DIPAS: A Distributed Performance Analysis
Service for Grid Service-based Workflows

Hong-Linh Truong ®*
Peter Brunner, Vlad Nae, Thomas Fahringer

& Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria
truong@infosys.tuwien.ac.at

b Distributed and Parallel Systems Group, Institute of Computer Science,
University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria
{brunner,vlad,tf} Qdps.uibk.ac.at

Abstract

Grid workflows are executed on diverse resources whose interactions are highly com-
plex and hardly predicted. Often the user and the workflow middleware services want
to be informed about the performance behavior of workflows, as early as possible,
so that they can steer the execution of workflows to compensate the performance
loss or execution failures. This paper describes a distributed performance analy-
sis service that supports tracing execution, analyzing performance overheads, and
searching for performance problems of Web services-based workflows in the Grid. We
present how the user and the Grid workflow middleware can utilize the distributed
performance analysis service in order to optimize the execution of workflows.

Key words: Grid computing, performance monitoring and analysis, performance
problems, Grid workflows, Grid/Web services

1 Introduction

Unlike business workflows which are normally executed in stable environments,
Grid workflows are prone to failures and performance variability because the
Grid resources on which workflows are executed are dynamic and diverse; the

* Corresponding author. Email: truong@infosys.tuwien.ac.at

Preprint submitted to Elsevier Science 22 September 2008

Grid is an unreliable and open environment. Furthermore, Grid workflows,
currently most used for scientific computing, as shown in [1], are more ad-hoc,
thus they imply a high degree of complex interactions. As a result, performance
tools should detect performance problems and failures of Grid workflows dur-
ing runtime and inform relevant parties, such as the user (the end-user or
the developer) or the Grid workflow middleware (e.g., the workflow scheduler
and the workflow execution service), of the problems and failures as early as
possible. Moreover, different from conventional (non Grid-based) performance
analysis tools which are targeted to expert users and developers who can de-
tect performance problems and optimize their code, the performance analysis
tools for Grid workflows must additionally support the Grid middleware ser-
vices. It is because the Grid offers a huge amount of heterogeneous computing
resources, making the traditional code optimization cycle difficult. Instead,
the performance optimization is shifted to Grid middleware services which
aim at optimizing the execution of Grid workflows by means of the optimiza-
tion of resource selections and execution control, and self-adaptive techniques
[2-8]. To support this paradigm shift, Grid middleware require performance
analysis services which are capable of detecting performance problems of Grid
workflows during runtime.

To fill the gap between the demand for workflow performance analysis services
and the limited number of such services available, we have developed dis-
tributed performance monitoring and analysis services which aim at support-
ing online performance monitoring and evaluation of Grid workflows within
the K-WfGrid project [9]. One of the K-WfGrid core components is a dis-
tributed performance analysis service (DIPAS) whose objectives are to help
the user to understand the performance behavior of Grid workflows and to
provide performance results to Grid workflow middleware for constructing
and executing Grid workflows. In this paper, we describe DIPAS; its features,
and how it assists the end-user, the developer, and the Grid workflow mid-
dleware to understand the performance of Grid workflows and to utilize the
performance information for optimizing the execution of workflows. We also
illustrate DIPAS through the performance evaluation of real-world workflows.
This paper substantially refines and extends our previous conference paper
published in [10], focusing on the workflow performance evaluation and pro-
viding an up-to-date status of the development of DIPAS.

The rest of this paper is organized as follows: Section 2 discusses the re-
quirements for a performance analysis service for Grid workflows. Section 3
describes the architecture of the distributed performance analysis service. Sec-
tion 4 discusses performance service interfaces, data representations, and re-
quest languages. Section 5 presents online performance analysis features. Ex-
periments demonstrating DIPAS are given in Section 6. We outline the related
work in Section 7. Section 8 summarizes the paper and discusses our future
work.

2 Performance Analysis Requirements for Grid Workflows

2.1 K-WfGrid Objectives and User Classes

The main objective of the K-W{Grid project is to support semi-automatic,
knowledge-based composition and execution of Grid workflows [9,11]. In K-
Wi{Grid, Grid workflows are composed from Grid/Web services. The composi-
tion and execution of workflows relies on many types of knowledge, including
domain-specific knowledge, application structure, available software resources
and their relationship, and computing resources. The knowledge is assimilated
from different services and managed by a distributed semantical knowledge
base.

Two kinds of users must be supported in K-W{Grid. First, the application
developer will exploit the K-WfGrid system to design, customize, develop and
test workflows. Second, the application user will execute workflows provided
by the developer. Both types of users require the performance of the Grid
infrastructure and the Grid workflows being monitored and evaluated. While
the application user requires online monitoring of the workflow execution and
online notification of performance problems, the application developer requires
a full support of performance evaluation, including post-execution analysis
features, in order to efficiently construct and execute workflows.

Apart from these types of users, Grid middleware services, such as the work-
flow execution service and the workflow scheduler, also require performance
information about executed and running activities to dynamically control the
execution of workflows. In particular, information about Grid services and
workflow performance will be used to estimate the performance of future Grid
service invocations. The performance estimation is an important input for the
composition and execution of future workflows.

2.2 Requirements for Performance Analysis in K-WfGrid

The above-mentioned objectives and user classes imply various requirements
for the performance analysis support in K-WfGrid:

Supporting online and offline performance analysis. Runtime and offline per-
formance information of workflows is not only an important source of knowl-
edge but also provides necessary information for acquiring new knowledge
about the performance of future Grid workflows. Grid workflows take a long
time to finish and the resources are prone to failures. Therefore, both the user
and the Grid workflow middleware require runtime performance evaluation

because they want to react as soon as possible to performance problems. For
example, when the execution of a service invocation - within an activity in-
stance of a long running workflow - takes a long time to finish due to the slow
performance of the machine where the service is hosted, the workflow can be
suspended and rescheduled in order to overcome the performance problem.
Moreover, the application developer needs to examine in detail the perfor-
mance of workflows as well as to capture performance information for further
use. This requires the user to spend a certain amount of time to carefully
examine all performance behavior. Such a required time may not be enough
during runtime of a workflow. Thus, the user should also be able to conduct
the performance analysis of completed workflows. This feature is useful for
developers as they can run several experiments of their workflows and select
specific experiments for performance study. Furthermore, it allows for the as-
similation of performance knowledge for performance estimations.

Allowing specifying performance requests before and during the execution. Since
the client of the performance analysis service needs to react to performance
problems immediately, the client of the performance analysis services must be
able to prepare performance analysis tasks, before and during runtime. For
example, at a given time during the workflow execution, the user can select
an activity which has not been started yet and specify analysis tasks for that
activity. Based on that, the performance analysis service can prepare neces-
sary steps. When the activity is instantiated, performance analysis techniques
can be applied to the activity instance immediately.

Providing highly interoperable interfaces for Grid workflow middleware to spec-
ify analysis requests and to obtain performance result. Performance analysis
services have to be loosely integrated with various services and different per-
formance requests and information are exchanged between clients, middleware
and performance services in the Grid environment. To make sure that Grid
workflow middleware and clients can seamlessly be integrated and can interop-
erate with the performance analysis services, the analysis services must offer
highly interoperable interfaces, e.g., based on WSRF (Web Services Resource
Framework [12]), for other services and clients to utilize their performance
analysis features. Furthermore, all performance data as well as analysis re-
quests should also be well defined, using open, standardized representations,
such as XML.

