5.6 gives a view on the evolution of the service on

52

the data engine in terms of number of instances and CPU used: with the increase of
instance number, produced by the SYBL strategies, the CPU usage decreases.

Figure 5.6: CPU usage correlation with the number of VMs used

This experiment reveals SYBL’s strength, enabling users to describe the service
elasticity requirements from the three perspectives: monitoring, strategies, and constraints.
We have shown how SYBL and its runtime system can ensure through the business level
elasticity specifications the elastic control of data sources, the user being able to specify
his/her requirements at the desired granularity, and depending on the data that needs to
be taken into consideration. The results show that the service elasticity has accorded
with specified SYBL directives following accurately the desires of SYBL users.

53

CHAPTER 6
rSYBL : a Framework for
multi-level Cloud Service

Elasticity Control

This chapter presents the rSYBL framework, and mechanisms used by it, for generating
action plans for controlling the elasticity of cloud services. The rSYBL control mecha-
nisms are guided by elasticity requirements, specified by various stakeholders at multiple
abstraction levels, using SYBL.

6.1 Overview

Cloud services can range from web applications, to workflows, and scientific applications
of different types [39, 121, 127]. When experimenting and/or deploying them (ideally,
automatically) on various cloud infrastructures, the cloud service provider/developer
usually has high level, specific goals, e.g., testing reliability or achieving a specific level
of performance with a minimum cost, at different levels of the service, e.g., for the entire
data end or for specific parts of the data end. Current control frameworks mainly focus
on single types of services and enable the provider/developer to only specify resource
level SLA [19,69]. Furthermore, they lack means to interact with the stakeholders for
controlling the elasticity trade-offs, e.g., the service provider cannot change requirements
during runtime [4].

As there are various types of stakeholders interested in cloud-hosted services (e.g.,
cloud service developers and cloud service providers), they have different preferences at
the various abstraction levels. They have coarse or fine grained knowledge about their
cloud services, with regard to various matters (e.g., the provider knows how much s/he
is willing to pay for the entire service to be hosted on the cloud, while the developer
knows quality indicators at different layers of the service). Therefore, there is a strong

55

need for mechanisms to specify multi-level elasticity requirements, customized for various
parts of the cloud service. To address these requirements, we need to develop means for
multi-level elasticity requirements specification targeting high level goals referring to not
only resources but, more importantly, to quality and cost, following the multi-dimensional
definition of elasticity [35]. Moreover, we need to manage both the static description of
the cloud service, and its runtime behavior, which depends on the virtual infrastructure
on which it runs.

We present our approach for multi-level elasticity control that generates action plans
considering the evolution of the service at different levels of abstraction. To this end, we
present our mature rSYBL framework, which is easily extendible, allows stakeholders to
change their requirements during runtime, and supports multiple enforcement mechanisms
(e.g., multiple clouds, and multiple software platforms), multiple monitoring tools, and
planning mechanisms. We run experiments comparing rSYBL elasticity control on two
clouds, one private based on OpenStack1, and the Flexiant2 public cloud infrastructure.
We showcase an experimental evaluation on the importance of multi-level service control,
and analyze the performance of rSYBL under two different cloud infrastructures (i.e.,
OpenStack and Flexiant).

6.2 Managing Elasticity Capabilities from Cloud
Providers

The model above uses the Infrastructure System Information for enabling the elasticity
controller to describe, understand and manage the runtime information and its relation
with service units, service topologies and the entire cloud service. All elements that are
part of the Infrastructure System Information can have associated elasticity capabilities,
described as part of the Elasticity Information. Most cloud providers implement similar
concepts describing the services they offer (e.g., Flexiant2 offers servers, Amazon3 offers
instances, and Google0 offers virtual machine, Amazon offers Elastic Load Balancing
while Google offers Global Load Balancing, although both refer to distributing incoming
requests across pools of VMs). Therefore, we use the concepts presented in the above
model for the Infrastructure System Information, in order to describe the services used
from the chosen cloud providers. Moreover, we can abstract possible elasticity capabilities
for all resources belonging to the Infrastructure System Information, in order to be
referred by other elements of the model or by the cloud service elasticity controller.

All the elements that are part of Infrastructure System Information have associated,
during runtime, (i) the properties that are used by the respective cloud service parts
(e.g., service unit, service topology, or the entire cloud service), and from the Elasticity
Information part, (ii) the elasticity capabilities that are available for the cloud service
controller to manage them, together with the mechanisms for triggering these control
capabilities, and (iii) elasticity metrics that give the controller the necessary information

1http://openstack.org/
2http://www.flexiant.net
3http://aws.amazon.com/ec2

56

http://openstack.org/
http://www.flexiant.net
http://aws.amazon.com/ec2

Figure 6.1: Feedback loop for controlling cloud service elasticity

in order to take control decisions. The elasticity capabilities of the service units, service
topologies and cloud services are composed of a list with elasticity capabilities of different
resources from Infrastructure System Information and are enforced by the cloud service
elasticity controller.

6.3 Multi-level Elasticity Control

Based on the elasticity requirements specified at multiple levels of the service using the
language presented in Chapter 5, the elasticity controller needs to leverage elasticity
capabilities from multiple levels of the cloud service, from infrastructure to service
topologies, and control the service for fulfilling the multi-level elasticity requirements.
Generally, we are using a feedback loop (see Figure6.1), in which the cloud service is the
plant, the controller is our controller, and the sensor is MELA [89], a tool for analyzing
and monitoring cloud services.

6.3.1 Steps in multi-level elasticity control

Considering the model of the cloud service described through the runtime dependency
graph presented in the Section 4.1, we enable elasticity control simultaneously for each
of the described nodes, resulting in a multi-level elasticity control of the described
cloud service, based on the flow shown in Figure 6.2. The service provider/developer
describes his/her cloud service using TOSCA or other description standards. The initial
deployment configuration is specified either by the automatic deployment tool used or
by the service provider/developer if a manual deployment approach is chosen. The
elasticity requirements are evaluated and conflicts that may appear among them are
resolved. After that, an action plan is generated, consisting of elasticity capabilities that
enable the fulfillment of specified elasticity requirements. The action plan is composed
from elasticity capabilities that have associated a series of IaaS calls, configurations, or
bash/scripts executions.

57

Figure 6.2: Elasticity control - from requirements to enforced plans

Figure 6.3: An example of an action plan

Let us consider a simple example shown in Figure 6.3 of controlling the entire cloud
service, e.g., by the system designer. The described elasticity requirements, Co1, Co2,
and Co3 are not conflicting, and elasticity capabilities are searched for fulfilling these
requirements. Possible elasticity capabilities are, for instance, for the case the running
time is higher than 10 hours and the cost is still in acceptable limits to scale-out for
the computation service topology, increasing the processing speed. An example of an
action plan, shown in Figure 6.3 could be ActionPlan1=[[increaseReplication],
[scaleOut, setThreadPool=100]]. This action plan would address performance
issues for the second elasticity requirement Co2, and availability issues for the third
elasticity requirement Co3. Each of the generated elasticity capabilities are mapped into
complex API calls. For instance, increaseReplication elasticity capability would
consist of calls for adding and configuring a new database node and configuring the cluster
for higher replication, while the scaleOut elasticity capability would be the addition of
a new virtual machine, deployment of the ComputationEnd on the new machine, and
necessary calls for the new instance of the service unit to join the computation topology
cluster.

6.3.2 Resolving elasticity requirements conflicts and generating
action plans

We identify two types of conflicts: (i) conflicts between elasticity requirements targeting
the same abstraction level, and (ii) conflicts that appear between elasticity requirements
targeting different abstraction levels. For the first case, sets of conflicting constraints
are identified and a new constraint overriding previous set is added to the dependency

58

graph for each level. In the second type of conflict the constraints from a lower level
(e.g., service unit level) are translated into the higher constraint’s level (e.g., service
topology level), by aggregating metrics considering the dependency graph. Since the
problem is reduced to same-level conflicting elasticity requirements, we use the approach
for the same-level conflicting elasticity requirements and compute a new requirement
from overlapping conditions.

We identify two types of conflicts: (i) conflicts between elasticity requirements
targeting the same abstraction level, and (ii) conflicts that appear between elasticity
requirements targeting different abstraction levels. The process of resolving the first type
of conflicts is presented in Algorithm 8. Sets of conflicting constraints are identified and
a new constraint overriding previous set is added to the dependency graph for each level
(lines 3-10).

Algorithm 6.1: Conflict resolution on the same abstraction level
1 Input: graphi - Runtime Dependency Graph
2 Output: grapho - Single-level Non-conflicting Runtime Dependency Graph
constraints = findAllEnabledConstraints(graphi) for each l in
cloudServiceAbstractionLevels do

3 List<List<Constraint>,Level> confConstraints=
getConflictingConstraints(constraints,l)
graphi.removeConstraints(confConstraints) List<Constraint>
genConstraintsLevel; for each constraintSet in confConstraints do

4 newConstraint=solve(confConstraints)
genConstraintsLevel.add(newConstraint)

5 end
6 graphi.addConstraints(genConstraintsLevel)
7 end
8 return grapho = graphi

In the second type of conflict (see Algorithm 10) the constraints from a lower level (i.e.,
service unit level) are translated into the higher constraint’s level (i.e., service topology
level), by aggregating metrics considering the dependency graph. Since the problem is
reduced to same-level conflicting elasticity requirements, we use the approach for the
same-level conflicting elasticity requirements and compute a new elasticity requirement
from overlapping conditions. In both (i) and (ii) it can be the case of conflict for elasticity
requirements that are targeting different metrics that influence each other (i.e., cost and
availability- when availability increases, the cost increases as well). However, knowing
how one metrics’ evolution affects the other is a research problem itself that we envision
as future work.

For a better illustration we can consider the elasticity requirements in Figure 6.4,
described by the service user/owner, focusing on the execution of service unit Hadoop
Slave given that Hadoop Master is finished doing the "map" part. In this case, cons1
and cons 2 are conflicting directives from the same level of abstraction, and we can

59

Algorithm 6.2: Conflict resolution on the different abstraction levels
1 Input: graphi - Runtime Dependency Graph
2 Output: grapho - Cross-level Non-conflicting Runtime Dependency Graph for
each l1 in cloudServiceAbstractionLevel do

3 for each l2 in cloudServiceAbstractionLevel do
4 if l1 6= l2 then
5 confConstraints.add(findConflicts(l1,l2))
6 end
7 end
8 graphi.removeConstraints(confConstraints)

transl=translateToHigherLevel(confConstraints)
graphi.addConstraints(transl)

9 end
10 return grapho=solveSameLevelConf(graphi)

Figure 6.4: Cloud service and possible conflicting elasticity requirements

compute a new directive by choosing as maximum throughput between x ∗ nbUsers and
50000. On the other hand, we can have the second type of conflicts for the TotalCost
metric: if we consider that Hadoop Master has finished its execution with a cost of
4 Euro, fulfilling cons7 on the service topology would be in contradiction with cons5
since the cost is an aggregation of the cost for the service unit Hadoop Master and
service topology Data Analysis Topology. For resolving the conflicts we would
need to produce a constraint, TotalCost<6, replacing the conflicting ones.

For generating an action plan for cloud service elasticity control, we formulate
the planning problem as a maximum coverage problem: we need the minimum set of
capabilities that help fulfilling the maximum set of requirements. Given the current cloud
service state, we can apply a number of elasticity capabilities from the Elasticity Capability
Set ECS. As described in Equation 6.1, for each elasticity capability enforcement, we
reach a state with a set of requirements fulfilled ECx. We therefore need the minimum
set of capabilities that fulfill the maximum set of requirements. Since maximum coverage
problem is an NP-hard problem, and our research does not target finding the optimal

60

solution for it, we choose the greedy approach that offers an 1− 1
e approximation.

ECS = {EC1, EC2, ..., ECn}
ECx = {Fulfilled(Rx1), ..., Fulfilled(Rxy)|Ri ∈ Requirements} (6.1)

The main step of the greedy approach consists of finding each time the elasticity capability
ECi fulfilling the most constraints and improving the most strategies. After selecting
an elasticity capability in this iterative process, the ECS needs to be recomputed since
the context of the service is changed and the effect of applying ECj will be different
than before applying ECi. For now we consider that the effects of enforcing an elasticity
capability are introduced by the user, our framework presented in Section 5.3.4 offering
mechanisms for easily plugging-in tools that automatically detect the effect of an elasticity
capability.

The greedy approach shown in Algorithm 9 takes as input the dependency graph
and returns the sequence of actions necessary for enforcing the constraints. The main

Algorithm 6.3: Generating Action Plan for Constraint Enforcement
1 Input: G - Cloud Service Dependency Graph
2 Output: ActionP lan vConst = findViolatedConstraints(G) while size(vConstr)
> 0 & lastFixed>0 do

3 for each l in cloudServiceAbstractionLevel do
4 selectConstraints(vConstraints,l) actionSet=evaluateEnabledActions(G,

vConstraints) Action=findAction(actionSet) with
max(constraintsFulfilled -

5 constraintsViolated + strategiesImproved-strategiesWorsened) Add action
Action to ActionP lan vCons = getViolatedConstraints(G,
estimatedEffect(Action))

6 end
7 wait(refreshTime)
8 end
9 return ActionP lan

step of the plan generation loop (lines 2-9) consists of finding each time the action for
fulfilling the most constraints and improving the most strategies. For evaluating this,
we support modeling each action with the manner in which the metrics are affected
by its enforcement (i.e., scale out with VM of type x increases the cost with
200 Euro). Automatically determining the effect each action has upon all the relevant
metrics of all the nodes of the cloud service (e.g., the effect of reconfiguring data end
upon the business end) is an ongoing work. We select actions based on the requirements
that are not fulfilled at the time. For instance, if a cost requirement is violated for a
service topology, we prioritize the actions that we try, giving higher priority to actions
that affect cost for the service topology and for the service units that compose this service
topology (since that cost is being aggregated for computing service topology cost). We

61

Figure 6.5: M2M DaaS with SYBL elasticity requirements

simulate the enforcement of the action by applying the described effects, and compute
the number of fulfilled constraints through action enforcement as the difference between
the number of constraints that are fulfilled and the number of constraints violated. For
instance, increasing replication with a factor of one from the example above would affect
negatively cost and positively performance and availability, resulting in the number
of fulfilled constraints through action enforcement equal to one if cost requirement is
violated and two otherwise.

6.3.3 Enforcing action plans

For controlling the elasticity of cloud services, tools monitoring the elasticity and the
different types of metrics targeted by the cloud service user are necessary. Although at
the moment existing cloud APIs offer only access to low-level resources, elasticity control
of cloud services would also impose the existence of cloud APIs that take into account
the different levels of metrics or the cloud service structure.

For overcoming this situation, we use MELA framework that aggregates low-level
metrics for achieving higher level ones, and use existent resource-level control capabilities
for manipulating higher level quality and cost. For instance, the cost of a service unit
would be composed of the different types of cost associated to each resource associated
with the service unit, like cost depending on the number of virtual machines, cost for
intra-unit communication, or I/O cost. The cloud service cost is computed as the sum of
service unit cost, inter-unit communication cost, and possible licensing costs.

Considering long running services, the stakeholders can evaluate the actions generated,
and revise their requirements on the basis of application behavior. This is possible either
before or after action plan enforcement, rSYBL re-running the elasticity control loop,
starting from the first step described in Section 6.3.1.

62

Setting Flexiant OpenStack
Small instance GB:CPU 2GB:2CPU 1GB:1CPU
Small instance price 6 Flexiant Units/h 3 OpenStack Units/h
Network interface card 0.13 Flexiant Units/h 0.13 OpenStack Units/h

Table 6.1: Experiment settings

6.4 Experiments

6.4.1 Controlling elasticity with rSYBL: M2M DaaS Cloud Service

Considering the machine-to-machine (M2M) DaaS presented in Chapter 4.2, we simulate
clients that send sensor information (i.e., create artificial workload for the Local Processing
Service Topology). Specifically, the M2M DaaS is comprised of an Event Processing
Service Topology and a Data End Service Topology. The Event Processing Service Topology
consists of a Load Balancer Service Unit and an Event Processing Service Unit, that
analyzes and stores data in a NoSQL cluster, in this case Cassandra-based, composed of
a Data Controller Service Unit (i.e., Cassandra seed) and a Data Node Service Unit (i.e.,
Cassandra node).

We deploy the M2M DaaS service on two different cloud infrastructures: (i) using
Flexiant2 cloud provider, we deploy on their public cloud, and (ii) on our OpenStack1-
based private cloud. We simulate data sensors that send information to Event Processing
Service Topology with a python-based load generator that sends random data to our
M2M DaaS. As the two clouds considered are different, they differ in reliability, esti-
mated cost, and in quality characteristics, even when using similar resources. Table 6.1
shows the settings of our experiments in terms of estimated cost. The Flexiant
cloud provider costs vary with the user type, and it is manually set by Flexiant cloud
administrators. For our case, the price for an instance with 2 GB and 2 CPU is 6 units
per hour, where the units can be bought at varying prices (from 11£ per 1000 units to
4700£ per 500000 units). From OpenStack we select an m1.small instance, with 1 GB
and 1 CPU, and compute an equivalent cost of half the number of units from Flexiant
(based on our assumption that OpenStack private cloud units are much cheaper than
Flexiant units due to maintenance costs, e.g., electricity, or administration). The price of
a network interface card, associated by default with each instance is 0.13 units, that we
also set for OpenStack cloud experiment settings.

The SYBL elasticity requirements are associated with the M2M DaaS at different
levels (e.g., cloud service level, service topology level). Since the cloud infrastructures
are different, the requirements have to be adjusted for the providers, as they provide
different performance at different costs. For Flexiant, we set a requirement of keeping
response time less than 8 ms (see Co3 for Flexiant case), while for the OpenStack private
cloud we set the requirement of maintaining response time below the limit of 200 ms (see
Co3 for OpenStack case). As we have equated the costs for the two providers considering
resources provided, we maintain the same cost requirement for the two cases (see Co4).

63

Figure 6.6: Event Processing Service Topology on Flexiant public cloud

Figure 6.7: Event Processing Service Topology on OpenStack-based private cloud

Figure 6.6 shows how the Event Processing Service Topology of the DaaS
cloud service is affected by rSYBL control actions on the Flexiant cloud. An action
enforcement is reflected in a change of cost, the deployment of a new instance with
the necessary configurations being reflected in a cost increase, while the removal of an
instance associated to a unit being reflected in a decrease in cost. We can see that starting
from minimal deployment configuration (1 VM per service unit), rSYBL manages to
find a level of resources configurations where any control enforcements do not affect the
quality characteristics as it was the case in the first part of the experiment, when the
response time has a short peak of 180 ms. For the second case presented in Figure 6.7,
running on OpenStack cloud, the evolution of the service is different since the cost (i.e.,
the actual price that needs to be paid at the end of day) is smaller, while the performance
(e.g., response time for the Event Processing Topology) is as well smaller, rSYBL
having to allocate a lot of resources.

Listing 6.1: Example of elasticity requirements in XML
<?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
<CloudServ ice id=" CloudServ ice ">

<ServiceTopology id=" DataEndServiceTopology ">

64

<SYBLDirective Const ra int s="Co1:CONSTRAINT␣ latency <0.5
ms ;

␣␣␣␣␣␣␣␣␣Co2:CONSTRAINT␣cpuUsage␣&l t ; ␣83␣%" />
<Serv i ceUn i t id=" DataContro l l e rSe rv i ceUn i t " />
<Serv i ceUn i t id=" DataNodeServiceUnit " >

<SYBLDirective S t r a t e g i e s="St3:STRATEGY␣CASE
␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ cpuUsage␣<␣40␣%␣ : ␣ s c a l e i n " />

</ Serv i ceUn i t>
</ServiceTopology>
<ServiceTopology id=" EventProcess ingServ iceTopology ">

<SYBLDirective Const ra int s="Co3:CONSTRAINT␣
responseTime

␣␣␣␣␣␣␣␣␣␣<␣350␣ms" S t r a t e g i e s="St1:STRATEGY␣CASE
␣␣␣␣␣␣␣␣␣␣ co s t ␣<␣ 0 .5 ␣ : ␣maximize (throughput) " />

<Serv i ceUn i t id=" LoadBalancerServ iceUnit " />
<Serv i ceUn i t id=" EventProces s ingServ i ceUni t " >

<SYBLDirective S t r a t e g i e s="St2:STRATEGY␣CASE
␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ responseTime␣<␣360␣ms␣AND␣throughput ␣<␣400␣ :
␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ s c a l e i n " />

</ Serv i ceUn i t>
</ServiceTopology>

</CloudServ ice>

The results of running a sinusoidal workload with a high amount of bursts are shown
in Figure 6.8 and Figure 6.9. For this case, we assume the cost of a VM 0.12$ per hour.
We can see that for the Event Processing Topology the response time decreases
and throughput increases when new instances of Event Processing Service Unit
are added, while the reverse is happening when instances are removed. Since for now the
control algorithm is a reactive one, and we don’t have a structured behavioral information
on the application, actions are not always guaranteed to be the best ones. However, we
envision as future work comparing different control algorithms, and modeling and using
cloud service behavior information. For the Event Processing Topology, control
actions are enforced whenever the constraint Co3 is violated, or the strategies St1 and
St2 are decided to be enforced due to their triggering conditions being true.

Figure 6.9 shows how the cost per client per hour evolves compared to the number
of clients. The cost per client per hour is a complex metric, which tells the elasticity
controller and the cloud service developers or providers how efficiently resources are
allocated to the entire cloud service. We can see that the cost reported to the number of
clients (Cost/Clients/h), on the left axis in Figure 6.9 is kept stable, while the number of
clients increases. This means that the cloud service is elastic, managing to accommodating
a varying number of clients. Towards the end of the workload, when the number of clients
is dropping, we can see a slight increase of Cost/Client/h, which means that even though
we don’t have that many clients, the application still has some re-balancing processes
going on, so rSYBL is not yet able to completely scale back to expected cost for this

65

Figure 6.8: Elasticity Evolution of Event Processing Service Topology of the M2M Cloud
Service: throughput versus cost on Event Processing Service Topology

number of clients.

6.4.2 Analyzing multiple levels of control: YCSB+Cassandra Cloud
Service

In the second part of our experiment, we use a cloud service with two service topologies:
one made from YCSB4 Cassandra clients, the second one being a Cassandra5 cluster,
with two types of service units: Cassandra Seed, the unit acting as the controller of the
cluster (i.e., Data Controller Service Unit), and Cassandra Node (i.e., Data Node Service
Unit). We experiment taking different level of control actions for the Cassandra NoSQL
cluster. For the current experiment, the number of actions available is limited to scaling
in and out at service unit level and at service topology level, by adding/removing virtual
machines hosting data nodes, or by instantiating entire new data clusters, and making
the proper configurations for them to receive requests from the YCSB clients.

Conflicting directives resolution: For overcoming situations where multiple users of
the same service specify elasticity directives we identify conflicting directives and compute
new directives or even eliminate directives in case of complete contradiction. For the
current prototype, we have implemented only contradicting directives resolution by finding
directives from different levels referring to the same metric that are in contradiction with
one another. So, for instance, for the current example constraint "Co1" specifying that
the CPU usage should be greater than 90% is in contradiction with both the underlying

4https://github.com/brianfrankcooper/YCSB
5http://cassandra.apache.org/

66

https://github.com/brianfrankcooper/YCSB
http://cassandra.apache.org/

Figure 6.9: Elasticity evolution of cloud service: cost-per-client-per-hour versus through-
put

Figure 6.10: Cloud service structure and elasticity directives

constraints ("Co4" and "Co7") that specify that the CPU usage should be less than 70%,
respectively 80%. This is true for the fact that CPU usage at service topology level is
aggregated only from CPU usage at lower levels, leading to an impossible situation where
the average needs to be higher than a value, and each of the items of the average are less
than that value. Constraint "Co1" is eliminated because it has the highest number of
directives contradicting with it. After that, the strategies are enforced, and the elasticity
control engine finds the actions healing the violated constraints.

For reflecting the importance of higher level elasticity control in addition to the
obvious low level one, Table 6.2 presents performance and cost data on different Data
Service Topology configurations. We assume each virtual machine costs 1 EUR/hour.
The first important reason for enabling topology level elasticity is that multiple clusters
remove the single-point of failure problem, decreasing the probability of failures that is
imminent for the case of highly intensive workloads with a single Data Controller Service

67

Config. DB Controllers DB Nodes Total execution timeCost
Config1 1 3 578.4 s 0.48
Config2 1 6 472.1 s 0.91
Config3 2 2 382.4 s 0.42
Config4 3 7 372.2 s 0.72

Table 6.2: Cost and execution time for Data Service Topology units

Config. DB Con-
trollers

DB
Nodes Workload Total execution time Cost (Units)

Config1 1 3 Workload1 44 min 9.13
Config3 2 2 Workload1 28.4 min 5.88
Config1 1 3 Workload2 >3h+connection failures > 37.56
Config3 2 2 Workload2 102.75 min 21.53

Table 6.3: Cost and execution time: comparison on different workloads

Unit.
To show the importance of higher level elasticity control, Table 6.3 presents perfor-

mance and cost data on different Data Service Topology configurations and different
workloads. We use two update-heavy YCSB workloads6, the Workload 1 having ten
times less operations to be executed than Workload 2. We assume the OpenStack costs
in experiment above (see Table 6.1).The first important reason for enabling topology level
elasticity is that multiple clusters remove the single-point of failure problem, decreasing
the probability of failures, imminent for the case of highly intensive workloads with a
single Data Controller Service Unit. We show how 2 clusters (Config 3) can decrease the
final cost as opposed to a single cluster (Config 1), and more importantly that it can
avoid errors due to overloading. For instance, for the more intensive and longer workload,
Workload 2, a single Cassandra cluster, although with multiple virtual machines for
the slave component, reaches a point where it cannot serve requests anymore, when only
the service unit level control is enabled.

Therefore, enabling various types of actions, and creating controllers that differentiate
among them taking into consideration the effect they have not only on the current part
of the cloud service that is being reconfigured, but on the overall cloud service and
on various other parts as well, can greatly improve cloud services elasticity. With the
capability to control service’s elasticity both at service unit level and at topology level,
rSYBL can improve the elasticity control of cloud services both from the performance
and from the cost perspective.

Figure 6.11 shows how the elasticity control engine can scale the Data Service Topology
both at service unit and at service topology level, when directives shown in Figure 6.10
require such actions. Considering an initial configuration of a single cluster containing
one controller and one simple node, the elasticity control engine takes firstly a scale out

6https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

68

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

Figure 6.11: Metrics (CPU usage, cost and latency) and elasticity actions for service
units in Data End Service Topology

action at service unit level for fixing the broken constraint "Co4". After that, it takes a
new scale out action for topology level, due to the violated constraints "Co4" and "Co7".

6.4.3 rSYBL performance analysis

rSYBL needs a dedicated VM, but can be collocated with other service management tools
like MELA. The overhead of running rSYBL is CostVM + CostNetwork_eGress, where
CostVM is the cost of a VM for current cloud provider, given that we know approximately
how long we would like the service hosted, and we can choose a subscription-based cost
schema for this VM, and the cost of communicating among regions belonging to the same
cloud provider CostNetwork_eGress, for the case we have a multi-region deployment. For
the stable workload case, this cost is not justified since we have no need for elasticity,
as we can create the optimum static configuration and use it. In the case the workload
is variable, it makes sense to try to reduce the bigger cost that usually are connected
with virtual machines and storage disks. Moreover, as rSYBL also enables adaptive
re-configuration of different service units, or service topologies, depending on the workload
and elasticity requirements, rSYBL control can produce even better results than using
the over-provisioning strategy.

