
On Analyzing Evolutionary Changes of Web Services⋆

Martin Treiber, Hong-Linh Truong, Schahram Dustdar

VitaLab, Distributed Systems Group
Institute of Information Systems
Vienna University of Technology

{treiber, truong, dustdar}@infosys.tuwien.ac.at

Abstract. Web services evolve over their life time and change their behavior. In
our work, we analyze Web service related changes and investigate interdependen-
cies of Web service related changes. We classify changes of Web services for an
analysis regarding causes and effects of such changes and utilize a dedicated Web
service information model to capture the changes of Web services. We show how
to put changes of Web services into an evolutionary context that allows us to de-
velop a holistic perspective on Web services and their stakeholders in a ecosystem
of Web services.

1 Introduction

Web services undergo changes during their life time. This behavior is of particular in-
terest when putting Web services in the context of Web service ecosystems [1]. To
understand these ecosystems, we need to understand Web services with regard to evo-
lutionary aspects since they are the central entities in theecosystems. In particular, we
need to analyze the artifacts that have impact on Web services, Web service ecosystems
respectively, and investigate the reasons for changes of Web services.

Currently there is little support for Web service evolution, even though the evolution
of Web services accounts for major development costs. The evolution of Web services
involves changes of requirements, changes of the implementation, changes of the Web
service semantics, changes Web service usage and so on. These activities come from
different stakeholders, such as developers, providers, users and service integrators that
interact in Web service ecosystems.

In this work, we focus on the complexity of evolutionary Web service modifica-
tions. It’s important for Web service providers to understand the prerequisites and the
consequences of modifications of Web services in the light oflimited resources (time,
manpower, money). Current practices to describe Web services do not take these dy-
namic aspects into account. Approaches such as (WSDL [2], OWL-S [3], WSMO [4],
WSDL-S [5]) primarily focus on interface related issues anddo not model changes. We
argue that an evolutionary model requires a holistic perspective on Web services and
needs to integrate information from various perspectives as well as different (design
time and run time) data sources [6].

⋆ The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

Real world Web services provide valuable input for our investigations with regard
to the understanding of Web service evolution. In this paperwe are using real world
Web services of an Austrian SME called Wisur1 to illustrate the challenges concerning
Web service evolution. Wisur provides business related information to customers. Their
main business is to sell business reports with information about companies (turnover, fi-
nancial situation, etc) and consumer data (address, date ofbirth, etc.) to their customers.
Wisur’s customers use Wisur’s Web services to search in Wisur’s database and to ac-
cess the desired information2. As soon as the requirements of customers change, Wisur
needs to adapt their services accordingly. Examples are forinstance the addition of new
functions to existing services, or the creation of new Web services. In addition, Wisur
reviews it’s Web services once a month to look for issues thatmight cause problems in
the future. For instance, a planned augmentation of a database with consumer data can
lead to longer execution times of queries which have impact on the overall execution
time of the Web service that queries data from this database.When putting these activ-
ity into the context of Web service evolution, we can observethe need for classification
of modification activities under the umbrella of Web serviceevolution.

In this paper, we focus on the evolution of single Web services that we consider as
atomic building blocks of Web service ecosystems. In particular we analyze changes
of Web services based on empirical observations. We investigate the impact of these
changes from different perspectives. We propose a methodology that identifies influ-
encing factors of Web services and a model of Web service related changes. Our major
contribution is to define the basic element of Web service evolution, i.e. theevolutionary
step, and embed it in Web service ecosystems.

The rest of the paper is organized as follows. After summarizing related work in
Section 2 we provide our analysis of changes of Web services in Section 3. We conclude
the paper with a discussion and an outlook for future work in Section 4.

2 Related Work

From an organizational point of view, our work is related to service management in
general. Approaches such as WSDM [7] or WSMF [8] offer frameworks to collect
data about Web services and to manage them. The work of Casatiet. al. [9] focuses
on the business perspective of Web service management. Fanget. al. [10] discuss the
management of service interface changes. The authors describe version-aware service
descriptions and directory models. The work by Kaminski [11] introduces a framework
that supports service interface adaptors for backward compatible versioning of Web
services. Our work covers different aspects of service changes, such as runtime aspects
(e.g., QoS), implementation changes, semantic changes, etc.