Our DIPAS system supports all the above-mentioned requirements. DIPAS
offers WSRF interfaces, providing XML schemas for performance data and
analysis requests. As a result, any clients and services can easily request per-
formance results from DIPAS, based on WSRF and XML. Moreover, DIPAS
interacts with other components through a loosely coupled WSRF-based in-
terface, thus it can readily be integrated with other Grid workflow middleware
services.

3 The Distributed Performance Analysis Service

3.1 Overview

Figure 1 depicts the architecture of our distributed performance analysis ser-
vice (DIPAS) and relevant components involved in the performance analysis.
DIPAS basically includes two parts: (i) DIPAS Portal, a portal for the end-user
and developer, and DIPAS Client, any clients that need performance results,
and (ii) DIPAS Gateway, the core service performing online overhead anal-
ysis and search for performance problems. DIPAS interacts with underlying
workflow execution, monitoring and knowledge core services that control and
monitor the execution of workflows.

DIPAS Portal ‘ DIPAS Client

\/

DIPAS Gateway

Performance Overhead

B Performance Search
Analysis

Monitoring Data Subscription

and Query Workflow Graph Analysis

¥

K-WfGrid Execution, Monitoring and Knowledge Services

Grid Organizational
Memory

Workflow Scheduler

<" Grid Monitoring and X Grid Workflow
Instrumentation Service { Execution Service

e

~
. .)
monitoring data ’ \\ Invoke service operations

Monitored Monitored Monitored
Grid service Grid service Grid service

Grid resources and applications

Knowledge
Assimilation Agent

7

Fig. 1. Overall architecture of the distributed performance analysis service (DIPAS).
Arrowed black lines indicate the invocation of service operations (control and data
flow). Arrowed dash lines indicate data flows.

DIPAS Gateway supports the performance evaluation by analyzing monitoring
data, workflow representation, and client’s analysis requests. The monitoring
data is given by the Grid Monitoring and Instrumentation Service (GEMINT)
[13] whereas the workflow representation is given by the Grid Workflow Ex-
ecution Service (GWES) [14]. DIPAS Gateway discovers workflow events by
accessing information describing events in the Grid Organizational Memory

(GOM) [15]. DIPAS Gateway includes a component to query and subscribe
online monitoring data - Monitoring Data Query and Subscription - and a
component to analyze workflow representations - Workflow Graph Analysis.
Based on these two components, a component named Performance Overhead
Analysis will conduct the performance evaluation of workflows. This compo-
nent determines performance overheads based on a well-defined classification
of workflow performance overheads [16]. The Performance Search component
will perform the search and check performance problems based on performance
conditions specified by clients. DIPAS also provides information for other Grid
middleware services, such as the Workflow Scheduler - which uses the informa-
tion to schedule the execution of activities - and the Knowledge Assimilation
Agent (KAA) - which utilizes runtime and past performance information to
estimate the performance of future Grid services and workflows.

To make sure that DIPAS supports both the user (the application developer
and user) and the Grid middleware, DIPAS Gateway provides WSRF opera-
tions for any clients to conduct the analysis. More importantly, the requests
and responses of any performance analysis tasks are defined using a set of
XML-based languages. Currently, DIPAS implements and supports WARL
(Workflow Analysis Request Language) and the result of performance analy-
sis is returned in a pre-defined XML representation. DIPAS provides two tools
- an applet in a Web portal and a Java application - to the user to conduct the
performance analysis. Other Grid workflow middleware interact with DIPAS
using WSRF-based operations and XML-based data representations. DIPAS
Gateways publish their information into a registry (currently, we use GOM and
OpenDHT [17], an open service supporting distributed hash tables). Thus, in
addition to manual configuration, any client can search available DIPAS Gate-
ways from the registry. Currently, monitoring data of a single workflow can
be provided by multiple GEMINI services, but the performance evaluation of
a single workflow is entirely carried out at a single DIPAS Gateway which
subscribes or queries monitoring data from multiple GEMINI services. The
deployment of multiple DIPAS Gateways is useful in multi-user environments.

DIPAS is a part of the K-WfGrid workflow system [11] and has been inte-
grated with GEMINI [13], GWES [14], GOM [18], the Workflow Scheduler,
and KAA. All of them are Grid/Web services, offering WSDL or WSRF inter-
faces. Typical steps in the execution and performance evaluation of a workflow
in the K-Wfgrid workflow system are given as follows:

e The workflow description is submitted to GWES and GWES returns a work-
flow ID to the submitter (a user or a middleware service). GWES starts to
enact the workflow. GWES executes workflow activities and, in turn, service
operations of Grid/Web services are invoked.

e GEMINI monitors both GWES and invoked Grid/Web services. Monitoring
data of the workflow and invoked service operations are captured in events

and managed in GEMINI. Information about available types of events and
GEMINTI services are sent to GOM.

e Using the workflow ID, the user can select a performance evaluation fea-
ture from a DIPAS Portal which will generate a performance request or a
middleware service can issue a performance request to a DIPAS Gateway.
If it has not been done before, the DIPAS Gateway will use the workflow
ID to query GOM to find GEMINI services which provide monitoring data,
subscribe/query the monitoring data from appropriate GEMINI services,
and obtain the workflow description from GWES. Based on the request, the
subscribed /queried monitoring data, and the workflow description, the per-
formance evaluation is performed, and the results are returned to or polled
by the user or the middleware service.

3.2 Supported Grid Workflows

DIPAS supports the performance analysis of K-W{Grid workflows which are
described by GWorkflowDL [19]. GWorkflowDL is a Petri net based represen-
tation in which transitions are used to describe workflow activities. GWork-
flowDL is capable of modeling multiple levels of abstraction of workflows, e.g.,
a transition in GWorkflowDL can be used to represent a user request which
later on is mapped to an abstract operation. Each abstract operation can be
associated with multiple service operation candidates, of which one concrete
service operation will be selected and executed by the execution service. The
concrete service operation is a Web services operation or a WSRF operation.

Workflows in K-WfGrid are executed by GWES [14] which is able to exe-
cute workflows of Web services and of WSRF ones. GWES is instrumented
and monitored by GEMINI. Through the monitoring, all execution statuses of
workflows and workflow activities will be captured and represented in events
which can be subscribed and queried during runtime of workflows. DIPAS pro-
vides analysis and visualization capabilities for workflows at runtime by pro-
cessing workflow/activity events, workflow representations, and performance
constraints specified by its clients.

3.3 Interactions between Clients and DIPAS

Figure 2 shows a simplified sequence diagram illustrating the interactions be-
tween clients and DIPAS. WfPerfComponent dispatches requests coming from
different clients to corresponding PerfOverheadAnalysis instance, for perfor-
mance overhead analysis, and to PerfProblemSearch instance, for search for
performance problems. Note that whether a request will be processed by Per-
fOverheadAnalysis or by PerfProblemSearch is dependent on the content of

the request, although all requests are expressed by the WARL. At a given
time, performance overheads and problems of multiple workflows can be eval-
uated: an instance of WfPerfComponent is responsible for a workflow. Each
instance will dynamically compute overhead metrics and determine if there
exist performance problems by examining performance conditions specified in
the requests. The performance metrics and problems are determined during
runtime of workflows but the result is buffered at the DIPAS Gateway. Then,
the client can poll the DIPAS Gateway to receive the results. Performance
problems are described in XML by using the appprof schema which can de-
scribe, in detail, all performance metrics associated with workflows.

