On Analyzing Evolutionary Changes of Web Services*

Martin Treiber, Hong-Linh Truong, Schahram Dustdar

VitaLab, Distributed Systems Group
Institute of Information Systems
Vienna University of Technology
{treiber, truong, dustdar}@ nfosys.tuw en. ac. at

Abstract. Web services evolve over their life time and change theiaisigh. In
our work, we analyze Web service related changes and igegstinterdependen-
cies of Web service related changes. We classify changesbfdétvices for an
analysis regarding causes and effects of such changesibrelaitiedicated Web
service information model to capture the changes of WelicesvWe show how
to put changes of Web services into an evolutionary contattdllows us to de-
velop a holistic perspective on Web services and their b@kers in a ecosystem
of Web services.

1 Introduction

Web services undergo changes during their life time. Thigbi®r is of particular in-
terest when putting Web services in the context of Web sereimsystems [1]. To
understand these ecosystems, we need to understand Wetesavith regard to evo-
lutionary aspects since they are the central entities irtlosystems. In particular, we
need to analyze the artifacts that have impact on Web serwigeb service ecosystems
respectively, and investigate the reasons for changes bfséices.

Currently there is little support for Web service evolutiemen though the evolution
of Web services accounts for major development costs. Tolkeitian of Web services
involves changes of requirements, changes of the implatient changes of the Web
service semantics, changes Web service usage and so o ddtadties come from
different stakeholders, such as developers, provideesswnd service integrators that
interact in Web service ecosystems.

In this work, we focus on the complexity of evolutionary Wednsdce modifica-
tions. It's important for Web service providers to undemstéhe prerequisites and the
consequences of modifications of Web services in the lightofed resources (time,
manpower, money). Current practices to describe Web sndo not take these dy-
namic aspects into account. Approaches such as (WSDL [2],-G\8], WSMO [4],
WSDL-S [5]) primarily focus on interface related issues dndot model changes. We
argue that an evolutionary model requires a holistic patsgeon Web services and
needs to integrate information from various perspectiwewell as different (design
time and run time) data sources [6].

* The research leading to these results has received fundingthe European Community’s
Seventh Framework Programme FP7/2007-2013 under graaeragnt 215483 (S-Cube).

Real world Web services provide valuable input for our itigegions with regard
to the understanding of Web service evolution. In this papetare using real world
Web services of an Austrian SME called Wisp illustrate the challenges concerning
Web service evolution. Wisur provides business relateatrimétion to customers. Their
main business is to sell business reports with informatimuacompanies (turnover, fi-
nancial situation, etc) and consumer data (address, datgfetc.) to their customers.
Wisur’'s customers use Wisur's Web services to search in Wislatabase and to ac-
cess the desired informatiénAs soon as the requirements of customers change, Wisur
needs to adapt their services accordingly. Examples aiedtance the addition of new
functions to existing services, or the creation of new Welises. In addition, Wisur
reviews it's Web services once a month to look for issuesrttight cause problems in
the future. For instance, a planned augmentation of a de¢aliith consumer data can
lead to longer execution times of queries which have impadhe overall execution
time of the Web service that queries data from this datalvleen putting these activ-
ity into the context of Web service evolution, we can obséheeneed for classification
of modification activities under the umbrella of Web senagelution.

In this paper, we focus on the evolution of single Web servtbat we consider as
atomic building blocks of Web service ecosystems. In paldicwe analyze changes
of Web services based on empirical observations. We irgagstithe impact of these
changes from different perspectives. We propose a metbgydhat identifies influ-
encing factors of Web services and a model of Web servictebizhanges. Our major
contribution is to define the basic element of Web servicéutiam, i.e. theevolutionary
step and embed it in Web service ecosystems.

The rest of the paper is organized as follows. After sumnragizelated work in
Section 2 we provide our analysis of changes of Web servic8edtion 3. We conclude
the paper with a discussion and an outlook for future workent®n 4.