Controlling the service by using rSYBL empowers the user to specify the requirements
s/he is interested in, at the level and for the unit that fits best, since most of the times,

69

Figure 6.12: Requirements fulfillment on Flexiant and OpenStack

the user knows best what is his/her budget, and what are is the desired quality. As
rSYBL’s main goal is fulfilling user’s requirements, we analyze the degree with that
rSYBL manages to fulfill user requirements, for the M2M DaaS described in Section
6.4.1. We compare rSYBL control outcome with two stable cases that are manually
configured for this experiment: (i) under-provisioning strategy (fixed configuration with
minimum resources used with rSYBL - 4 VMs), and (ii) over-provisioning strategy (fixed
configuration with maximum resources used with rSYBL - 14 VMs in Flexiant and 17
VMs in OpenStack). When computing the cost for the case of running with rSYBL
control strategy, we factor in the cost for rSYBL to run as part of the M2M DaaS
cost. We want to understand whether and how much the elasticity performance impact
affects requirements (i.e., each control action initially decreases performance, and needs
a ’cool-down period’ [49]).

Analyzing the comparison from Figure 6.12, we can see that rSYBL is better than
both under-provisioning and over-provisioning strategies, on both cloud providers used.
In the over-provisioning case, while most of the times the response time requirement
is fulfilled, the one on cost (Co4) and the one on data end CPU usage are not fulfilled
(Co2), due to the fact that we have a continuously high number of resources for the
Event Processing Service Topology, for which the maximum resources of the
Data End Service Topology allocated by rSYBL in Section 6.4.1 are not enough.
For the current framework, rSYBL takes only reactive actions, reason for which the cases
in which one requirement is violated is quite large. We see as future work incorporating
into rSYBL predictive decision making, thus decreasing the number of cases in which
requirements are violated.

70

CHAPTER 7
A Complex Use-Case for rSYBL

Elasticity Controller:
Heterogeneous Control for Cloud

Services

This chapter focuses on a complex use case, consisting of a service deployed on mul-
tiple heterogeneous clouds. Challenges are highlighted, and rSYBL and its model are
extended for being able to control the elasticity of complex services deployed in multi-cloud
environments.

7.1 Overview
A considerable amount of work has been put into cloud service control, focusing on
controlling cloud services of various types, or meeting various types of stakeholder
requirements [3, 94, 106]. Next to these challenges, some services might need to be
distributed in several types of clouds, each with different characteristics (e.g., mini-cloud
for managing smart buildings in combination with a public cloud). Within this multi-
cloud configuration, the cloud service elasticity should be controlled as a whole, for
fulfilling stakeholder (e.g., service developer or service provider) requirements, possibly
at multiple abstraction levels of the service.

In this case, several challenges need to be tackled when designing the control for the
services executed across multiple clouds. First of all, the programming interfaces offered
by various cloud providers can differ both from the point of view of the services offered,
and from the perspective of the protocols used (e.g., Flexiant’s FCO1 REST API, or
OpenStack2 python or java-based libraries). Secondly, the run-time control capabilities
offered by different clouds have different enforcement time and results (e.g., in mini-clouds

71

a VM spawning action usually takes much longer than in a public cloud). In this context,
the user needs an elasticity control with an end-to-end view of the multi-cloud service,
understanding different levels of service abstraction, as opposed to current control flows
where the user needs to deploy separate controllers on each cloud, and treat the distributed
service parts as different services. A controller offering this end-to-end control perspective
has to analyze various information types characterizing the multi-cloud environment, and
evaluate the impact upon the rest of the service when enforcing an action. For instance,
in the context of smart city services, when releasing virtual resources in a smart building
cloud, e.g., in sensors’ low-activity period, a controller should consider the impact that
this would have on the rest of the service possibly deployed on a public cloud.

To address challenges above, we propose mechanisms of controlling the service from
an end-to-end perspective, transparent to users from the point of view of the clouds
heterogeneity. To this end, we model details specific to multi-cloud deployments in
order to base our mechanisms on a common representation of the highly heterogeneous
services offered by cloud providers. For supporting controlling services from an end-to-end
perspective, we focus on modeling relationships among multi-cloud distributed service
units, to be used as a basis for elasticity control of the cloud service.

The contributions presented in this chapter are the following: (i) a model for multi-
cloud deployed services, with focus on relationships that occur among service parts, (ii)
new mechanisms for relationship-driven control of multi-cloud services.

We extend our rSYBL [24] controller with proposed multi-cloud mechanisms, and
show that by specifying simple, high level requirements, stakeholders can have elastic
services deployed on multiple, heterogeneous clouds controlled at runtime with rSYBL
elasticity controller. Moreover, we emphasize the extensibility of our framework that can
be easily customized to support a variety of clouds and enforcement APIs.

7.2 Motivation, Background and Related Work

7.2.1 Motivation

Let us consider a Machine-to-Machine Data as a Service (M2M DaaS), for a smart city.
The smart city has millions of sensors in each building, and a group of buildings sending
their data to a local mini-cloud (e.g., NuvlaBox3, or Ubuntu Orange Box4) in which the
M2M local processing units are deployed and to which the sensors send data (left side of
Figure 9.1). The data analyzed locally is sent to a public cloud containing the rest of the
M2M service (right side of Figure 9.1) for the higher availability of public clouds and due
to the fact that smart building mini-clouds can store a limited amount of data. The M2M
service needs to be controlled both in the local mini-clouds and in the public one, in order
to obtain the best possible performance at the best possible cost. To this end, user’s

1http://www.flexiant.com/flexiant-cloud-orchestrator/
2http://developer.openstack.org/
3http://sixsq.com/products/nuvlabox.html
4http://www.ubuntu.com/cloud/tools/jumpstart-training

72

http://www.flexiant.com/flexiant-cloud-orchestrator/
http://developer.openstack.org/

Figure 7.1: Motivating scenario

(i.e., any service stakeholder) requirements for an elasticity controller play a major role,
stating the trade-off with regard to cost, quality and performance. We envision that the
users would describe requirements in a cloud agnostic manner, at a high level, considering
application level elasticity metrics, and all the rest is being handled by the controller.
Given that the M2M service is deployed on multiple clouds, controllers would need to
use various programming interfaces and service elasticity capabilities offered by different
types of cloud providers. Moreover, due to the fact that users need an end-to-end control
of the service, the controller has to understand the relationships among service parts
deployed on different clouds, and control them accordingly.

To address above-mentioned challenges, we propose a model representing multi-cloud
service information for controllers to understand elasticity capabilities specific to different
cloud providers. Based on this model, we design control mechanisms using common
methods of enforcing control capabilities, and focusing on relationships existent in multi-
cloud services. Having as central focus service stakeholders, we are not interested in
providing standardized access to federated clouds, but quite the opposite: we want to
help them profit from the current heterogeneity for creating multi-cloud elastic services
within nowadays dynamic cloud context. To achieve this, the provider/developer should
be relinquished from the burden of dealing with cloud-specific control, or with resource
models on each cloud (e.g., gateways control versus normal virtual machine control).

73

Figure 7.2: Cloud service model

7.3 Multi-cloud elasticity control

For enabling the multi-cloud control described in our motivation scenario, the controller
needs to analyze multi-cloud service information, from capabilities of each service part,
each infrastructure element, to each measured metric. For instance, for the case of
the M2M DaaS service in Figure 9.1, gateways’ elasticity capabilities and deployment
structures from mini-clouds would differ from deployment stacks and elasticity capabilities
of web services deployed in the public cloud. Therefore, clouds heterogeneity results in a
diversity of the cloud services, not only of the supporting infrastructures.

This reveals a two-fold challenge: (i) from a conceptual perspective, we need to
enable the user to have an end-to-end view of the service, (ii) from a technical point

74

of view, the controller has to understand a variety of primitives and protocols from
a variety of providers. For addressing the first challenge, we model the multi-cloud
specific information by extending our model for single-cloud services [24]. We address the
second challenge in Section 7.3.2, showing how we use the modeled information to enable
dependency-aware multi-cloud service control and how we abstract elasticity capabilities
from primitive operations that are available for the different virtual resources offered by
cloud providers.

7.3.1 Multi-cloud Service Model for Elasticity Control

In our control approach described in Section 9.2, the cloud service is modeled together
with the infrastructure in which it runs, that is single-cloud. For multi-cloud service
control, we extend the model used in the single cloud control (Figure 7.2, gray background)
for being able to better represent the infrastructure, from virtual machine to software
artifacts and their placement and configuration (Figure 7.2, white background).

For understanding the cloud infrastructure used by the service during runtime, and
the different resources from different clouds that are used to host the service’s software
stack, we introduce the following virtual infrastructure concepts:

• Virtual Data Center – the data center where the cloud service is deployed (e.g.,
Amazon EU location 1)

• Virtual Cluster – a group of resources physically isolated from the rest of the
resources (e.g., the resources for a specific company)

• Disk – a disk instance associated to a VM, or shared among multiple VMs

• Virtual Network – network associated to a virtual cluster

• Container – any type of software having the property of being used by others as a
container (e.g., Docker5, web server, gateway, or data store).

• Artifact – any type of atomic software (e.g., web service, sensor, or data set).

Each of the service parts described in the structural information (upper left side
of Figure 7.2) have associated elasticity information (upper right side of Figure 7.2),
such as Elasticity Metrics, Elasticity Requirements, or Elasticity Capabilities. The latter
represents complex actions exposed by service parts, composed of Elasticity Capabilities
exposed by infrastructure elements described above, to which we refer as Primitive
Operations. We distinguish among them since primitive operations can be linked to
an actual operation made by the elasticity controller, e.g., API call, while elasticity
capabilities are more abstract actions that are composed of several primitive operations
(e.g., a scale in elasticity capability for the service unit level can be a decommissioning
primary operation achieved by the software/artifact level and a remove VM primary

5http://www.docker.com/

75

Figure 7.3: rSYBL multi-cloud control framework

operation achieved at the virtual machine level). Enforcing elasticity capabilities is
equivalent to the enforcement of the associated primitive operations, considering their
dependencies.

For understanding how different service parts interact, we introduce the following
elasticity relationship types (bottom of Figure 7.2), as subtypes of Elasticity Relationships:

• Single way load dependency – a change in the antecedent load causes a similar
change in consequent load

• Two way load dependency – a change in the antecedent or consequent causes a
similar change in the other

• Instantiation dependency – for the instantiation of the consequent the antecedent
should to exist. This relationship can also contain other properties, like the data
needed to be transferred among the two.

• Data dependency – the specified data should to be transferred among the antecedent
and the consequent.

Relationship concepts above are used in order to connect two parts of the service,
regardless on whether or not they are in the same cloud. All the above concepts are
represented at runtime through a runtime dependency graph, which has as nodes the
concepts and as edges the relationships presented in the model (bottom of Figure 7.2), and
that is used by the elasticity controller to take control decisions. We obtain relationships
above from service profilers that have analyzed the execution of respective services [90],
or from other various service stakeholders. The model contains sufficient information for
the controller to understand the complex implications of an enforcement of an elasticity
capability on one end, on the rest of the cloud service hosted in other cloud infrastructures.

7.3.2 Multi-cloud Service Elasticity Control

Based on the model above, we propose mechanisms to control the multi-cloud service,
based on two major issues that rise out of the multi-cloud setting: (i) mechanisms to
control service parts relationships/dependencies in multi-cloud (Section 7.3.2), and (ii)
mechanisms to manage primary operations’ heterogeneity (Section 5).

76

Control mechanisms based on service part dependencies in multi-clouds

For the elasticity control of a multiple heterogeneous clouds deployed service, we evaluate
the runtime dependency graph modeling the various types of information (e.g., structural,
elasticity, or infrastructure) with regard to the cloud service. The major difference in
the control mechanism rests in the way in which we evaluate the actions to be enforced.
For the multi-cloud scenario, we evaluate the consequences of the enforcement of one
elasticity capability on the rest of the parts of the service, possibly deployed in other
cloud infrastructures.

Algorithm 7.1: Multi-cloud elasticity capability analysis
1 Input: evalEC - evaluated elasticity capability, sp - targeted service part, graph -
current dependency graph

2 Output: resultedECs - Elasticity capabilities to be enforced with evalEC
initialReq=evaluateRequirements(graph) initECs =
evaluateInstantiations(evalEC,sp,graph) for each service_part in spsToEval
ecs.add(node.evaluateECs()) simulateEnforcementOfECs(initECs)
spsToEval.add(simulateImpact(graph.getDataRel()))
spsToEval.add(simulateImpact(graph.getLoadRel()))
simulateEnforcementOfECs(ecs) if
evaluateEnforcement(dependencyGraph,initialReq) then

3 resultedECs.add(initECs) resultedECs.add(ecs)
4 end
5 return resultedECs

Algorithm 5 shows the evaluation procedure for an elasticity capability considered by
our control mechanism. When choosing an elasticity capability to be enforced, as part of
the control mechanism, we evaluate the elasticity relationships associated with the target
service part. We determine the instantiations necessary with the enforcement of evalEC
(Line 2-3 of Algorithm 5) and simulate their enforcement on graph for preparing it for the
other relationship evaluations. For the simulations we construct a new dependency graph,
in which the implications of the relationships hold. We use simulateImpact function to
simulate on the dependency graph graph the impact reflected by elasticity relationships
(Lines 4-6 of Algorithm 5), by modifying metric values or used resources accordingly. We
analyze the dependency graph and evaluate whether compensation elasticity capabilities
should be enforced for overcoming the effect produced by our initial capability. At the
end of this process we have a list of elasticity capabilities resultedECs to be enforced
for fulfilling user’s elasticity requirements, which results in an end-to-end control of the
multi-cloud service.

Heterogeneous services control

Considering we have a service deployed across a heterogeneous multi-cloud environment,
services offered by providers are highly diverse, both in their structure and in the elasticity

77

capabilities offered. As shown in Figure 7.3, rSYBL can control several types of objects, in
different software stacks from gateways and sensors to Docker based stack with several web
server containers containing several web services, which expose a variety of capabilities
as shown in Table 7.1.

Virtual infrastructure
element

Elasticity capabilities

Bash Process change priority, kill process
Gateway create, delete, add data repository
RabbitMQ create, delete, modify policies, change environment variables
Data Repository create, delete, change access rights, create new sub-repository
Tomcat create, delete, tomcat manager-based runtime deployment and

config
Docker run new image/artifact
Disk resize, attach
Virtual Machine create, delete, change number of cores, change RAM

Table 7.1: Examples of elasticity primitive operations

Table 7.1 shows different elasticity primitive operations associated with various
artifacts and virtual resources, which can be used simultaneously in a multi-cloud
deployment. An elasticity primitive operation can be seen as an atomic operation to be
executed on an infrastructure-related or software related element (e.g., virtual resource,
or artifact). As we can see in this case, the nature of these primitives is quite diverse,
from simple creation/deletion, to reconfigurations, or policy changing, different types of
artifacts having different manner of enforcing each primitive.

After the deployment of the service on the cloud infrastructures is done, the deployment
stakeholder (e.g., the deployment tool, or the developer doing a manual deployment)
describes the elasticity capabilities of each service unit and service topology, as a sequence
of primitive operations from the ones previously defined and the already existent default
ones. These abstract elasticity capabilities associated to service parts are enforced as
ACID transactions, with roll-back of the already enforced primitives if one of them
fails. For ensuring the ACID property of an elasticity capability, its enforcement is first
prepared through the evaluation of the enforcement possibility for each of the primitive
operations that compose the capability. Moreover, the service developer can specify
relations among primitives, due to the fact that in some cases a preparation of the main
primitive operation is necessary, e.g., in scale in actions, a decommissioning is necessary
in order to preserve the information from the disappearing virtual resource.

78

Infrastructure Element Primitive Parameters
OpenStack VM create/remove IP
Flexiant VM create/remove UUID
Flexiant Nic create/remove/attach UUID
HAProxy leave/join load balancer IP, Load Balancer Config
Cassandra leave/join cluster IP, Data Controller Config

Table 7.2: Currently supported primitives

7.4 Prototype and Experiments

7.4.1 Prototype

We implement the above mechanisms as an rSYBL [24] extension, for managing the
interaction simultaneously with different types of clouds, which host different types of
artifacts. The multi-cloud rSYBL controller is able to control, based on the dependency
graph that follows the new model described in Section 7.3.1, cloud services composed of
service parts distributed over multiple, heterogeneous clouds.

Figure 7.3 shows the multi-cloud rSYBL elasticity controller, having components
deployment over different clouds, and their communication. Whenever a direct commu-
nication is not possible (e.g., a private cloud API is not publicly accessible), we deploy
an rSYBL Cloud Orchestrator to which the cloud API calls and communication with
Local rSYBL Controller are delegated. Although the rSYBL controller receives all the
elasticity requirements, some are delegated to the rSYBL Local Controller in case the
user defines local (e.g., code region) requirements, most of the times they would refer
local metrics and local enforcement mechanisms (e.g., manage thread pool). Given the
service description given by the service stakeholder, including its structure, the possibility
of combining different artifacts and containers, and the capabilities for each artifact and
container, and the monitoring information, rSYBL evaluates the dependency graph and
generates a sequence of elasticity capabilities to be enforced.

The rSYBL framework currently supports a set of default services, with their primitive
operations: OpenStack6 private clouds, Flexiant7 public cloud infrastructures, Salsa
orchestration and configuration tool part8, Cassandra9 NoSQL database, HAProxy10 load
balancer. To this, the service developer can add their own service primitives, by adding
a description of those primitives on the primitives configuration file, and implementing
an rSYBL plugin that should be called when those primitives need to be enforced.

7.4.2 Experimental application end-to-end view

For our experiments we use the M2M DaaS, presented in Figure 9.1. We simulate
the mini-clouds gateways (in the left part of Figure 9.1) through virtual machines

6http://www.openstack.org/
7http://www.flexiant.com/
8http://github.com/tuwiendsg/SALSA
9http://cassandra.apache.org/

10http://www.haproxy.org/

79

http://www.openstack.org/
http://www.flexiant.com/
http://github.com/tuwiendsg/SALSA
http://cassandra.apache.org/
http://www.haproxy.org/

deployed on our private OpenStack cloud, containing sensor open data stores with
sensor information from police cars. The sensors send data to an ActiveMQ11 queue,
which our LocalProcessingUnit evaluates and decides whether is urgent to send
it. The data is either sent on an on-demand basis, or as bulk in periodic inter-
vals, to the EventProcessingTopology, composed of a LoadBalancerUnit
and an EventProcessingUnit, which further analyzes and stores the data in a
DataEndTopology, composed of a DataControllerUnit and a DataNodeUnit.
The EventProcessingTopology and DataEndTopology are deployed on Flexi-
ant’s public cloud infrastructure. The two clouds are heterogeneous, providing different
services, different control primitives, and interaction protocols.

Within this setting, we use our multi-cloud rSYBL controller to manage the M2M
DaaS deployed over the two cloud infrastructures. The elasticity capabilities available
for the M2M DaaS service parts are scale in and scale out, each being composed of a
different sequence of primitives from the ones specified in Table 7.2 (e.g., scale in for
EventProcessingUnit is composed of a "leave load balancer" for HAProxy, followed
by a removal of Nic and a removal VM Flexiant primitive). For control primitives
enforcement in the two cloud infrastructures, rSYBL uses Salsa12 for the OpenStack
private cloud, and Flexiant Cloud Orchestrator (FCO) for the case of the Flexiant public
cloud, which differ in the protocols used and information required for the control.

For controlling the service on multi-clouds, the M2M DaaS stakeholder describes
SYBL elasticity requirements, which are interpreted and enforced by rSYBL:

• M2MDaaS–STRATEGY CASE avgBufferSize < 5: minimize (cost)

• LocalProcessingUnit–CONSTRAINT avgBufferSize<50

• EventProcessingUnit–STRATEGY CASE responseTime < 40ms AND throughput <

20ops/s: scalein, CONSTRAINT responseTime<50ms

Moreover, the stakeholder adds a relationship that connects the two parts of the
service deployed on multiple clouds, as shown in Listing 7.1, saying that we expect that
whenever a huge amount of data is accumulated in the LocalProcessingUnit we
would have huge amount of requests and vice-versa for the case of small amounts of
data. This kind of information can be obtained from existing service analytics tools (e.g.,
Moldovan et al. [90]).

Listing 7.1: Relationship description
<Re la t i on sh ip type="Load " id=" LoadRelat ionship ">

<source>Loca lProces s ingUni t</ source>
<ta rg e t>LoadBalancerUnit</ ta r g e t>
<metr icSource>bu f f e r S i z e</metr icSource>
<metr icTarget>reque s t s</metr icTarget>

</Re la t i on sh ip>
11http://activemq.apache.org/
12http://github.com/tuwiendsg/SALSA

80

http://activemq.apache.org/
http://github.com/tuwiendsg/SALSA

Figure 7.4: Multi-cloud control snapshot

Using the above information (e.g., M2M DaaS structure, associated primitives, require-
ments and relationships among service parts, and monitoring information from MELA13)
that is represented in our runtime dependency graph, rSYBL generates and enforces when
needed elasticity control plans containing sequences of elasticity capabilities for ensuring
the fulfillment of elasticity requirements. The workload for our experiment consists of
addition/removal of gateways with sensors, each gateway containing 3 to 15 sensors.
Figure 7.4 shows the monitored M2M DaaS, with the metrics monitored for each service
topologies and service units that belong to the service. Using the mechanism described in
Algorithm 5, rSYBL decides that even though the constraint targeting responseTime
is currently fulfilled, a new instance of LocalProcessingUnit, would increase the
load, thus decrease the response time. For this, a compensation elasticity capability is
added to the control plan: scale out EventProcessingUnit on Flexiant using FCO.
Figure 7.5 shows the estimated cost associated to the private cloud, and cost associated
to the public cloud, given that the buffer size has the shown peaks, due to the periodic
sending of data to the public cloud. An increase of cost is associated with an increase of
resources used by the M2MDaaS, and we can see that both on the public and private
clouds the load intensity is followed. This way, the public cloud resources are allocated in
advance to the load peak, for ensuring better elasticity and smaller cost on the M2M DaaS

13http://github.com/tuwiendsg/MELA

81

deployed on the public cloud, without having lags in provisioning sufficient resources.

Figure 7.5: Multi-cloud executed M2M DaaS cost in time

Figure 7.6 shows the different amounts of time needed for enforcing elasticity capabil-
ities on service units deployed on the two clouds. In this context, it is worth mentioning
that Salsa deploys all artifacts needed on demand, while for Flexiant we use machines
with needed software pre-installed. However, in both cases configurations are made
on-demand, and the majority of the time is spent on creating and configuring the virtual
machines. Therefore, we can affirm that in the case of Flexiant public cloud, the expected
time for elasticity capabilities is much more reliable, with low standard deviation. In our
experiment that lasted for 4 hours, in which each elasticity capabilities were enforced
more than five times, the scaling out on Flexiant had a standard deviation of 0, while
the scale in elasticity capability had a bigger deviation in average time, 2.82, due to the
decomissioning (i.e., leaving the cluster) action that depends on the state of decomissioned
unit.

We have shown that rSYBL is able to control an M2M service deployed on two different
clouds, considering the end-to-end service perspective. For M2M service stakeholders,
this is a step towards achieving better end-to-end service elasticity control, this way
ensuring control for services possibly composed of multiple LocalProcessingUnits
deployed over multiple mini-clouds.

82

Figure 7.6: Multi-cloud control sensitivity

83

CHAPTER 8
Evaluating Cloud Service

Elasticity Behavior

This chapter presents a novel methodology and a framework for estimating cloud ser-
vice elasticity behavior. To estimate the cloud service behavior, we collect information
concerning service structure, deployment, service runtime, control processes, and cloud
infrastructure. Based on this information, clustering techniques are utilized to identify
cloud service elasticity behavior, in time, and for different parts of the service. Knowledge
about such behavior is utilized within a cloud service elasticity controller to substantially
improve the selection and execution of elasticity control processes. These elasticity be-
havior estimations are successfully being used by our elasticity controller, in order to
improve runtime decision quality.

8.1 Overview

With the wide adoption of cloud computing across multiple business domains, stakeholders
seek to improve the efficiency of their complex cloud services, while also if possible to
reduce costs, by acquiring on-demand virtualized infrastructure and, at the same time,
benefiting from a pay-as-you-go price model offered by cloud providers. The key technique
to achieve these goals is elasticity [1, 35] – the ability of cloud services to acquire and
release resources on-demand, in response to runtime fluctuating workloads. From the
customer perspective, resource elasticity can minimize task execution time, without
exceeding a given budget. From the cloud provider perspective, elasticity provisioning
contributes to maximizing their financial gain while keeping their customers satisfied and
reducing administrative costs. However, automatic elasticity provisioning is not a trivial
task.

To date, the user utilizes elasticity controllers, offered as a service, by either cloud

85

providers (e.g., Amazon Auto Scaling1) or third-party vendors (e.g., Rightscale2), to scale
his/her distributed cloud services. A common approach, employed by many elasticity
controllers [2] [128], is to monitor the cloud service and (de-)provision virtual instances
for the service when metric thresholds are violated. This approach may be sufficient
for simple cloud services, but for large-scale distributed cloud services with complex
inter-dependencies among components, we need a deeper understanding of their elasticity
behavior in order to select and enforce suitable elasticity control processes. For this
reason, existing work [124] [128] has identified a number of elasticity control processes to
improve the performance and quality of cloud services, while additionally attempting to
minimize cost. However, a crucial question still remains unanswered: which elasticity
control processes are the most appropriate for a cloud service in a particular situation
at runtime? Moreover, can both cloud customers and providers benefit from insightful
information such as how the addition of a new instance to a cloud service will affect the
throughput of the overall deployment and individually each part of the cloud service? Thus,
cloud service elasticity behavior knowledge under various control types and workloads is
of paramount importance to elasticity controllers for improving their runtime decision
making.

To this end, a wide range of approaches relying on service profiling or learning
from historic information were proposed [110] [134]. However, these approaches limit
their decisions to evaluating only low-level VM metrics (e.g., CPU and memory usage)
and do not support elasticity decisions considering complex cloud service behavior at
multiple levels (e.g., a specific part of the service or the entire service). Additionally,
current approaches only evaluate resource utilization, without considering elasticity as a
multi-dimensional property composed of cost, quality, and resource elasticity. Finally,
existing approaches do not consider the outcome of a control process on the overall
service behavior, where often enforcing a control process on the wrong part of the cloud
service can lead to side effects, such as increasing the cost or decreasing performance of
the overall service.

In this chapter, we focus on addressing the previous limitations by introducing a
methodology for estimating cloud service elasticity behavior, and a corresponding frame-
work named ADVISE (evAluating clouD serVIce elaSticity bEhavior). Our behavior
estimation technique introduces a clustering-based process which considers heterogeneous
information for computing expected elasticity behavior, in time, for various service parts.
To estimate cloud service elasticity behavior, ADVISE utilizes different types of infor-
mation, such as service structure, deployment strategies, and underlying infrastructure
dynamics, when applying different workload and elasticity control processes. ADVISE
analyses historical cloud service behavior, at various levels of abstraction, and produces
estimations for elasticity control processes evaluated by the elasticity controller, in time,
and for all cloud service parts, not only for the one targeted by the elasticity control
process.

For validating our techniques, we integrate ADVISE in rSYBL [24] elasticity controller.