DIPAS Client DIPAS Gatewa
| I
e 1
analyze() new()
WfPerfComponent
|
postCreate() _:_
new()
PerfOverheadAnalysis/
PerfProblemSearch
addEntry() |
updateOn() |
getResult
getPerfPresults() T getPerfResults() L
|
. String <appprof> String <appprof>
String <appprof> S U Y
____________ |
= addEntry() T
1 updateOn() |
getResult() getPerfPresults() updateOn()
getPerfResults()
; String <appprof>
String <appprof> String <appprof> < — — _g - ipi PR
Km——————————— === ===~ -
cancelResult() A :
stopThread()
stopPMA() i

T N
| |
| |
| |

Fig. 2. A simplified UML sequence diagram of interactions between a DIPAS client
and a DIPAS Gateway. Arrowed black lines indicate invocations of service operations
or functions. An arrowed dash line denotes returning data of an invocation and data
format.

The above-mentioned model supports multiple clients analyzing the perfor-

mance of multiple workflows. Although, currently, the performance analysis
for a single workflow is conducted at a single place, distributed DIPAS Gate-
ways can be used and the workflow events are collected from various places.
Therefore, DIPAS is capable of supporting distributed workflows.

4 Performance Service Interfaces, Data Representations and Re-
quest Languages

4.1 Retrieving Monitoring Data from Monitoring Service

To analyze the performance of a workflow, DIPAS relies on the representation
of the workflow and events collected and propagated to DIPAS on the fly.
To ensure that DIPAS can seamlessly process and utilize various monitoring
data types of different monitored resources as well as can be easily adopted
for other workflow systems, we represent all monitoring data in XML format.

In K-W{Grid, DIPAS retrieves online monitoring data from GEMINI which
collects monitoring data from various sources. In order for a client to locate
monitoring services which provide monitoring data, GEMINI publishes infor-
mation about available monitoring data into GOM, an ontology-based knowl-
edge repository. Information about monitoring data is described in OWL (Web
Ontology Language) and is published into GOM. From GOM, DIPAS knows
which GEMINT services it should contact in order to obtain the monitoring
data of a particular workflow. In addition, using the information provided by
GOM, DIPAS can build requests which are sent to GEMINI to retrieve the
monitoring data.

Based on our extensible event schemas, we have developed a generic perfor-
mance data query and subscription (PDQS) language for querying and sub-
scribing various types of monitoring data. Figure 3 shows the schema of PDQS.
Basically, we classified monitoring data into differen types, such as workflow
monitoring data or activity monitoring data. Each type of monitoring data
and each monitored resource (e.g., an activity or a workflow) are associated
with a unique dataTypelD and resourcelD, respectively. Based on that, the
client can specify PDQS requests which include (dataTypelD,resourcelD) to-
gether with other information like XPath/XQuery-based data filters (denoted
by dataFilter) and subscription time (denoted by subscriptionTime). A PDQS
request can be used to query or subscribe a particular type of monitoring data
of various resources.

PDQS requests can be built based on the published information in GOM. For
example, Figure 4(a) presents an OWL description for workflow events of the

r-+-dataTypelD !

(Poas By | L ubsertionTime (ST

T
=R
)
-]
)
=
1]
=

! r..._@ cor “TT_;W
: = dataField
- aggregation [] = detaField I

Fig. 3. The schema of the performance data query and subscription (PDQS) lan-
guage visualized with the XMLSpy tool

workflow whose workflow ID is truong 810cf130-eb24-11da-8ebd-a46bfd552
90e. The GEMINI services that provide these events can be obtained by using

the information indicated by the tag <dg:isStoredIn>. Figure 4(b) presents

the corresponding PDQS request used to subscribe all workflow events gen-

erated during the workflow’s execution by specifying the workflow ID and

setting the subscription time to 0 (until the end of the execution).

4.2 Workflow Analysis Request Language

One of the goals of DIPAS Gateways in Figure 1 is to support user-defined
search for performance problems and to inform clients about the detected
problems. To this end, we have utilized performance metrics associated with
multiple levels of Grid workflows defined in [20]. Performance metrics include,
for example, overheads (e.g., middleware overhead, due to scheduling or re-
source management, or loss of parallelism overheads, due to load imbalance),
execution time, and data movement. The performance of K-WGrid workflows
is systematically analyzed according to these metrics. By using pre-defined
metric names, performance problems can then be determined based on condi-
tions established on the basis of appropriate performance metrics (for exam-
ple, overheads, execution time, and start/end time), and their thresholds. A
performance problem occurs when a condition is met. During the execution of
the workflow, any clients of DIPAS can specify requests to obtain performance

10

<dg:DataObject rdf:ID="MD1148476305524_D0">
<dg:contains>
<dg:MonitoringData rdf:ID="MD1148476305524">

<dg:hasDataType rdf:datatype="...">wfa.event
</dg:hasDataType>
<dg:ofResource rdf:datatype="...">

truong_810cf130—eb24 —11da—8ebd—a46bfd55290e
</dg:ofResource>

<dg:validFrom rdf:datatype="...">1148476305524
</dg:validFrom>
<dg:validTo rdf:datatype="...">0</dg:validTo>

</dg:MonitoringData>
</dg:contains>
<dg:isStoredIn rdf:resource="http://gom.kwfgrid.net/gom/
ontology/ServiceRegistry/CMN#MSa6240bba-3c48-4cc6-ad31
-648e9b60124b" />
</dg:DataObject>

(a) an OWL-based description (simplified) of workflow events

<pdgqs xmlns="http://net.kwfgrid/dr/pdqgs">
<dataTypelD>wfa.event</dataTypelD>
<resourcelD>truong _810cf130—eb24 —11da—8ebd—a46bfd55290e
</resourcelD>
<subscriptionTime>
<from>0</from>
<to>0</to>
</subscriptionTime>
</pdgs>

(b) the corresponding PDQS request
Fig. 4. An example of OWL description and PDQS request for workflow events

metrics and to check performance problems.

To simplify the interaction between clients and DIPAS Gateways and to sup-
port various types of clients such as the end-user, the developer and the
workflow middleware, we design a novel workflow analysis request language
(WARL) which is used to specify analysis requests. Figure 5 presents the
current version of WARL. A WARL request includes three parts: constraints
(element constraint, type WARLConstraint), performance metrics to be an-
alyzed (element analyze, type WARLAnalyze), and performance conditions
(element perfProblemSpecs, type WARLPerfProblemSpecs). Constraints in-
clude information about hierarchical workflow concepts [20] (e.g., Workflow,
WorkflowRegion and Activity) to be analyzed and their properties (e.g.,
ID of WorkflowRegion and the name of Activity). Each concept is iden-
tified by a name and a type: the name indicates the identifier of the con-
cept in the workflow description, e.g., activity name, while the type deter-

11

mines whether the concept is, e.g., a workflow, an activity, or a workflow
region. A WARL analyze request specifies a list of performance overheads
that should be analyzed and provided. Performance problems that should be
monitored and detected are specified by using WARL perfProblemSpecs.
Performance problems can be checked by specifying a set of performance
conditions, each condition includes a metric name, an operator (e.g., greater
than or less than), and a value (e.g., indicating a threshold). Given WARL
requests, the performance analysis service will conduct corresponding anal-
yses and send to the requesters the analysis result described in XML. Fig-
ure 6 presents an example of a WARL request. This request indicates that a
client needs to analyze performance metrics named LoadIm, TotalOverhead
and QueuingTime, and to be informed about performance problems related
to SynDelay and QueuingTime of three activities computeStartZonePolyg,
computeEndZonePolyg, computeStartNodes and the workflow truong 3déc
4330-eb2a-11da-8ebd-a46bfd55290e. By using WARL to represent such a
request, performance requests can be defined by both the user and the middle-
ware services. WARL can also facilitate the integration among performance
clients and different performance analysis services by acting as a common
performance request representation.