2 Redated Work

From an organizational point of view, our work is related &pvice management in
general. Approaches such as WSDM [7] or WSMF [8] offer frarneg to collect
data about Web services and to manage them. The work of Gasati [9] focuses
on the business perspective of Web service management.dtaaly [10] discuss the
management of service interface changes. The authorsigesersion-aware service
descriptions and directory models. The work by Kaminskj jhfroduces a framework
that supports service interface adaptors for backward etibilp versioning of Web
services. Our work covers different aspects of service gbsrsuch as runtime aspects
(e.g., QoS), implementation changes, semantic changes, et

The collection of run time information about Web servicesage statistics, logging,
etc.) is discussed by Ghezzi et. al. [12]. The area of Soévznfiguration Manage-
ment [13] is also related to our research with regard to amablyf changes of software
systems and versioning issues. We follow ideas such as flextion, classification

! http://www.wisur.at
2 see http://webservice.wisur.at:8000/axis/serviceSNRISFuzzySearchService?wsdl for an
example of a Web service

and monitoring of change events from the aforementionedoggbes. However, our
approach differs insofar, since we focus on evolutionapgats that are not covered by
management approaches.

From an evolutionary perspective, our work is closely eatio evolutionary as-
pects of software in general. Of particular importance é&swlork of in [14] where the
authors studied software changes and considered softystenss as dynamic entities
that change over time. Lessons can also be learned from #ie 8BE classification
scheme which is extensively discussed in [15] and [16].

Papazoglou [17] discusses the challenges of service @wmoland introduces two
categories of service related changes. While similar intspur work follows a broader
scope, since our approach introduces a concrete informataxel to capture service
related changes and lays the foundation for deeper analfyservice related changes.
Andrikopoulos et. al. [18] discuss the management of sersfecification evolution.
The author’s abstract service definition model addressds $&bvice evolution on an
abstract layer whereas we follow a bottom up approach wétatialysis of single Web
services with regard to Web service evolution.

The work in [19] describes the use of a dependency structatexthat reflects the
overall software structure and highlights dependencyepattbetween software com-
ponents. Our work includes the aspect of dependency, haywegdocus on a broader
set of information in our analysis (e.g., QoS informatiosage data).

3 The Anatomy of Web Service Changes

In this section, we analyze changes that are related to Weites. As indicated by
the working example of the introduction, changes of Webiserivappen due to various
reasons. During our observations, we've developed a metbgd that classifies the
factors of influence associated with Web services (see TgbM/e base our classifi-
cation of the factors of influence on the work of Canfora anadt&§20] that identified
the different stakeholders of Web services. Our proposdtiadelogy consists of the
following steps:

1. Identify the stakeholders that are interested in the V@elice. This is done by an-
alyzing the development process of Web services and igasty how the com-
munication process is structured. For instance, the dpeelmight be informed
about changes of Web service requirements by a phone cail@mail of the cus-
tomer/system integrator.

2. ldentify the tasks of the corresponding stakeholderss Step is basically the as-
signment of responsibilities to the interested parties.ifrstance, a user of a Web
service is responsible for giving feedback about the serésponse time and the
provided data quality.

3. Collect data of Web services and identify the source ofdéu@. In this step, we
distinguish between runtime and static data. Runtime imédion (e.g., QoS, Web
service usage statistics) is provided by tools that contiisly monitor Web ser-
vices. Other Web service related information is (e.g., reguients, user feedback)
is entered into a persistence framework manually by deeetggervice integrators,
etc.

Perspective Task
Provider The provider is responsible for the planing and conceptfdheo\Web service.
This includes the definition of requirements, the negatiatdf SLA with
customers, service pricing policy, etc. as well as managiamnges of thesg.
Developer The main task of the developer is the implementation of thd W&rvice|
The developer needs to manage changes of interface destsipdlifferen
versions of the implementation and track change of requeregm
Service Integratail he service integrator’s task is to integrate externalisesvinto a software
system. Service integrators are interested in changeg dfitdrface, QoS at
tributes and the semantics of the Web service since thesedifiacts on the
integration of the Web service. Service integrators alsdifgdhe require
ments of Web services.
User The user of a Web service has interest in QoS changes of Welceserin
addition, the user modifies the requirements of the Web serduring itg
lifetime.

