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Abstract

This paper describes a sensor-based middleware for per-
formance monitoring and data integration in the Grid that
is capable of self-management. The middleware unifies
both system and application monitoring in a single system,
storing various types of monitoring and performance data
in decentralized storages, and providing a uniform inter-
face to access that data. We have developed event-driven
and demand-driven sensors to support rule-based moni-
toring and data integration. Grid service-based opera-
tions and TCP-based data delivery are exploited to balance
tradeoffs between interoperability, flexibility and perfor-
mance. Peer-to-peer features have been integrated into the
middleware, enabling self-managing capabilities, support-
ing group-based and automatic data discovery, data query
and subscription of performance and monitoring data.

1. Introduction

Grid monitoring is a crucial task as it provides per-
formance and monitoring data for several functions such
as performance analysis and tuning, performance predic-
tion, fault detection, and scheduling. Grid monitoring mid-
dleware has to support monitoring of disparate different
resources and applications, seamlessly integrating perfor-
mance and monitoring data from many sources. More im-
portantly, it should provide the same mechanism for data
requesters to efficiently access various types of data.

To monitor various resources in Grids, a large number of
monitoring sensors needs to be developed and deployed in
different domains. In our view, such sensors are very simi-
lar to those in sensor networks [2, 33] in which the sensor
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follows resource constraints such as communication (net-
works connecting sensors usually vary, having latency with
high variance, sensors must use limited bandwidth), com-
putation (sensors have to use limited computing power and
memory sizes, otherwise the monitoring may change the
state of the monitored resources). These constraints limit
data processing capability of a sensor thus normally the
sensor sends collected data to a sink node which stores the
data. In many cases the sink node also controls or requests
data from sensors; we call such sink node a sensor man-
ager. In Grids, it is impossible for all sensors to communi-
cate with a central sensor manager. Also because resources
on which sensors execute and resources sensors monitor
may join and leave, the structure of sensor networks is fre-
quently changed. Therefore, sensors and sensor managers
must operate in self-managed, decentralized manner.

Most existing Grid monitoring tools have monitoring
sensors operating in distributed manner and the network
connecting sensors to sensor managers exploits the vari-
ous types of communication such as shared memory [6],
TCP [35], UDP [8], multicast [25]. However, these tools
do not focus on the interoperability among sensor networks
and the self-organization within them, and support limited
types of sensors. Mostly they support event-driven sensors
(e.g. in [6, 25, 35]). Sensor managers are configured into
tree of point-to-point connections (e.g. in [6, 25]) or di-
rectory services, supporting discovery of data and sensor
managers, do not interact with each other (e.g. in [35]).
Thus they do not cope well with sensor networks topology
which is changed frequently.

Lack of interoperability among sensor networks and
lack of self-organization within them have hindered dis-
tributed data discovery, data query and subscription (DQS)
in Grid monitoring tools, not to mention fault-tolerance.
Currently data discovery and DQS are mostly based on hi-
erarchical or centralized models, as studied in [18]. But
such models do not work well with more dynamic, large-
scale distributed environments, in which useful informa-



tion services are not known in advance. As suggested,
e.g. in [17, 29], and demonstrated, e.g. in [20, 30, 21],
the super-peer model and service group, powered by peer-
to-peer (P2P) computing [26], have advantages in solving
the above-mentioned issues, but have not been exploited in
Grid monitoring middleware. Moreover, most Grid mon-
itoring tools are not capable of self-configuration and -
reconfiguration under varying conditions which occur fre-
quently in the Grid. Autonomic computing [23] which aims
to cope with the unpredictable conditions of systems should
be exploited.

Integrating performance and monitoring data in Grids is
crucial because it is likely that no single tool will be de-
ployed to provide performance data for all Grid sites and
we need to utilize and analyze monitoring data across mul-
tiple Grids at the same time. Each Grid system is equipped
with different computing capabilities, platforms, libraries
that require various performance monitoring and measure-
ment tools. But Grid users should not be forced, when pos-
sible, to access monitoring data in Grid systems by using
different mechanisms. Instead, Grid users should be able
to utilize that diverse monitoring data by using the same
mechanism.