r - —_—— — — — —
| warl:WARL Constraint

| ;- FstartTime !

| 'r-1EendTime

Fig. 5. Workflow analysis request language (WARL) visualized with the XMLSpy tool

12

<WARD>
<constraint>
<startTime>0</startTime>
<endTime>0</endTime>
<workflowID>truong_3d6c4330—eb2a—11da—8ebd—a46bfd55290e
</workflowID>
<concepts>
<concept
name="truong_3d6c4330-eb2a-11da-8ebd-a46bfd55290e"
type="Workflow" />
<concept name="computeStartZonePolyg" type="Activity"/>
<concept name="computeEndZonePolyg" type="Activity"/>
<concept name="computeStartNodes" type="Activity"/>
</concepts>
</constraint>
<analyze>
<metric>Loadlm</metric>
<metric>TotalOverhead</metric>
<metric>QueuingTime</metric>
</analyze>
<perfProblemSpecs>
<perfProblemSpec>
<metric>SynDelay</metric>
<operator>GE</operator><value>20</value>
</perfProblemSpec>
<perfProblemSpec>
<metric>QueuingTime</metric>
<operator>GE</operator><value>10</value>
</perfProblemSpec>
</perfProblemSpecs>
< /WARD>

Fig. 6. Example of a WARL request for obtaining performance overheads and spec-
ifying performance conditions

5 Online Performance Analysis Features

The online performance analysis is centered on (i) elements of workflows to be
analyzed, e.g., workflow, workflow region, activity and activity instance, and
(ii) performance metrics and statuses, e.g., elapsed time, queuing time and
start time, associated with these elements. These elements and metrics are
defined in the performance ontology for Grid workflows [20].

From the workflow representation, the Workflow Graph Analysis component

will produce a hierarchical structure view of workflows [20]: the workflow will
consist of workflow regions, each region has a set of activities. Basically, a

13

workflow region reflects a workflow pattern [21] that includes set of activi-
ties structured in a single-entry-single-exit subgraph. Supporting analysis of
workflow regions is an important feature as the client is normally interested in
workflow regions which refer to workflow patterns used to implement partic-
ular solutions. In K-W{Grid, Petri net-based workflow representation is used,
and this representation does not explicitly include constructs describing work-
flow regions. Our Workflow Graph Analysis parses a Petri net representation
and produces the structured view of the workflow.

Each activity can have different instances. DIPAS supports the performance
evaluation of the workflow, the workflow region, the activity, and the activity
instance. In the following sections, we present the main analysis features.

5.1 Execution Tracing

Tracing application execution is a popular method, e.g., in parallel computing,
used for studying complex interactions within applications. However, execu-
tion tracing is not well supported in contemporary Grid workflow performance
tools. Within DIPAS, workflow trace events are analyzed and visualized, al-
lowing us to examine, in detail, execution phases of every activity instances
and where the activity instances are executed. Workflow trace events contain
various types of data related to activities, activity instances, and their run-
time behavior. For example, events consist of activity name, activity type (e.g.,
computational or data transfer tasks), activity instance 1D, Web services op-
eration name, URL of the WSDL of the Web services, computational node,
etc. With workflow tracing, the user can examine states of activity instances
and workflows (e.g., initialized, active or terminated), execution phases of ac-
tivity instances and workflows (e.g., in processing, queuing, or suspending),
and performance status of computational nodes used.

Based on tracing information, execution of activities and workflow regions
can be studied. Moreover, various analyses such as load imbalance, activity
distribution, etc., are also supported. In our framework, tracing execution
of workflows can also be applied to historical workflows, provided that the
monitoring middleware still keeps the workflow events. The tracing feature is
intended only for the application user and developer to analyze their work-
flows. This feature is largely based on visualizations, thus it is not suitable for
the middleware. However, the Grid middleware can retrieve the trace-based
monitoring data by subscribing the monitoring service.

14

5.2 Performance Ouverhead Analysis

The performance overhead analysis is conducted based on a systematic clas-
sification of workflow overheads. The workflow overheads [16] can be due to,
for example, application structures (e.g., parallel synchronization) and mid-
dleware (e.g., scheduling). DIPAS supports workflow overheads at multiple
levels of abstraction, ranging from the workflow to the workflow region to the
activity. The overhead analysis is targeted to both the user and middleware.

<WARL>
<constraint>
<startTime>0</startTime>
<endTime>0</endTime>
<workflowID>truong_153bd250 —-73d2—11db—8062—ef29e6a62bc8
</workflowID>
<concepts>
<concept name="computeSSSP" type="Activity"/>
<concept name="Sequence0" type="WorkflowRegion"/>
<concept name="Sequence2" type="WorkflowRegion"/>
<concept name="Loop0" type="WorkflowRegion"/>
</concepts>
</constraint>
<analyze>
<metric>ALLOVERHEAD</ metric>
</analyze>
< /WARD>

Fig. 7. A WARL request for obtaining workflow overheads.

While the user can use DIPAS portal to analyze the workflow overhead, the
Grid workflow middleware can easily specify analysis requests and receive per-
formance overheads by using a few lines of code. Figure 7 illustrates a simple
WARL request used to analyze performance overheads of a workflow and Fig-
ure 8 presents a code excerpt that a client can use to obtain the overheads.
The analysis request in Figure 7 specifies the workflow to which the analysis
should be applied (by using workflowID element), how long the request should
be conducted (by using startTime/endTime element), which workflow activ-
ities and regions should be analyzed (by using concept element) and which
overhead metrics should be provided using metric element). In this example,
we requested the analysis of all overhead metrics (denoted by a metric named
ALLOVERHEAD) for three workflow regions named Sequence0, Sequence2 and
Loop0, and one activity named computeSSSP. The list of overhead metrics is
well-defined in DIPAS and can be specified by the client, together with the
list of selected workflows, workflow regions and activities. The analysis time
associated with a request is required as the overheads of workflows are changed
during the execution of the workflows and the client may need to be informed

15

of that change over the time. In this example, as startTime/endTime=0 the
request will be analyzed until the workflow finishes or until the client cancels
the request. The client can obtain overhead results, described in an XML rep-
resentation, by polling the DIPAS Gateway. Figure 8 shows a code excerpt for
sending the requests and polling the results.

By supporting WSRF-based operations and XML-based data representations
and requests, DIPAS facilitates the integration between Grid middleware ser-
vices and performance analysis services.

//select a DIPAS Gateway through an endpoint reference
DIPASServiceAddressingLocator

locator = new DIPASServiceAddressingLocator ();
final DIPASPortType

resource = locator.getDIPASPortTypePort(dipasEndpoint);

//create a new analysis request
AnalysisRequestMessage

message = new AnalysisRequestMessage ();
//indicate this is a WARL request, instead of PDQS request
message . setLanguage ("WARL") ;
//specifying the content of request which include
//performance conditions. warlRequest is an XML string based
//on WARL schema

message.setContent (warlRequest);

//invoke DIPAS with the input request and get back the
//resultID which is used to poll the result

final String resultID = resource.analyze(message);
//using resultID to get results of a request

//result will be returned in XML.