Table 1. Perspectives on Web services

In our previous work [6], we've analyzed information sows@®ncerning changes of
Web services and introduced an information model to stasskihd of data. Based on
these empirical observations, we've identified dependsrimetween different perspec-
tives and generated a common generic model for a genersifadation of the available
information (see Figure 1). During the evolution procesa #feb service, we can ob-
serve transitive effects of changes that lead to a new vessb a Web service (see
Figure 2). We consider this change propagation as found&iathe understanding of
evolutionary changes of Web services. In this respect, gartea set of interrelated
modifications as step in the evolutionary process of Wehicesy

To illustrate this, let us consider the following illusirag scenario: The provider
of a Web service takes notice of a change in the usage patterctecks the usage
statistics of the Web service. Then, the provider conthetsiser and asks for feedback.
Let's assume that the user is not satisfied with the pricintp@efservice with regard to
its performance and pressures the provider into changimgehvice pricing. Since the
provider does not want to lose this customer, the providaptethe pricing and updates
the corresponding SLA. Meanwhile the developer was infatimg the provider that
a customer is not satisfied and that the SLA have changed. ividpr requests to
optimize the service performance because the providerexpethe future customers
to require better performance of the service. These changes effect on the QoS
parameters of the Web service which in turn influence theaisathe Web service.

As shown by the example above, we can observe change prapagantd impacts
on different perspectives from one single change eventvé\simmarized potential
changes and impacts in Table 2. In the following subsectiandiscuss major changes
of Web services in detail. We show how change activities rterielated and explain
how these activities contribute to the evolution of Web &&y. We provide examples
and discuss the benefits of out approach for the differekébtaiders of Web services.

¢ fy—————
|
Execution | .
N] Implementation
Environment 1

Developer

X

Service Integrator

% —/+| License |—| SLA I ¢
. User
Provider Folksxonomy/
Feedback

Dependency
_— > Interest

Pre-/Post-
conditions

Usage Interface

Fig. 1. Information model of Web service changes. Note that the mi#grecies between the dif-
ferent attributes are not mandatory and depend on the derszevice.

3.1 Web Service Requirements Changes

Changes of requirements are the main driver for all evahatigp Web service changes.
Requirements serve as "benchmark” for the correct funatitpnof Web service imple-
mentations. Changes of requirements are thus very critigahg the evolution of Web
services and have a number of effects on Web service chesticte

Implementation Changes of requirements affect the implementation of Webcsss,
since changes of Web service functionality need to be imetaad by the devel-
oper.

Interface The interface reflects changes of Web service requiremérgn these changes
affect functionality of the Web service.

SLA The provider of the Web service may change SLAs with custeméren their
requirements change. For example, new functionality neels specified in SLAs
as well as changes of the required performance of the Weliceedata quality,
costs, etc.

Pre- and Postconditions With changing requirements the prerequisites for the execu
tion of Web services might change. For example, new requnésmmay require a
registration for customers prior to the use of the Web servithe effects of the
execution of Web service may also change with new requirésneor example, a
data Web service might provide additional information te tustomer.

User Provider =—————————— Developer Service Integrator
Usage SLA Requirements Implementation QoS
® >0 >0 >0 >
o Change Event —> changes/oberserves

communicates ——» triggers

Fig. 2. Propagation of changes and interested parties

All stakeholders of Web services have interest in Web semgquirements. Conceptu-
ally, requirements can be considered as logical link tmédslidifferent aspects of Web
service modifications together. During the evolution of VBebvices, every evolution-
ary step is delimited by the definition of requirements amdghblication of a new Web
service. Activities by stakeholders as modification of thieiface (developer), imple-
mentation (developer), definition of SLAs (provider, usé®dback (service integrator,
user) are triggered by the definition of requirements, ckamgspectively.

Example. As noted before, a change of a requirement triggers a sefadédeactivities
in order to implement the requirement. Utilizing our evaatframework we can track
these activities and link them. When put into a historicakpective, provider can an-
alyze, based on historical information, the costs of théedéht Web service versions
when following the provided links to details about the impentation (see code snippet
in Listing 1.1).