1http://aws.amazon.com/autoscaling
2http://www.rightscale.com

86

http://aws.amazon.com/autoscaling
http://www.rightscale.com

rSYBL is based on SYBL elasticity requirements specification language [25], which allows
service providers to describe invariants and expected service behavior. rSYBL interprets
requirements specified in SYBL, and based on these requirements it provides multi-
grain elasticity control for complex cloud services. To evaluate ADVISE effectiveness,
experiments were conducted on two cloud platforms with a testbed comprised of three
cloud services originating from different service domains. Results show that ADVISE is
able to determine the expected elasticity behavior, in time, with a low error rate (i.e.,
average standard deviation 0.46 over all considered elasticity control processes). Therefore,
ADVISE can be integrated by cloud providers alongside their elasticity controllers to
improve the decision quality, or used by service providers to evaluate and understand
how various elasticity control processes impact their offered services. ADVISE and all
the other tools used in this article (i.e., rSYBL, JCatascopia [119], and MELA [89]) are
available as open source tools, thus enabling various stakeholders to apply them, or if
needed to extend them, for obtaining elasticity in their respective domains.

8.2 Cloud Service Structural and Runtime Information

8.2.1 Cloud Service Information

For understanding the behavior of cloud services, we must gather multiple types of
information, including application-specific behavior for different service parts and the
various virtual resources used, and their characteristics.

To represent complex services (e.g., the case-study application in Section 4.2) in the
context of behavior estimation, we extend the conceptual cloud service representation
model, as proposed in Section 4.1, with a rich set of information types for determining
cloud elasticity behavior. Figure 8.1 depicts the extensions made (white background)
to include elasticity control processes, service part behaviors and service parts. Overall,
our information model contains: (i) Structural Information, describing the architectural
structure of the cloud service; (ii) Infrastructure System Information, describing runtime
information regarding resources allocated for the cloud service by the underlying cloud
platform; and (iii) Elasticity Information, capturing elasticity metrics, requirements, and
capabilities.

Elasticity information is composed of elasticity metrics (e.g., average response time,
cost, active connections), elasticity requirements (e.g., minimize response time when cost
is small enough), and elasticity capabilities (e.g., add new resources), each of them being
associated to different SPs or infrastructure resources. Elasticity Capabilities are grouped
together as Elasticity Control Processes (ECPs), as described in the next subsection, and
inflict specific elasticity behaviors upon enforcement on different SPs, which we model
as Service Part Behaviors. We model SP behaviors, since controllers must determine
the effect of enforcing an ECP at different levels. For instance, in the service previously
described, before allocating a new DataNodeServiceUnit instance, the effect, in time, at
the DataEndServiceTopology (e.g., latency evolution for the entire cluster), and at the
entire cloud service level (e.g., number of violated requirements while enforcing the ECP)

87

should be determined.
Conceptually, a Service Part Behavior, denoted as BehaviorSPi , in a defined period

of time [start, end], contains all the metrics, MSPi
a , being monitored for SPi. Therefore,

the behavior of a cloud service, denoted as BehaviorCloudService, over a period of time is
defined as the set of all cloud service SP behaviors:

MSPi
a [start, end] = {Ma(tj)|SPi ∈ ServiceParts, j = start, end} (8.1)

BehaviorSPi [start, end] = {MSPi
a [start, end]|Ma ∈Metrics(SPi)} (8.2)

BehaviorCloudService[start, end] = {BehaviorSPi [start, end]|SPi ∈
ServiceParts(CloudService)} (8.3)

The above information is captured and managed at runtime through an Elasticity De-
pendency Graph, EDG = {(V,E)|V ∈ SP ∪ InfrastructureInfo,E ∈ Relationships},
which has as nodes instances of concepts from the model in Figure 8.1 (e.g., Virtual
Machine, Elasticity Metric), and relationships (e.g., Elasticity Relationship,
Inheritance, Composition) as edges. The elasticity dependency graph is continu-
ously updated with: (i) pre-deployment information, such as service topology descriptions
(e.g., TOSCA [98]) or profiling information; and (ii) runtime information, such as metric
values from monitoring tools or allocated resources from provider APIs.

8.2.2 Elasticity Capabilities and Control Processes

Elasticity capabilities (ECs) are the set of actions associated with a cloud service, whose
invocation affect the cloud service behavior. Such capabilities can be exposed by: (i)

Figure 8.1: Cloud service information for estimating elasticity behavior

88

Figure 8.2: Elasticity capabilities exposed by different elastic objects

different SPs (e.g., change refresh rate for a SP); (ii) cloud providers (e.g., create new
virtual resources); and (iii) resources which are supplied by cloud providers (e.g., change
virtual resource characteristics). An EC can be considered as the abstract representation
of API calls, which differ amongst providers and cloud services. Figure 8.2 depicts the
different subsets of ECs provided for the Event Processing Service Unit (i.e., a web service
hosted in a web container) when deployed on two different cloud platforms (e.g., Flexiant3
and Openstack4), as well as the ECs exposed by the cloud service and its containers
(e.g., Apache Tomcat). In each of the two cloud platforms, the cloud service must run on
a specific container, and all these capabilities, when enforced by an elasticity controller,
will affect various cloud service parts (e.g., in the M2M DaaS, elasticity capabilities of
Event Processing Service Unit might affect the performance of the Data End Service
Topology).

Elasticity Control Processes (ECP) are processes composed of elasticity capabilities,
which can be abstracted into higher level capabilities having predictable effects on the
cloud service. ECPs can be in their simplest forms, sequential elasticity capabilities,
while the more complex ECPs are similar to business processes (e.g., enforcement plans
from TOSCA described in BPMN). We model these ECPs as graphs, ECP = (V =
{EC}, E = {CF,DF}), where the vertices are elasticity capabilities, while edges are flow
dependencies among elasticity capabilities. There are two types of flow dependencies: (i)
Control Flow dependencies CF , which direct the execution of the process considering
the initial state, and (ii) Data Flow dependencies DF , which carry data to be used by
the next EC.

An ECP causes a change in the elasticity dependency graph and in the virtual
infrastructures (e.g., a change in the properties of a single VM or tier). For example, in
the case of a distributed database backend which is composed of multiple nodes, a scale
out ECP , with certain parameters, can be applied for both a Cassandra and an HBase
database, with the following ECs: (i) add a new node; (ii) configure node properties;
and (iii) subscribe node to the cluster.

3http://www.flexiant.com
4https://www.openstack.org

89

http://www.flexiant.com
https://www.openstack.org

Figure 8.3: Elastic cloud service evolution

Figure 8.4: Modeling cloud service behavior process

8.2.3 Cloud Service Elasticity

To estimate the effects of ECPs on SPs, we rely on the elasticity dependency graph which
captures all the variables that contribute to cloud service elasticity behavior evolution.
Figure 8.3 depicts on the left-hand side the cloud service at pre-deployment time, where
automatic elasticity controllers know about it only from structural information provided
by different sources (e.g., TOSCA description). After enforcing a Deployment Process
(e.g., create VM, create network interface and connect to VPN), the elasticity dependency
graph will be updated with infrastructure-related information obtained from the cloud
provider, and elasticity information, obtained from monitoring services showing metric
evolution for different SPs.

Infrastructure resources, as mentioned previously, have associated elasticity capabili-
ties (EC in Figure 8.3), that describe the change(s) to be enforced and the mechanisms
for triggering them (e.g., API call assigned to the EC). In addition, a cloud platform
exposes ECs in order to create new resources or instantiate new services (e.g., increase
memory is an EC exposed by a VM, while create new VM is an EC exposed by the
cloud platform). In this context, for being able to discover the effects that an ECP
produces in time, for each SP , taking into account correlations between metrics, we use
the elasticity dependency graph. We analyze this information to determine the effect of
an ECP for all SPs, regardless on whether the ECP is application specific, or it does
not have any apparent direct link to other SPs.

90

8.3 Evaluating Cloud Service Elasticity Behavior

Existing behavior learning solutions [134] [110] learn discrete metric models, without
correlating metrics with the multiple variables affecting cloud service behavior. In contrast
to these solutions, we provide behavior learning based on different SPs and their relation
to multiple ECPs, which may or may not be directly linked, estimating the effect of
an ECP , in time, considering correlations among several metrics and SPs. Figure 8.4
depicts the SP behavior Learning Process which is continuously executed, refining the
previously gathered knowledge base.

8.3.1 Obtaining Necessary Information

For evaluating cloud service elasticity behavior, we populate the dependency graph,
described in Section 8.2, with all the necessary information (i.e., service parts, elasticity
relationships, infrastructure system information). First, we acquire pre-deployment
information to understand the cloud service and its execution environment, such as:
(i) structural information, regarding the topology of the cloud service, and (ii) cloud
infrastructure information. The first, described in Section 8.2, is generally known by the
service provider, and contains the SPs of the service and relationships which appear
among them. The latter describes virtual resources available in the current cloud
infrastructure and their capabilities (e.g., a virtual machine of type x exposes the
capability of memory ballooning). Afterwards, runtime information regarding the service
behavior, is collected via monitoring tools (e.g., using MELA [89]), and associated with
structural service units or topologies.

Monitoring data is either collected at runtime while a controller is enforcing different
ECPs, or through a profiling step, where both rational and incorrect ECPs are enforced.
In both cases, issues may arise, such as application failure or virtual resource failure,
leading to incomplete monitoring data. Therefore, we acknowledge two issue types:
(i) recurring issues, which characterize a control step (e.g., a capability) and must be
considered; and (ii) random issues which do not affect the behavior of a service. The first
issue type must be reflected in the estimations, since they characterize the behavior of the
service (e.g., while enforcing ECPi SPj cannot be monitored for X seconds). However,
the second issue type can be ignored. For this, the following clustering methodology
considers both, characterizing recurring behaviors (e.g., missing measurements each time
a typex reconfiguration is enforced) and filtering outliers (e.g. random issues).

8.3.2 Learning Process

Figure 8.5 depicts the overall elasticity behavior clustering process via selected metrics
observations, with the three main steps: (a) input data processing, (b) clustering process,
and (c) behavioral clusters update.

91

Figure 8.5: Clustering process

Figure 8.6: Relevant timeseries selection

Processing input data

The learning process receives as input each metric’s evolution, in time,MSPi
a [start, current]

(see Equation 8.3) starting from the beginning of a service’s lifecycle. To evaluate the
expected metric evolution in response to enforcing a specific ECP , we select for each
monitored metric, of each service part, a Relevant Timeseries Section (RTS) (see Fig-
ure 8.6), in order to compare it with previously encountered MSPi

a [start, current]. The
RTS size strongly depends on the average time required to enforce an ECP (see Section
8.5.2). Consequently, a metric RTS is a sub-sequence of MSPi

a , ranging from an interval
before and after ECP enforcement:

RTSSPi
Ma

= MSPi
a [x− δ + ECPtime

2 , x+ δ + ECPtime
2], (8.4)

[ECPstartT ime, ECPendT ime] ⊂ [x− δ + ECPtime
2 , x+ δ + ECPtime

2],

where x is the ECP index and δ is the length of the period we aim to evaluate.
As part of the input pre-processing phase, we represent δ +ECPtime (Figure 8.5a) as

multi-dimensional points (Figure 8.5b and Equation 8.5) in the n-dimensional Euclidian
space, where the value for dimension t(j) is the timestamp j of the current RTS.

BPSPi
a [j] = RTSSPi

Ma
[t(j)], j = 0, ..., n,BP : MSP 7→ Rn, n = δ + ECPtime (8.5)

Clustering process

To detect the expected behavior of an ECP enforcement result, we construct behavioral
point clusters ClusterSPi , for all SPs and each ECP as defined in Equation 8.6. We do

92

Figure 8.7: Relevant timeseries sections to points

not limit our approach to only considering ECPs available for the current SPi since,
as previously mentioned, enforcing an ECP to a specific SP may affect the behavior
of another SP or the overall cloud service. Our objective function is to find the multi-
dimensional behavior point C(Θ∗), which minimizes the distance among points belonging
to the same cluster Clusterk (Equation 8.7). Since our focus is not to evaluate the quality
of different clustering algorithms, we use the K-means algorithm, which is inexpensive,
following the practice where the number of clusters is K =

√
N/2, N being the number

of objects. However, as shown in Section 8.5, even with a simple K-means algorithm, our
approach outputs the expected elasticity behavior with a low estimation error rate.

dist(BP xa , BP ya) =
√∑

i

(BP xa [i]−BP ya [i])2 (8.6)

Θ∗ = arg min
K∑
k=0

N∑
i=0

Θi,kdist(Clusterk, BPi), θi,k =
{

1 BPi ∈ Clusterk
0 BPi /∈ Clusterk

(8.7)

Behavioral clusters update

For the update process, we start from the already existing clusters, and we search for
new behavior points given by new ECP enforcements. We select relevant timeseries
RTS for each SP in response to newly enforced ECPs, whenever new data is available,
according to the process presented in Section 8.3.2. We represent these as behavior
points BP , and add each of them to the closest clusters. The cluster update process
then consists of moving BPs among the clusters until convergence, which is a lightweight
process compared to running entire clustering algorithm. The overhead of updating
the clusters is proportional with the number of selected RTSs and the change in cloud
service behavior. Even with ECPs enforced very often, the cluster updating process is
still insignificant due to the fact that the RTS dimensions are quite small compared to
the overall monitoring data. However, it must be noted that repeated ECPs in short

93

intervals reflect a weakness in the controller, which does not manage to stabilize the
system as we can see in section 8.5.

8.3.3 Determining the Expected Elasticity Behavior

Elasticity Behavior Correlation

After obtaining ‖δ +ECPtime‖-dimensional point clusters, we construct for each SPi a
co-occurrence matrix CMSPi [Cmi

x , Cmjy], where Cx is the centroid for Clusterx, and the
value of CM is the probability of clusters from metricsmi andmj to appear together (e.g.,
increase in data reliability is usually correlated with increase in cost).Considering this,
when determining expected behavior points, we have a better estimation that is also based
on correlation among metrics(e.g., when in M2M DaaS the EventProcessingServiceUnit
throughput is high, a Scale IN ECP will increase response time, while when
low, the impact might be negligible). An item in the CM represents a ratio between the
number of times the behavior points Cx and Cy were encountered together, and the total
number of behavior points. This matrix is continuously updated when behavior points
move from one cluster to another, or when new ECPs are enforced, thus, increasing the
knowledge base.

Expected Behavior Point Determination

In the Expected Behavior Generation based on Learning Process step in Figure 8.4, we
select the latest metric values for each SPi, MSPi

a [current− δ, current], and the ECPξ
which the controller is considering for enforcement, or for which the user would like to
know the effects. We find the ExpectedBehavior (see Equation 8.8) which consists of a
tuple of cluster centroids from the clusters constructed during the Learning Process that
are the closest to the current metrics behavior for the part of the cloud service we are
focusing on, and which have appeared together throughout the execution of the cloud
service. The result of this step, for each metric of SPi, is a list of expected values from
the enforcement of ECPξ (e.g., all of the expected metric values for the case the elasticity
controller would like to perform a scale out ECP).

ExpectedBehavior[SPi, BehaviorSPi [current− δ, current], ECPξ] =

{CMa1
ia1

, ..., CMam

iam |Mam ∈Metrics(SPi)} (8.8)

8.3.4 Parameterizing and qualifying the learning process

The quality of the expected elasticity behavior estimation depends on several, highly
configurable, variables, which are either: (i) the output of a pre-profiling process; or
(ii) empirically determined, based on good practices or on observing the behavior of
the estimation process. Such variables include: (i) variable K, denoting the number of
expected clusters; (ii) the variable cutoff , denoting the acceptable clustering convergence
error; and (iii) the monitoring information completeness. For K, as defined above, we
follow the rule of thumb proposed by Mardia et al. [82], stating that the number of

94

Figure 8.8: ADVISE integration into rSYBL

clusters in a set of objects is
√
N/2, where N is the total number of objects. The offset

is empirically determined, considering the quality of the results and the time needed for
computing an estimation, as shown in Section 8.5.2.

8.4 Controlling Elasticity with Elasticity Behavior
Estimation

We have implemented our elasticity estimation techniques in a framework named AD-
VISE. As described in Section 8.2, ADVISE collects the following heterogeneous types of
information, for populating the dependency graph: (i) cloud service structural informa-
tion, from TOSCA service descriptions; (ii) infrastructure and application performance
information, from both JCatascopia [119] and MELA [89] monitoring systems; and (iii)
elasticity information, regarding ECPs from the rSYBL [24] elasticity controller.

We extend rSYBL to integrate ADVISE to support both understanding the behavior
of the different service parts and enforcing control processes in accordance. Figure 8.8
depicts the rSYBL framework integrated with ADVISE for estimating elasticity behavior
and considering it when generating ECP plans. The rSYBL Elasticity Control En-
gine, now features two planning mechanisms: (i) profiling-based control, enabled when
ADVISE-based estimations are not yet accurate enough (e.g. average standard deviation
is low), and (ii) elasticity behavior-based control, which considers runtime elasticity be-
havior estimations for all service parts in order to evaluate the needed elasticity control
process(es). Moreover, ADVISE also exposes statistics on the time required for an ECP
to be enforced, thus being able to refine the enforcement cool-off period on the controller
side as presented in Section 8.5.2.

Profiling-based control requires as input, per ECP , the expected effects obtained
through manual or automated profiling. The effects that are available for this case are
forecasts for expected metric values after finishing enforcing the respective ECP , and

95

Figure 8.9: Workload applied on the three services

do not consider relationships among various SPs. The ECPs are enforced through the
rSYBL Interaction Unit, which interacts with both cloud provider-specific APIs and with
application specific control mechanisms.

For generating control plans, we interpret the effect, in time, of ECPs in relation
to expected behavior without enforcing the respective control process. In this sense,
elasticity behavior-based control estimates current metric evolution using a polynomial
fitting approach. We obtain the elasticity requirements expected to be violated when we
do not enforce ECPξ (Equation 8.9) by computing the integral of violated requirements
over estimated polynomial metric evolutions. Equation 8.10 shows the computation
method for violated elasticity requirements for the case of enforcing ECPξ, denoted
V iolatedReq(ECPξ), using ADVISE estimations. We compare the two estimations, and
select the one with the least violated requirements.

V iolatedReq(ECPξ) =
∫ current+λ

current
V iolReq(P (SPi,Metricj(x)))dx (8.9)

V iolatedReq(ECPξ) =
∫ current+λ

current
V iolReq(ADV ISE(SPi,Metricj(x)))dx (8.10)

We design the controller such that when the current behavior cannot be accurately
estimated, we are able to rollback to profiling-based control. In this way, the enforced
ECPs are not restricted solely to information obtained via the pre-deployment phase,
instead the ADVISE behavior estimation is continuously refined improving the knowledge
base and learning new behavior points representative for each ECP . In other words, when
the closest estimated centroids are farther than a distance dist, empirically defined, the
current decision making algorithm rolls back to the initial decision-making algorithm, as
described in [24].

96

8.5 Experiments

In this section, we provide an evaluation of the ADVISE framework5, focusing on the
clustering-based behavior estimation process to determine the effectiveness of our approach
as ADVISE can be used in both service profiling/pre-deployment or during runtime, for
various service types, whenever monitoring information and enforced ECPs are available.
As described in Section 8.2, ADVISE collects the following heterogeneous types of
information, from plugins which we have developed, to populate the elasticity dependency
graph: (i) cloud service structural information, from TOSCA service descriptions; (ii)
infrastructure and application performance information, from both JCatascopia [119] and
MELA [89] monitoring systems; and (iii) elasticity information, regarding ECPs from
the rSYBL [24] elasticity controller.

Our evaluation is divided into two phases: (i) ADVISE framework evaluation; and
(ii) ADVISE-enabled rSYBL evaluation. To evaluate the functionality of the ADVISE
framework, we established a testbed on the Flexiant public cloud comprised of three
cloud services originating from different service domains featuring distinct structural and
behavior requirements. On the selected cloud services, we first, enforce ECPs exposed
by their respected SPs randomly, and then study, at runtime, their behavior at multiple
levels of the cloud service. It must be noted, that we did not configure rSYBL as a
rational controller, since we are interested in estimating the elasticity behavior for all
SPs as a result of enforcing both good and bad elasticity control decisions. For the
second phase, we established a testbed on an OpenStack private cloud, with rSYBL
elasticity control for a cloud service. We evaluate how ADVISE affects rSYBL elasticity
control on various workloads.

8.5.1 Experimental Cloud Services

The first cloud service is a three-tier web application providing video streaming
services to online users, comprised of: (i) an HAProxy Load Balancer that distributes
client requests across multiple application servers; (ii) An Application Server Tier, where
each application server is an Apache Tomcat server exposing the video streaming web
service; and (iii) A Cassandra NoSQL Distributed Data Storage Backend from where the
necessary video content is retrieved. The database backend initially holds 2GB of data
while at the end of the experiment the size approaches 6GB. To stress this cloud service
we generate client requests under a fixed request rate, though the load is not stable and
depends on the type of the requests (e.g. download video) and the size of the requested
video, as shown in the workload pattern in Figure8.9a.

The second cloud service in our evaluation is a Machine-to-Machine (M2M)
DaaS which processes information originating from several different types of remote
data sensors (e.g., temperature, atmospheric pressure, or pollution). Specifically, the
M2M DaaS is comprised of an Event Processing Service Topology and a Data End Service
Topology. Each service topology consists of two service units, one with a processing

5 code, detailed descriptions and more charts at http://tuwiendsg.github.io/ADVISE

97

http://tuwiendsg.github.io/ADVISE

Cloud
Service

ECP
ID

Action Sequence

Video Ser-
vice

ECP1 Scale In Application Server Tier: (i) stop the video streaming service,
(ii) remove instance from HAProxy, (iii) restart HAProxy, (iv) stop
JCatascopia Monitoring Agent, (v) delete VM

ECP2 Scale Out Application Server Tier: (i) create new network interface,
(ii) instantiate new VM, (ii) deploy and configure video streaming
service, (iv) deploy and start JCatascopia Monitoring Agent, (v) add
VM IP to HAProxy, (vi) restart HAProxy

ECP3 Scale In Distributed Video Storage Backend: (i) select VM to remove,
(ii) decommission instance data to other nodes, (iii) stop JCatascopia
Monitoring Agent, (iv) delete VM

ECP4 Scale Out Distributed Video Storage Backend: (i) create new network
interface, (ii) instantiate new VM, (iii) deploy and configure Cassan-
dra (e.g., assign token to node), (iv) deploy and start JCatascopia
Monitoring Agent, (v) start Cassandra

M2M
DaaS

ECP5 Scale In Event Processing Service Unit: (i) remove service from
HAProxy, (ii) restart HAProxy, (iii)remove recursively VM

ECP6 Scale Out Event Processing Service Unit: (i) create new network
interface, (ii) create new VM, (iii) add service IP to HAProxy

ECP7 Scale In Data Node Service Unit: (i) decommission node (copy data
from VM to be removed), (ii)remove recursively VM

ECP8 Scale Out Data Node Service Unit: (i) create new network interface,
(ii) create VM, (iii) set ports, (iv) assign token to node, (v) set cluster
controller, (vi) start Cassandra

Online Di-
rectory

ECP9 Scale In Distributed Document Store: (i) select Couchbase-server to
remove, (ii) decommission node from Couchbase cluster, (iii) rebalance
cluster data, (iv) remove VM

ECP10 Scale Out Distributed Document Store: (i) create new network interface,
(ii) instantiate VM, (ii) configure interfaces, ports, and Couchbase-
server (iv) start Couchbase-server, (v) join Couchbase cluster, (vi)
rebalance cluster

Table 8.1: Elasticity control processes available for the cloud services

goal, and the other acting as the balancer/controller. To stress this cloud service we
generate random sensor event information (see Figure 8.9b) that is processed by the Event
Processing Service Topology, and stored/retrieved from the Data End Service Topology.

The third cloud service showcased is a two-tier OLTP service deployed as an
online business directory hosting 7503 local business listings and their products6.
The topology of this service is comprised of a Document Store Controller, under a

6Our dataset is synthetic, created from real data and workload patterns from www.finditcyprus.com

98

www.finditcyprus.com

Cloud
Service

SP Name Metrics

Video Ser-
vice

Application Server
Tier

cost, busy thread number, request throughput

Distributed Video
Storage Backend

cost, CPU usage, memory usage, query latency

M2M
DaaS

Cloud Service cost per client per hour
Event Processing Ser-
vice Topology

cost, response time, throughput, number of clients

Data End Service
Topology

cost, latency, CPU usage

Online
Directory

Document Store Con-
troller

cost, request rate, active sessions, error rate, CPU
usage, network I/O

Distributed Store
Node

cost, throughput, cache miss rate, disk I/O, memory
usage, CPU usage, query response time

Table 8.2: Elasticity metrics per cloud service for different service parts

public domain, distributing client requests (i.e., create new listing, get directions to
Restaurant X) to a Document Store Nodes, forming a Distributed Document Store that is
a Couchbase database backend. Specifically, the database backend is a distributed, shared-
nothing NoSQL (JSON-like) document store, optimized for interactive web applications,
incorporating in its core application logic allowing developers to prepare and expose
to their users queries as light-weight map/reduce functions (i.e., top-k breweries in
town Nicosia etc.). We stress this service by generating client requests under a variable
read-heavy request rate, mimicking a real online directory’s behavior, as depicted in
Figure 8.9c (writes occur only when adding a new listing or updating an existing one and
constitute less than 10% of the load). Tables 8.1 and 8.2 list the ECPs associated to
each SP and the monitoring metrics analyzed for the three cloud services respectively.

8.5.2 Cloud Service Elasticity Behavior Evaluation

ECP Temporal Effect

ADVISE computes, as shown in Table 8.3, the average time required for an ECP to be
completed, and returns also a standard deviation that gives the degree of confidence with
regard to this estimation. This application-specific information is of high importance
and affects the decision-making process of the elasticity controller since it is an indicator
of the grace period that it should await until effects of the resizing actions are noticeable.
Thus, it can define the time granularity at which resizing actions should be taken into
consideration. For example, we observe that the process of reconfiguring and removing
an instance from the video service’s storage backend requires an average time interval of
160 seconds that is mainly due the time required to receive and store data from other

99

ECP Standard Deviation Average ECP Time (s)

Video
Service

ECP1 0.06 90
ECP2 0.12 25
ECP3 0.13 160
ECP4 0.11 30

M2M
Service

ECP5 0.34 45
ECP6 0.16 20
ECP7 0.11 70
ECP8 0.14 20

Online
Directory

ECP9 0.29 110
ECP10 0.12 25

Table 8.3: Elasticity control processes time statistics

nodes of the ring. If decisions are taken in smaller intervals, the effects of the previous
action will not be part of the current decision process and may cause cascading ping-pong
effects where a Scale In ECP followed by a slight increase in metric utilization (in the
grace period) causes a false Scale Out ECP .

Online Video Streaming Service - Elasticity Behavior Estimation

Figure 8.10 depicts both the observed and the estimated behavior for the Video Service
Application Server Tier when ECPs of type ECP1 (remove application server) are
enforced. At first, we observe that the average request throughput per application
server is decreasing. This is due to two possible cases: (i) the video storage backend
is under-provisioned and cannot satisfy the current number of requests which, in turn,
results in requests being queued; (ii) there is a sudden drop in client requests which
indicates that the application servers are not utilized efficiently. For an elasticity con-
troller driven by simple "if-then-else" policies for application-specific metrics (e.g. request
throughput) there is no apparent way in determining the case in hand and it will act
upon metric violations without considering if an ECP will indeed improve QoS or cost.
From Figure 8.10, we observe that after the Scale In ECP occurs, the average request
throughput and busy thread number rises which denotes that this behavior corre-
sponds to the second case where resources are now efficiently utilized. ADVISE revealed
an insightful correlation between two metrics to consider in the decision process.