DataEntries entries = resource.getResult(resultID);

Fig. 8. Code excerpt of using DIPAS to obtain workflow overheads

5.8 Search for Performance Problems

The search for performance problems is intended for both the user and the
Grid middleware. The search for performance problems is conducted at DI-
PAS Gateways based on performance conditions, online performance metrics
and events, and workflow graphs. Performance search allows the client to spec-
ify performance conditions associated with workflows, workflow regions and
activities.

16

Performance conditions are defined based on performance metrics (e.g., elapsed
time, processing time, and queuing time) and other inputs (e.g., the latest start
time and the machine name). The WARL is also used for specifying perfor-
mance conditions. Clients that want to be informed of performance problems
can use similar steps for obtaining overhead metrics (in Section 5.2) to spec-
ify performance conditions and to receive performance problems, if occurred.
In this case, the WARL will include a set of performance conditions, instead
of overhead metrics, associated with the workflow, and workflow regions and
activities. An example of performance conditions is given in the following:

<WARL>
<perfProblemSpecs>
<perfProblemSpec>
<metric>ElapsedTime</metric>
<operator>GE</operator>
<value>30</value>
</perfProblemSpec>
</perfProblemSpecs>
< /WARI>

A performance condition, specified by a perfProblemSPec tag, indicates that
there is a problem when the elapsed time (denoted by ElapsedTime) is greater
than 30 seconds. Performance problems reported will be described in XML.
The middleware services can specify WARL requests and use a similar code
to the excerpt in Figure 8 to obtain existing performance problems.

6 Experiments

We have implemented DIPAS entirely in Java using GT 4.0 [22], Gridsphere
23], JFreeChart [24] and JGraph [25]. Figure 9 depicts our performance mon-
itoring and analysis portal for Grid workflows. From the portal the user can
select existing workflows, currently being executed by or submitted to GWES,
and start the monitoring and analysis. The workflow representation is shown
in the left-pane whereas online execution progress of the workflow and its
activities, together with performance metrics, are shown in the right panes.
During runtime, the user can conduct performance evaluation and search by
selecting activities or activity instances and features in the menu.

We use the most up-to-date version of the Coordinated Traffic Management
(CTM) workflow developed within the K-W{Grid project [26] for demonstrat-
ing analysis features that have been mentioned in previous sections!. The

1 'We also conducted the performance monitoring and analysis for two other

17

[wetcome [Manioring and Analysis.

wnitoring and analysis

File Monitori i Anatysis|
C52¢8265_dc8d0170-06b4-11db-81de-84 Execution Phases |ZnnmSm | zoomin [zoomout | ‘ update | |+ [100% | -] Time
Ee—= foal jmbiance e 10 o6t 1L BLans —
M Blacutioh e Workflow ID : c5ac8265_dc8d0170-06b4-11db-81de-Ba7fhBe600bZ Active Activities
\Current Status: active & Wed Jun 28 16:48:39 CEST 2006
InstafeEs DistAbiTon J cOmputeSSSP(csacs265_dcBd017)
Activity Execution Workflow: Execution Time ()
Workflow Overhead O s 10 15 20 25 30 35 40 45 50 55
A i
Severity |
seafezons 4 Tanels Perform Problems | = 5
il ¢ d || [=1nitializing =Queueing ~ PreProcessing - Processing Analyze WS Operation
e T PostProcessing =Suspending ~ Restarting
A ik 270 et ﬂlslmﬂﬂi IIZ,HU Zlﬁ,ﬁﬂ 3:1,4ﬂ 5|1,2ﬂ [computesssP(csard2 65 _deadd 170
() petflERootL) I T T T T ¢ [Elapsed Time: 15.533 s
- facunt C InitSSSP(Csach... [nitialization Time: 0.021 s
! computeEndZ... [Queusing Time: 0.019 5

,,,,,, T2 TR R P (gReturn

|| | computestarz. [Preprocessing Time: 0.018 5
S5PReturn Z]ij: Te ctionUR] efri computeEndN... [Processing Time: 15.454 5
“ComputesssP] it fteSii. [PostProcessing Time: ©.021
@ nextstartiode...
COMPULeSSSPE.. a
nextStartNode...

COmpUTeSSSP(.

) I I [DE K1l 1 D] i I >
http: ffpc6163-c703 uibk ac at 40250 wsrff senvices /kwfgrid/DIPASFactary ‘

Fig. 9. Workflow performance monitoring and analysis portal. Execution statuses
of activities and activity instances are visualized by different colors.

CTM workflow is used to calculate the best routes between two city districts,
traffic lows among paths, and air pollutant emission. Figure 10 presents the
graph of the CTM workflow. DIPAS analyzes the Petri net-based graph and
produces workflow regions shown in Figure 10. By selecting a workflow region
or activity in the Workflow Regions window, the corresponding subgraph of
the selected region or activity will be shown in the Workflow Visualization
window. The CTM workflow is composed from Grid services deployed in
Bratislava, Cracow, Genova, and Innsbruck.

6.1 Ezecution Tracing

Figure 11 shows a snapshot of the tracing tool. All detailed execution phases,
performance metrics as well as machine information are shown. By using this
tool, we could spot some strange behavior. For example, in Figure 11, the first
instances of activities computeStartZonePolyg and computeEndZonePolyg
are initialized at the same time (because these activities can be executed
in parallel, as shown in Workflow Regions window in Figure 10). However,
computeEndZonePolyg was running only after computeStartZonePolyg fin-
ished. It is a strange behavior because they should be executed in parallel. We
found that the Workflow Scheduler has serialized the two instances when map-

real-world workflows named Flood Forecasting Simulation and FEnterprise Re-
source Planning. Recorded movies illustrating the performance monitoring
and analysis of these workflows and the CTM workflow can be found at
http://www.dps.uibk.ac.at/projects/kwfgrid

18

Workflow Visualization :

I

Workflow Region
& _= Regions =-
¢ @B Branchingl
¢ B Sequencel
23 generatesessioniD
% copySessioniD
% copyMetFileRootUR
¢ @B Branchingo
¢ B Sequence2
23 computestartZoneRolyg
23 romputestartilodes
¢ B Seguencel
81 computeEndZonePolyy
81 computeEndiodes
¢ T4 Loopo
next
23 [omputesssP
83 nextstarttode
83 generatesyCFile
&

=2 ralculatePathsLengthBrokenLink

: -

Fig. 10. Workflow regions of CTM. The Petri net graph of the workflow is visualized
in the large pane. The window Workflow Regions shows the hierarchical structure
of workflow regions. Specific regions are loop, branches and sequences. A workflow
region may include sub regions. Only the leaf node in the tree denotes an activity.

ping them on the same machine. The same problem also occurred in the sec-
ond instances of computeStartZonePolyg and computeEndZonePolyg. During
runtime, using execution tracing tool, if the user detects some strange perfor-
mance behavior, then the user can suspend the workflow, examine the execu-
tion status, and resume or terminate the execution of the workflow. Moreover,
by using the detailed information about machines used in workflows, further
infrastructure monitoring and analysis could be conducted through the inte-
gration with an infrastructure monitoring service [10].