<entry>
<change type=Requirenent">
<link>http://webservice.wisur. at/WISIRISFuzzySearchSewr/?®ReqPhon. pef/ link>
<categoryNew Functior</category
<description-A new function was added to the requiremerdescription>
<cause type=Feedback">
<reason-Customers want to search with phonetic methods/.reason-
<trigger type=User">...</trigger>

<lcause
<dependencylist
<dependency typed nplementation"> <!— link to impl. change description—>

<link id="urn: uui d: e2e2f 679- 8a67- 439a- a65e- bbaf d1dd0091" />
</dependency

</dependencylist

<impact>
<perspective type=Devel oper"/>...</impact>
</change</entry>

Listing 1.1. WISIRISFuzzySearch requirement change

Observed Change|Trigger Impact on |Modification of Effect on
Interface Provider, Integrator, |Implementation QoS, SLA
User, ServiceEDeveloper Usage
Integrator
Implementation |Developer |Integrator, |Implementation QoS, Inter
User face
QoS Usage Provider, Implementation, Interface Interface,
Developer QoS, SLA
Usage
Usage User Provider Contact user SLA, QoS
Requirement User, IntetProvider, Interface, Implementation, SLNsage
grator Developer
SLA Provider User, DetUsage Requirement,
veloper, QoS, Imple
Integrator mentation
Pre-Post Condition®rovider, User, IntetSLA Implementation
Developer |grator
Feedback User, IntetProvider, SLA Usage
grator Developer

Table 2. Impacts on Web service changes.

3.2 Interface Changes

Syntactical descriptions of Web services define availapkrations and the structure
of messages that Web services are capable to process. Wdearangerface changes
as (i) the addition of new functionality or (ii) the updateefisting functionality (e.qg.,
interface refinement with new parameters or removal of fonelity). As shown in the
overview table, the trigger such changes can be either thadar, the service integra-
tor or the user of a Web service. The cause of an interfacegehsna change of the
requirement. Consequently, interface changes affectgiliyithe service integrator that
is using the service in other software systems, since s/ls¢aniapt the software system
that uses the service accordingly. Figure 3 shows the deperas of interface changes.
As shown in the figure, we can observe the following effectatrface changes:

Implementation Interface changes have impact on the implementation of ad&®eb
vice. Depending of on the type of interface change, we caarebglifferent effects
on the implementation of a Web service. The addition of nemcfionality or the
update of existing functionality are reflected by modificat of the implementa-
tion.

QoS QoS attributes of Web service may be effected by interfae@gbs. However, an
interface change does not have immediate consequence®®pfpperties. For
instance, if the addition of new service functionality ats@mnges existing imple-
mentation (e.g., optimizations) then the QoS attributeg. (@esponse time, etc.)
also change.

Pre- and Postconditions Changes of the interface have effects on pre- and post-tomsli
of Web services. These reflect the necessary conditionsthsttbe fulfilled to ex-

observes
observes

Pre/Post observes — l
User

1
] |
| |

—7 Interface
]

observes —_
changes

i
=] |
- i
Developer \%| Implementation l—:—i QoS l/
]

| Service Integrator

Dependency Attribute 'L Service |

Fig. 3. Dependencies of interface changes

ecute a service. For instance, the update of existing fonality to a Web service
might require new constraints to be satisfied, such as thégiwa of a customer
identifier and a trial-key.

Usage Changes of the interface influence the usage of a Web setidess the in-
terface change is backward compatible, a new interfacemneihfunctionality has
impact on the usage of the service.

During the evolution of Web services, each publicly avdéabterface version denotes
a new version of the Web service. By analyzing the frequehiyterface changes, Web
service stakeholders are able to establish the interfabdist of the Web service.

Example. From the perspective of the developer it is important to emhinterface
changes with requirements. In this way it is possible to klwplementations for their
consistency with (functional) requirements. By combimiegsioning information with
interface modifications, developers are able to track wiffeservice versions and cor-
responding requirements.

From the perspective of the service integrator interfacngles are very critical
since the service integrator relies on stable interfaceswifitegrating external services.
When interfaces change, service integrators require Wefirss to be compatible with
existing systems. If this is not the case, service integsatmjuire information about the
nature of the interface changes to infer how much they haghdage. In our approach
we follow the classification schema by Leitner et. al.[21Ftassify interface related
changes.

The example in Listing 1.2 illustrates how we integrate thanges into our service
information model and how we link changes dependencieshéncbde snippet, we
show how we represent the addition of new functionality toeb\Wervice.