Similarly, in Figure 8.11 we depict both the observed and the estimated behavior
for the Distributed Video Storage Backend when a Scale Out ECP is enforced (add
Cassandra Node to ring) due to high CPU utilization. We observe that after the
Scale Out ECP is enforced, the actual CPU utilization decreases to a normal value
as also indicated by the estimation.

Analyzing the estimations made for this service (i.e., Figure 8.10 - 8.11), we conclude
that the estimations provided by ADVISE successfully follow the actual behavior pattern
and that, as time intervenes, the curves tend to converge.

100

Figure 8.10: Effect of ECP1 on the application server tier

Figure 8.11: Effect of ECP4 on the entire video streaming service

M2M DaaS - Elasticity Behavior Estimation

Figure 8.12 displays how an ECP targeting a service unit affects the entire cloud service.
The Cost/Client/h is a complex metric (see Table 8.2) which depicts how profitable
is the service deployment in comparison to the current number of users. Although
Cost/Client/h is not accurately estimated, due to the high fluctuation in number
of clients, our approach approximates how the cloud service would behave in terms of

101

Figure 8.12: Effect of ECP7 on M2M DaaS

expected metric fluctuations. This information is important for elasticity controllers to
improve their decisions when enforcing ECPs by knowing how the Cost/Client/h
for the entire cloud service would be affected. Although CPU usage is not estimated
perfectly, since it is a highly oscillating metric, and it depends on the CPU usage at
each service unit level, knowing the baseline of this metric can also help in deciding
whether this ECP is appropriate (e.g., for some applications CPU usage above 90%
for a period of time might be inadmissible). Figure 8.13 shows estimations of behavior
for the Event Processing Service Topology, when a Scale Out ECP occurs on the Event
Processing Service Unit. Although the throughput is accurately estimated with a
slight lag, response time is estimated with a slightly larger error due to the fact that
a down peak is not estimated, as not being part of the usual behavior for the current SP.

ADVISE can estimate the effect of an ECP of a SP , on a different SP , even if
apparently unrelated and therefore provide, multi-grain elasticity behavior evaluation.
Figure 8.14 depicts an estimation on how the Data Controller Service Unit is impacted by
the data transferred at the enforcement of ECP8. In this case, the controller CPU usage
initially, as one would aspect, decreases since the new node will offload other nodes,
however, effort is required in transferring data to the new node which rises utilization due
to the fact that reconfigurations are also necessary on the controller, following a slight
decrease and then stabilization. Therefore, even in circumstances of random workload,
ADVISE can give useful insights on how different SPs behave when enforcing ECPs
exposed by other SPs which, again, elasticity controllers have no knowledge of.

102

Figure 8.13: Effect of ECP6 on the event processing service topology

Figure 8.14: Effect of ECP8 on the Data Controller Service Unit

Online Directory - Elasticity Behavior Estimation

Figure 8.15 depicts the observed and estimated throughput and CPU usage measured
at the Document Store Controller after a Scale Out ECP is enforced. The Document Store
Controller is a document store node itself, however, it features additional functionality:
it supervises (meta-)data migration when the cluster is re-balanced as in the case of a
Scale In/Out ECP enforcement. While other nodes continue to accept client requests

103

Figure 8.15: Effect of ECP10 on the Document Store Controller

Figure 8.16: Effect of ECP9 on the Document Store Node

when an ECP is enforced, the Document Store Controller prioritizes the supervising of
data movement and thus, ceases to process client requests. This is evident in Figure 8.15,
where we observe that when the cluster is rebalanced, throughput drops to zero while
CPU usage does not decrease, as one would expect, until after rebalancing is complete.
In turn, Figure 8.16 depicts the effects of a Scale In ECP on one of the document
store nodes. ADVISE identifies the increase in memory utilization as the node
receives part of the load from the decommissioned node, while the estimation for CPU
utilization follows the observed oscillating trend.

On the other hand, Figure 8.17 depicts both CPU usage and cost of a document
store node before and after a Scale Out ECP . We observe that before the ECP
enforcement the ADVISE estimation follows the observed values, however, after the
ECP enforcement, the provided estimation slightly deviates from the observed CPU

104

Figure 8.17: Effect of ECP10 on the Data Node

utilization before converging again. The reason behind this slight deviation is due
to, an out of the ordinary, large data movement, not evident in most Scale Out ECPs,
where the whole dataset must be replicated since the Scale Out ECP occurs immediately
after a series of multiple Scale In ECP s which left the cluster with only two instances.

Quality of Results

ADVISE is able to estimate, in time, the elasticity behavior of different SPs by considering
the correlations amongst metrics and the ECPs which are enforced. To evaluate the
quality of our results, we have considered the fact that existing tools do not produce
continuous-time estimations. Thus, we evaluate ADVISE by computing the variance
V ar and standard deviation StdDev (Equation 8.11), over 100 estimations as the result
differs little afterwise.

V armetrici =
∑ ∑

i=[0,rtssize] (estMetrici−obsMetrici)2

rtssize

nbEstimations− 1
StdDevmetrici =

√
V armetrici (8.11)

Table 8.4 presents the accuracy of our results. When comparing the three services, the
Video Service achieves a higher accuracy (smaller standard deviation), since the imposed
workload is considerably stable. Focusing on the M2M DaaS estimation accuracy, we
observe that it depends on the granularity at which the estimation is calculated, and on
the ECP . Moreover, the standard deviation depends on the metrics monitored for the
different parts of the cloud service. For instance, in the case of the M2M Service, the
number of clients metric can be hardly predicted, since we have sensors sending
error or alarm-related information. This is evident for the Event Processing Service
Topology, where the maximum variance for the number of clients is 4.9.

Overall, even in random cloud service load situations, the ADVISE framework analyses
and provides estimations for elasticity controllers, allowing them to improve the quality of

105

Cloud Ser-
vice

Observed Cloud Service Part Elasticity
Control
Process

Average
Standard
Deviation

Maximum
Variance

Minimum
Variance

Video
Ser-
vice

Video Service ECP3 0.23 0.09 0.03
ECP4 0.61 0.99 0.23

Distributed Video
Storage Backend

ECP3 0.28 0.14 0.034
ECP4 0.2 0.042 0.04

Application Server ECP1 0.43 0.4 0.06
ECP2 0.31 0.47 0.01

M2M
Ser-
vice

Cloud Service ECP5 0.9 6.65 0.24
Data End Service Topology ECP5 0.23 0.35 7.44E-05
Event Processing
Service Topology

ECP7 1.1 4.9 0.046
ECP8 0.76 2.46 0.027

Data Controller
Service Unit

ECP6 0.12 0.25 0
ECP8 0.22 0.41 0

Data Node Service
Unit

ECP5 0.572 0.68 0.32
ECP6 0.573 1.4 0.07

Event Processing
Service Unit

ECP7 1.08 3.59 0.11
ECP8 0.77 1.9 0.14

Online
Direc-
tory

Document Store Node ECP9 0.19 0.05 0.29
Document Store Node ECP10 0.14 0.005 0.18
Document Store Controller ECP10 0.13 0.023 0.38

Table 8.4: ECPs effect estimation quality statistics

Figure 8.18: ECP5 estimation time under different Cutoff values

control decisions, with regard to the evolution of monitored metrics at the different cloud
service levels. Moreover, these estimations are delivered together with the confidence
of the estimation, given by the distance from current behavior point to the estimated
behavior point. Without this kind of estimation, elasticity controllers would need to use
VM-level profiling information, while having to control complex cloud services. This

106

Figure 8.19: Estimation variance for ECP5 under different Cutoff values

information, for each SP , is valuable for controlling elasticity of complex cloud services,
which expose complex control mechanisms.

Sensitivity of results

For analyzing the sensitivity of our results, we evaluated how our empirically determined
parameters (e.g. clustering offset) affect the variance of the estimation in regards to the
observed behavior. Figure8.19 concludes that our results are very little affected by the
choice of the offset.

When analyzing the impact that the choice of the offset has over time (Figure 8.21b),
we can see that very small offset values reflect in a considerable increase in the estimation
time. This is why, the offset was chosen at 0.2, as a tradeoff between estimation time
and estimation quality.

8.5.3 rSYBL elasticity control enhanced with ADVISE estimations

As described in Section 8.4, we integrate the ADVISE behavior estimation into the rSYBL
elasticity controller, which controls elasticity at multiple levels of abstraction [24].

We use the M2M DaaS service with fixed Data End Topology, while controlling Event
Processing Topology using ECP5 (i.e., Scale In) and ECP6 (i.e., Scale Out) elasticity
control processes on an OpenStack private cloud, with the following SYBL [25] elasticity
requirements:

• EventProcessingTopology – Co1:CONSTRAINT responseTime < 100 ms;

107

(a) rSYBL with ADVISE knowledge

(b) rSYBL without ADVISE

Figure 8.20: Event Processing Topology control

• EventProcessingTopology – St1:STRATEGY CASE responseTime < 12 AND throughput<100
: minimize(cost)

We compare the elasticity control performed by ADVISE-enabled rSYBL decision
making and respectively the profiling-based decision making. We apply a stepwise work-
load in order to observe controller’s behavior under different circumstances. Figure 8.20
shows at (a) the outcome of controlling the service with ADVISE-enabled rSYBL and at
(b) the outcome of controlling the service considering profiling information, consisting of
how much the metrics would be affected by enforcing an ECP . At first, we observe that
ADVISE-based control provides the elasticity controller with a better elasticity behavior
understanding, even in cases where metric values exceed their expected values (i.e. in this
case due to a memory bottleneck). However, it accomplishes this with a bigger cost, as

108

(a) "Ping-pong" effect for steady workload with rSYBL

(b) No "ping-pong" when using ADVISE

Figure 8.21: Ping-pong effect

one would expect, since it is using more resources to fulfill the requirements (e.g., in this
case ADVISE-enabled controller achieves a cost 27.5% higher). In contrast with this, the
profiling based elasticity controller is not able to find appropriate ECPs in unexpected
situations, when the value observed exceeds its possibilities of controlling the metric, as
known from profiling information (e.g., if the response time is expected to decrease with
200 ms whenever ECP6 is enforced, while current metric values are 2000 ms). Moreover,
the ADVISE-based control considers the following interval when analyzing the expected
behavior, not only the final metric values. Thus, whenever enforcing an ECP results
in comparable requirements violation over the whole period as for the case of no ECP
enforcement, the controller chooses to not take any action.

When applying a steady/fix workload, depending on the formulated requirements,

109

some controllers can reach continuous control oscillations. This was also the case for
rSYBL with profiling information, as we can see from Figure 8.21 (a). Due to the
continuous effects which are being used by rSYBL with ADVISE, on the same workload,
and the same elasticity requirements, this "ping-pong" effect is avoided (see Figure 8.21
(b)), since the controller knows that the enforcement of ECP5 will imply the overall
increase of the response time, after a time period.

Using ADVISE in elasticity control can also avoid situations where various control
processes are enforced without understanding their outcome. For instance, enforcing
Scale Out when response time satisfies a condition does not always result in response
time decrease. Moreover, in some cases, where the service is not truly elastic, enforcing
ECPs considering expected discrete effects would only cause increase in costs. With
ADVISE and SYBL, the control processes are enforced only when, considering current
and previous behavior, the ECP would help fulfilling SYBL requirements (e.g., increase
throughput, minimize response time).

110

CHAPTER 9
Elasticity Operations

Management

This chapter analyzes the needs of service providers and the possible interactions in
elasticity operations management that should be supported. We focus on interactions
between service provider employees and elasticity controllers, and propose novel interaction
protocols considering various organization roles and their concerns from the elasticity
control point of view. The elasticity Operations Management Platform (eOMP) is
presented, which supports seamless interactions among service provider employees and
software controllers.

9.1 Overview

A service deployed in the cloud can make use of various resources and services offered
by cloud providers, and can be very dynamic at run-time. The cloud is one of the
most dynamic environments: providers can change their cost schemas, and the offered
service characteristics, from one day to another. Although in this environment automated
controllers are necessary, given this high dynamism, it might be necessary for service
stakeholders to re-examine the desired behavior of a cloud service, and their interactions
with other stakeholders (e.g., cloud providers, or data providers). For instance, whenever
the load of the cloud service dramatically changes, the normal "safety requirements"
(e.g., do not exceed a specific cost value) might not hold. For these situations, service
providers have employed analysts to oversee the control process, and detect when such a
case is encountered by a controller. A much better solution would be that the controller
itself notifies the responsible person with the encountered situation (e.g., unexpected
behavior or service health issues). Moreover, when multiple service provider employees
manage service elasticity requirements, they might introduce requirements conflicts, which
result in control instability, or in sub-optimal controller behavior. In such situations,

111

the employees responsible for the detected cases, once notified, should be able to easily
interact with the controller to solve the detected issues. This type of "human-in-the-loop"
based control not only improves the runtime elasticity customization capabilities, but also
empowers service providers with more control over their services and automated elasticity
controllers. Thus, for obtaining service elasticity at runtime, the service provider needs
this kind of support in its operation phase (i.e., from service management lifecycle),
in order to carry out the service operation processes in the cloud environment. Such
control over incidents and over the provided service quality is of utter importance in
dynamic environments, where there are a multitude of variables that can affect the
service behavior, some of which being manageable only manually (e.g., renegotiating
contracts, deciding on the quality of service to be provided to customers, and adapting
to unexpected failures). Although currently several solutions provide elasticity control
of cloud services (e.g., [81], [63]), service provider employees are not included in the
elasticity control process.

For addressing the challenges above, in this chapter we propose adding roles (i.e.,
service provider employees) as first class entities in cloud service elasticity control
loops. Based on the roles, we define necessary interaction protocols for managing service
elasticity operation phase. We focus on interactions between roles and elasticity controllers,
but we also support simple interaction among employees, for notifying each other of
updates or for delegating responsibility for incidents. We extend SYBL [25], a language
for expressing elasticity requirements, to support roles and role-based communication
between stakeholders. Based on this, we develop an elasticity Operations Management
Platform (eOMP) for cloud services, and we validate its usefulness showing various events
encountered for a complex service. eOMP can adapt to various organization structures,
and enables service provider employees to interact easily with the elasticity controller,
for obtaining a more complex elasticity control. eOMPs supports managing unexpected
situations, by facilitating the collaboration between elasticity controllers and service
employees, identifying various types of events occurring during operation phase, and
providing mechanisms for solving them.

9.2 Motivation

For managing cloud services, a service provider needs to prepare its employees for issues
that can appear in cloud environments, and to adapt their internal processes to this kind
of issues (e.g., service health issues, or change in cloud provider offerings). Moreover,
given cloud environment’s dynamism, it might be necessary to constantly analyze the
service at runtime, to make sure that the service customers receive the expected quality
of service. For this it may be necessary to use an automated elasticity controller, for
rapidly reacting to environment changes. The elasticity controller can release from
the employees responsibilities, but could change some responsibilities, for including the
elasticity controller better in the service operation management process.

Figure 9.1 shows a complex environment ranging from IoT-specific resources (i.e.,
sensors, actuators) up to the cloud environment, where information gathered by the

112

Figure 9.1: Motivating scenario

sensors is stored and processed. In cloud infrastructures, we consider a complex cloud
service using various types of software (e.g., NoSQL databases, RabbitMQ) that processes
the data coming from sensors and exposes it to various service customers (e.g., fire
department, or building management application). In this chapter, we consider cloud
service elasticity as being controlled at multiple levels of abstraction, following the
cloud service model presented in [24], where the cloud service is composed of units (i.e.,
elementary parts of the service), which can be grouped into topologies (i.e., semantically
connected units).

Focusing on the service provider, we can see that it needs to fulfil various types of
requirements (e.g., data placement for IoT device users, or providing expected quality for
service customers). For managing the services running in the cloud, the service provider
needs its employees to follow clearly defined roles. For improving the management
efficiency, the service provider normally needs to use an automated elasticity controller
(e.g., rSYBL [24]), for increasing the reaction speed and the control quality. While it
is obvious that nowadays decision-making solutions should be as much software-based
as possible, given the complexity of the setting, there are situations in which it is
necessary for the decisions to be taken by real persons. Depending on the type of change
that has appeared in the service (i.e., following elasticity dimensions: resources, cost,
quality [36]), various roles can have different interests or responsibilities in the cloud
service control. For instance, whenever the cost of running the platform in the cloud
gets high, a financial administrator might analyze the overall evolution, and decide
whether as a strategic decision it makes sense to use more virtual resources than initially
estimated. For this, s/he could either invest more in the platform, or negotiate with cloud
providers for better prices. Although most times service elasticity is achieved simply

113

by allocating more/less virtual resources, similar effects might be achieved by changing
configurations (e.g., changing the load balancing mechanism). In this case, employees
in charge with configuration management should know the configuration being used.
The service provider’s goals can also evolve in time, due to varying number or types of
users. In our scenario, when adding further data providers for the service, the control
requirements need to be modified by the responsible employees, e.g., ensure better data
transfer, even though the cost would go over what before was specified as the maximum
admissible cost.

Therefore, although an automated solution is necessary for this case, the Level of
Automation (LOA) [38] of the elasticity controller should not be of Full Automation,
but the human (service provider employee) should be included in the control loop, for
supporting the cases discussed above, in a Supervisory Control mode. Moreover, for
achieving this kind of interaction between the elasticity controller and the different types
of service provider employees, clear interaction protocols are needed. Since existing
solutions mainly focus on full automation ([63], [81]), we propose using supervisory
control for cloud services elasticity, and define interaction protocols for elasticity control.
Thus, we introduce a platform easing service provider’s interaction with the elasticity
controller, at multiple levels of authority and for multiple elasticity concerns.

9.3 Analyzing Interactions in Elasticity Operations
Management

9.3.1 Role interactions

As described in our motivation, the main focus of our work is supporting service providers
for achieving better supervised elasticity control. Different service provider employees
are normally in charge with different operations, thus being associated with various
roles as part of the organization. We use in our analysis the term roles instead of
stakeholders or employee types, since different persons/stakeholders/employee types can
play various roles, possible multiple roles at a time. Moreover, while the roles present
in a company are rarely dynamic, the stakeholders/employee types and persons in a
company are both volatile and dynamic. Following our motivation scenario, the roles
and elasticity controller need to collaborate in order to manage service operation during
runtime. As shown in Figure 9.2a, roles should be notified by other roles or by the
elasticity controller concerning the operation events that occur in relation to the elasticity
of current service. From the operation events, we focus on any type of elasticity changes.
We characterize elasticity changes according to the elasticity dimensions (i.e., resources,
cost, and quality), and focus on three types of elasticity change events: (i) request for
change (RFC), (ii) incident, and (iii) elasticity notification event. The request for change
event can be initiated by either an elasticity controller or a role, requesting for changes
in properties of the service. The elasticity capabilities (i.e., changes that can be enforced
at runtime for modifying service behavior) can incur unexpected behavior in quality, cost
or resources, which can indicate an issue in the service configuration or the deployed

114

(a) From elasticity changes to responsible roles

(b) From roles to elasticity operation actions

Figure 9.2: Role interaction flow

artifacts. Moreover, service providers are interested in failure events, in order to be able to
learn from service behavior and environment changes that produce failures. The elasticity
changes need to be mapped into elasticity operations actions and the roles that need to
receive them, using knowledge that characterizes the service provider processes and is
managed by the elasticity operations management platform. As shown in Figure 9.2b, a
role can receive a multitude of messages from other roles or from elasticity controllers.
Analyzing them, the role decides whether it can perform needed actions, or if it should
delegate to other roles. After analyzing the interaction flow, the next section is focused
on analyzing the roles and their responsibilities and interests in elasticity operations
management.

9.3.2 Elasticity operations and roles

In the case of elastic cloud services the elasticity controllers play a big role in management,
as opposed to ordinary service management roles [15]. Lower level authority roles (i.e.,
system administrator) have limited responsibilities, supervising and delegating work to
the elasticity controller. We focus on designing interaction between elasticity controllers
and several roles1, excluding the roles whose functionalities are replaced by the elasticity
controller(e.g., Performance/Capacity Analyst, Systems Operator, or Capacity Manager).

We identified the following operations management roles sensible to the cloud service
elasticity:

• Service Manager - responsible for Service Support and Service Delivery actions
taken in order to meet IT requirements (responsible for user satisfaction). This

1http://www.itsmcommunity.org/downloads/ITIL_Role_Descriptions.pdf

115

http://www.itsmcommunity.org/downloads/ITIL_Role_Descriptions.pdf

role is interested in using elasticity for achieving best performance and quality at
best possible cost.

• Incident Analyst - provides support role to receive elasticity changes that cannot
be automatically resolved. From elasticity control perspective, to this role should
be reported any detected incidents for which the controller has no solutions. This
role is interested in the possible incidents that are discovered, or even introduced,
while performing elasticity control processes. While when the service is deployed
in a static environment, this role mainly interacts with the system administrator,
and operations manager, for the case when the service is deployed in a cloud
environment, it can receive valuable information from the elasticity controller.

• Problem Owner/Manager - responsible of reviewing problem trends. In the case of
cloud service whose elasticity is automatically controlled, this role should receive
problems notifications from the elasticity controller. Moreover, the frequency of
the notifications should differ with the gravity of the detected problems.

• Test Manager - ensures proper testing for changes released into production. When-
ever un-predictable behavior is detected by the cloud service elasticity controller,
the test manager is notified for checking if it is the desired behavior.

• Configuration Librarian - responsible for maintaining up-to-date records of configu-
ration items. When the possible runtime modifications that the elasticity controller
is allowed to perform include configuration changes, the configuration librarian
should be notified concerning the changes. Depending on the change frequency, it
may be required that it receives an aggregated list of configurations performed.

• IT Financial Manager/ IT Financial Administrator - monitors cost evolution and
produces reports on IT assets and resources used by the service. When the analyzed
service is deployed on a cloud environment, this role is interested in receiving the
cost of hosting the service on possibly multiple cloud providers.

• Operations Manager - provide necessary services/resources in order to meet SLAs.
When deployed in traditional servers (i.e., not cloud), the operations manager is
in charge with managing all the roles that manage the infrastructure (e.g., Asset
Administrator, Physical Site Engineer, Hardware Engineer). In the current case,
when the service is deployed on the cloud and we use an elasticity controller, the
mentioned roles are substituted by the elasticity controller, and the Operations
Manager would need to interact alot with the elasticity controller.

• Systems Administrator - administers infrastructure (servers, hosts, networking
devices). The system administrator can use the elasticity controller to automate
most of his/her tasks.

• Systems Operator - performs operational processes ensuring that services meet
operational targets. The system operator can use the elasticity controller to
automate most of his/her tasks.

• Procurement Analyst - contact for vendor suppliers. Is in charge with finding the
vendors for the needed services, negotiating the costs and signing contracts. In cloud
computing, part of these responsabilities are delegated to the elasticity controller.
However, some responsabilities that involve humans and cannot be replaced by

116

Modification type Roles interested
Changes in cost due to scaling/changing the in-
frastructure/software services that are being used

IT Financial Manager, Service Manager

Changes in cost due to providers change in cost,
without change in performance

Procurement Analysis, Service Manager,
Operations Manager

Changes in quality due to providers change in
quality, without change in cost

Service Manager, Operations Manager

Requirement on cost inflicts degradation of per-
formance

Operations Manager

Configuration change due to change of the work-
load

Configuration Librarian, System Admin-
istrator, Operations Manager

Service part that is not healthy (erroneous, not
behaving as expected)

Test Manager, Operations Manager, Sys-
tem Administrator, Incident Analyst

Changes in quality w/o change in workload Operations Manager, Service Manager
Requirements that are not fulfilled/ are on danger
of not being fulfilled by the cloud service elasticity
controller

Operations Manager

Data compliance requirements changed by the
data provider

Service Manager, Operations Manager

Table 9.1: Examples of elasticity modifications and roles interested

software (e.g., cloud providers do not offer re-negotiation APIs).

Table 9.1 shows the possible elasticity-driven behavior modifications that can be
triggered by the elasticity controller, and the roles that might be interested in these types
of modifications. Depending on the frequency of modifications, the roles are interested of
receiving events more or less often, events being aggregated from a number of modifications,
or containing a single modification. For instance, cost-related modifications need to be
viewed by finance-related roles, like IT Financial Manager, Procurement Analysis, or
Service Manager. Quality-related events (e.g., service part is not healthy, requirements
not fulfilled) are of interest for Operations Manager and Service Manager.

9.4 Elasticity Operations Management Platform
We design our platform (Figure 9.3) following the flow described in the previous section, for
supporting interactions between roles and elasticity controllers, and even third party roles.
The controller sends messages through an Embedded Queue, for message locality reasons.
From eOMP, the Control Communication component processes the received notifications.
Here we provide a plugin-based mechanism for ensuring that eOMP can be adapted to
different elasticity controllers, the only constraint being to map controller notifications
to the eOMP model with operation events. The Control Communication component
processes the operation events, and depending on their types, and depending on the

117

Figure 9.3: eOMP design

responsibilities of the roles in the Role Management Component, maps the controller
messages to correct interactions with current roles, and adds them to the queue. For this,
we use a Queue as a Service, since depending on the number of roles, and possibly in
the future, organizations, that we want to support, the scale of the queue and routing
complexity can increase. Queue interactions are consumed from the roles’ side by the
Interaction processing component, which directly interacts with the role (e.g., user
interface, command line, API-driven communication). For communication between roles,
we use a component for collaborative interactions in human-based computing systems
(e.g., SmartCOM2).

We designed the platform in such a way that the elasticity controller is agnostic
to IT service management processes, or role types. This is beneficial since it enables
service providers to choose other controllers, or, for the case of very small company (i.e.,
one employee), to use the controller without the rest of our platform. The roles and
responsibilities can be modified by the eOMP administrator, e.g., by using roles from a
different standard.

9.4.1 Entities of the Interaction

For defining the interactions that may occur for the cloud service elasticity control, we
focus on the participants in interactions. We use organization to describe an association
with a functional structure (e.g., service provider organization). We focus firstly on mod-
eling interactions between the service provider organization and the elasticity controller,
and secondly on modeling limited interactions among organizations.

Roles (Eq. 9.2) are entities that are associated with responsibilities R and authority
levels Aut, and that can be assigned to different employees at various points in the
organization lifetime. An employee can have multiple roles at a given time (e.g., both
systems administrator and systems operator). Each organization is defined by a set of
role types, which change rarely throughout organization lifetime (e.g., when adopting
CMMI3, depending on the maturity level, roles used change). Third party roles are
roles from partner organizations, which are known to the current organization, and are
accessible only through an internal role for various actions (e.g., notifications, or contract

2https://github.com/tuwiendsg/SmartCom/wiki
3http://cmmiinstitute.com/

118

https://github.com/tuwiendsg/SmartCom/wiki
http://cmmiinstitute.com/

re-negotiations). As we are interested in elasticity control operations management, we
focus on Elasticity Responsibilities (Eq. 9.2) related to elasticity dimensions [36].

Roles = {(R,Aut)|R ∈ Responsibilities,Aut ∈ [min,max]} (9.1)
Responsabilities = {x ∨Relations(x, y)

|x, y ∈ {Cost,Quality,Resources, Error,Analytics}} (9.2)

We define a Message as being composed of a header, and a body, the header
containing initiator and receiver related information, while the body contains the
message type, its priority and the content of the message. The message content
(Eq. 9.4) can contain suggested interactions, which are nested interactions suggested by
the initiator for the receiver(e.g., an elasticity controller can suggest the Procurement
Analyst to re-negotiate the contract with the cloud provider due to cost increase). Using
these entities, an interaction can be defined as a tuple of Initiator-Receiver-Message (Eq.
9.5), where each of the Initiator and Receiver can be a set of Roles.