The collection of run time information about Web services (usage statistics, logging,
etc.) is discussed by Ghezzi et. al. [12]. The area of Software Configuration Manage-
ment [13] is also related to our research with regard to analysis of changes of software
systems and versioning issues. We follow ideas such as the collection, classification

1 http://www.wisur.at
2 see http://webservice.wisur.at:8000/axis/services/WISIRISFuzzySearchService?wsdl for an

example of a Web service

and monitoring of change events from the aforementioned approaches. However, our
approach differs insofar, since we focus on evolutionary aspects that are not covered by
management approaches.

From an evolutionary perspective, our work is closely related to evolutionary as-
pects of software in general. Of particular importance is the work of in [14] where the
authors studied software changes and considered software systems as dynamic entities
that change over time. Lessons can also be learned from the basic SPE classification
scheme which is extensively discussed in [15] and [16].

Papazoglou [17] discusses the challenges of service evolution and introduces two
categories of service related changes. While similar in spirit, our work follows a broader
scope, since our approach introduces a concrete information model to capture service
related changes and lays the foundation for deeper analysisof service related changes.
Andrikopoulos et. al. [18] discuss the management of service specification evolution.
The author’s abstract service definition model addresses Web service evolution on an
abstract layer whereas we follow a bottom up approach with the analysis of single Web
services with regard to Web service evolution.

The work in [19] describes the use of a dependency structure matrix that reflects the
overall software structure and highlights dependency patterns between software com-
ponents. Our work includes the aspect of dependency, however, we focus on a broader
set of information in our analysis (e.g., QoS information, usage data).

3 The Anatomy of Web Service Changes

In this section, we analyze changes that are related to Web services. As indicated by
the working example of the introduction, changes of Web service happen due to various
reasons. During our observations, we’ve developed a methodology that classifies the
factors of influence associated with Web services (see Table1). We base our classifi-
cation of the factors of influence on the work of Canfora and Penta [20] that identified
the different stakeholders of Web services. Our proposed methodology consists of the
following steps:

1. Identify the stakeholders that are interested in the Web service. This is done by an-
alyzing the development process of Web services and investigating how the com-
munication process is structured. For instance, the developer might be informed
about changes of Web service requirements by a phone call or an email of the cus-
tomer/system integrator.

2. Identify the tasks of the corresponding stakeholders. This step is basically the as-
signment of responsibilities to the interested parties. For instance, a user of a Web
service is responsible for giving feedback about the service response time and the
provided data quality.

3. Collect data of Web services and identify the source of thedata. In this step, we
distinguish between runtime and static data. Runtime information (e.g., QoS, Web
service usage statistics) is provided by tools that continuously monitor Web ser-
vices. Other Web service related information is (e.g., requirements, user feedback)
is entered into a persistence framework manually by developers, service integrators,
etc.

Perspective Task
Provider The provider is responsible for the planing and conception of the Web service.

This includes the definition of requirements, the negotiation of SLA with
customers, service pricing policy, etc. as well as managingchanges of these.

Developer The main task of the developer is the implementation of the Web service.
The developer needs to manage changes of interface descriptions, different
versions of the implementation and track change of requirements.

Service IntegratorThe service integrator’s task is to integrate external services into a software
system. Service integrators are interested in changes of the interface, QoS at-
tributes and the semantics of the Web service since these have effects on the
integration of the Web service. Service integrators also modify the require-
ments of Web services.

User The user of a Web service has interest in QoS changes of Web services. In
addition, the user modifies the requirements of the Web service during its
lifetime.

Table 1. Perspectives on Web services

In our previous work [6], we’ve analyzed information sources concerning changes of
Web services and introduced an information model to store this kind of data. Based on
these empirical observations, we’ve identified dependencies between different perspec-
tives and generated a common generic model for a general classification of the available
information (see Figure 1). During the evolution process ofa Web service, we can ob-
serve transitive effects of changes that lead to a new versions of a Web service (see
Figure 2). We consider this change propagation as foundation for the understanding of
evolutionary changes of Web services. In this respect, we regard a set of interrelated
modifications as step in the evolutionary process of Web services.