<entry>
<title>Interface</ title>
<summary-SOAP Web Service/summary-
<change type<lnterface">
<category typezAdd Method" />
<descriptionA new search method was added to the
WISIRS Fuzzy Search Servieddescription-
<cause type=Requirement">

<— link to the requirement where details can be foure>
<link id="urn: uui d: 823157f 7- 7174- 4b09- b815- 64750b0e2f 83" />
</cause

<dependencylist
<dependency type npl ementation">
<!— link to implementation information in SEMF—
<link id="urn: uui d: 912aela0- 96b0- 11dd- ad8b- 0800200c9a66" />
</dependency
</dependencylist
<impact>
<perspective type=System|ntegrator" />
</impact>
</change
<lentry>

Listing 1.2. WISIRISFuzzySearch interface change

3.3 Web Servicelmplementation Changes

Closely related to interface changes are implementatiangés. We consider two types
of changes, (i) code refactoring/internal optimizationd &i) change in the function-
ality. The former subcategory are changes that are traespfar all users of the Web
service. The latter is a consequence of interface changesthie new service function-
ality is expressed by interface changes. Potential triggfrimplementation changes
are changes of requirements which are caused by the seracelgr, the user or the
service integrator (see Figure 4). Implementation chahges effects on the following
attributes of Web services:

Interface Depending on the type of implementation change, we can vbddffer-
ent effects of implementation changes on the service exterfThe interface of a
service changes when new functionality is added to the Wehbcgeor removed
from the Web service. Code refactorings or internal cod@upations leave the
interface of a Web service untouched since the functignadinains unmodified.

QoS Internal optimizations have effects on QoS. Consider fatance a database
that is accessed by multiple parallel threads simultariganstead of a sequen-
tial manner. This optimization changes the service exenutme and is reflected
by changes of the response time of the service. Similar, ddéian of security
mechanisms (e.g. WS-Security, etc.) to a service have ingpeQoS attributes.

Pre- and Postconditions Both, pre- and postconditions are potentially affectedby i
plementation changes. Depending on the type of implenientahange, new ser-
vice functionality (e.g., new methods to search in the gtewvdatabase) obviously
requires new pre conditions (e.g., new input parameteeg)rttust be satisfied in
order to execute a service. Postcondition changes depethe ¢ype of implemen-
tation change. Consider for example a service that requagthent and is now

Developer
r
] 1
— changes % Implementation -
]

observes jger

1
1
1
] 1
I Pre/Post }—.—' Interface | QoS
] 1
[

observes

———— Dependency | Attribute | L Service ,' Service Integrator

Fig. 4. Dependencies of implementation changes.

free of charge for customers. In this case, the service im@hgation was changed
in order to acknowledge the new form of service use.

Usage The effects on the usage of Web services depend on the typegptdrientation
change. Similar as in the case with interface changes, negtifunality can lead to
an increased usage of a Web service, because potentialéyusers can be served.
Internal changes (along with enhanced performance) migbtrasult in a higher
usage of the Web service.

In our evolutionary approach, every evolutionary step ecpded be a series of imple-
mentation changes to achieve the fulfillment of requiremerte publication of a new
Web service version denotes the finalization of all necgdsgslementation changes.

Example. As in the case of interface changes, the developer needade inodifi-
cations in the source code with respect to changes of ragaires and user/service
integrator feedback. In particular, when the developerifresdthe implementation to
improve the performance the developer needs to know whétieechanges have the
desired impact and requires feedback from the user/seintiegrator.

From the perspective of the Web service provider it is imgrarto know how much
time was spent to implement in the required modifications.

To illustrate these types of change, consider for exampleh $€rvice that offers
facilities to search in a consumer database. In the exanmpéenal changes were im-
plemented that had no effect on the interface of the Web @eriihe code snippet in
Listing 1.3 illustrates how we capture these informatioaum Web service information
model.

<entry>
<title>Implementatior/ title>
<summary-SOAP Web Service€/summary
<change type*l npl enentation">
<category typeZinternal Modification"/>
<description-The ordering of the search result was changefidescription>
<cause type=Feedback">
<reasom-User require a ordered search result (by familyname).
</reason
<trigger type=User">

</trigger>
<link>webservice . wisur. at{/link>
</cause
<dependencylist <— implementing class—>

<dependency type=Cl ass">
<name-WISIRISSearchWrapper name-

<description-Modification of SQL query/description>
</dependency

</dependencylist

<version numberz1"> <!— versioning information—>
<effort developerid212"> <!— implementation effort—>
<hours>3</hours>