Messages = {[Header,Body]|
Header ∈ {[MessageID, Initiator,Receiver]|

Initiator,Receiver ∈ {Roles ∪ ElasticityController}}
Body ∈ {[MessageType, Priority, Content]

MessageType ∈ {Notification,ChangeRequest, ErrorNotification}} (9.3)

Content = {[Cause, SuggestedMeasure]|
Cause ∈ Requirements ∪ ExpectedBehavior

SuggestedMeasure ∈ Interactions ∪Actions} (9.4)
Interaction = {[InteractionID, Initiator,Receiver,Message]|

Initiator,Receiver ∈ Roles,Message ∈Messages} (9.5)

The set of all interactions, which impact elasticity control, in an organization are
defined as OrganizationInteractions, with the condition that at least one of the initiator
and receiver are part of the organization.

OrganizationInteractions = {Interaction|
Interaction.Initiator ∨ Interaction.Receiver ∈ Organization} (9.6)

9.4.2 Interaction protocols for supervisory control of elasticity

As discussed previously, elasticity depends on a large set of variables, both from the
IoT, cloud and business world. Elasticity behavior of a service is subject to the business

119

(a) Interactions for starting elasticity control (b) Interactions for testing elasticity capability

Figure 9.4: Interaction dialogs

Interaction type Interaction details
Undeploy the service [ID, Role, EC, [RFC, Priority, [Cause,

UndeployService(ServiceID)]]]
Replace metric composi-
tion rules

[ID, Role, EC, [RFC, Priority, [Cause,
ReplaceRules(ServiceID, CompositionRules)]]

Replace deployment [ID, Role, EC, [RFC, Priority,
[Cause, ReplaceDeployment(ServiceID,
DeplDescription)]]

Replace elasticity require-
ments

[ID, Role, EC, [RFC, Priority, [Cause,
ReplaceRequirements (ServiceID,
Requirements)]]

Pause/Resume control [ID, Role, EC, [RFC, Priority, [Cause,
PauseControl(ServiceID)]]

Table 9.2: Interactions for requesting modification in control

strategy of the service provider, and this can vary with the economic perspectives, and
with the market evolution (e.g., the financial manager should decide the strategy in case
of financial crisis, and not the elasticity controller). We propose using a supervisory
control mechanism [38,112], in which any decision of the human overrides any decision of
the elasticity controller (i.e., the roles are the outer control loop). For this, we define
a set of interaction protocols, based on the entities defined above, for facilitating the
communication between roles and elasticity controllers.

120

Figure 9.5: Elasticity controller bringing the roles into the control loop

Role as initiator - Bootstrapping Dialogs:

The goal of this interaction is to enable roles to initiate dialogs with the elasticity con-
trollers for bootstrapping the elasticity controller (Figure 9.4a and 9.4b). For starting
elasticity control, the elasticity controller is sent a prepare message, followed by in-
formation describing the cloud service is sent one at a time (e.g., service description,
custom metrics description), and if each step is successfully achieved, a Start Control
message is sent. Each call from the role to the dialog starts a complex process on the
controller side (e.g., possible elasticity requirement conflicts are solved). For testing
an elasticity capability, a Start Test message is sent for starting the test mode. For
instance, the System Administrator is able through this dialog to set all needed
information for elasticity control (e.g., structure, resources used), wait and ensure that
each step is successfully completed.

Role as initiator - Request for change :

The goal of this interaction is to enable the roles to modify expected service behavior
during runtime (Table 9.2). Whenever a role decides that an update is necessary, e.g., due
to events signaled by the elasticity controller, the role can modify elasticity requirements,
or deployment description (e.g., after a manual re-deployment). For instance, the
Service Manager can decide to undeploy the service from the cloud environment, and,
e.g., keep only an on-premise deployment.

121

Elasticity controller as initiator:

The goal of this interaction is to enable the elasticity controller to notify appropriate
roles on changes in elasticity behavior (Figure 9.5). Whenever abnormal changes are
observed in the cloud service behavior, the elasticity controller notifies roles, depending
on the Responsibilities, and the Authority that they have associated. For instance, in
the case of conflicting requirements that cannot be automatically solved (e.g., response
time is expected to be low, while the cloud provider is running in degraded mode), the
controller notifies the roles causing the conflict (i.e., Rolei . . . Rolej), as well as a higher
authority role having the responsibilities ∪x=i..jResponsabilities(Rolex).

9.4.3 Elasticity directives-driven interactions

For creating custom interactions, we have extended the SYBL [25] elasticity requirements
definition language with the new NOTIFY directive, with BNF form described in the
Listing 9.1, to be triggered when certain conditions hold. A call of the notify() method
of the NOTIFY directive maps to the initiation of a new interaction between the elasticity
controller and the role mentioned in the directive. An example of such a directive
can be No1: NOTIFY OperationsManager WHEN responseTime > 1.2 s :
notify(WARNING, "Response time exceeds 1.2 s"). Whenever a condition
for a notification directive is true, the Controller Communication starts an interaction
(i.e., translating the aforementioned directive into interaction [No1, EC, Operations
Manager, Notification, "Response time exceeds 1.2 s"].

Listing 9.1: SYBL Notification in Backus Naur Form (BNF)
No t i f i c a t i o n := no t i f i c a t i o n ID :NOTIFY Role WHEN

ComplexCondition
: n o t i f y (Not i f i cat ionType , message)

Role := ROLE(Responsab i l i ty1 , Responsab i l i t y2) , Role |
ROLE (Responsab i l i ty1 , Responsab i l i t y2) |
RoleX , Role | RoleX

Not i f i ca t i onType := NOTIFICATION | ERROR | WARNING

9.4.4 Interaction Aggregation

Each role, depending on its responsibilities, should receive different number of messages,
or only emergency messages, the amount of messages being inversely proportional with
the authority and directly proportional with the responsibilities (e.g., a Service Manager
role with an authority of 10 out of 10 should receive less often messages than the System
Administrator with authority 5 out of 10). Moreover, the nature of the messages should
reflect the responsibilities and interests. For this, the Controller Communication Module
examines messages and identifies metrics of interest for the responsibilities associated
with each role. For filtering the interactions initiated, we define an aggregation function
can be defined, selecting the amount of messages to be sent to the roles. 9.7 shows the

122

logarithmic filtering function we defined for interaction aggregation, which decides if the
aggregation of messages so far should be sent.

f(Role,QInteractions) = (log10(Role.Authority) ∗
THRESHOLD_NOTIFICATION <= QInteractions.size())

∨(log10(Role.Authority) ∗ THRESHOLD_ERROR
<= MaxPriority(QInteractions)) (9.7)

9.4.5 Message mapping

Messages are generated by the Control Communication component, based on metrics
encountered in the message generated by the controller, and their mapping to the role
responsibilities. We provide a generic processing mechanism that searches metric patterns
associated with responsibilities in the message from the controller, and creates a new
message with the structure described in Section 9.4.1, initiating interactions for the
appropriate roles, considering roles’ responsibilities. Depending on roles authorities
(Equation 9.2), interactions are either aggregated or immediately sent to the Interaction
Management component. This component publishes interactions to be observed in the
eOMP platform, and in a Collective Communication component (e.g., SmartCOM)
that enables complex interaction management among service provider team members.
Although the team communication management is out of the scope of this thesis, service
elasticity can be impacted by coordination mechanisms and information sharing, which
is managed through the Collective Communication component.

9.5 Prototype and Experiments

9.5.1 Prototype

The elasticity Operations Management Platform (eOMP) is implemented as a Java enter-
prise application, which can be deployed either in the cloud or under service provider’s
premises. eOMP is open-source and available together with further experiments, details
and user guides4. The current version integrates with the rSYBL elasticity controller,
making use of the notification queue (i.e., embedded queue in the eOMP design, imple-
mented using ActiveMQ5) exposing events during runtime. This can be easily extended
to other elasticity controllers, by implementing an adapter for receiving and processing
events. The service queue is using CloudAMQP6, which is managed RabbitMQ7 offered
as a cloud service. Our Primefaces8-based frontend includes dynamically generating
diagrams and charts for the cloud service provider employees.

4http://tuwiendsg.github.io/rSYBL/eOMP
5http://activemq.apache.org
6http://cloudamqp.com
7http://rabbitmq.com
8http://www.primefaces.org/

123

http://tuwiendsg.github.io/rSYBL/eOMP
http://activemq.apache.org
http://cloudamqp.com
http://rabbitmq.com
http://www.primefaces.org/

9.5.2 Elasticity Operations Management Features

To illustrate eOMP features, we used our pilot application9 that consists of: (i) an event
processing topology composed of an event processing unit and a load balancer, and (2) a
data end topology composed of a data node unit and a data controller unit. We used a
recording of a previous run, to which we injected events (i.e., by modifying monitored
data for a limited amount of time). We chose this approach instead of real-time injecting
faults, since it is more reliable, and our focus is showcasing the eOMP platform, and
not the service versatility. Figure 9.6 shows the initial view of eOMP platform, with
currently controlled services, as well as general information like current roles of service
provider employees, their responsibilities, the dialogs that can be initiated using eOMP.

Figure 9.6: eOMP snapshot: initial information

Understanding responsibilities

After logging in, the employee can see his/her associated roles and responsibilities
(Figure 9.7, as well as the roles and responsibilities of other team members. For adding
new employees to eOMP, an administrator can select, according to the requirements,
roles associated with the new employee.

Implicit vs. explicit interactions

For understanding current service behavior, roles need elasticity controller interactions
executed regularly (e.g., every 10 minutes, or each time the role logs into the platform).

9https://github.com/tuwiendsg/DaaSM2M

124

https://github.com/tuwiendsg/DaaSM2M

Figure 9.7: eOMP snapshot: current roles and responsibilities

We distinguish between two types of interactions from the user/employee perspective: (1)
implicit interactions, for getting the necessary data to be displayed to the employee (e.g.,
dialogs for getting the service description), and (2) explicit interactions, initiated by the
eOMP user. Figure 9.8 shows a dialog from the first type, with the system administrator
(one role of the current logged in employee) requesting for initial description information.
While without eOMP, the employee would need to manually call them, with eOMP the
implicit interactions are already managed when the employee logs on in the platform.

Figure 9.8: eOMP snapshot: implicit initial dialog requesting services information

Solving conflicting requirements

The controller can encounter a case where no actions are suitable for solving the discovered
issues. The employee then can try to manually inspect the issue, to re-deploy, provide
further elasticity capabilities, re-configure some artifacts, and then notify the appro-
priate roles(e.g., Configuration Librarian for the case configurations were performed),
including the Elasticity Controller. Figure 9.10 shows a situation where constraints
Co1("Co1:CONSTRAINT cost<10$;") and Co3("Co3:CONSTRAINT
responseTime<400 ms;") are conflicting, because of the high workload and the limit on
the cost. Since the employee receiving this interaction has more roles associated, s/he
decides to replace the requirement from the Procurement Analyst role, for being

125

able to increase the limit for the service cost. The interaction dialog from the three
roles is shown in Figure 9.9a, and consists of two steps: (1) the controller notifies the
Incident Analyst role that no action is available due to the requirements conflict,
(2) the employee uses the Procurement Analyst role to modify the cost requirement.
Moreover, eOMP uses knowledge on role types and their authorities, avoiding modification
conflicts (e.g., with no eOMP, two roles can fix observed issues at the same time). In
our case, the role interaction with the elasticity controller is managed by eOMP, the
employee being able to choose even a different role from which the issue can be solved
better.

(a) eOMP snapshot: dialog for clarifying requirements

Figure 9.9: Conflicting requirements resolution

Figure 9.10: eOMP snapshot: replace requirements

Service health incidents

Another issue that may occur during service operation is that a service part might be
unhealthy (i.e., monitoring metrics have error-like values for an amount of time). The
controller exposes a notification with regard to this behavior, and the Controller
Communication eOMP component processes it and initiates interactions with the
appropriate roles (between the Elasticity Controller and the Operations Manager).

126

Figure 9.11: eOMP snapshot: requirements modified in rSYBL controller

Figure 9.12 shows a dialog that occurs when the Event Processing Topology is
unhealthy (i.e., its metrics have error values).

Figure 9.12: eOMP snapshot: unhealthy service part notification

With eOMP, all the roles that have incidents as responsibilities receive notifications,
but the timing and the amount of notifications is inversely proportional with their
authority. When the Operations Manager (high authority) gets an interaction in this
sense(Figure 9.14 Event Processing Topology incident), it means that the other
lower level authority roles have ignored or weren’t able to address the situation. Therefore,
this role can choose to delegate the interaction to the Incident Analyst (see Figure 9.13.

127

Figure 9.13: eOMP snapshot: unhealthy service part notification

Figure 9.14: eOMP snapshot: unhealthy service part dialog

The incident analyst can try to fix the issue, or can report on the difficulty of the issue.
Figure 9.14 shows the interactions (i.e., pause-fix-replace service description) undertaken
by the Incident Analyst. All this is part of the initial dialog, so it can now be followed
by the Operations Manager, to make sure the incident is being solved.

(a) Total role interactions (b) Role interactions in time

Figure 9.15: eOMP snapshots: statistical information regarding interactions

Dealing with roles authorities

eOMP enables highest authority roles to follow interactions that occurred over time and
how they are distributed among roles (see Figure 9.15). The amount of messages that a

128

role receives varies with the events that occur, with role’s responsibilities in relation with
these events, and with role’s authority. We can see that higher level authority roles have
fewer interactions, following the Interaction aggregation function in Section 9.4.4.

Thus, eOMP facilitates interactions between service providers and elasticity controllers,
and among service provider roles, automating operation tasks and providing support for
interaction management based on role’s authority and responsibilities. With eOMP the
roles can easily follow the evolution of their elastic service, and the evolution, in time, of
incidents, requests for change, or measures taken by the elasticity controller in order to
control their service behavior.

129

CHAPTER 10
Related Work

10.1 Elasticity Requirements Language
Resource re-allocation and requirements specification have been targeted usually from
the SLA fulfillment or scheduling and resource allocation perspectives. Macias et al. [79]
provide an evaluation of possible SLA administration strategies, showing how cloud
providers revenues change when optioning for different strategies. Fard et al. [39]
approach static scheduling with a different view, defining a multi-objective optimization
algorithm and demonstrating its usefulness on real-world applications. Han et al. describe
in [56] an approach for fine-grained scaling at resource level in addition to the VM-level
scaling, which uses a lightweight scaling algorithm for improving resource utilization
while reducing cloud providers’ costs. Our approach differs from these works in two
main points: we support (i) multiple levels of elasticity control using (ii) multiple elastic
properties.

In [85] the authors present an attempt to tackle the problem of elasticity from the
point of view of resource and elasticity in SaaS based clouds. The authors propose
relating cost with quality: cost per performance metric (C/P) and cost per throughput
(C/T). Li et al. [77] review the existent metrics for evaluating commercial cloud services
from economics evaluation metrics to elasticity evaluation metrics setting the focus
on the complexity of cloud computing environments. Sharma et al. [109] propose a
framework for cost optimization, considering the fact that the resources, the cost and
the quality obtained influence each other. Therefore, the idea of application elasticity
in cloud as a complex multi-dimensional problem is not new, and research effort goes
into providing solutions or partial solutions. However, existing works have not developed
flexible languages for controlling multi-dimensional elastic properties.

In [47] Galan et al. propose an extension of OVF for service specification in cloud
environments describing resource as well as business rules and enforcing them through
resource allocation/de-allocation. Chapman et al. [19] describe an elastic service definition
in computational grids. Morán et al. [91] provide a rule-based approach for specifying

131

application requirements. In contrast with these two approaches, our main focus is
describing elasticity requirements and the different granularities at which they can be
specified by developers, end-users or cloud providers.

From the initial publication of SYBL [25], several languages have been proposed for
aiding elasticity in the cloud. Kouki et al. [69] propose an extension of CSLA (Cloud
Service Level Agreement) [20], focusing on QoS degradation and penalty models for
an easier and clearer interaction between the cloud customer and the cloud provider.
Li et al. [76] propose PSLA (PaaS level SLA) language for the description of SLA,
focusing on workload elasticity and PaaS-specific properties. PSLA is an extension
of WS-Agreement [5]. CloudMF [42] is a language for cloud infrastructure resources
management, with focus on uniformly describing applications for reducing vendor lock-ins.
Based on CloudML [53], Kritikos et al. [71] propose SRL, a policy language for scaling
multi-cloud applications. Zabolotnyi et al. [131] propose SPEEDL, a declarative language
for event-based scaling of cloud applications.

The major difference between existing work and our approach is that our work tackles
elasticity requirements from more than one perspective (resource, quality, cost) and at
different levels of granularity, thus assigning the user the capacity of specifying when the
application should scale throughout its execution and, most importantly how.

10.2 Elasticity Control Mechanisms

Yang et al. [129] support just-in-time scalability of resources based on profiles. Kazhami-
akin et al. [66] consider KPI dependencies when adapting the service based applications.
Malkowski et al. [80] support multi-level modeling and elastic control of resources for
workflows in the cloud. Guinea et al. [55] develop a system for multi-level monitoring and
adaptation of service-based systems by employing layer-specific techniques for adapting
the system in a cross-layer manner. Elasticity control of storage based on resources and
quality has been focused by various research work, e.g., adaptively deciding how many
database nodes are needed depending on the monitored data in [121]. In [127] the authors
propose an algorithm for software resource allocation considering the loads, analyzing
the influence of software resources management on the applications performance. Yu
et al. [130] propose an approach for resource management of elastic cloud workflows.
They present a generic workflow architecture with components such as makeflow (that
paralelizes large complex workflows on clusters grids and clouds) and master-work-workers.
Almeida et al. [4] propose a branch and bound approach for optimally selecting services
from multiple clouds during runtime. In [70] the authors propose a framework for auto-
matic scalability using a deployment graph as a base model for the application structure
and introduce elasticity as a service cross-cutting different cloud stack layers (SaaS, PaaS,
IaaS).

From the initial publication of rSYBL mechanisms, several elasticity controllers have
been proposed. Tolosana-Calasanz et al. [118] propose controlling resources necessary
for data streams, using a shared token bucket approach. Dupont et al. [33] propose
the notion of software scalability, both horizontal and vertical, by drawing inspiration

132

from infrastructure scalability. For SaaS providers, horizontal (i.e., adding/removing
more software units), or vertical (i.e., increasing/decreasing offerings for the service), can
be a good customization opportunity to profit from elasticity at IaaS level. Aragna et
al. [7] define metrics and rules for elasticity control, and study various scenarios (e.g.,
infrastructure only, or database only control). Nakos et al. [93] propose an approach
for elasticity control based on dynamic instantiated Markov decision processes, using
probabilistic model checking. Ferry et al. [41] propose an approach for the continuous
management of scalability in multi-cloud systems, based on ScaleDL [12] and CloudMF
[42].

Compared to the above-mentioned work, we control elasticity not just in terms of
resources but also in terms of quality and cost and use application structure for proposing
an accurate multiple level control of elasticity of cloud services. Furthermore, they lack
user-customized elasticity control. We propose a user oriented elasticity control in which
the user (cloud service creator, application developer, etc.) specifies how the cloud service
should behave for achieving the elasticity property. Moreover, we argue in favor of an
elastic services control aware of the structure of the elastic service, profiting from this
knowledge for a multiple levels elasticity control of cloud services.

10.3 Elasticity Behavior Estimation

In our previous work, we focused on modeling current and previous behavior with
the concepts of elasticity space and pathway [89], where we utilize different algorithms
to determine enforcement times in observed service behavior (e.g., with change-point
detection), but without modeling expected behavior of different service parts, in time.
Verma et al. [124] study the impact of reconfiguration actions on system performance.
They observe infrastructure level reconfiguration actions, with actions on live migration,
and observe that the VM live migration is affected by the CPU usage of the source
virtual machine, both in terms of the migration duration and application performance.
The authors conclude with a list of recommendations on dynamic resource allocation.
Kaviani et al. [65] propose profiling as a service, to be offered to other cloud customers,
trying to find tradeoffs between profiling accuracy, performance overhead, and costs
incurred. Zhang et al. [134] propose algorithms for performance tracking of dynamic
cloud applications, predicting metrics values like throughput or response time.

Dean et al. [30] propose an approach for predicting running application performance
anomalies, self-organizing maps for capturing emergent behavior and predicting unknown
anomalies. Using unsupervised learning, this approach also identifies previously unknown
anomalies/faults that may appear in the system (e.g., memory leaks, cpu leaks). For
cloud service SLA violation prediction several solutions have been proposed, such as
[74] [116], that use statistical models (e.g., decision trees, artificial neural networks) or
naive bayes classifiers, predicting when the SLA would be violated without focusing
on the violation cause. LaCurts et al. [72] propose Cicada, a framework that predicts
network traffic for cloud applications, without making assumptions about application
structure. The authors argue that cloud providers should offer predictive guarantees as

133

a service, instead of bandwidth guarantees, which would also encapsulate application
runtime changes. Similarly, ADVISE-enabled rSYBL can be used to guarantee or to sell
as a service cloud service elasticity, with little specifications coming from the user.

Juve et al. [64] propose a system that helps automating the provisioning process
for cloud-based applications. They consider two application models, one workflow
application and one data storage case, and show how for these cases the applications can
be deployed and configured automatically. Li et al. [75] propose CloudProphet framework,
which uses resource events and dependencies among them for predicting web application
performance on the cloud. Shen et al. [110] propose the CloudScale framework that uses
resource prediction for automating resource allocation according to service level objectives
(SLOs) with minimum cost. Based on resource allocation prediction, CloudScale uses
predictive migration for solving scaling conflicts (i.e. there are not enough resources for
accommodating scale-up requirements) and CPU voltage and frequency for saving energy
with minimum SLOs impact. Compared with this research work, we construct our model
considering multiple levels of metrics, depending on the application structure for which
the behavior is learned. Moreover, the stress factors considered are also adapted to the
application structure and the elasticity capabilities (i.e. action types) enabled for that
application type. Cuomo et al. [29] propose a methodology for performance and cost
estimation for mOSAIC [105] cloud applications, under generic workloads.

Compared with presented research work, we focus not only on estimating the effect
of an elasticity control process on the service part with which it is associated, but on
different other parts of the cloud service. Moreover, we estimate and evaluate the elasticity
behavior of different cloud service parts, in time, because we are not only interested in
the effect after a predetermined period, but also with the pattern of the effect that the
respective ECP introduces.

10.4 Heterogeneous Elasticity Control

In multi-cloud area ongoing research puts great emphasis on federation, from two
perspectives: multi-cloud service controllers that assume that they are using federated
clouds, e.g., Bermbach et al. [13], Kondikoppa et al. [68], Panda et al. [101], and work
done for the federation of clouds e.g., Kertesz et al. [67], Paraiso et al. [102]. In our work,
we are not dealing with a federation of clouds, which implies some sort of standardization,
and neither with already federated clouds. From a practical point of view, the controllers
of such multi-cloud services need to acknowledge the differences among these clouds,
especially in cases in which the clouds need to be heterogeneous by the nature of service
parts requirements and functionalities.

Sampaio et al. [108] propose Uni4Cloud, a framework for the deployment and manage-
ment of multi-cloud services. They emphasize the challenges in deploying and configure
such a service, and present a model-based approach for accomplishing these tasks, au-
tomatically and independent of the IaaS provider. However, the focus in this case is
the deployment, not runtime elasticity. Miglierina et al. [88] propose a control theoretic
approach for multi-cloud services, targeting resource level control and modeling formally

134

specific types of service units that are supported (e.g., load balancer), and putting a lot
of focus on the load balancing between instances of the same components deployed on
different cloud infrastructures. As opposed to this, we aim supporting all types of services,
showing our customization mechanisms for providing elasticity control, and we focus on
cloud services that deploy different service topologies or service units on heterogeneous
clouds, due to their difference by nature (e.g., gateways versus web services, backup
service unit instances versus normal ones). Aragna et al. [8, 9] propose a model-driven
approach for the multi-cloud deployment and monitoring of cloud services over multiple
cloud infrastructures, describing a framework to support full transparency from the user.
We argue that, in fact, user transparency is much more relevant during runtime, where
the user should be able to easily describe high-level, provider-independent requirements,
with the support framework controlling, transparently, the service.

In contrast with other approaches, our work focuses on the heterogeneity of clouds
and their services, thus giving better control to service developers on the elasticity
achieved during runtime. Moreover, we propose maintaining the single cloud requirements
structures, thus shifting only the users’ focus towards the elasticity metrics they are
interested in, specific for multi-cloud services. This way, users can profit from differences
among cloud providers, and improve their service performance or achieve complex services
with the combination of highly domain-specific private clouds and public clouds.

10.5 Elasticity Operations Management

Various standards and processes have been proposed over the years for IT service
management. Sallé [107] provides an analysis of the evolution of IT service management
over the years, and its evolution towards IT governance. Starting from Information
Systems Management Architecture [122], IT management methodologies have evolved
towards well-defined standards/best practices of IT service management (e.g., ITIL R© [10],
BSI ISO 20000 [17], FitSM [40]). Although the focus of this thesis is not the management
processes adopted by organizations, understanding their internal processes is necessary
for being able to support them in their quest for cloud service elasticity. Since the latest
reference models used nowadays in organizations (e.g., [17], [58]) are in alignment with
ITIL R© service management practices, we used these processes and organization roles.
However, our design (see Section 9.4) is such that, roles and processes can be modified
for accommodating future service management models.

Operation management in cloud computing has been approached mostly from the
cloud provider’s perspective [59,133], and little from service provider (i.e., cloud customer)
perspective. Bleizeffer et al. [15] propose a set of user roles in cloud systems, having as
core roles not only the cloud service provider, but also the cloud service consumer and
cloud service creator. The three core roles are expanded into a taxonomy of interconnected
user roles, which communicate with each other for delegating responsibilities or gathering
information. Demont et al. [31] present an initial proposal of integrating the TOSCA
cloud service description standard with ITIL elements. Several commercial solutions
enable cloud infrastructure management support, but do not support service operations

135

management at cloud customer’s service level (e.g., VMWare vCloud Suite1, Oracle
Enterprise Manager2). Liu et al. [78] propose an incident diagnosis approach based
on incident relationships, using co-occurring and re-occurring incidents for performing
root cause analysis. Munteanu et al. [92] propose an architectural approach for incident
management in the cloud, from service monitoring perspective, including incident lifecycle
management, event and incident detection, incident classification and recovery and root
cause analysis.

In contrast with above presented work, we focus on the elasticity aspect of service
operations management in the cloud, characterizing the relevant properties and interac-
tions. Moreover, we emphasize the importance of supervisory control for the cloud, and
introduce service provider employees as first-class entities in the control loops.

1http://www.vmware.com/products/vcloud-suite
2http://www.oracle.com/technetwork/oem/enterprise-manager

136

CHAPTER 11
Conclusions and Future Work

This chapter summarizes the main results of the thesis, emphasizing the thesis contribu-
tions. Furthermore, future research directions are outlined, based on research presented
in this thesis and considering challenges that were not completely addressed due to the
limited time frame of the thesis.