To illustrate this, let us consider the following illustrating scenario: The provider
of a Web service takes notice of a change in the usage pattern and checks the usage
statistics of the Web service. Then, the provider contacts the user and asks for feedback.
Let’s assume that the user is not satisfied with the pricing ofthe service with regard to
its performance and pressures the provider into changing the service pricing. Since the
provider does not want to lose this customer, the provider adapts the pricing and updates
the corresponding SLA. Meanwhile the developer was informed by the provider that
a customer is not satisfied and that the SLA have changed. The provider requests to
optimize the service performance because the provider expects in the future customers
to require better performance of the service. These changeshave effect on the QoS
parameters of the Web service which in turn influence the usage of the Web service.

As shown by the example above, we can observe change propagations and impacts
on different perspectives from one single change event. We’ve summarized potential
changes and impacts in Table 2. In the following subsectionswe discuss major changes
of Web services in detail. We show how change activities are interrelated and explain
how these activities contribute to the evolution of Web services. We provide examples
and discuss the benefits of out approach for the different stakeholders of Web services.

OoS

Interface

Implementation

Folksxonomy/

Feedback

Execution

Environment

SLALicense

Pre-/Post-

conditions

Requirements

Usage

Dependency

Interest

Attribute/

Characteristic

Developer

Service Integrator

User
Provider

Service

Fig. 1. Information model of Web service changes. Note that the dependencies between the dif-
ferent attributes are not mandatory and depend on the concrete service.

3.1 Web Service Requirements Changes

Changes of requirements are the main driver for all evolutionary Web service changes.
Requirements serve as ”benchmark” for the correct functionality of Web service imple-
mentations. Changes of requirements are thus very criticalduring the evolution of Web
services and have a number of effects on Web service characteristics:

Implementation Changes of requirements affect the implementation of Web services,
since changes of Web service functionality need to be implemented by the devel-
oper.

Interface The interface reflects changes of Web service requirements when these changes
affect functionality of the Web service.

SLA The provider of the Web service may change SLAs with customers when their
requirements change. For example, new functionality needsto be specified in SLAs
as well as changes of the required performance of the Web service, data quality,
costs, etc.

Pre- and Postconditions With changing requirements the prerequisites for the execu-
tion of Web services might change. For example, new requirements may require a
registration for customers prior to the use of the Web service. The effects of the
execution of Web service may also change with new requirements. For example, a
data Web service might provide additional information to the customer.

Usage SLA Requirements Implementation QoS

User Provider Developer Service Integrator

Change Event

triggerscommunicates

changes/oberserves

Fig. 2. Propagation of changes and interested parties

All stakeholders of Web services have interest in Web service requirements. Conceptu-
ally, requirements can be considered as logical link that links different aspects of Web
service modifications together. During the evolution of Webservices, every evolution-
ary step is delimited by the definition of requirements and the publication of a new Web
service. Activities by stakeholders as modification of the interface (developer), imple-
mentation (developer), definition of SLAs (provider, user), feedback (service integrator,
user) are triggered by the definition of requirements, changes respectively.

Example. As noted before, a change of a requirement triggers a set of related activities
in order to implement the requirement. Utilizing our evolution framework we can track
these activities and link them. When put into a historical perspective, provider can an-
alyze, based on historical information, the costs of the different Web service versions
when following the provided links to details about the implementation (see code snippet
in Listing 1.1).

<e n t r y>
<change type ="Requirement">

< l i n k>h t t p : / / we bs e rv i c e . w i s u r . a t / WISIRISFuzzySearchServ ice ? ReqPhon . pdf</ l i n k>

<c a t e g o r y>New Func t i on</ c a t e g o r y>
<d e s c r i p t i o n>A new f u n c t i o n was added to the r e q u i r e m e n t</ d e s c r i p t i o n>
<c a us e type ="Feedback">

<re a s on>Cus tomers want to s e a r c h wi th p h o n e t i c methods .</ r e a s on>
< t r i g g e r t ype ="User"> . . .</ t r i g g e r>

</ c a us e>
<d e p e n d e n c y l i s t>

<dependency t ype ="Implementation"> <!−− l i n k to imp l . change d e s c r i p t i o n−−>

< l i n k i d ="urn:uuid:e2e2f679-8a67-439a-a65e-bbafd1dd0091" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t ype ="Developer" /> . . .</ impac t>
</ change></ e n t r y>