6.2 Performance overhead analysis

Figure 12 shows an example of performance overhead analysis. The client can
select any workflow activities and regions, and specify overhead metrics that
should be determined. DIPAS will automatically compute the overheads dur-
ing runtime. An overhead metric may be composed from other metrics. In this
case, overheads are presented in a tree: a composed metric includes a break-
down of other metrics. In Figure 12, detailed execution time and overheads
of all activity instances, regions and the whole workflow are presented. For
example, it shows that one instance of computeStartZonePolyg has a large

19

| Zoomstd | Zoomin | Zoomout | | Update| | + ‘144% ‘. Time

Workflow ID : truang_add84080-74a8-11db-388a-¢3162da%b76a Active Activities
Current Status: termirated @ Wed Nov 15 13:59:36 CET 2006

Workflow: Execution Time (s)
o] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

[M il zing Tims ™ GuausingTime Time Time Time Time = Time]

Analyze WS Operation

0 seconds 16.88 3375 50.62 67.50 84.38 10125 11812 135.00 151{ computeStartZonePalygitruong_add84080
I I I I I T T T I § [ElapsedTime: 27.239 5
JenerateSessi.. [PreProcessingTime: 0.005 5
computeEndz... [ProcessingTime: 12,612 5

<omputeStartZ.., " [PostProcessingTime: 0.105 s
: computeenan.. [N ¢ O Totaloverheadt
computestart..] [initializingTime: 0.006 s
nexiStannode... [QueusingTime: 14.511
COMpuULeSSSPQL... [} syrpelay 17.078 5
nextStariNode... [} machine: karwencdel. dps.uibk.ac.at
COmputeSSSP(L.. [} EndpointReference: hip: f fkarwendel
nextStartNode...
COMpPUTESSSPAL..
nextStariNode...
computeSSSPQ.
nextstartNode..
ComputesSSPQ.
nextStartNode..
computeSSSPA...

Fig. 11. Execution tracing of CTM workflow. The top-left pane visualizes the ex-
ecution phases of the workflow. The bottom-left pane shows execution phases of
activity instances. The bottom-right pane presents detailed performance metrics
and machine information.

amount of elapsed time in which overheads hold more than 50% of the total
time. Using the breakdown tree, we discovered that queuing problem is the
main source of overheads. Then, for example, the scheduler can decide not to
use the same machine in the next run of computeStartZonePolyg.

6.3 Search for Performance Problems

To experiment with the search for performance problems, we specified several
performance conditions based on our expected performance of the C'TM, given
a problem size. Some conditions are listed below:

e is there any activity instance or region that takes more than 20% of total
execution time (e.g., ElapsedTime > 30 seconds)?

e is there any activity instance or region that spends more than 30% of its
time in the queue (e.g., QueuingTime > 10 seconds)?

e is there any activity or region that its average execution time per instances
takes more than 10% of the execution time of the workflow (e.g., MeanElapsedTime
> 15 seconds).

e have all instances of activity computeSSSP been executed before a specified
time (e.g., startTime < Wed Nov 15 15:50:51 CET 2006).

Such simple performance conditions are normally requested by the user and

the Grid workflow middleware. For example, conditions on the start/end time
of activities can be used to check whether advanced reservations on the ma-

20

| Workflow Overhead Analysis

[Woarkflow Owverhead
¢ Ctruong_addB84080-74a8-11dbh-a88a-e3162dash76a
¢ [Metrics
[} BlapsedTime=159.233
o= 7 breakdown
¢ [computeStartZonePokygitruong_add84080-74a8-11dh-a88a-e2 162 dadh76a_0
¢ [Metrics
[BlapsedTime=27.239
¢ [breakdown
D PrePracessingTime=0.005
D ProcessingTime=12. 612
D PostProcessingTime=0.105
[} Totalowerhead=14.517
¢ [breakdown
[InitializingTime=0.006
[} queueingTime=14.511
D SuspendingTime=0
D FesumingTime=0
o= 3 computeStartModesitruong_add84080-74a8-11db-a88a-e3 162 dash76a_0000
o= [computeEndZonePolygitruong_add84080-74a8-11db-a88a-e3 162 da%h7Ea_00
o= [computeEndModesitruong_add84080-74a8-11db-a88a-23 162 dash76a_00000
o= [computeSssPitruong_add84080-74a8-11dh-a88a-e3 162 dash76a_ 000000001
o= [computeSssPitruong_add84080-74a8-11dh-a88a-23 162dash76a_000000000
o= [computeSssPitruong_add84080-74a8-11dh-a88a-e3 162 dash76a_000000001
o= [computeSssPitruong_addB84080-74a8-11dh-a88a-23 162 dash76a_ 000000001
o= [computeSssPitruong_add84080-74a8-11dh-a88a-e3 162 dash76a_ 000000001
o= [computesssPitruong_add84080-74a8-11dh-a88a-e3 162dash76a_000000000
o= [nextStartModeftruong_add84080-74a8-11dh-a88a-e3 162 dadh7Ea_00000000
o= [nextStartMode(truong_add84080-74a8-11dh-a88a-e3 162 dadh76a_00000000
o= [nextStartModeftruong_add84080-74a8-11dh-a88a-e3 162 dadh76a_00000000
o= 3 nextStartMode(truong_add84080-74a8-11dh-a88a-e3 162 dadh7Ea_00000000
o= [nextStartModeltruong_add84080-74a8-11db-a88a-e3 162 dash76a_000000007 |
o= [nextStartMode(truong_add84080-74a8-11dh-a88a-e3 162 dadh76a_00000000
o= J Branchingl
o= [Sequences
o= [Branching
o= [Sequencez
o= g Sequencel
¢ & Loopo
¢ Metrics
[} ElapsedTime=64.229 -
4] i | [*]

[r]x

Fig. 12. Workflow overhead analysis for CTM. Nodes under the tree root represent
instances of workflow, workflow regions and activities. Under a node representing
an instance is a subtree visualizing performance metrics.

chine are fulfilled. In DIPAS, such conditions can be specified before the
workflow is running (but after submitted), during runtime of the workflow,
or even after the workflow is completed. Figure 13 presents how the user can
specify performance conditions by using the portal. Figure 14 shows perfor-
mance problems detected during one execution of the C'TM workflow, given
the above-mentioned performance conditions.

7 Related Work

The issues of tracing execution of applications, searching for performance prob-
lems, overhead analysis are previously addressed in parallel computing [27-29].

21

n [

Workflow Regions :
= generateSessioniD ol | Specifying Performance Problems [
3[-,, copySessiaonlD Metrics
% copydetFileRootUR =
@ OB Branchingo v ‘StartTlme |"|
¢ T Seguencez Threshold
8 computeStartZonePolyg < | |Tue Mov 14 13:23:55 CET 2006 Time
'% computestartbodes
¢ T sSequencel Add Remove
ag computeEndZonePolag ElapsedTime >= 15.0
computeEntNaces QueueingTime == 3.0 -
o ¥4 Loopo 1 -
next T
% camputesssp ™
% nextstarttode
E‘.E,' generatasy' GFile ‘ e | Gancel -

o T Sequencel | I
% calculatePathlength
E‘.E,' calculateTrafficFlow
% calculateairPollutionEmissions
85 gersy GFileURL -

Fig. 13. Example of specifying performance problems. Workflow regions and ac-
tivities are selected in the left window. In the right window, the user can define
performance problems.