11.1 Conclusions
The thesis is based on the observation that cloud service stakeholders need expressive
ways of describing their requirements, and they need tools to support them to achieve
these requirements. The SYBL language enables a wide range of users, from developers
to cloud customers and cloud providers, to specify the service’s elasticity in a simple way,
while the actual complex enforcement of elasticity remains transparent to the users. SYBL
features, covering different elasticity constraints, strategies and monitoring directives,
permit a wide range of flexible ways for controlling service’s elasticity, while for cases
where some needed metrics are not yet present in SYBL, the language can be easily
extended to reflect the elastic properties of user’s focus.

After developing the language, the framework enforcing these requirements was
developed. rSYBL, the framework for multi-level cloud service elasticity control, considers
multi-level elasticity requirements coming from the cloud service provider. rSYBL
framework is open-source, extensible, and can be customized for different cloud providers
and cloud services, having various preferences in terms of elasticity control. We base
our control mechanisms on the user-provided requirements, and on cloud service pre-
deployment information and runtime information. This way, we empower the users to
steer the control by specifying their needs, at the service level they possess knowledge
for (e.g., in the case s/he is aware of how or what should be controlled at the data end
but not at the business end), and the level of detail that they are comfortable with (e.g.,
if the cloud provider knows only requirements about cost in relation to the number of
clients they expect, s/he is not needed to specify response time requirements).

137

We observed how rSYBL behaves under various use-cases, and proposed a complex
use-case with cloud services deployed in multiple, heterogeneous clouds, with dependencies
among various service parts. The need for elastic multi-cloud services was emphasized,
showing the main challenges, and presenting models and mechanisms for providing
heterogeneous multi-cloud control for services. rSYBL framework was extended, with
these mechanisms, and some experiments were presented with a service deployed on two
different cloud infrastructures, with different time sensitivities.

For better elasticity control, the rSYBL controller, or any other elasticity controllers,
need to understand how their service behaves as a whole, how different parts behave,
in time, in relation to the elasticity requirements. A methodology for estimating cloud
service elasticity behavior was presented, and implemented in the ADVISE framework.
ADVISE is able to estimate the behavior of cloud service parts, in time, when enforcing
various ECPs, by considering different types of information represented through the
elasticity dependency graph. Experiments from three different cloud services, show that
ADVISE framework is indeed able to advise elasticity controllers about cloud service
behavior, contributing towards improving cloud service elasticity. ADVISE was integrated
in the rSYBL elasticity controller [24], and the decision mechanisms we refined in order to
consider continuous ECP effects. The improvement that ADVISE brings to the rSYBL
elasticity controller was highlighted, and various decision types that ADVISE influences
were discussed.

After developing the mechanisms above, for controlling the elasticity of cloud services,
we considered the human factor that influences the control process. The elasticity
controller receives requirements from stakeholders (e.g., cloud service owner, cloud service
developer), in order to control the elasticity of the cloud service at runtime. However,
normally, cloud services are developed and operated in an organization, by various
employees with various responsibilities. This thesis presented a set of interaction protocols
for managing elasticity operations of cloud services, which take into consideration service
provider roles as first class entities in the service elasticity control. The eOMP platform
was introduced, which allows service provider employees to manage the cloud service
operations related with elasticity, interacting with the elasticity controller and other
employees of the service provider.

Some of the presented prototypes consider the base of other prototypes, or research
work. SYBL is used in the Eclipse project Cloud Application Management Framework
(CAMF1) as a specification language for describing elasticity requirements. rSYBL
is a core component of CELAR project2, functioning as the CELAR decision-maker,
controlling cloud applications that are using the CELAR platform. rSYBL and SYBL
were extended to be used in IoT governance, for specifying and managing governance
policies for IoT applications [95]. Moreover, rSYBL was used as a basis for research on
elasticity coordination mechanisms [83], and on porting applications to the cloud [117].

1https://projects.eclipse.org/proposals/cloud-application-management-
framework

2http://www.celarcloud.eu

138

https://projects.eclipse.org/proposals/cloud-application-management-framework
https://projects.eclipse.org/proposals/cloud-application-management-framework
http://www.celarcloud.eu

11.1.1 Research Questions Revisited

We revisit the research questions in Section 1.2, and show how and to which extent we
have addressed them:

• Research Question 1: How could requirements be specified, with the least
effort from service provider side, but still giving sufficient information
for controlling the service?
We address this question by proposing the SYBL language (Chapter 5), which
allows users to specify high-level requirements at multiple levels of abstraction.
The basis of the SYBL language is the model presented in Section 8.2, which
links design-time and run-time information, in terms of requirements, used cloud
resources, and system level, and application level metrics. SYBL requirements can
be specified either in text format (e.g., in the rSYBL user interface, as TOSCA
policies, or in the service description) or with the CAMF1 user interface. Moreover,
we extended the SYBL language for it to be able to represent requirements regarding
uncertainty (e.g., uncertainty level the user is comfortable with, when applying a
specific strategy) [95]. Due to its generic constructs, SYBL can be extended and
used to other areas, as we discuss in next Section.

• Research Question 2: How can we control the elasticity of complex
services deployed in the cloud?
To answer this question, we defined mechanisms for controlling cloud services, based
on the model described in Section 8.2 and the language presented in Chapter 5. We
formulated the problem of finding the set of actions necessary to fulfill requirements
as a set coverage problem, and based on it we implemented the rSYBL framework
(Chapter 6). We addressed issues such as conflict resolution for requirements, and
currently support a number of monitoring tools (e.g., MELA [90], Ganglia3) and
enforcement mechanisms for different clouds (e.g., OpenStack4, Flexiant FCO5,
Google Compute Cloud6). For understanding the impact, in time, of various control
actions upon the service, at different levels of abstraction, in Chapter 8 we proposed
a methodology based on clustering multi-dimensional points. We showed that using
this mechanisms instead of initial manual profiling of the cloud service, rSYBL is
much more stable (i.e., reduced "ping-pong"/control oscillation effect).

3http://ganglia.sourceforge.net
4https://www.openstack.org
5https://www.flexiant.com/flexiant-cloud-orchestrator/
6https://cloud.google.com/compute

139

http://ganglia.sourceforge.net
https://www.openstack.org
https://www.flexiant.com/flexiant-cloud-orchestrator/
https://cloud.google.com/compute

• Research Question 3: How could elasticity control be integrated in ser-
vice operations management?
We have shown in Chapter 9 that operations management is important for services
running in the cloud, and that due to possibly complex interactions with elasticity
controllers, support is needed for better integration of cloud elasticity aspects into
operations management. We answered this question by proposing a methodology
for integrating the elasticity control into operations management, considering that
services are developed and managed in companies with many employees, each
with various responsibilities. With this as a basis, we can further explore how
elasticity-related events (e.g., incidents, or request for change) affect the service
behavior, and study their correlations for understanding how to better control the
service, and how to improve it from design-time to operation-time.

11.2 Future Work

For future work, we envision exploiting the rSYBL framework in research projects and
collaborations, extending the framework, or mechanisms used, for addressing remaining
issues or for adapting it to other domains. The following research directions are feasible
for future work:

• We plan to extend rSYBL to support frameworks in IoT domain, such as Leonore
[125]. rSYBL is highly customizable, and control actuators or enforcement mecha-
nisms can be easily plugged in using already developed mechanisms. For managing
IoT applications, we need to extend the base model that now is able to represent
mainly IaaS cloud offered services, to be able to represent devices and sensors,
and complex environments built from them (e.g., smart cities). Furthermore, the
monitoring and analysis mechanisms need to be adapted to IoT domain, requiring
more fine-grained error monitoring, and, of course, adapting decision types to more
static, reconfiguration based ones, since new sensors/devices can be physically
added only through human intervention.

• Study the extent to which the controller can be used for complex services, and,
extend it to support more extreme cases (e.g., VMs hosting multiple Docker
containers, each hosting a service unit or topology, and having various placement
or privacy requirements). The model and controller were design before the burst in
popularity of container-based services. Even though the model and the controller
are designed to support multiple units per VM, a case study is necessary, with an
even more complex services, with multiple units, multiple Docker containers per
VM, and multiple elasticity capabilities, where we evaluate the challenges present,
and extend rSYBL to deal with such cases. For this, we are looking into what
makes cloud services elastic, and how many elasticity capabilities a cloud service
should have (i.e., where is elasticity necessary and where it is overhead).

140

• Uncertainty7 is very present in the cloud computing domain, due to its very dynamic
nature. There is a high degree of uncertainty about service performance measure-
ments, cloud providers availability, resource provisioning/de-provisioning timeliness
and quality of the provisioned resources. To these, it adds environment-related un-
certainties, e.g., whether the data center is available or not during flooding/storms
or human actions. Such uncertainties should be considered by elasticity controllers,
focusing on the ones that can be tackled from the cloud customer perspective.
rSYBL will be used in the U-Test EU project8, for understanding and tackling
uncertainties.

• For managing large scale, complex services, organizations usually use teams, with
employees having various roles, as we have seen in Chapter 9. eOMP can be
extended in order to better support more types of events (e.g., various types of
incidents, problems, differentiating between incidents and problems). Moreover,
eOMP should be extended with mechanisms understanding similarities between
decisions and events, for advising both the controller and the organization to better
control the elasticity of the cloud service. eOMP can also be extended in order to
support even multiple organizations simultaneously, operating the same or different
services. For this, inter-organization interactions should be supported, and various
issues may arise like understanding the overall role that the various organization
play for the service operation.

7A taxonomy of uncertainties is presented in the tech report by Nastic et al. [114]
8http://www.u-test.eu

141

http://www.u-test.eu

Bibliography

[1] 2014 State of the Cloud Survey. http://www.rightscale.com/blog/cloud-computing-
trends-2014-state-cloud-survey.

[2] Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: Autonomic elasticity
manager for cloud-based key-value stores. In Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed Computing, HPDC ’13,
pages 115–116, New York, NY, USA, 2013. ACM.

[3] Ahmad Al-Shishtawy and Vladimir Vlassov. ElastMan: Elasticity Manager for
Elastic Key-value Stores in the Cloud. In Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference, CAC ’13, pages 7:1–7:10, New York, NY, USA,
2013. ACM.

[4] A Almeida, F. Dantas, E. Cavalcante, and T. Batista. A branch-and-bound
algorithm for autonomic adaptation of multi-cloud applications. In Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, pages 315–323, May 2014.

[5] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki
Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services
Agreement Specification (WS-Agreement). Technical report, Global Grid Forum,
Grid Resource Allocation Agreement Protocol (GRAAP) WG, September 2005.

[6] Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. How to
adapt applications for the cloud environment. Computing, 95:493–535, 2013.

[7] Claudio Ardagna, Ernesto Damiani, Fulvio Frati, Guido Montalbano, Davide
Rebeccani, Marco Ughetti, et al. A competitive scalability approach for cloud archi-
tectures. In Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, pages 610–617. IEEE, 2014.

[8] Danilo Ardagna. Cloud and multi-cloud computing: Current challenges and future
applications. In Proceedings of the Seventh International Workshop on Principles of
Engineering Service-Oriented and Cloud Systems, PESOS ’15, pages 1–2, Piscataway,
NJ, USA, 2015. IEEE Press.

143

[9] Danilo Ardagna, Elisabetta Di Nitto, Parastoo Mohagheghi, Sébastien Mosser,
C Ballagny, F D’Andria, G Casale, P Matthews, C-S Nechifor, D Petcu, et al.
Modaclouds: A model-driven approach for the design and execution of applications
on multiple clouds. In 2012 ICSE Workshop on Modeling in Software Engineering
(MISE), pages 50–56. IEEE, 2012.

[10] Valerie Arraj. Itil R©: the basics. Buckinghampshire, UK, 2010.

[11] Prith Banerjee, Richard Friedrich, Cullen Bash, Patrick Goldsack, Bernardo Huber-
man, John Manley, Chandrakant Patel, Parthasarathy Ranganathan, and Alistair
Veitch. Everything as a service: Powering the new information economy. Computer,
44(3):36–43, 2011.

[12] Matthias Becker, Steffen Becker, and Joachim Meyer. Simulizar: Design-time
modeling and performance analysis of self-adaptive systems. Software Engineering,
213:71–84, 2013.

[13] D. Bermbach, T. Kurze, and S. Tai. Cloud Federation: Effects of Federated
Compute Resources on Quality of Service and Cost. In 2013 IEEE International
Conference on Cloud Engineering (IC2E), pages 31–37, March 2013.

[14] Alexander Bird. Thomas Kuhn. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Winter 2011 edition, 2011.

[15] Terry Bleizeffer, Jeffrey Calcaterra, Deepa Nair, Randy Rendahl, Birgit Schmidt-
Wesche, and Peter Sohn. Description and application of core cloud user roles.
In Proceedings of the 5th ACM Symposium on Computer Human Interaction for
Management of Information Technology, CHIMIT ’11, pages 2:1–2:9, New York,
NY, USA, 2011. ACM.

[16] William F Brown and David H Hawkins. Remote access computing: the executive’s
responsibility. Journal of Systems Management, 1972.

[17] BSI Group. ISO/IEC 20000-Information technology-Service management.
http://www.iso.org/iso/publication_item.htm?pid=PUB200013.

[18] Mark Carlson, Martin Chapman, Alex Heneveld, Scott Hinkelman, Duncan
Johnston-Watt, Anish Karmarkar, Tobias Kunze, Ashok Malhotra, Jeff Mischkin-
sky, Adrian Otto, et al. Cloud application management for platforms. OASIS,
http://cloudspecs. org/camp/CAMP-v1. 0. pdf, Tech. Rep, 2012.

[19] Clovis Chapman, Wolfgang Emmerich, Fermin G. Marquez, Stuart Clayman, and
Alex Galis. Elastic service definition in computational clouds. pages 327–334, April
2010.

[20] EU Commission. Cloud Service Level Agreement. http://ec.europa.eu/digital-
agenda/en/news/cloud-service-level-agreement-standardisation-guidelines.

144

[21] "ITSM Community". Itil roles descriptions.
http://www.itsmcommunity.org/downloads/ITIL_Role_Descriptions.pdf.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, pages 143–154, New York, NY,
USA, 2010. ACM.

[23] Georgiana Copil, Daniel Moldovan, Ioan Salomie, Tudor Cioara, Ionut Anghel,
and Diana Borza. Cloud sla negotiation for energy savingâĂŤa particle swarm
optimization approach. In Intelligent Computer Communication and Processing
(ICCP), 2012 IEEE International Conference on, pages 289–296. IEEE, 2012.

[24] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
Multi-level elasticity control of cloud services. In Samik Basu, Cesare Pautasso,
Liang Zhang, and Xiang Fu, editors, Service-Oriented Computing, volume 8274
of Lecture Notes in Computer Science, pages 429–436. Springer Berlin Heidelberg,
2013.

[25] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
Sybl: An extensible language for controlling elasticity in cloud applications. In
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International
Symposium on, pages 112–119, May 2013.

[26] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
On controlling cloud services elasticity in heterogeneous clouds. In Utility and
Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on, pages
573–578. IEEE, 2014.

[27] Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan, George
Pallis, Schahram Dustdar, and Marios Dikaiakos. Advise âĂŞ a framework for
evaluating cloud service elasticity behavior. In Xavier Franch, AdityaK. Ghose,
GraceA. Lewis, and Sami Bhiri, editors, Service-Oriented Computing, volume 8831
of Lecture Notes in Computer Science, pages 275–290. Springer Berlin Heidelberg,
2014.

[28] Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar. Supporting cloud
service operation management for elasticity. In Service-Oriented Computing, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015.

[29] Antonio Cuomo, Massimiliano Rak, and Umberto Villano. Performance prediction
of cloud applications through benchmarking and simulation. International Journal
of Computational Science and Engineering, 11(1):46–55, 2015.

[30] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud systems. In

145

Proceedings of the 9th International Conference on Autonomic Computing, ICAC
’12, pages 191–200, New York, NY, USA, 2012. ACM.

[31] Christoph Demont, Uwe Breitenbücher, Oliver Kopp, Frank Leymann, and Johannes
Wettinger. Towards integrating tosca and itil. In ZEUS, pages 28–31. Citeseer,
2013.

[32] DMTF. Cloud Infrastructure Management Interface (CIMI), October 2012.

[33] Simon Dupont, Jonathan Lejeune, Frederico Alvares, and Thomas Ledoux. Ex-
perimental analysis on autonomic strategies for cloud elasticity. In 2015 IEEE
International Conference on Cloud and Autonomic Computing (ICCAC), 2015.

[34] S. Dustdar, Yike Guo, Rui Han, B. Satzger, and Hong-Linh Truong. Programming
directives for elastic computing. IEEE Internet Computing, 16(6):72–77, 2012.

[35] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong Linh Truong. Principles
of elastic processes. IEEE Internet Computing, 15(5):66–71, 2011.

[36] Dustdar, Schahram and Guo, Yike and Satzger, Benjamin and Truong, Hong-Linh.
Principles of elastic processes. IEEE Internet Computing, 15(5):66–71, 2011.

[37] Mica R Endsley. The application of human factors to the development of expert
systems for advanced cockpits. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, number 12, pages 1388–1392. SAGE Publications, 1987.

[38] Mica R Endsley and David B Kaber. Level of automation effects on performance,
situation awareness and workload in a dynamic control task. Ergonomics, 42:462–
492, 1999.

[39] Hamid Mohammadi Fard, Radu Prodan, Juan Jose Durillo Barrionuevo, and
Thomas Fahringer. A multi-objective approach for workflow scheduling in hetero-
geneous environments. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), CCGRID ’12,
pages 300–309, Washington, DC, USA, 2012. IEEE Computer Society.

[40] FedSM. FitSM: Standards for IT Service Management. http://www.fedsm.eu.

[41] Nicolas Ferry, Gunnar Brataas, Alessandro Rossini, Franck Chauvel, and Arnor
Solberg. Towards bridging the gap between scalability and elasticity. In CLOSER
2014: 4th International Conference on Cloud Computing and Services Science-
Special Session on Multi-Clouds, pages 746–751, 2014.

[42] Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel, and Arnor Solberg.
Cloudmf: Applying mde to tame the complexity of managing multi-cloud appli-
cations. In UCC 2014: 7th IEEE/ACM International Conference on Utility and
Cloud Computing, pages 269–277. IEEE Computer Society, 2014.

146

[43] Christiane Floyd. Software development as reality construction. In Christiane
Floyd, Heinz Züllighoven, Reinhard Budde, and Reinhard Keil-Slawik, editors,
Software Development and Reality Construction, pages 86–100. Springer Berlin
Heidelberg, 1992.

[44] Heinz Foerster. On constructing a reality. In Understanding Understanding, pages
211–227. Springer New York, 2003.

[45] Forbes. Roundup of cloud computing forecasts and market estimates.
"http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-
computing-forecasts-and-market-estimates-2015/", 2015.

[46] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. Above the clouds: A
berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, 28:13, 2009.

[47] Fermín Galán, Americo Sampaio, Luis Rodero-Merino, Irit Loy, Victor Gil, and
Luis M. Vaquero. Service specification in cloud environments based on extensions
to open standards. In Proceedings of the Fourth International ICST Conference
on COMmunication System softWAre and middlewaRE, COMSWARE ’09, pages
19:1–19:12, New York, NY, USA, 2009. ACM.

[48] Stuart D. Galup, Ronald Dattero, Jim J. Quan, and Sue Conger. An overview of it
service management. Commun. ACM, 52(5):124–127, May 2009.

[49] A Gambi, D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar. On estimating
actuation delays in elastic computing systems. In Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2013 ICSE Workshop on, pages 33–42, May
2013.

[50] Gartner. "forecast: Public cloud services, worldwide, 2013-2019, 2q15
update". https://www.gartner.com/doc/3084942/forecast-public-cloud-services-
worldwide, 2015.

[51] E. von Glasersfeld. Learning as Constructive Activity. In Proceedings of the
5th Annual Meeting of the North American Group of Psychology in Mathematics
Education, Vol. 1. Montreal:, 1983.

[52] E. von Glasersfeld. Questions and answers about radical constructivism. In M.K.
Pearsall, editor, Scope, sequence, and coordination of secondary school science,
pages 169–182. National Science Teachers Association, 1992.

[53] G. Goncalves, P. Endo, M. Santos, D. Sadok, J. Kelner, B. Melander, and J.-
E. Mangs. Cloudml: An integrated language for resource, service and request
description for d-clouds. In Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on, pages 399–406, Nov 2011.

147

[54] David Mast Grant Thomson. Born On the Cloud. www-
07.ibm.com/au/cloud2014/pdf/Born-On-The-Cloud.pdf, 2014.

[55] Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and Branimir Wetzstein.
Multi-layered monitoring and adaptation. In Proceedings of the 9th international
conference on Service-Oriented Computing, ICSOC’11, pages 359–373, Berlin,
Heidelberg, 2011. Springer-Verlag.

[56] Rui Han, Li Guo, Moustafa M. Ghanem, and Yike Guo. Lightweight resource scaling
for cloud applications. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), CCGRID ’12,
pages 644–651, Washington, DC, USA, 2012. IEEE Computer Society.

[57] E. Holbæk-Hanssen, P. Håndlykken, and K. Nygaard. "System Description and the
Delta Language". Norsk Regnesentral, 1975.

[58] HP. The HP IT Service Management (ITSM) Reference Model.
ftp://ftp.hp.com/pub/services/itsm/info/itsm_rmwp.pdf.

[59] IBM. Integrated service management and cloud
computing:More than just technology best friends.
https://www.ibm.com/ibm/files/E955200R99025N70/5Integrated_service
_management_and_cloud_computing_644KB.pdf.

[60] IBM. WSLA Language Specification, version 1.0.
http://www.research.ibm.com/people/a/akeller/Data/WSLASpecV1-
20030128.pdf, 2001.

[61] IBM. IBM Cloud Computing Reference Architecture, 2013.

[62] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and
Schahram Dustdar. Madcat - a methodology for architecture and deployment of
cloud application topologies. In 8th International Symposium on Service-Oriented
System Engineering. IEEE, 2014.

[63] Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. Optimal cloud resource
auto-scaling for web applications. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pages 58–65, May 2013.

[64] Gideon Juve and Ewa Deelman. Automating application deployment in infras-
tructure clouds. In Proceedings of the 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, CLOUDCOM ’11, pages 658–665,
Washington, DC, USA, 2011. IEEE Computer Society.

[65] Nima Kaviani, Eric Wohlstadter, and Rodger Lea. Profiling-as-a-service: Adaptive
scalable resource profiling for the cloud in the cloud. In Gerti Kappel, Zakaria
Maamar, and HamidR. Motahari-Nezhad, editors, Service-Oriented Computing,

148

volume 7084 of Lecture Notes in Computer Science, pages 157–171. Springer Berlin
Heidelberg, 2011.

[66] Raman Kazhamiakin, Branimir Wetzstein, Dimka Karastoyanova, Marco Pistore,
and Frank Leymann. Adaptation of service-based applications based on process
quality factor analysis. In Proceedings of the 2009 international conference on
Service-oriented computing, ICSOC/ServiceWave’09, pages 395–404, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[67] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, M. RodrÃŋguez, O. Mer-
cÃĺ, A.Cs. Marosi, J. Marco, and X. Franch. Enhancing Federated Cloud Manage-
ment with an Integrated Service Monitoring Approach. Journal of Grid Computing,
11(4):699–720, 2013.

[68] Praveenkumar Kondikoppa, Chui-Hui Chiu, and Seung-Jong Park. MapReduce
Performance in Federated Cloud Computing Environments. In Keesook J. Han,
Baek-Young Choi, and Sejun Song, editors, High Performance Cloud Auditing and
Applications, pages 301–322. Springer New York, 2014.

[69] Y. Kouki, F.A. de Oliveira, S. Dupont, and T. Ledoux. A language support for
cloud elasticity management. In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, pages 206–215, May 2014.

[70] P. Kranas, V. Anagnostopoulos, A. Menychtas, and T. Varvarigou. ElaaS: An
Innovative Elasticity as a Service Framework for Dynamic Management across the
Cloud Stack Layers. In 2012 Sixth International Conference on Complex, Intelligent
and Software Intensive Systems (CISIS), pages 1042 –1049, july 2012.

[71] Kyriakos Kritikos, Jörg Domaschka, and Alessandro Rossini. Srl: A scalability rule
language for multi-cloud environments. In CloudCom 2014: 6th IEEE International
Conference on Cloud Computing Technology and Science, pages 1–9. IEEE Computer
Society, 2014.

[72] Katrina LaCurts, Jeffrey C. Mogul, Hari Balakrishnan, and Yoshio Turner. Cicada:
Introducing predictive guarantees for cloud networks. In 6th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 14), Philadelphia, June 2014. USENIX.

[73] Duc-Hung Le, Hong-Linh Truong, Georgiana Copil, Stefan Nastic, and Schahram
Dustdar. Salsa: A framework for dynamic configuration of cloud services. In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on, pages 146–153. IEEE, 2014.

[74] Philipp Leitner, Johannes Ferner, Waldemar Hummer, and Schahram Dustdar.
Data-driven and automated prediction of service level agreement violations in
service compositions. Distributed and Parallel Databases, 31(3):447–470, 2013.

149

[75] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-
prophet: towards application performance prediction in cloud. In Proceedings of
the ACM SIGCOMM 2011 conference, SIGCOMM ’11, New York, NY, USA, 2011.
ACM.

[76] Ge Li, F. Pourraz, and P. Moreaux. Psla: A paas level sla description language. In
Cloud Engineering (IC2E), 2014 IEEE International Conference on, pages 452–457,
March 2014.

[77] Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. On a catalogue of metrics
for evaluating commercial cloud services. In 2012 ACM/IEEE 13th International
Conference on Grid Computing (GRID), pages 164 –173, sept. 2012.

[78] Rong Liu and Juhnyoung Lee. It incident management by analyzing incident
relations. In Chengfei Liu, Heiko Ludwig, Farouk Toumani, and Qi Yu, editors,
Service-Oriented Computing, volume 7636 of Lecture Notes in Computer Science,
pages 631–638. Springer, 2012.

[79] M. Maciandas, J.O. Fito and, and J. Guitart. Rule-based sla management for
revenue maximisation in cloud computing markets. In Network and Service Man-
agement (CNSM), 2010 International Conference on, pages 354 –357, oct. 2010.

[80] Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann.
Automated control for elastic n-tier workloads based on empirical modeling. In
Proceedings of the 8th ACM international conference on Autonomic computing,
ICAC ’11, pages 131–140, New York, NY, USA, 2011. ACM.

[81] Ming Mao and M. Humphrey. Scaling and scheduling to maximize application
performance within budget constraints in cloud workflows. In 2013 IEEE 27th
International Symposium on Parallel Distributed Processing (IPDPS), pages 67–78,
May 2013.

[82] KV Mardia, JT Kent, and JM Bibby. Multivariate analysis. Probability and
Mathematical Statistics, London: Academic Press, 1979, 1, 1979.

[83] Stefano Mariani, Hong-Linh Truong, Georgiana Copil, Andrea Omicini, and
Schahram Dustdar. Coordination-aware elasticity. In 2014 IEEE/ACM 7th Inter-
national Conference on Utility and Cloud Computing (UCC), pages 465–472. IEEE,
2014.

[84] S. Marston, Zhi Li, S. Bandyopadhyay, and A. Ghalsasi. Cloud computing - the
business perspective. In System Sciences (HICSS), 2011 44th Hawaii International
Conference on, pages 1 –11, jan. 2011.

[85] P. Martin, A. Brown, W. Powley, and J. L. Vazquez-Poletti. Autonomic management
of elastic services in the cloud. In Proceedings of the 2011 IEEE Symposium on
Computers and Communications, ISCC ’11, pages 135–140, Washington, DC, USA,
2011. IEEE Computer Society.