Listing 1.1. WISIRISFuzzySearch requirement change

Observed Change Trigger Impact on Modification of Effect on
Interface Provider,

User, Service
Integrator

Integrator,
Developer

Implementation QoS, SLA,
Usage

Implementation Developer Integrator,
User

Implementation QoS, Inter-
face

QoS Usage Provider,
Developer

Implementation, Interface Interface,
QoS, SLA,
Usage

Usage User Provider Contact user SLA, QoS
Requirement User, Inte-

grator
Provider,
Developer

Interface, Implementation, SLAUsage

SLA Provider User, De-
veloper,
Integrator

Usage Requirement,
QoS, Imple-
mentation

Pre-Post ConditionsProvider,
Developer

User, Inte-
grator

SLA Implementation

Feedback User, Inte-
grator

Provider,
Developer

SLA Usage

Table 2. Impacts on Web service changes.

3.2 Interface Changes

Syntactical descriptions of Web services define available operations and the structure
of messages that Web services are capable to process. We consider interface changes
as (i) the addition of new functionality or (ii) the update ofexisting functionality (e.g.,
interface refinement with new parameters or removal of functionality). As shown in the
overview table, the trigger such changes can be either the provider, the service integra-
tor or the user of a Web service. The cause of an interface change is a change of the
requirement. Consequently, interface changes affect primarily the service integrator that
is using the service in other software systems, since s/he must adapt the software system
that uses the service accordingly. Figure 3 shows the dependencies of interface changes.
As shown in the figure, we can observe the following effects ofinterface changes:

Implementation Interface changes have impact on the implementation of a Webser-
vice. Depending of on the type of interface change, we can observe different effects
on the implementation of a Web service. The addition of new functionality or the
update of existing functionality are reflected by modifications of the implementa-
tion.

QoS QoS attributes of Web service may be effected by interface changes. However, an
interface change does not have immediate consequences for QoS properties. For
instance, if the addition of new service functionality alsochanges existing imple-
mentation (e.g., optimizations) then the QoS attributes (e.g., response time, etc.)
also change.

Pre- and Postconditions Changes of the interface have effects on pre- and post-conditions
of Web services. These reflect the necessary conditions thatmust be fulfilled to ex-

Interface

 QoSImplementation

AttributeDependency

Developer

 Service

User

Service Integrator

observes

observesPre/Post

changes

changes

observes
observes

Fig. 3. Dependencies of interface changes

ecute a service. For instance, the update of existing functionality to a Web service
might require new constraints to be satisfied, such as the provision of a customer
identifier and a trial-key.

Usage Changes of the interface influence the usage of a Web service.Unless the in-
terface change is backward compatible, a new interface withnew functionality has
impact on the usage of the service.

During the evolution of Web services, each publicly available interface version denotes
a new version of the Web service. By analyzing the frequency of interface changes, Web
service stakeholders are able to establish the interface stability of the Web service.

Example. From the perspective of the developer it is important to connect interface
changes with requirements. In this way it is possible to check implementations for their
consistency with (functional) requirements. By combiningversioning information with
interface modifications, developers are able to track different service versions and cor-
responding requirements.

From the perspective of the service integrator interface changes are very critical
since the service integrator relies on stable interfaces when integrating external services.
When interfaces change, service integrators require Web services to be compatible with
existing systems. If this is not the case, service integrators require information about the
nature of the interface changes to infer how much they have tochange. In our approach
we follow the classification schema by Leitner et. al.[21] toclassify interface related
changes.

The example in Listing 1.2 illustrates how we integrate the changes into our service
information model and how we link changes dependencies. In the code snippet, we
show how we represent the addition of new functionality to a Web service.

<e n t r y>
< t i t l e>I n t e r f a c e</ t i t l e>

<summary>SOAP Web S e r v i c e</ summary>
<change type ="Interface">

<c a t e g o r y t ype ="Add Method" />
<d e s c r i p t i o n>A new s e a r c h method was added to the
WISIRS Fuzzy Search S e r v i c e</ d e s c r i p t i o n>
<c a us e type ="Requirement">
<−− l i n k to the r e qu i r e me n t where d e t a i l s can be found−−>

< l i n k i d ="urn:uuid:823157f7-7174-4b09-b815-64750b0e2f83" />
</ c a us e>

<d e p e n d e n c y l i s t>
<dependency t ype ="Implementation">

<!−− l i n k to imp le me n ta t i on i n f o r m a t i o n in SEMF−−>

< l i n k i d ="urn:uuid:912ae1a0-96b0-11dd-ad8b-0800200c9a66" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>