However, such similar features for Grid workflows are not well supported by
existing Grid performance tools. Automatic search for performance problems
are supported by various tools such as Paradyn [28] and AKSUM [29)]. First of
all, these tools focus on supporting the developer to find performance problems
in order to tune their code. Secondly, these tools support parallel programs
which are executed on dedicated environments. Because of differences in tar-
geting clients and in operating environments, DIPAS differs significantly from
these existing tools with respect of service interfaces and data representations.
For instance, DIPAS is based on the service-oriented architecture model, and
supports XML data representations and requests, making Grid workflow mid-
dleware to easily utilize DIPAS.

Many techniques have been introduced to study the quality of service and per-
formance models and to monitor the execution of business Web services and
workflows [2,30-32]. The WebLogic Process Integrator [33] allows the user
to examine status of workflow instances. However, its monitoring is limited
to the activity level. Web Service Navigator [34] provides visualization tech-
niques for Web service based applications. ARM defines means for obtaining
monitoring data of business transactions through instrumentation [35]. How-
ever, ARM agents are monitoring sensors that could be integrated into our
framework. Performance search and analysis at multiple levels of abstraction
are not supported in the business domain.

In the Grid domain, there is a lack of monitoring and analysis tools for work-
flows of Grid/Web services. P-GRADE [36] supports tracing of workflow appli-

22

[x

[Perfarmance Proklems
¢ Cltruong_add84080-74a8-11dh-a88a-e21620a%h76a
¢ O Loopo
¢ [Metrics
[BlapsedTime=64.239
¢ 1 computeStartZonePokygitiruong_addS4080-74a8-11dh-ad8a-e2 162 dadh76a_ 0000
¢ 3 Metrics
[queusingTime=14.511
¢ [computeEndModesitruong_add84080-74a8-11dh-a88a-e3 162 dadh?6a_ 0000000
¢ [Metrics
D QueuringTime=12 0032
¢ 1 Branchingd
¢ [Metrics
D CueueingTime=1635%
[} MeanElapsedTime=320.872
¢ 1 5equence?
¢ 3 Metrics
D CueleingTime=1635%
[MeanElapsedTime=30.872
¢ CdSequencel
¢ 3 Metrics
[QueusingTime=12.015
[} MeanElapsedTime=28 682
o= [computeStartZonePalyg
o= [computesssPiruong_adds4080-74a8-11dh-a858a-e3 1620dash76a_0000000015)
¢ O computeSssPiruong_add84080-74a8-11db-a88a-e3 162 dadh7Ea_0000000007)
¢ [Metrics
D StartTime=Wed Mov 15 12:57:31 CET 20086
o= [computessaPtruong_add84080-74a8-11dh-a88a-e3 162 dadh76a_0000000013)
o= [computeSSsPitruong_addB84080-74a8-11db-a88a-e2 162 dadh76a_000000001 1)
o= [computessSPitruong_add84080-74a8-11dh-a88a-e3 162dash76a_ 0000000017 —
¢ [computessSPitruong_add84080-74a8-11dh-a88a-e3 162 dash76a_000000000%)

@ [Metrics
4] i | [¥]

|4l

Fig. 14. Example of performance problems detected in the CTM workflow. Nodes
under the tree root represent instances of workflow, workflow regions and activities.
Under a node representing an instance is a subtree visualizing performance metrics.

cations. In contrast to K-Wf{Grid, it does not support cyclic and Web service-
based workflows. The Autopilot [37] is a distributed performance measurement
and resource control system that supports the monitoring and adaptation of
distributed applications. G-PM/OCM-G supports the online analysis of MPI-
based applications in the Grid [38]. Both Autopilot and G-PM/OCM-G do
not support Grid workflows composed from Grid/Web services.

Taverna Workbench [39] supports Grid/Web service-based workflows and it
also monitors activity /workflow statuses, such as running or completed. Only
limited performance statistics information is provided and Taverna does not
provide performance overhead analysis and search features. The OntoGrid
project [40] uses knowledge gained from monitoring data to debug workflows,
but not to monitor and analyze the performance. Supporting performance
analysis of workflow regions, workflow overhead analysis, and search for per-
formance problems is missing in most existing workflow analysis tools.

In our previous work in SCALEA-G, we provided a performance monitor-

ing and visualization for ASKALON workflows [41]. SCALEA-G and DI-
PAS share many monitoring and analysis methods and concepts in common.

23

However, performance analysis techniques in ASKALON support workflows
of C/Fortran-based scientific applications. DIPAS also supports performance
search based on client’s requests while SCALEA-G limits to performance mon-
itoring and overhead analysis. Also DIPAS provides a Web portal for conduct-
ing performance monitoring and analysis.

Recently, researchers have focused on workflow provenance [42,43]. Provenance
data is an important source for better understanding the performance behavior
of Grid workflows. Our performance analysis service could be adapted to work
with other underlying workflow provenance/monitoring systems.

8 Conclusions and Future Work

In this paper, we presented DIPAS which supports online performance analysis
of Grid workflows. The main contribution of the paper is a novel distributed
performance analysis service that supports both workflow users (end-users and
developers) and Grid workflow middleware services to analyze performance of
running and completed workflows, to search for performance problems through
the specification of conditions in advance or on-demand, and to provide open
interfaces for Grid middleware to access performance data in order to optimize
the workflow construction and execution. We have illustrated how DIPAS can
help the user and Grid middleware to carry out the performance analysis
through a real-world application in the K-W{Grid testbed.

Currently, we assume that the improvement of the performance of workflows
is done by the user and the Grid middleware, thus it is up to them to optimize
workflows. In this work we have not reported the scalability of DIPAS that
will be conducted in the future work. Although designed for the K-WfGrid
workflow system, the performance framework presented in this paper is in-
teroperable and extensible, and can easily be adapted to any other workflow
systems, e.g, those supporting BPEL [44]. To achieve this, DIPAS has to be
able to process different workflow models. One solution is to conduct the per-
formance analysis based on an intermediate representation of workflow models,
instead of specific workflow models. To simplify the development of new anal-
ysis features and to easily extend the analysis component, our future work
is to use rule-based systems for checking performance problems, instead of
using customized code at the moment. We will deal with the performance
of invoked applications within activities by analyzing performance data col-
lected from Web service containers and from the instrumentation of invoked
applications. Moreover, we plan to use WS-Notification for informing clients
about performance problems. Further information about DIPAS can be found
at http://www.dps.uibk.ac.at/projects/kwfgrid.

24

Acknowledgments

This paper refines and extends a previous paper published in [10]. We are
grateful to the support of our colleagues in the K-W{Grid consortium. We
thank Simon Ostermann for the implementation of the workflow region anal-
ysis. The work described in this paper is partially supported by the European
Union through the IST-2002-511385 K-W{Grid project. We thank anonymous
reviewers for their useful comments.

References

[1] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, Journal of Grid Computing 3 (3-4) (2005) 171-200.
URL http://dx.doi.org/10.1007/510723-005-9010-8

[2] D. Kyriazis, K. Tserpes, A. Menychtas, A. Litke, T. Varvarigou, An innovative
workflow mapping mechanism for grids in the frame of quality of service, Future
Gener. Comput. Syst. 24 (6) (2008) 498-511.

[3] Z. Shi, J. Dongarra, Scheduling workflow applications on processors with
different capabilities, Future Generation Comp. Syst. 22 (6) (2006) 665-675.

[4] J. Yu, R. Buyya, C.-K. Tham, Cost-based scheduling of scientific workflow
application on utility grids., in: e-Science, IEEE Computer Society, 2005, pp.
140-147.