150

[86] P. Mell and T. Grance. The NIST definition of cloud computing. National Institute
of Standards and Technology (NIST), 2009.

[87] Richard A. Meyer and Love H. Seawright. A virtual machine time-sharing system.
IBM Systems Journal, 9(3):199–218, 1970.

[88] M. Miglierina, G.P. Gibilisco, D. Ardagna, and E. Di Nitto. Model based control
for multi-cloud applications. In 2013 5th International Workshop on Modeling in
Software Engineering (MiSE), pages 37–43, May 2013.

[89] Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar.
Mela: Monitoring and analyzing elasticity of cloud services. In Cloud Computing
Technology and Science (CloudCom), 2013 IEEE 5th International Conference on,
volume 1, pages 80–87. IEEE, 2013.

[90] Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar.
MELA: Monitoring and Analyzing Elasticity of Cloud Services. In 2014 IEEE Sixth
International Conference on Cloud Computing Technology and Science (CloudCom),
2014.

[91] Daniel Morán, Luis M. Vaquero, and FermÃŋn GalÃąn. Elastically ruling the
cloud: Specifying application’s behavior in federated clouds. In IEEE CLOUD’11,
pages 89–96, 2011.

[92] V.I. Munteanu, A. Edmonds, T.M. Bohnert, and T.-F. Fortis. Cloud Incident
Management, Challenges, Research Directions, and Architectural Approach. In In-
ternational Conference on Utility and Cloud Computing, pages 786–791. IEEE/ACM,
2014.

[93] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Konstanti-
nou, and S. Sioutas. Dependable horizontal scaling based on probabilistic model
checking. In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pages 31–40, May 2015.

[94] Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagiotis Kat-
saros, Dimitrios Tsoumakos, Ioannis Konstantinou, and Spyros Sioutas. Cloud
elasticity using probabilistic model checking. CoRR, abs/1405.4699, 2014.

[95] Stefan Nastic, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar. Govern-
ing elastic iot cloud systems under uncertainty. In 2015 IEEE Seventh International
Conference on Cloud Computing Technology and Science (CloudCom), 2015.

[96] National Institute of Standards and Technology. NIST Cloud Com-
puting Reference Architecture. http://collaborate.nist.gov/twiki-cloud-
computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST
_SP_500-292_-_090611.pdf.

151

[97] Kristen Nygaard. Program development as a social activity. In In H. -J. Kugler
(Ed.), Proceedings of Information Processing 86, pages 189–198. North-Holland,
1986.

[98] OASIS Committee. Topology and Orchestration Specifi-
cation for Cloud Applications (TOSCA), Working Draft.
https://www.oasisopen.org/committees/download.php/47871/tosca-
primer-v1%200-wd04-rev01-clean.doc, January 2013.

[99] Oracle. Oracle Cloud Computing Reference Architecture.
http://www.oracle.com/technetwork/topics/entarch/oracle-wp-cloud-ref-arch-
1883533.pdf, 2012.

[100] Open Virtualization Format(OVF) Whitepaper.
http://www.vmware.com/pdf/ovf_whitepaper_specification.pdf.

[101] S.K. Panda and P.K. Jana. A multi-objective task scheduling algorithm for hetero-
geneous multi-cloud environment. In 2015 International Conference on Electronic
Design, Computer Networks Automated Verification (EDCAV), pages 82–87, Jan
2015.

[102] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier. A Federated
Multi-cloud PaaS Infrastructure. In 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD), pages 392–399, June 2012.

[103] D.F. Parkhill. The Challenge of the Computer Utility. Number p. 246 in The
Challenge of the Computer Utility. Addison-Wesley Publishing Company, 1966.

[104] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopou-
los. Sensing as a service model for smart cities supported by internet of things.
Transactions on Emerging Telecommunications Technologies, 25(1):81–93, 2014.

[105] Dana Petcu, Silviu Panica, Călin Şandru, Ciprian Dorin Crăciun, and Marian
Neagul. Experiences in building an event-driven and deployable platform as a
service. In Web Information Systems Engineering-WISE 2012, pages 666–672.
Springer, 2012.

[106] Jia Rao, Yudi Wei, Jiayu Gong, and Cheng-Zhong Xu. QoS Guarantees and Service
Differentiation for Dynamic Cloud Applications. IEEE Transactions on Network
and Service Management, 10(1):43–55, March 2013.

[107] Mathias Sallé. It service management and it governance: review, comparative
analysis and their impact on utility computing. Hewlett-Packard Company, pages
8–17, 2004.

[108] Americo Sampaio and Nabor Mendonça. Uni4Cloud: An Approach Based on
Open Standards for Deployment and Management of Multi-cloud Applications. In

152

Proceedings of the 2Nd International Workshop on Software Engineering for Cloud
Computing, SECLOUD ’11, pages 15–21, New York, NY, USA, 2011. ACM.

[109] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity provision-
ing system for the cloud. In 2011 31st International Conference on Distributed
Computing Systems (ICDCS), pages 559 –570, june 2011.

[110] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, SOCC ’11, pages 5:1–5:14. ACM, 2011.

[111] Thomas B Sheridan. Telerobotics, automation, and human supervisory control.
MIT press, 1992.

[112] Thomas B Sheridan. Adaptive automation, level of automation, allocation authority,
supervisory control, and adaptive control: Distinctions and modes of adaptation.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, 41(4):662–667, 2011.

[113] Thomas B Sheridan and William L Verplank. Human and computer control of
undersea teleoperators. Technical report, DTIC Document, 1978.

[114] Hong-Linh Truong Stefan Nastic. Infrastructure Level Uncertainties V2.0. Technical
report, Distributed Systems Group, TU Wien, July 2015.

[115] Stefan Tai, Philipp Leitner, and Schahram Dustdar. Design by Units: Abstractions
for Human and Compute Resources for Elastic Systems. IEEE Internet Computing,
16(4), 2012.

[116] Bing Tang and Mingdong Tang. Bayesian model-based prediction of service level
agreement violations for cloud services. In Theoretical Aspects of Software Engi-
neering Conference (TASE), 2014, pages 170–176, Sept 2014.

[117] Nikola Tankovic, T.G Grbac., Hong-Linh Truong, and Schahram Dustdar. Trans-
forming vertical web applications into elastic cloud applications. In Cloud Engi-
neering (IC2E), 2015 IEEE International Conference on, pages 135–144, March
2015.

[118] Rafael Tolosana-Calasanz, Jose Angel Banares, Congduc Pham, and Omer F. Rana.
Resource management for bursty streams on multi-tenancy cloud environments.
Future Generation Computer Systems, 2015.

[119] Demetris Trihinas, George Pallis, and Marios D. Dikaiakos. JCatascopia: Monitor-
ing Elastically Adaptive Applications in the Cloud. In 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2014.

153

[120] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. Auto-
mated, elastic resource provisioning for nosql clusters using tiramola. In Cluster,
Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Sym-
posium on, pages 34–41, 2013.

[121] Dimitrios Tsoumakos, Ioannis Konstantinou, Christina Boumpouka, Spyros
Sioutas (Ionian University), and Nectarios Koziris. Automated, Elastic Resource
Provisioning for NoSQL Clusters Using TIRAMOLA. In 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
34–41. IEEE Computer Society, 2013.

[122] Edward A Van Schaik. A Management System for the Information Business:
Organizational Analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1985.

[123] Salvatore Venticinque, Rocco Aversa, Beniamino Di Martino, Massimilano Rak, and
Dana Petcu. A cloud agency for sla negotiation and management. In Proceedings of
the 2010 conference on Parallel processing, Euro-Par 2010, pages 587–594, Berlin,
Heidelberg, 2011. Springer-Verlag.

[124] Akshat Verma, Gautam Kumar, and Ricardo Koller. The cost of reconfiguration in
a cloud. In Proceedings of the 11th International Middleware Conference Industrial
Track, pages 11–16, New York, NY, USA, 2010. ACM.

[125] Michael Vögler, Johannes M Schleicher, Christian Inzinger, Stefan Nastic, San-
jin Sehic, and Schahram Dustdar. Leonore–large-scale provisioning of resource-
constrained iot deployments. In 9th International Symposium on Service-Oriented
System Engineering, pages 78–87. IEEE, 2014.

[126] Lizhe Wang, G. von Laszewski, Marcel Kunze, and Jie Tao. Cloud computing: a
perspective study. New Generation Computing, 28(2):137–146, 04/2010 2010.

[127] Qingyang Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, PengCheng Xiong,
C. Pu, M. Kawaba, and L. Harada. The Impact of Soft Resource Allocation
on n-Tier Application Scalability. In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 1034 –1045, may 2011.

[128] Wei Wang, Baochun Li, and Ben Liang. To reserve or not to reserve: Optimal
online multi-instance acquisition in iaas clouds. In Presented as part of the 10th
International Conference on Autonomic Computing, pages 13–22, Berkeley, CA,
2013. USENIX.

[129] Jie Yang, Jie Qiu, and Ying Li. A Profile-Based Approach to Just-in-Time Scalability
for Cloud Applications. In Proceedings of the 2009 IEEE International Conference
on Cloud Computing, CLOUD ’09, pages 9–16, Washington, DC, USA, 2009. IEEE
Computer Society.

154

[130] Li Yu and D. Thain. Resource management for elastic cloud workflows. In
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on, pages 775–780, 2012.

[131] Rostyslav Zabolotnyi, Philipp Leitner, Stefan Schulte, and Schahram Dustdar.
SPEEDL - A declarative event-based language to define the scaling behavior of
cloud applications. In 2015 IEEE World Congress on Services, SERVICES 2015,
New York City, NY, USA, June 27 - July 2, 2015, pages 71–78, 2015.

[132] Arkady B. Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sensing as a
service and big data. CoRR, abs/1301.0159, 2013.

[133] HongJun Zhan and Wei Zhang. The Operation and Maintenance Management
System of the Cloud Computing Data Center Based on ITIL. In Advances in
Computer Science and its Applications, volume 279, pages 1103–1108. Springer,
2014.

[134] Li Zhang, Xiaoqiao Meng, Shicong Meng, and Jian Tan. K-scope: Online perfor-
mance tracking for dynamic cloud applications. In Presented as part of the 10th
International Conference on Autonomic Computing, pages 29–32, Berkeley, CA,
2013. USENIX.

155

Annex

Using rSYBL framework

rSYBL Deployment and Configuration

rSYBL exposes a RESTful API for interaction with the users, the lifecycle of an interaction
being presented below, the service being produced by rSYBL Analysis component

Figure 1: rSYBL initialization steps

Monitoring Plugin Configuration

1. Ganglia Plugin
For working with simple ganglia plugin some information has to be specified:

• The ganglia plugin class needs to be specified in the configuration file: in config.properties
MonitoringPlugin = at.ac.tuwien.dsg.sybl.monitorandenforcement
.monitoringPlugins.gangliaMonitoring.MonitoringGangliaAPI

• Ganglia IP needs to be specified in the configuration file (config.properties)

• Ganglia Port needs to be specified in the configuration file (config.properties)

157

2. MELA Plugin
The main plugin class implementing MonitoringInterface needs to be specified in the

config.properties file:

Monitor ingPlugin = at . ac . tuwien . dsg . rSybl . dataProcess ingUnit .
moni tor ingPlug ins . melaPlugin .MELA_API and

MonitoringServiceURL = http ://MELA_HOST_IP:MELA_HOST_PORT/MELA/
REST_WS

The user should consult the configurations needed for running MELA12.

Enforcement Plugin Configuration

Current version of rSYBL has the following plugins:

• OpenStack, for your OpenStack-based private cloud

• Flexiant, for controlling your application with rSYBL on the Flexiant9 cloud, using
FCO10 for controlling resources.

• DryRun, for testing purposes. It outputs the actions rSYBL would like to enforce,
without further enforcement.

The OpenStack enforcement plugin needs to be specified in config.properties:

EnforcementPlugin = at . ac . tuwien . dsg . rSybl .
c l oud In t e ra c t i onUn i t . en forcementPlug ins . openstack .
EnforcementOpenstackAPI

Cert i f i cateName= e . g . , mycert − The name o f the c e r t i f i c a t e
used

Ce r t i f i c a t ePa th=e . g . , c on f i g /mycert . pem − The path towards the
c e r t i f i c a t e

CloudAPIType = e . g . , openstack−nova − Type o f the c loud
middleware used

CloudAPIEndpoint= e . g . , in t h i s case DSG l o c a l c loud http
:// openstack . i n f o s y s . tuwien . ac . at :5000/ v2 . 0 − Endpoint f o r
a c c e s s i n g the c loud i n f r a s t r u c t u r e

CloudUser= e . g . , georg iana . c o p i l − Username f o r a c c e s s i n g c loud
i n f r a s t r u c t u r e

CloudPassword= e . g . , mypassword − Password f o r a c c e s s i n g c loud
i n f r a s t r u c t u r e

The Flexiant enforcement plugin needs to be specified in config.properties:

9www.flexiant.com
10http://www.flexiant.com/flexiant-cloud-orchestrator/

158

EnforcementPlugin = at . ac . tuwien . dsg . rSybl .
c l oud In t e ra c t i onUn i t . en forcementPlug ins . f l e x i a n t .
EnforcementFlexiantAPI

UserEmailAddress = x@domain . com − Email address o f F l ex iant
user

ApiUserName=x@domain . com − User name o f F l ex iant user (u sua l l y
matches e−mail address)

CustomerUUID =XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX − customer
UUID on the FCO platform , can be obtained from user
i n t e r f a c e −> s e t t i n g s

Password =password − your password on F lex iant c loud
ENDPOINT_ADDRESS_PROPERTY=https : // api . sd1 . f l e x i a n t . net :4442 −

cur rent endpoint exposed by F lex iant
VdcUUID=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX − the v i r t u a l

datacente r where your app l i c a t i o n w i l l be deployed &
con t r o l l e d

DefaultProductOfferUUID=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX −
the d e f au l t type o f VM which you would l i k e to s t a r t (e . g . ,
886 ae014−0613−3cc8−a790−16251471 e624)

DeploymentInstanceUUID=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX −
the deployment in s t ance to which the r e s ou r c e s w i l l be added

ClusterUUID=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX − the cur rent
c l u s t e r where the app l i c a t i o n i s deployed

NetworkUUID=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX − the network
which the app l i c a t i o n i s us ing

SSHKey=XXXXXXXX−XXXX−XXXX−XXXX−XXXXXXXXXXXX − the UUID of the
ssh key with which the VMs need to s t a r t (in case one needs
pas sword l e s s a c c e s s to them)

The DryRun enforcement plugin, used for testing purposes, needs to be specified in
config.properties

EnforcementPlugin = at . ac . tuwien . dsg . rSybl .
c l oud In t e ra c t i onUn i t . en forcementPlug ins . dryRun .
DryRunEnforcementAPI

Application Specific Configurations

The application-specific configuration can be sent to the rSYBL in three ways, depending
on the information structure.

rSYBL bootstrapping For these configurations, rSYBL needs to be deployed and
started (see steps below)

For configuring rSYBL using its predefined, simple XML descriptions, the rSYBL
service exposes the following web methods to be called in this order:

159

• prepareControl(cloudServiceID) (PUTmethod, accepting xml/application)-
prepare cloudServiceID cloud service for control

• serviceDescription(descriptionInfo) (PUT method, accepting xml/ap-
plication). Example of such a description is available at
https://raw.githubusercontent.com/tuwiendsg/rSYBL/master/rSYBL-control-service-
pom/rSYBL-analysis-engine/src/main/resources/config/serviceDescription.xml and
is described on the rSYBL webpage11.

• serviceDeployment(deploymentInfo) (PUT method, accepting xml/appli-
cation). Example of such a description is available at
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/ rSYBL-
analysis-engine/src/main/resources/config/newDeploymentDescription.xml and is
described on the rSYBL webpage11.

• Optional: metricsCompositionRules(metricsCompositionRules) (PUT
method, accepting xml/application). Example of such a description is avail-
able at https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-
pom/rSYBL-analysis-engine/src/main/resources/config/compositionRules.xml and
is described on the MELA webpage12.

• Optional: elasticityCapabilitiesEffects(elasticityCapabilities
Effects) (PUT method, accepting json/application). Example of such a descrip-
tion is available at https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-
control-service-pom/rSYBL-analysis-engine/src/main/resources/config/effects.json.

• startControl(cloudServiceID) (PUT method, accepting xml/application)-
start cloudServiceID cloud service control

• When done, gracefully shut down rSYBL control service: stopControl
(cloudServiceID) (PUT method, accepting xml/application)- stop cloudServi-
ceID cloud service control

• During runtime, replace existing requirements: replaceRequirements
(cloudServiceID,cloudServiceRequirements) (PUT method, accepting
xml/application)- replace existing requirements with others cloudServiceID cloud
service control

Application description rSYBL accepts the applications described both using
the rSYBL specific description, and using TOSCA. One such example is shown below,
describing the SCAN cancer research application13:

11http://www.infosys.tuwien.ac.at/research/viecom/SYBL
12http://tuwiendsg.github.io/MELA
13http://www.celarcloud.eu/newsroom/scan-celar-and-getting-the-most-out-of-your-hybrid-cloud

160

https://raw.githubusercontent.com/tuwiendsg/rSYBL/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/serviceDescription.xml
https://raw.githubusercontent.com/tuwiendsg/rSYBL/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/serviceDescription.xml
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/newDeploymentDescription.xml
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/newDeploymentDescription.xml
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/compositionRules.xml
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/compositionRules.xml
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/effects.json
https://github.com/tuwiendsg/rSYBL/blob/master/rSYBL-control-service-pom/rSYBL-analysis-engine/src/main/resources/config/effects.json
http://tuwiendsg.github.io/MELA

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<tosca : D e f i n i t i o n s xmlns : x s i="http ://www.w3 . org /2001/

XMLSchema−i n s t anc e " xmlns : e l a s t i c i t y ="http ://www.
example . org /NewXMLSchema" xmlns : syb l="http ://www.
example . org /SYBL" xmlns : to sca="http :// docs . oa s i s−
open . org / tosca /ns /2011/12" id="h i ">

<tosca : ServiceTemplate x s i : type=" e l a s t i c i t y :
TServiceTemplateExtension " id=" h e l l o " name="
SCANOKLaptop">

<tosca : BoundaryDef in i t ions x s i : type=" e l a s t i c i t y :
TBoundaryDef in it ionsExtens ion">

<tosca : Proper t i e s>
<e l a s t i c i t y : S e rv i c ePrope r t i e s >
<e l a s t i c i t y : Version >1.0</ e l a s t i c i t y : Version>
</ e l a s t i c i t y : S e rv i c ePrope r t i e s >
</tosca : Proper t i e s>
</tosca : BoundaryDef in it ions>
<tosca : TopologyTemplate>
<tosca : NodeTemplate x s i : type=" e l a s t i c i t y :

TNodeTemplateExtension " id="C785287430 " maxInstances
="1" minInstances ="1" name=" schedu l e r " x="35" y
="55">

<tosca : Proper t i e s>
<e l a s t i c i t y : NodePropert ies>
<e l a s t i c i t y : Flavor>vcpus : 4 ram :4096 d i sk :40</ e l a s t i c i t y

: Flavor>
</ e l a s t i c i t y : NodePropert ies>
</tosca : Proper t i e s>
<tosca : Po l i c i e s >
<tosca : Po l i cy name="CONSTRAINT queueLength$&$amp ; l t ; 3 "

po l i cyRe f="C19330703800 " pol icyType=" syb l : Constra int
"/>

<tosca : Po l i cy name="CONSTRAINT work e rUt i l i s a t i on$&$amp ;
gt ; 0 . 7 5 " po l i cyRe f="C19330703801 " pol icyType=" syb l :
Constra int "/>

</tosca : Po l i c i e s >
<tosca : DeploymentArti facts>
<tosca : DeploymentArt i fact a r t i f a c tR e f ="5b1ac218−1cdf
−4286−8000−09991bd07752 " a r t i f a c tType=" e l a s t i c i t y :
ImageArt i factPropert i e sType " name="5b1ac218−1cdf
−4286−8000−09991bd07752"/>

</tosca : DeploymentArti facts>
</tosca : NodeTemplate>

161

<tosca : NodeTemplate x s i : type=" e l a s t i c i t y :
TNodeTemplateExtension " id="C492638789 " maxInstances
="100" minInstances ="1" name="worker " x="205" y
="55">

<tosca : Proper t i e s>
<e l a s t i c i t y : NodePropert ies>
<e l a s t i c i t y : Flavor>vcpus : 4 ram :4096 d i sk :40</ e l a s t i c i t y

: Flavor>
</ e l a s t i c i t y : NodePropert ies>
</tosca : Proper t i e s>
<tosca : Po l i c i e s >
<tosca : Po l i cy name="CONSTRAINT freeDiskProp$&$amp ; gt

; 0 . 2 5 " po l i cyRe f="C17803292480 " pol icyType=" syb l :
Constra int "/>

<tosca : Po l i cy name="CONSTRAINT freeDiskProp$&$amp ; l t
; 0 . 7 5 " po l i cyRe f="C17803292481 " pol icyType=" syb l :
Constra int "/>

<tosca : Po l i cy name="STRATEGY CASE v i o l a t e d (C19330703801
) : s c a l e I n (worker) " po l i cyRe f="C17803292482 "
pol icyType=" syb l : St rategy "/>

<tosca : Po l i cy name="STRATEGY CASE v i o l a t e d (C19330703800
) : sca leOut (worker) " po l i cyRe f="C17803292483 "
pol icyType=" syb l : St rategy "/>

<tosca : Po l i cy name="STRATEGY CASE v i o l a t e d (C17803292480
) : attachDisk (worker) " po l i cyRe f="C17803292484 "
pol icyType=" syb l : St rategy "/>

<tosca : Po l i cy name="STRATEGY CASE v i o l a t e d (C17803292481
) : detachDisk (worker) " po l i cyRe f="C17803292485 "
pol icyType=" syb l : St rategy "/>

</tosca : Po l i c i e s >
<tosca : DeploymentArti facts>
<tosca : DeploymentArt i fact a r t i f a c tR e f ="5b1ac218−1cdf
−4286−8000−09991bd07752 " a r t i f a c tType=" e l a s t i c i t y :
ImageArt i factPropert i e sType " name="5b1ac218−1cdf
−4286−8000−09991bd07752"/>

</tosca : DeploymentArti facts>
</tosca : NodeTemplate>
</tosca : TopologyTemplate>
</tosca : ServiceTemplate>
<tosca : Art i factTemplate id=" init_gatk_worker . sh " type="

e l a s t i c i t y : S c r i p tAr t i f a c tPrope r t i e sType " name="
SDinit_gatk_worker . sh">

<tosca : Proper t i e s>

162

<e l a s t i c i t y : S c r i p tA r t i f a c tP r op e r t i e s >
<e l a s t i c i t y : Language>She l l </ e l a s t i c i t y : Language>
</ e l a s t i c i t y : S c r i p tA r t i f a c tP r op e r t i e s >
</tosca : Proper t i e s>
<tosca : Ar t i f a c tRe f e r enc e s >
<tosca : Ar t i f a c tRe f e r en c e r e f e r e n c e=" S c r i p t s /

init_gatk_worker . sh"/>
</tosca : Ar t i f a c tRe f e r enc e s >
</tosca : Art i factTemplate>
<tosca : NodeTypeImplementation name="name" nodeType="

worker">
<tosca : Implementat ionArt i fact s>
<tosca : Implementat ionArt i fac t a r t i f a c tR e f="

init_gatk_worker . sh " a r t i f a c tType=" e l a s t i c i t y :
S c r i p tAr t i f a c tPrope r t i e sType " inter faceName="
L i f e c y c l e " operationName="execute "/>

<tosca : Implementat ionArt i fac t a r t i f a c tR e f="
handle_presca le . sh " a r t i f a c tType=" S c r i p tA r t i f a c t "
inter faceName="PreSca le " operationName="STRATEGY
s c a l e I n (worker) "/>

<tosca : Implementat ionArt i fac t a r t i f a c tR e f="
handle_presca le . sh " a r t i f a c tType=" S c r i p tA r t i f a c t "
inter faceName="PreSca le " operationName="STRATEGY
s c a l e I n (worker) "/>

<tosca : Implementat ionArt i fac t a r t i f a c tR e f="
handle_postsca le . sh " a r t i f a c tType=" S c r i p tA r t i f a c t "
inter faceName="PostSca le " operationName="STRATEGY
attachDisk (worker) "/>

<tosca : Implementat ionArt i fac t a r t i f a c tR e f="
handle_presca le . sh " a r t i f a c tType=" S c r i p tA r t i f a c t "
inter faceName="PreSca le " operationName="STRATEGY
detachDisk (worker) "/>

</tosca : Implementat ionArt i fact s>
</tosca : NodeTypeImplementation>
<tosca : Art i factTemplate id=" in i t_s chedu l e r . sh " type="

e l a s t i c i t y : S c r i p tAr t i f a c tPrope r t i e sType " name="
SDinit_scheduler . sh">

. . .
</tosca : De f i n i t i on s >

163

rS
Y
B
L
A
P
I

M
et
ho

d
T
yp

e
In
pu

t
O
ut
pu

t
D
es
cr
ip
ti
on

/i
d/

pr
ep

ar
eC

on
tr
ol

PU
T

ap
pl
ic
at
io
n/

xm
l

-
Se
ts

th
e
rS
Y
B
L
co
nt
ro
lle
r
in

"p
re
pa

re
m
od

e"
,f
or

re
ce
iv
in
g
al
lt

he
ne
ce
ss
ar
y
in
fo
rm

at
io
n
fo
r
co
nt
ro
l.

/i
d/

de
sc
rip

tio
n/

to
sc
a

PU
T

ap
pl
ic
at
io
n/

xm
l

-
Se
nd

s
to

rS
Y
B
L
th
e
T
O
SC

A
de
sc
rip

tio
n
of

se
rv
ic
e

w
ith

ID
id

/i
d/

de
sc
rip

tio
n

PU
T

ap
pl
ic
at
io
n/

xm
l

-
Se
ts

rS
Y
B
L
sp
ec
ifi
c
ap

pl
ic
at
io
n
st
ru
ct
ur
al

de
sc
rip

-
tio

n
(e
.g
.,
he
re

)
fo
r
se
rv
ic
e
w
ith

ID
id
.
W

he
n
th
is

is
se
nt

T
O
SC

A
de

sc
rip

tio
n
is

no
t
ne

ed
ed

.
/i
d/

de
pl
oy
m
en
t

PU
T

ap
pl
ic
at
io
n/

xm
l

-
Se

ts
cu

rr
en
t
se
rv
ic
e
de

pl
oy
m
en
t
de

sc
rip

tio
n

fo
r

se
rv
ic
e
w
ith

ID
id

(e
.g
.,
he

re
).

/i
d/

el
as
tic

ity
C
ap

ab
ili
tie

s
Eff

ec
ts

PU
T

ap
pl
ic
at
io
n/

js
on

-
Se

ts
eff

ec
ts

ex
pe

ct
ed

fo
r
pr
im

iti
ve

op
er
at
io
ns

in
JS

O
N

fo
rm

at
(e
.g
.,
he

re
)
fo
r
se
rv
ic
e
w
ith

ID
id
.

/i
d/

co
m
po

sit
io
nR

ul
es

PU
T

ap
pl
ic
at
io
n/

xm
l

-
Se
ts

co
m
po

sit
io
n
ru
le
sf
or

se
rv
ic
em

et
ric

si
n
M
EL

A
-

sp
ec
ifi
c
X
M
L
fo
rm

at
(e
.g
.,
he

re
)
fo
r
se
rv
ic
e
w
ith

ID
id
.