<p e r s p e c t i v e t ype ="System Integrator" />
</ impac t>
</ change>
</ e n t r y>

Listing 1.2. WISIRISFuzzySearch interface change

3.3 Web Service Implementation Changes

Closely related to interface changes are implementation changes. We consider two types
of changes, (i) code refactoring/internal optimizations and (ii) change in the function-
ality. The former subcategory are changes that are transparent for all users of the Web
service. The latter is a consequence of interface changes since the new service function-
ality is expressed by interface changes. Potential triggers for implementation changes
are changes of requirements which are caused by the service provider, the user or the
service integrator (see Figure 4). Implementation changeshave effects on the following
attributes of Web services:

Interface Depending on the type of implementation change, we can observe differ-
ent effects of implementation changes on the service interface. The interface of a
service changes when new functionality is added to the Web service or removed
from the Web service. Code refactorings or internal code optimizations leave the
interface of a Web service untouched since the functionality remains unmodified.

QoS Internal optimizations have effects on QoS. Consider for instance a database
that is accessed by multiple parallel threads simultaneously instead of a sequen-
tial manner. This optimization changes the service execution time and is reflected
by changes of the response time of the service. Similar, the addition of security
mechanisms (e.g. WS-Security, etc.) to a service have impact on QoS attributes.

Pre- and Postconditions Both, pre- and postconditions are potentially affected by im-
plementation changes. Depending on the type of implementation change, new ser-
vice functionality (e.g., new methods to search in the provider database) obviously
requires new pre conditions (e.g., new input parameters) that must be satisfied in
order to execute a service. Postcondition changes depend onthe type of implemen-
tation change. Consider for example a service that requiredpayment and is now

Implementation

 QoSPre/Post Interface

AttributeDependency

Developer

 Service

changes

User

Service Integrator

observes

observes

Fig. 4. Dependencies of implementation changes.

free of charge for customers. In this case, the service implementation was changed
in order to acknowledge the new form of service use.

Usage The effects on the usage of Web services depend on the type of implementation
change. Similar as in the case with interface changes, new functionality can lead to
an increased usage of a Web service, because potentially more users can be served.
Internal changes (along with enhanced performance) might also result in a higher
usage of the Web service.

In our evolutionary approach, every evolutionary step is preceded be a series of imple-
mentation changes to achieve the fulfillment of requirements. The publication of a new
Web service version denotes the finalization of all necessary implementation changes.

Example. As in the case of interface changes, the developer needs to trace modifi-
cations in the source code with respect to changes of requirements and user/service
integrator feedback. In particular, when the developer modifies the implementation to
improve the performance the developer needs to know whetherthe changes have the
desired impact and requires feedback from the user/serviceintegrator.

From the perspective of the Web service provider it is important to know how much
time was spent to implement in the required modifications.

To illustrate these types of change, consider for example a Web service that offers
facilities to search in a consumer database. In the example,internal changes were im-
plemented that had no effect on the interface of the Web service. The code snippet in
Listing 1.3 illustrates how we capture these information inour Web service information
model.

<e n t r y>
< t i t l e>Imp le me n ta t i on</ t i t l e>

<summary>SOAP Web S e r v i c e</ summary>
<change type ="Implementation">
<c a t e g o r y t ype ="Internal Modification" />
<d e s c r i p t i o n>The o r d e r i n g of t he s e a r c h r e s u l t was changed .</ d e s c r i p t i o n>
<c a us e type ="Feedback">

<re a s on>User r e q u i r e a o rde re d s e a r c h r e s u l t (by fami lyname) .
</ r e a s on>
< t r i g g e r t ype ="User">
. . .

</ t r i g g e r>
< l i n k>we bs e rv i c e . w i s u r . a t /</ l i n k>

</ c a us e>
<d e p e n d e n c y l i s t> <−− imp le me n t i ng c l a s s−−>

<dependency t ype ="Class">
<name>WISIRISSearchWrapper</ name>

<d e s c r i p t i o n>M o d i f i c a t i o n of SQL query</ d e s c r i p t i o n>
</ dependency>

</ d e p e n d e n c y l i s t>
<v e r s i o n number="1"> <!−− v e r s i o n i n g i n f o r m a t i o n−−>

<e f f o r t d e v e l o p e r i d ="12"> <!−− imp le me n ta t i on e f f o r t−−>

<hou rs>3</ hou rs>
</ e f f o r t>

</ v e r s i o n>

<impac t>
<p e r s p e c t i v e t ype ="Developer" />
. . .