<leffort>

<lversion>

<impact>

<perspective type=Devel oper" />

</impact>
</change
<lentry>

Listing 1.3. WISIRISFuzzySearch implementation change

3.4 Web Service QoS Changes

QoS related changes of Web service depend on changes opotiperties of Web ser-

vices. In contrast to implementation modifications, QoSngfes are observed at run
time. The reasons for QoS changes are manifold: server toadper of concurrent

users, performance of back end systems such as databasesakfactors such as net-
work latency, network throughput, as well as issues likeisgg etc., influence the QoS

attributes of Web services. Domain related QoS attriblitesdata quality (complete-

ness, correctness, etc.) when providing data centriccenare also of concern. For
instance, the hit rate of a search Web service is of impoetarien a provider desires
to sell business reports. Simply put: the higher the hit, ithie higher is the probability

that a user will use the service.We can observe the followfferts QoS changes:

Usage Changes of Web service related QoS have impact on the us&getboservices.
When a service is selected by QoS attributes like respomse then a degradation
of QoS changes such as a higher response time can lead tocadeshrvice usage.

Implementation Observed QoS changes may lead to implementation chan¢gsah
optimizations of the program code (e.g., different aldoris) are potentially used
to enhance performance related QoS attributes.

During the evolution of Web services, QoS attributes sesvimdicator concerning the
overallfitnessof the Web service. With QoS information, we are to measwdithess

of Web services with regard to SLAs. When put into a histdrazmtext, QoS data
provides information about the overall development of a Welvice and allows to
estimate when the performance of a Web service may becotiwatri

Example. With regard to the provision of data centric services, werasll (i) data
quality (is the provided information up to date? and (ii)ibgd QoS (response time,
availability, etc.) of a Web service. We now show an exampd highlights service
quality aspects from the perspective of the service providi regard to service per-
formance. The code snippet in Listing 1.4 shows a notificatibout the violation of
SLA constraints that is generated by a monitoring tool tbgslthe performance of
Wisur’'s Web services, making the observation of QoS veryartgnt from the perspec-
tive of the service provider. Notice that our tool includeformation for the developer
in order to track the part of the Web service implementatidwictv is responsible for
the violation of the SLA.

<entry>
<title>QoS violation</ title>
<change type=QoS'>
<category type=Violation"/>
<cause typetUsage">
<reason-Response of WISIRISFuzzySearchSerwdeeason-
<trigger type=Service Environment">

</trigger>
</cause
<dependencylist
<dependency type=SLA"><!— link to sla information in SEMF—>
<link id="urn: uui d: da66f 3c0- 96da- 11dd- ad8b- 0800200c9a66" />
</dependency
</dependencylist
<impact>
<perspective type=Devel oper" />
<perspective type=Provider" />

<limpact>

<details>

<executiontime62201ms/ executiontime>

<classes> <!— list of classes that implement the Web servies

<class name=W S| Rl SDat aAccess">
<executiontime59955m&/ executiontime
<exceptionp
<l/class>
</classe>
</details>
</change
<lentry>

Listing 1.4. WISIRISFuzzySearch QoS change notification

Similar to Web service providers, end users are concerntbdie Web service quality.
Consider the example, of a Web service which must resportdnvM@0 seconds and
be available 24/7. The data presented in Figure 5 and Figwsteo®/s the observed
execution times of the reporting service of two consecutieaths of a real world Web
service from Wisur. As shown in the figure, the constraint wiatated in April 2008.
This lead to user feedback and triggered a change in the mgpitation of the Web
service.

Service Execution Times April 2008 Service Execution Times May 2008

X x
w w | | I Il

SZ 12 M‘mh d i .1 ' h” “\ u‘ L didubih l "' U\ L \ul\.‘l “

Fig. 5. Observed execution during April 2008 Fig. 6. Observed execution during May 2008

4 Discussion and Outlook

As discussed in the previous sections, there are depemsdmeiween activities (mod-
ifications of the interface, implementation, requireme8tsA) that lead to changes of
Web services. In this paper, we analyzed these changes avidga a model that cap-
tures the changes. We introduced a model which offers thensiies deeper analysis
of these changes. We put these changes in the context of \Wabesevolution and are
able to define the foundation of Web service evolution asvest

An evolutionary stejis a set of activities (modifications of the interface, immpémn-
tation, requirements, SLA) that are triggered by diffeiakeholders of Web services.
The result of an evolutionary step is a new version of a Webicethat is adapted to
these changes.