/i
d/

st
ar
tC

on
tr
ol

PU
T

ap
pl
ic
at
io
n/

xm
l

-
St
ar
ts

th
e
co
nt
ro
lf
or

th
e
se
rv
ic
e
w
ith

ID
id
.

/i
d/

st
ar
tC

on
tr
ol
O
nE

xi
s

tin
g

PU
T

ap
pl
ic
at
io
n/

xm
l

-
St
ar
ts

th
e
co
nt
ro
lo

n
th
e
se
rv
ic
e
w
ith

ID
id
,w

hi
ch

is
al
re
ad

y
de

pl
oy
ed

an
d
m
on

ito
re
d.

/i
d/

st
op

C
on

tr
ol

PU
T

ap
pl
ic
at
io
n/

xm
l

-
St
op

s
th
e
co
nt
ro
l(

eq
ui
va
le
nt

w
ith

a
pa

us
e
in

co
n-

tr
ol
,f
or

w
he

n
th
e
se
rv
ic
e
is

m
an

ua
lly

m
od

ifi
ed

).
/i
d

D
EL

ET
E

-
-

D
e-
re
gi
st
er
s
fr
om

rS
Y
B
L
an

d
M
E
LA

,a
nd

un
de

-
pl
oy
s
fr
om

th
e
cl
ou

d
th
e
se
rv
ic
e
w
ith

ID
id
.

/m
an

ag
ed

Se
rv
ic
e/
id

D
EL

ET
E

-
-

D
e-
re
gi
st
er
s
fr
om

rS
Y
B
L
an

d
M
EL

A
se
rv
ic
e
w
ith

ID
id

(d
oe
s
N
O
T

un
de

pl
oy
)
fr
om

th
e
cl
ou

d.
/i
d/

on
D
em

an
dC

on
tr
ol
/

un
he

al
th
y

PU
T

pl
ai
n/

tx
t

-
Tr

ig
ge
rs

he
al
th

fix
(r
ec
ur
siv

e
re
st
ar
t
in

to
p-
do

w
n

m
od

e)
fo
r
se
rv
ic
e
w
ith

ID
id
,f
or

se
rv
ic
e
pa

rt
se
nt

as
pa

ra
m
et
er

(in
th
e
m
et
ho

d
bo

dy
).

C
on

tin
ue
d
on

ne
xt

pa
ge

164

rS
Y
B
L
A
PI

–
C
on

tin
ue
d
fro

m
pr
ev
io
us

pa
ge

M
et
ho

d
T
yp

e
In
pu

t
O
ut
pu

t
D
es
cr
ip
ti
on

/i
d/

st
ar
tT

ES
T

PU
T

ap
pl
ic
at
io
n/

xm
l

-
St
ar
ts

th
e
rS
Y
B
L
co
nt
ro
lle

r
in

te
st
in
g
m
od

e
/i
d/

se
rv
ic
eP

ar
tI
D
/
te
st
E

la
st
ic
ity

C
ap

ab
ili
ty
/c
ap

a-
bi
lit
yI
D

PU
T

ap
pl
ic
at
io
n/

xm
l

-
E
nf
or
ce
s,

fo
r
se
rv
ic
e
w
ith

ID
id
,c

ap
ab

ili
ty

w
ith

ca
pa

bi
lit
yI
D

fo
r
se
rv
ic
e
pa

rt
w
ith

se
rv
ic
eP

ar
tI
D
.

/i
d/

se
rv
ic
eP

ar
tI
D
/
te
st
E

la
st
ic
ity

C
ap

ab
ili
ty
/p

lu
g-

in
ID

/c
ap

ab
ili
ty
ID

PU
T

ap
pl
ic
at
io
n/

xm
l

-
E
nf
or
ce
s,

fo
r
se
rv
ic
e
w
ith

ID
id
,c

ap
ab

ili
ty

w
ith

ca
pa

bi
lit
yI
D

fo
r
se
rv
ic
e
pa

rt
w
ith

se
rv
ic
eP

ar
tI
D
,

by
us
in
g
a
sp
ec
ifi
c
en
fo
rc
em

en
t
pl
ug

in
of

rS
Y
B
L,

w
ith

ID
pl
ug

in
ID

.
/i
d/

de
sc
rip

tio
n

G
ET

-
ap

pl
ic
at
io
n/

xm
l

G
et
s
cu

rr
en
t
ap

pl
ic
at
io
n

st
ru
ct
ur
al

de
sc
rip

tio
n

us
ed

,i
n
rS
Y
B
L
sp
ec
ifi
c
fo
rm

at
(e
.g
.,
he

re
)

/i
d/

el
as
tic

ity
R
eq
ui
re
m

en
ts
/x

m
l

G
ET

-
ap

pl
ic
at
io
n/

xm
l

R
et
ur
ns

el
as
tic

ity
re
qu

ire
m
en
ts

fo
rt

he
se
rv
ic
e
w
ith

ID
id
,i
n
X
M
L
fo
rm

at
.

/i
d/

el
as
tic

ity
R
eq
ui
re
m

en
ts
/p

la
in

G
ET

-
te
xt
/p

la
in

R
et
ur
ns

el
as
tic

ity
re
qu

ire
m
en
ts

fo
rt

he
se
rv
ic
e
w
ith

ID
id
,i
n
SY

B
L
fo
rm

at
.

/i
d/

st
ru
ct
ur
al
D
at
a/

js
on

G
ET

-
ap

pl
ic
at
io
n/

js
on

R
et
ur
ns

th
e
se
rv
ic
e
st
ru
ct
ur
al

de
sc
rip

tio
n
in

JS
O
N

fo
rm

at
.

/e
la
st
ic
se
rv
ic
es

G
ET

-
te
xt
/p

la
in

R
et
ur
ns

th
e
id
s
of

al
lc

ur
re
nt
ly

co
nt
ro
lle
d
se
rv
ic
es
,

se
pa

ra
te
d
by

’,’
.

/i
d/

de
pl
oy
m
en
t

PO
ST

ap
pl
ic
at
io
n/

xm
l

-
M
od

ifi
es

cu
rr
en
t
se
rv
ic
e
de

pl
oy
m
en
t
de

sc
rip

tio
n

fo
r
se
rv
ic
e
w
ith

ID
id

(e
.g
.,
he

re
).

/i
d/

de
sc
rip

tio
n

PO
ST

ap
pl
ic
at
io
n/

xm
l

-
M
od

ifi
es

fo
r
se
rv
ic
e
w
ith

ID
id
,t
he

se
rv
ic
e
de
sc
rip

-
tio

n
w
hi
ch

is
se
nt

in
th
e
bo

dy
of

th
is

ca
ll.

/i
d/

co
m
po

sit
io
nR

ul
es

PO
ST

ap
pl
ic
at
io
n/

xm
l

-
M
od

ifi
es

co
m
po

sit
io
n
ru
le
s
fo
r
se
rv
ic
e
w
ith

ID
id

(i.
e.
,o

ld
on

es
ar
e
be

in
g
re
pl
ac
ed

w
ith

th
e
ne
w

on
es

se
nt

in
th
e
m
es
sa
ge

bo
dy

).
C
on

tin
ue
d
on

ne
xt

pa
ge

165

rS
Y
B
L
A
PI

–
C
on

tin
ue
d
fro

m
pr
ev
io
us

pa
ge

M
et
ho

d
T
yp

e
In
pu

t
O
ut
pu

t
D
es
cr
ip
ti
on

/i
d/

el
as
tic

ity
R
eq
ui
re
m
en

ts
/x

m
l

PO
ST

ap
pl
ic
at
io
n/

xm
l

-
M
od

ifi
es

el
as
tic

ity
re
qu

ire
m
en
ts

fo
rt

he
se
rv
ic
ew

ith
ID

id
,w

ith
th
e
on

es
re
ce
iv
ed
.
T
he

re
ce
iv
ed

re
qu

ire
-

m
en
ts

ar
e
fo
r
th
is

m
et
ho

d
in

X
M
L
fo
rm

at
.

/i
d/

el
as
tic

ity
C
ap

ab
ili
tie

s
Eff

ec
ts

PO
ST

ap
pl
ic
at
io
n/

js
on

-
M
od

ifi
es

el
as
tic

ity
ca
pa

bi
lit
ie
s
eff

ec
ts

fo
r
se
rv
ic
e

w
ith

ID
id
,w

ith
th
e
on

es
se
nt

in
JS

O
N

fo
rm

at
.

/i
d/

re
pl
ac
eR

eq
ui
re
m
en
ts

/p
la
in

PO
ST

te
xt
/p

la
in

-
R
ep

la
ce
s
el
as
tic

ity
re
qu

ire
m
en
ts

fo
r
se
rv
ic
e
w
ith

ID
id

w
ith

th
e
on

es
re
ce
iv
ed

in
SY

B
L
fo
rm

at
.

166

Deployment

For deploying and starting rSYBL, there are two options:

• Deploy the war artifact generated by the rSYBL-analysis-engine component in an
existing Web Server (e.g., Tomcat)

• Start the executable war artifact which also contains the web server

• Run rSYBL-service which can be found on the root of rSYBL repo (this works in
Linux-based systems)

Note: In case Java version is less than 7, the following jvm options are needed:
-Djsse.enableSNIExtension=false -Djavax.xml.bind.JAXBContext =
com.sun.xml.internal.bind.v2.ContextFactory

Multiple enforcement mechanisms – Multi-cloud control configuration

rSYBL can control services which have different service parts (e.g., service topologies/-
composite components) deployed on different cloud providers. Moreover, rSYBL can also
use user-defined control, which can be defined following the steps in the next section, in
order to control cloud services.

An example of a client which follows this entire lifecycle, with two clouds, as presented
in the figure below, is available at https://github.com/tuwiendsg/rSYBL/tree/master/rSYBL-
control-service-pom/rSYBL-client/rSYBL%20Python%20clients/
multipleEnforcementMechanisms_multiCloud/lifecycle.py. The description of the cloud
service together with its requirements stays the same, for the case the cloud service is
deployed on two clouds with similar functionalities.

Figure 2: Multi-cloud example

167

https://github.com/tuwiendsg/rSYBL/tree/master/rSYBL-control-service-pom/rSYBL-client/rSYBL%20Python%20clients/multipleEnforcementMechanisms_multiCloud/lifecycle.py
https://github.com/tuwiendsg/rSYBL/tree/master/rSYBL-control-service-pom/rSYBL-client/rSYBL%20Python%20clients/multipleEnforcementMechanisms_multiCloud/lifecycle.py
https://github.com/tuwiendsg/rSYBL/tree/master/rSYBL-control-service-pom/rSYBL-client/rSYBL%20Python%20clients/multipleEnforcementMechanisms_multiCloud/lifecycle.py

The configuration of enforcement mechanisms for the case above is14

Mult ip leEnforcementPlug ins = f l e x i a n t : at . ac . tuwien . dsg . rSybl .
c l oud In t e ra c t i onUn i t . en forcementPlug ins . f l e x i a n t .
EnforcementFlexiantAPI , openstack : at . ac . tuwien . dsg . rSybl .
c l oud In t e ra c t i onUn i t . en forcementPlug ins . openstack .
EnforcementOpenstackAPI

This way, we say that we will refer to the EnforcementFlexiantAPI as flexiant, and to
EnforcementOpenstackAPI as openstack, and we will use them both.

However, there are some differences in terms of effects description and deployment
description. The single difference, next to adding extra plugins in config.properties, is that
when specifying capabilities of different nodes, one needs to specify which enforcement
mechanism comes from which plugin:

<DeploymentUnit s e rv i ceUni t ID="EventProces s ingServ i ceUni t "
de f au l tF l avo r="m1. t iny " de fau l t Image="d279e72d−4bba−3c7f −8330−9

ad4d29e8dfe">
<AssociatedVM IP="109 .231 .122 .250" UUID="131627 fe−d5f3−3518−8

bf5−7d16a932df8c "/>
<AssociatedVM IP="109 .231 .122 .251" UUID="9c99d99b−b2c4−30ee−

a87f−67e7370291ad"/>
<E l a s t i c i t yCapab i l i t y Name=" f l e x i a n t . s c a l e I n "/>
<E l a s t i c i t yCapab i l i t y Name=" f l e x i a n t . sca leOut "/>
</DeploymentUnit>

<DeploymentUnit s e rv i ceUni t ID="DataNodeServiceUnit "
de f au l tF l avo r="m1. t iny " de fau l t Image="728 a8bfc−2af7−4e8c−a782
−05e292dee f81 " >

<AssociatedVM IP="10.99.0 .91"/ >
<E l a s t i c i t yCapab i l i t y Name="openstack . s c a l e I n "/>
<E l a s t i c i t yCapab i l i t y Name="openstack . sca leOut "/>
</DeploymentUnit>

The description above is normally introduced not by the user, but by the deployment/-
configuration framework (e.g., SALSA) as the deployment should be done automatically.

Extending rSYBL

For customizing rSYBL in what Monitoring and Enforcement is concerned, the following
steps need to be followed.

For creating new plugins, an API of the plugin needs to implement the MonitoringIn-
terface and respectively EnforcementInterface. The basic metrics and actions appear by
name, while the ones which are specific to the applications/plugins are to be interfaced

14Example of multi-cloud config file https://github.com/tuwiendsg/rSYBL/tree/master/starting
%20rSYBL/rSYBL%20Python%20clients/config_multiCloud.properties

168

https://github.com/tuwiendsg/rSYBL/tree/master/starting%20rSYBL/rSYBL%20Python%20clients/config_multiCloud.properties
https://github.com/tuwiendsg/rSYBL/tree/master/starting%20rSYBL/rSYBL%20Python%20clients/config_multiCloud.properties

through getMetric and enforceAction actions. Moreover, the needed configuration data
needs to be added and processed from the config file of the Analysis Engine, which is the
main module of rSYBL tool.

After adding new plugins, the rSYBL tool needs to be recompiled and re-deployed,
and these plugins need to be specified in config.properties and associated, in the
case of the enforcement plugin, in the deployment description, with the node (e.g., service
unit, service topology) which exposes this implemented capability.

169

G E O R G I A N A C O P I L

personal information

Born in Romania, 23 April 1987

email e.copil@dsg.tuwien.ac.at

website http://dsg.tuwien.ac.at/staff/ecopil/

work experience

2014 - present University Assistant, Distributed Systems Group,
TU Wien — Vienna, Austria

Research activities on elasticity control in the cloud, and teaching activities.

2012- 2014 Project Assistant, Distributed Systems Group,
TU Wien — Vienna, Austria

Research activities on elasticity control in the cloud.

2011 Summer Intern, IBM Research Haifa — Tel
Aviv site, Israel

Research activities on cloud storage for energy efficiency and performance
improvement.

2010–2012 Research Assistant, Distributed Systems
Research Laboratory — Cluj-Napoca, Romania

Research and development for GAMES1 (Green Active Management of Energy
in IT Service centers) FP7 EU Project.

2008–2010 Software Developer Intern, National
Instruments Corporation — Cluj-Napoca, Romania

Developing features for LabView, the development environment for a visual
programming language from National Instruments.

education

2012-2016 Technische Universität Wien

Description: The dissertation thesis is prepared under the supervision of Prof.PhD in Computer
Science (title: Dr.) Univ. Dr. Schahram, having the title Cloud Services Elasticity Control: from

requirements specification to operations management

2010-2012 Technical University of Cluj-Napoca

Description: The dissertation thesis was prepared under the supervision ofMSc. in Artificial
Intelligence and

Computer Vision
(title: Dipl. Ing.)

Professor Ioan Salomie, having the title Targeting Service Level Agreements in
Green Cloud Computing: Management and Negotiation

2006-2010 Technical University of Cluj-Napoca

Description: The diploma thesis was prepared under the supervision ofBachelor of
Computer Science

(title: Ing.)
professor Ioan Salomie, having the title A self-adaptive model for managing energy
efficiency in service centres: Adaptive Action Decision and Enforcement

1 http://green-datacenters.eu

full publication list

Journals

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar,ACM Transactions
on Internet
Technology

”rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity”,
ACM Transactions on Internet Technology (TOIT), 2015.

Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan,International
Journal of

Cooperative
Information

Systems

George Pallis, Schahram Dustdar, Marios D. Dikaiakos, ”Evaluating cloud
service elasticity behavior”, International Journal of Cooperative Information
Systems

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar,International
Journal of Big

Data Intelligence

”MELA: Elasticity Analytics for Cloud Services”, International Journal of Big
Data Intelligence

Tudor Cioara, Ionut Anghel, Ioan Salomie, Georgiana Copil, DanielUbiquitous
Computing And
Communication

Journal

Moldovan,Barbara Pernici - ”A Context Aware Self-Adapting Algorithm for
Managing the Energy Efficiency of IT Service Centres” - Ubiquitous Computing
And Communication Journal - Special Issue of RoEduNet, pp. 619 - 630, 2011.

Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, Ramona Bianca Baico,Journal of Scalable
Computing:
Practice and

Experience

Mihaela Dinsoreanu, Georgiana Copil - ”A Hybrid Firefly-inspired Approach
for Optimal Semantic Web Service Composition” - Journal of Scalable
Computing: Practice and Experience,Volume 12, Number 3, 2011.

Conferences

2015

Stefan Nastic, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, Governing
Elastic IoT Cloud Systems under Uncertainty, 7’th International Conference on
Cloud Computing, CloudCom. Vancouver, 2015

Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, ”Supporting Cloud Service
Operation Management for Elasticity”, the 13th International Conference on Service
Oriented Computing. Goa, India, 16-19 November, 2015

Tien-Dung Nguyen, Hong-Linh Truong, Georgiana Copil, Duc-Hung Le, Daniel
Moldovan, Schahram Dustdar, ”On Developing and Operating of Data Elasticity
Management Process”, (c)Springer-Verlag,13th International Conference on Service
Oriented Computing (ICSOC 2015), Nov 16-19, 2015. Goa, India

Chris Smowton, Georgiana Copil, Hong-Linh Truong, Crispin Miller and Wei Xing,
”Genome Analysis in a Dynamically Scaled Hybrid Cloud”, The 11th IEEE
International Conference on eScience, Munich, Germany, 31st August - 4th
September 2015.

Hong-Linh Truong, Georgiana Copil, Schahram Dustdar, Duc-Hung Le, Daniel
Moldovan, Stefan Nastic, ”iCOMOT - Toolset for Managing IoT Cloud Systems”,
16th IEEE International Conference on Mobile Data Management, 15-18 June, 2015,
Pittsburg, USA. (Demo)

2014

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, ”On
Analyzing Elasticity Relationships of Cloud Services”, 6’th International Conference
on Cloud Computing, CloudCom. Singapore, 2014.

Duc-Hung Le, Hong-Linh Truong, Georgiana Copil, Stefan Nastic, Schahram
Dustdar, ”SALSA: a Framework for Dynamic Configuration of Cloud Services”, 6’th
International Conference on Cloud Computing, CloudCom. Singapore, 2014.

Stefano Mariani, Hong-Linh Truong, Georgiana Copil, Andrea Omicini, Schahram
Dustdar, ”Coordination-aware Elasticity”, 7th IEEE/ACM International Conference
on Utility and Cloud Computing, 8-11 December, London, 2014.

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, ”On
Controlling Cloud Services Elasticity in Heterogeneous Clouds”, 6th Cloud Control
Workshop, 7th IEEE/ACM International Conference on Utility and Cloud
Computing, 8-11 December, London, 2014.

Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan, George
Pallis, Schahram Dustdar, Marios Dikaiakos. ”ADVISE - a Framework for Evaluating
Cloud Service Elasticity Behavior” the 12th International Conference on Service
Oriented Computing. Paris, France, 3-6 November, 2014. (best paper award)

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar,
”QUELLE - a Framework for Accelerating the Development of Elastic System s”,
Third European Conference on Service-Oriented and Cloud Computing - ESOCC
2014, 2-4 September, Manchester, United Kingdom.

Hong-Linh Truong, Schahram Dustdar, Georgiana Copil, Alessio Gambi, Waldemar
Hummer, Duc-Hung Le, Daniel Moldovan, ”CoMoT A Platform-as-a-Service for
Elasticity in the Cloud”, IEEE International Workshop on the Future of PaaS, IEEE
International Conference on Cloud Engineering (IC2E 2014), Boston, Massachusetts,
USA, 10-14 March 2014

2013

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, ”SYBL:
an Extensible Language for Controlling Elasticity in Cloud Applications”, 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), May 14-16, 2013, Delft, the Netherlands.

Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram
Dustdar, ”On Estimating Actuation Delays in Elastic Computing Systems”,
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), May 20-21, 2013, San Francisco, USA.

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, ”MELA:
Monitoring and Analyzing Elasticity of Cloud Services”, 5’th International
Conference on Cloud Computing, CloudCom. Bristol, UK, 2-5 December, 2013

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar,
”Multi-Level Elasticity Control of Cloud Services”, the 11th International Conference
on Service Oriented Computing. Berlin, Germany, on 2-5 December, 2013.

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar,
”SYBL+MELA: Specifying, Monitoring, and Controlling Elasticity of Cloud Services”,
the 11th International Conference on Service Oriented Computing. Berlin, Germany,
on 2-5 December, 2013.

2012

Georgiana Copil, Daniel Moldovan, Ioan Salomie, Tudor Cioara, Ionut Anghel, Diana
Borza, ”Cloud SLA negotiation for energy savingA particle swarm optimization
approach”, IEEE International Conference on Intelligent Computer Communication
and Processing (ICCP), 2012.

Daniel Moldovan, Georgiana Copil, Ioan Salomie, Ionut Anghel, Tudor Cioara, ”A
membrane computing inspired packing solution and its application to service center
workload distribution”, IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), 2012.

2011

Tudor Cioara, Ionut Anghel, Ioan Salomie, Georgiana Copil, Daniel Moldovan,
Barbara Pernici., ”A context aware self-adapting algorithm for managing the energy
efficiency of it service centres,” in Ubiquitous Computing and Communication
Journal, 2010 9th , vol., no., pp.374-379, 24-26 June 2011

Tudor Cioara, Ionut Anghel, Ioan Salomie, Georgiana Copil, Daniel Moldovan,
Alexander Kipp, ”Energy aware dynamic resource consolidation algorithm for
virtualized service centers based on reinforcement learning”, 10th International
Symposium on Parallel and Distributed Computing (ISPDC), 2011.

Ionut Anghel, Tudor Cioara, Ioan Salomie, Georgiana Copil, Daniel Moldovan,
Cristina Pop, ”Dynamic frequency scaling algorithms for improving the CPU’s
energy efficiency”, IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), 2011.

Georgiana Copil, Tudor Cioara, Ionut Anghel, Ioan Salomie, Daniel Moldovan, Diana
Borza, ”A genetic-inspired negotiation algorithm for QoS and energy consumption
tradeoffs in virtualized service centers”, IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), 2011.

Tudor Cioara, Ionut Anghel, Ioan Salomie, Georgiana Copil, Daniel Moldovan,
Marius Grindean, ”Time series based dynamic frequency scaling solution for
optimizing the CPU energy consumption”, IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP), 2011.

Tudor Cioara, Ionut Anghel, Ioan Salomie, Daniel Moldovan, Georgiana Copil,
Pierluigi Plebani, ”Dynamic consolidation methodology for optimizing the energy
consumption in large virtualized service centers”, Federated Conference on
Computer Science and Information Systems (FedCSIS), 2011.

Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, Ramona Bianca Baico,
Mihaela Dinsoreanu, Georgiana Copil, ”A hybrid firefly-inspired approach for
optimal Semantic Web service composition”, Scalable Computing: Practice and
Experience, 2011.

2010

Tudor Cioara, Ionut Anghel, Ioan Salomie, Mihaela Dinsoreanu, Georgiana Copil,
and Daniel Moldovan. ”A reinforcement learning based self-healing algorithm for
managing context adaptation”. In Proceedings of the 12th International Conference
on Information Integration and Web-based Applications and Services (iiWAS ’10).
ACM, New York, NY, USA, 859-862. DOI=10.1145/1967486.1967634
http://doi.acm.org/10.1145/1967486.1967634

Ioan Salomie,Tudor Cioara, Ionut Anghel, Daniel Moldovan, Georgiana Copil,
Pierluigi Pleibani, ”An Energy Aware Context Model for Green IT Service Centers”,
ICSOC 2010 International Workshops, PAASC, WESOA, SEE, and SOC-LOG, San
Francisco, CA, USA, December 7-10, 2010, Revised Selected Papers.

Ionut Anghel, Tudor Cioara, Ioan Salomie, Mihaela Dinsoreanu, Georgiana Copil,
Daniel Moldovan - ”An Autonomic Context Management Model based on Machine
Learning” - Proceedings of the 12th IEEE International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pp. 335 - 338, 2010.

Tudor Cioara, Ionut Anghel, Ioan Salomie, Mihaela Dinsoreanu, Georgiana Copil,
and Daniel Moldovan, ”A self-adapting algorithm for context aware systems,” in
Roedunet International Conference (RoEduNet), 2010 9th , pp.374-379, 24-26 June
2010

Book Chapters

2015

Georgiana Copil, Daniel Moldovan, Duc-Hung Le, Hong-Linh Truong, Schahram
Dustdar, Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas, George
Pallis, Marios D. Dikaiakos, Craig Sheridan, Evangelos Floros, Christos KK Loverdos,
Kam Star, Wei Xing, On Controlling Elasticity of Cloud Applications in CELAR,
Emerging Research in Cloud Distributed Computing Systems, Advances in Systems
Analysis, Software Engineering, and High Performance Computing (ASASEHPC)
Book Series

other information

2014 · ICSOC 2014 Best Paper Award for ADVISE: A framework for evaluatingAwards
cloud service elasticity behavior
2011 · ISPDC 2011 Best Paper Award for Energy Aware Dynamic Resource
Consolidation Algorithm for Virtualized Service Centers based on Reinforcement
Learning

Romanian · MothertongueLanguages

English · AdvancedLanguages

Deutsch · Basic (simple words and phrases only)

French · Basic (simple words and phrases only)

December 3, 2015

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Thesis Organization

	Background
	Cloud Computing
	Control Mechanisms
	IT Service Management

	On Elasticity Control
	Overview
	Cloud Computing and Elasticity
	Philosophical and Societal Views towards Requirements Specification and Engineering
	Ethics and Quality in the Cloud
	Cloud Service Elasticity: Perspectives

	Model and Case Study
	Cloud Service Model
	Case Study Application

	Elasticity Requirements Language
	Overview
	Elasticity Requirements
	SYBL Syntax and Semantics
	Experiments

	rSYBL : a Framework for multi-level Cloud Service Elasticity Control
	Overview
	Managing Elasticity Capabilities from Cloud Providers
	Multi-level Elasticity Control
	Experiments

	A Complex Use-Case for rSYBL Elasticity Controller: Heterogeneous Control for Cloud Services
	Overview
	Motivation, Background and Related Work
	Multi-cloud elasticity control
	Prototype and Experiments

	Evaluating Cloud Service Elasticity Behavior
	Overview
	Cloud Service Structural and Runtime Information
	Evaluating Cloud Service Elasticity Behavior
	Controlling Elasticity with Elasticity Behavior Estimation
	Experiments

	Elasticity Operations Management
	Overview
	Motivation
	Analyzing Interactions in Elasticity Operations Management
	Elasticity Operations Management Platform
	Prototype and Experiments

	Related Work
	Elasticity Requirements Language
	Elasticity Control Mechanisms
	Elasticity Behavior Estimation
	Heterogeneous Elasticity Control
	Elasticity Operations Management

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Using rSYBL framework