[5] L.Huang, D. W. Walker, O. F. Rana, Y. Huang, Dynamicworkflow management
using performance data, ccgrid 0 (2006) 154-157.

[6] T. Glatard, J. Montagnat, D. Emsellem, D. Lingrand, A Service-Oriented
Architecture enabling dynamic services grouping for optimizing distributed
workflows execution, Future Generation Computer Systems 24 (7) (2008) 720—
730.

URL http://dx.doi.org/10.1016/j.future.2008.02.011

[7] T. Heinis, C. Pautasso, G. Alonso, Design and evaluation of an autonomic
workflow engine., in: ICAC, IEEE Computer Society, 2005, pp. 27-38.

[8] G. Singh, C. Kesselman, E. Deelman, Optimizing grid-based workflow
execution, Journal of Grid Computing 3 (3-4) (2005) 201-219.
URL http://dx.doi.org/10.1007/s10723-005-9011-7

[9] The K-W{Grid Project. http://www.kwfgrid.eu, last access: 06 June, 2007.

[10] H.-L. Truong, P. Brunner, T. Fahringer, F. Nerieri, R. Samborski,
B. Balis, M. Bubak, K. Rozkwitalski, K-WfGrid Distributed Monitoring and
Performance Analysis Services for Workflows in the Grid, in: 2nd IEEE

25

International Conference on e-Science and Grid Computing, IEEE Computer
Society, Amsterdam, The Netherlands, 2006.

[11] M. Bubak, S. Unger (Eds.), K-W{Grid - The Knowledge-based Workflow System
for Grid Applications, Academic Computer Centre CYFRONET AGH, 2007,
http://www.cyf-kr.edu.pl/cgw06/info/K-W{Grid PROCEEDINGS.pdf.

[12] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson,
F. Leymann, M. Nally, T. Storey, W. Vambenepe, S. Weerawarana, Modeling

Stateful Resources with Web Services, Specification, Globus Alliance, Argonne
National Laboratory, IBM, USC ISI, Hewlett-Packard (Jan. 2004).

[13] K-W{Grid GEMINI, http://gemini.icsr.agh.edu.pl/, last access: 06 June, 2007.

[14] K-W{Grid GWES (Grid Workflow Execution Service),
http://www.gridworkflow.org/kwfgrid/gwes/docs/, last access: 5 June, 2007.

[15] B. Kryza, R. Slota, M. Majewska, J. Pieczykolan, J. Kitowski, Grid
organizational memory - provision of a high-level grid abstraction layer
supported by ontology alignment, Future Generation Comp. Syst. 23 (3) (2007)
348-358.

[16] F. Nerieri, R. Prodan, T. Fahringer, H.-L. Truong, Performance Analysis of Grid
Workflow Applications, in: Proceedings of The 7th IEEE/ACM International
Conference on Grid Computing (Grid’06), IEEE Computer Society Press, 2006.

[17] OpenDHT, http://www.opendht.org, last access: 06 June, 2007.

[18] K-W{Grid GOM (Grid Organizational Memory),
http://gom.kwfgrid.net /web /space/welcome, last access: 06 June, 2007.

[19] The Grid Workflow Description Language (GWorkflowDL),
http://www.gridworkflow.org/kwfgrid /gworkflowdl/docs/.

[20] H.-L. Truong, S. Dustdar, T. Fahringer, Performance metrics and ontologies for
grid workflows, Future Gener. Comput. Syst. 23 (6) (2007) 760-772.

[21] Workflow Patterns, http://is.tm.tue.nl/research/patterns/patterns.htm, last
access: 21 August 2008.

[22] Globus Project, http://www.globus.org.

[23] GridSphere Portal Framework, http://www.gridsphere.org, last access: 06 June,
2007.

[24] JFreeChart, http://www.jfree.org/jfreechart/, last access: 06 June, 2007.
[25] JGraph, http://www.jgraph.com/, last access: 06 June, 2007.

[26] The K-Wi{Grid Project: Coordinated Traffic Management,
http://www.kwfgrid.eu/index.php?option=com_content&task=view&id=32&itemid=51,
last access: 6 June, 2007.

[27] A. Kntupfer, H. Brunst, W. E. Nagel, High performance event trace
visualization., in: PDP, IEEE Computer Society, 2005, pp. 258-263.

26

[28] H. W. Cain, B. P. Miller, B. J. N. Wylie, A callgraph-based search strategy
for automated performance diagnosis (distinguished paper)., in: A. Bode, T. L.
0002, W. Karl, R. Wismiiller (Eds.), Euro-Par, Vol. 1900 of Lecture Notes in
Computer Science, Springer, 2000, pp. 108-122.

[29] C. Seragiotto, T. Fahringer, Performance analysis for distributed and parallel
java programs with aksum., in: CCGRID, IEEE Computer Society, 2005, pp.
1024-1031.

[30] K.-H. Kim, C. A. Ellis, Performance analytic models and analyses for workflow
architectures, Information Systems Frontiers 3 (3) (2001) 339-355.

[31] J. Cardoso, A. P. Sheth, J. A. Miller, Workflow quality of service., in:
K. Kosanke, R. Jochem, J. G. Nell, A. O. Bas (Eds.), ICEIMT, Vol. 236 of
IFIP Conference Proceedings, Kluwer, 2002, pp. 303-311.

[32] A. F. Abate, A. Esposito, N. Grieco, G. Nota, Workflow performance evaluation
through wpql, in: Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM Press, 2002, pp. 489-495.

[33] WebLogic Process
Integrator Overview, http://edocs.beasys.com/wlpi/wlpill/studio/index.htm,
last access: 06 June, 2007.

[34] W. D. Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, J. F. Morar, Web services
navigator: Visualizing the execution of web services., IBM Systems Journal
44 (4) (2005) 821-846.

[35] M. W. Johnson, Monitoring and diagnosing applications with arm 4.0., in: Int.
CMG Conference, Computer Measurement Group, 2004, pp. 473-484.

[36] P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton,
G. Gombas, P-GRADE: a Grid Programming Environment, Journal of Grid
Computing 1 (2) (2003) 171-197.

[37] R. L. Ribler, J. S. Vetter, H. Simitci, D. A. Reed, Autopilot: Adaptive control
of distributed applications, in: HPDC, 1998, pp. 172-179.

[38] R. Wismiiller, M. Bubak, W. Funika, High-level application-specific
performance analysis using the g-pm tool, Future Generation Comp. Syst. 24 (2)
(2008) 121-132.

[39] Taverna, http://taverna.sourceforge.net/, last access: 06 June, 2007.
[40] Ontogrid project, http://www.ontogrid.net, last access: 06 June, 2007.

[41] P. Brunner, H. L. Truong, T. Fahringer, Performance monitoring and
visualization of grid scientific workflows in askalon., in: M. Gerndt,
D. Kranzlmiiller (Eds.), HPCC, Vol. 4208 of Lecture Notes in Computer Science,
Springer, 2006, pp. 170-179.

[42] R. Bose, 1. Foster, L. Moreau, Report on the international provenance and
annotation workshop: (ipaw’06) 3-5 may 2006, chicago, SIGMOD Rec. 35 (3)
(2006) 51-53.

27

[43] Y. L. Simmbhan, B. Plale, D. Gannon, A framework for collecting provenance
in data-centric scientific workflows, icws 0 (2006) 427-436.

[44] Business Process Execution Language for Web Services, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/, last access: 06
June, 2007.

28