</ impac t>
</ change>
</ e n t r y>

Listing 1.3. WISIRISFuzzySearch implementation change

3.4 Web Service QoS Changes

QoS related changes of Web service depend on changes of otherproperties of Web ser-
vices. In contrast to implementation modifications, QoS changes are observed at run
time. The reasons for QoS changes are manifold: server load,number of concurrent
users, performance of back end systems such as databases, external factors such as net-
work latency, network throughput, as well as issues like security, etc., influence the QoS
attributes of Web services. Domain related QoS attributes,like data quality (complete-
ness, correctness, etc.) when providing data centric services are also of concern. For
instance, the hit rate of a search Web service is of importance when a provider desires
to sell business reports. Simply put: the higher the hit rate, the higher is the probability
that a user will use the service.We can observe the followingeffects QoS changes:

Usage Changes of Web service related QoS have impact on the usage ofWeb services.
When a service is selected by QoS attributes like response time, then a degradation
of QoS changes such as a higher response time can lead to a reduced service usage.

Implementation Observed QoS changes may lead to implementation changes. Internal
optimizations of the program code (e.g., different algorithms) are potentially used
to enhance performance related QoS attributes.

During the evolution of Web services, QoS attributes serve as indicator concerning the
overallfitnessof the Web service. With QoS information, we are to measure the fitness

of Web services with regard to SLAs. When put into a historical context, QoS data
provides information about the overall development of a Webservice and allows to
estimate when the performance of a Web service may become critical.

Example. With regard to the provision of data centric services, we address (i) data
quality (is the provided information up to date? and (ii) typical QoS (response time,
availability, etc.) of a Web service. We now show an example that highlights service
quality aspects from the perspective of the service provider with regard to service per-
formance. The code snippet in Listing 1.4 shows a notification about the violation of
SLA constraints that is generated by a monitoring tool that logs the performance of
Wisur’s Web services, making the observation of QoS very important from the perspec-
tive of the service provider. Notice that our tool includes information for the developer
in order to track the part of the Web service implementation which is responsible for
the violation of the SLA.

<e n t r y>
< t i t l e>QoS v i o l a t i o n</ t i t l e>

<change type ="QoS">
<c a t e g o r y t ype ="Violation" />
<c a us e type ="Usage">

<re a s on>Response of WISIRISFuzzySearchServ ice</ r e a s on>
< t r i g g e r t ype ="Service Environment">

. . .
</ t r i g g e r>

</ c a us e>
<d e p e n d e n c y l i s t>

<dependency t ype ="SLA"><!−− l i n k to s l a i n f o r m a t i o n in SEMF−−>

< l i n k i d ="urn:uuid:da66f3c0-96da-11dd-ad8b-0800200c9a66" />
</ dependency>

</ d e p e n d e n c y l i s t>
<impac t>
<p e r s p e c t i v e t ype ="Developer" />
<p e r s p e c t i v e t ype ="Provider" />
</ impac t>
<d e t a i l s>
<e x e c u t i o n t i m e>62201ms</ e x e c u t i o n t i m e>

<c l a s s e s> <!−− l i s t o f c l a s s e s t h a t imp lement the Web s e r v i c e−−>

<c l a s s name="WISIRISDataAccess">
<e x e c u t i o n t i m e>59955ms</ e x e c u t i o n t i m e>
<e x c e p t i o n />
</ c l a s s>
</ c l a s s e s>
</ d e t a i l s>
</ change>

</ e n t r y>

Listing 1.4. WISIRISFuzzySearch QoS change notification

Similar to Web service providers, end users are concerned with the Web service quality.
Consider the example, of a Web service which must respond within 60 seconds and
be available 24/7. The data presented in Figure 5 and Figure 6shows the observed
execution times of the reporting service of two consecutivemonths of a real world Web
service from Wisur. As shown in the figure, the constraint wasviolated in April 2008.
This lead to user feedback and triggered a change in the implementation of the Web
service.