After having identified the basic element of the evolutignarocess, we are able
to lay the foundation of the Web service evolution process.dbdhsider Web service
evolution as an (potentiallyhdefinite sequence of evolutionateps that result in ob-
servable changes of the Web service. We assume that these\amalvariationsof a
Web service at a given point in time. Every variation repnésa independent evolution
sequence of a Web service and is represented by historfoafiation.

In future work, we will study the evolutionary process in gter detail. In partic-
ular, we will focus on composite Web services and investigalutionary issues of
Web service compositions and investigate graphical mddelthe representation of
the evolution [22] of complex composite Web services. Fentiore, we will investi-
gate complex event processing with regard to evolutiongpgets. In this context, we
plan to extend our framework with the support of event preicggsin the context of
Web service registries as discussed in [23].

References

1. Barros, A.P., Dumas, M.: The rise of web service ecosystet Professiona8 (2006)
31-37

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, Seb \Wervices Description Lan-
guage (WSDL) 2.0 (2007)

3. W3C: OWL Web Ontology Language Overview (2004) W3C Recemdation 10 February
2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Dumitru, R., de Bruijn, J., Mocan, A., Lausen, H., DomiagJd., Bussler, C., Fensel, D.:

Www: Wsmo, wsml, and wsmx in a nutshell. The Semantic Web - AS2006 (2006)
516-522

. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Safut, M.T., Sheth, A., Verma, K.: Web

Services Semantics — WSDL-S (2005)

. Treiber, M., Truong, H.L., Dustdar, S.: Semf - serviceletion management framework.

In: SEAA 2008. (2008) to appear

. OASIS: Web Services Distributed Management: Manageroelteb Services (WSDM-

MOWS) 1.1 (2006)

. Catania, N., Kumar, P., Murray, B., Pourhedari, H., Vamgpe, W., Wurster, K.: Web ser-

vices management framework, version 2.0 (2003)

. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Businessited management of web services.

Commun. ACM46 (2003) 55-60

Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Ch¥n,Du, N.: A version-aware
approach for web service directory. In: ICWS. (2007) 40&-41

Kaminski, P., Mdller, H., Litoiu, M.: A design for adapt web service evolution. In:
SEAMS '06: Proceedings of the 2006 international workshoelf-adaptation and self-
managing systems, New York, NY, USA, ACM (2006) 86-92

Ghezzi, C., Guinea, S.: Run-time monitoring in senddented architectures. In: Test and
Analysis of Web Services. Springer (2007) 237-264

Conradi, R., Westfechtel, B.: Version models for sofeweonfiguration management. ACM
Comput. Surv30 (1998) 232—-282

Lehman, M.M., Ramil, J.F.: Software evolution: backgrd, theory, practice. Inf. Process.
Lett. 88 (2003) 3344

Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Etiolu in software systems: foun-
dations of the spe classification scheme: Research artitl&oftw. Maint. Evol18 (2006)
1-35

Lehman, M.M.: Laws of software evolution revisited. BWSPT '96: Proceedings of the 5th
European Workshop on Software Process Technology, LondiinSpringer-Verlag (1996)
108-124

Papazoglou, M.: The challenges of service evolutionvafded Information Systems Engi-
neering (2008) 1-15

Andrikopoulos, V., Benbernou, S., Papazoglou, M.: Mamgthe evolution of service spec-
ifications. Advanced Information Systems Engineering ®59-374

Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Usingnrdggncy models to manage complex
software architecture. SIGPLAN Nat0 (2005) 167-176

Canfora, G., Penta, M.D.: Testing services and sewétgric systems: Challenges and
opportunities. IT Profession8l(2006) 10-17

Leitner, P., Michimayr, A., Rosenberg, F., Dustdar, End-to-end versioning support for
web services. Services Computing, 2008. SCC '08. IEEE matéynal Conference of
(2008) 59-66

Lugi: A graph model for software evolution. IEEE Trarsas on Software Engineering
16 (1990) 917-927

Michimayr, A., Rosenberg, F., Leitner, P., Dustdar,/lvanced event processing and noti-
fications in service runtime environments. In: DEBS. (20085-125