Service Execution Times April 2008

0

50

100

150

200

250

300

350

400

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Fig. 5. Observed execution during April 2008

Service Execution Times May 2008

0

10

20

30

40

50

60

70

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Fig. 6. Observed execution during May 2008

4 Discussion and Outlook

As discussed in the previous sections, there are dependencies between activities (mod-
ifications of the interface, implementation, requirements, SLA) that lead to changes of
Web services. In this paper, we analyzed these changes and provided a model that cap-
tures the changes. We introduced a model which offers the means for deeper analysis
of these changes. We put these changes in the context of Web service evolution and are
able to define the foundation of Web service evolution as follows:

An evolutionary stepis a set of activities (modifications of the interface, implemen-
tation, requirements, SLA) that are triggered by differentstakeholders of Web services.
The result of an evolutionary step is a new version of a Web service that is adapted to
these changes.

After having identified the basic element of the evolutionary process, we are able
to lay the foundation of the Web service evolution process. We consider Web service
evolution as an (potentially)indefinite sequence of evolutionarysteps that result in ob-
servable changes of the Web service. We assume that there areseveralvariationsof a
Web service at a given point in time. Every variation represents a independent evolution
sequence of a Web service and is represented by historical information.

In future work, we will study the evolutionary process in greater detail. In partic-
ular, we will focus on composite Web services and investigate evolutionary issues of
Web service compositions and investigate graphical modelsfor the representation of
the evolution [22] of complex composite Web services. Furthermore, we will investi-
gate complex event processing with regard to evolutionary aspects. In this context, we
plan to extend our framework with the support of event processing in the context of
Web service registries as discussed in [23].

References

1. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional8 (2006)
31–37

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 2.0 (2007)

3. W3C: OWL Web Ontology Language Overview (2004) W3C Recommendation 10 February
2004.

4. Dumitru, R., de Bruijn, J., Mocan, A., Lausen, H., Domingue, J., Bussler, C., Fensel, D.:
Www: Wsmo, wsml, and wsmx in a nutshell. The Semantic Web - ASWC 2006 (2006)
516–522

5. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.: Web
Services Semantics – WSDL-S (2005)

6. Treiber, M., Truong, H.L., Dustdar, S.: Semf - service evolution management framework.
In: SEAA 2008. (2008) to appear

7. OASIS: Web Services Distributed Management: Managementof Web Services (WSDM-
MOWS) 1.1 (2006)

8. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vambenepe, W., Wurster, K.: Web ser-
vices management framework, version 2.0 (2003)

9. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of web services.
Commun. ACM46 (2003) 55–60

10. Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Chen,Y., Du, N.: A version-aware
approach for web service directory. In: ICWS. (2007) 406–413

11. Kaminski, P., Múller, H., Litoiu, M.: A design for adaptive web service evolution. In:
SEAMS ’06: Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems, New York, NY, USA, ACM (2006) 86–92

12. Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In: Test and
Analysis of Web Services. Springer (2007) 237–264

13. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Comput. Surv.30 (1998) 232–282

14. Lehman, M.M., Ramil, J.F.: Software evolution: background, theory, practice. Inf. Process.
Lett. 88 (2003) 33–44

15. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: foun-
dations of the spe classification scheme: Research articles. J. Softw. Maint. Evol.18 (2006)
1–35

16. Lehman, M.M.: Laws of software evolution revisited. In:EWSPT ’96: Proceedings of the 5th
European Workshop on Software Process Technology, London,UK, Springer-Verlag (1996)
108–124

17. Papazoglou, M.: The challenges of service evolution. Advanced Information Systems Engi-
neering (2008) 1–15

18. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Managing the evolution of service spec-
ifications. Advanced Information Systems Engineering (2008) 359–374

19. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage complex
software architecture. SIGPLAN Not.40 (2005) 167–176

20. Canfora, G., Penta, M.D.: Testing services and service-centric systems: Challenges and
opportunities. IT Professional8 (2006) 10–17

21. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.:End-to-end versioning support for
web services. Services Computing, 2008. SCC ’08. IEEE International Conference on1
(2008) 59–66

22. Luqi: A graph model for software evolution. IEEE Transactions on Software Engineering
16 (1990) 917–927

23. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.:Advanced event processing and noti-
fications in service runtime environments. In: DEBS. (2008)115–125