Seamlessly integration and highly interoperability re-
quire well-defined interfaces, rich expressive customized
data representations, and more power to process and store
data. However, involving more function and processing re-
sults in slower performance. Therefore, we need to balance
tradeoffs between interoperability and performance. Us-
ing Grid/Web service-based operations and XML data sup-
ports highly interoperability among different tools, easily
customizing collected data, however, the performance con-
siderably suffers when data is delivered via Web service
operations with SOAP [14]. On the other hand, (parallel)
TCP-based data streams can be utilized to achieve higher
performance in delivering data in Grids [3]. Current Grid
monitoring tools exploit either purely Grid service-based
operations or TCP-based data streams.

In this paper, we describe our first step in exploiting, de-
veloping and incorporating self-managing and P2P features
into a sensor-based middleware for Grid monitoring and
performance data integration within the SCALEA-G sys-
tem [32]. We exploit the sensor networks model to provide
and integrate various types of performance and monitoring
data in a unified system. Regardless of the monitoring data
of Grid infrastructures or applications, data is treated and
accessed in the same way. Both event-driven and demand-
driven sensors are developed to serve different purposes.
Sensors also use a rich set of rules and inference engine to
control the monitoring. In order to balance tradeoffs be-
tween interoperability and performance, we employ both
Grid service-based operations and TCP-based stream data
delivery. Self-managing and P2P features are exploited

to increase the scalability and fault-tolerance, and to fos-
ter distributed, group-based and automatic DQS of perfor-
mance and monitoring data.

The rest of this paper is organized as follows: Section 2
outlines our sensor-based architecture. Section 3 discusses
our sensor model for performance monitoring and data in-
tegration. We then describe self-managing capabilities in
Section 4. We discuss DQS in Section 5. Hybrid commu-
nication based on service-based operations and TCP-based
streams are presented in Section 6. Section 7 illustrates ex-
periments and examples. We present some related work in
Section 8§ before presenting our conclusions in Section 9.

2. Sensor-based Middleware Overview

Figure 1 depicts the architecture of sensor-based mid-
dleware implemented in SCALEA-G with the main Grid
services named Directory Service, Sensor Manager Ser-
vice, Client Service. These services, based on OGSA [15]
and organized into service groups, support managing, stor-
ing and providing various types of performance and mon-
itoring data measured and gathered by an extensive set of
distributed sensors. They are capable of self-management
and can collaborate to serve the requests from clients.

Directory Service (DS) stores information (e.g.
schema, availability) about performance and monitoring
data, SM and other services of the middleware. Sensor
Manager Service (SM) manages sensors and data col-
lected and gathered by sensors, and provides these data to
consumers via DQS operations. An SM can interact with
several sensor instances executed on distributed machines;
sensor instances will send their collected data to SMs. SM
uses XML containers to store performance and monitoring
data. Client Service (CS) provides interfaces for admin-
istrating activities of SMs, querying data registered in DS,
subscribing and/or querying data stored in SMs, etc. Other
services (e.g. scheduling service) access performance data
by exploiting facilities provided by CS.

SM and DS are organized into two types of groups
(communities): SM Group and DS group. Within a Virtual
Organization (VO) [16] there could be several SM groups.
A DS group is deployed for multiple VOs; each VO pro-
vides a number of DSs which form the DS group. DSs reg-
ister their information with a set of Registry Services. By
using CS, the client of the monitoring middleware, explor-
ing the monitoring service through existing Registry Ser-
vices, can find DSs, SMs and then access performance and
monitoring data. In our framework, we reuse existing im-
plementation of Registry Service. However, DS and SM
are specially designed for performance and monitoring pur-
pose.
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Figure 1. High-level view of self-man

3. Sensor-based Model for Performance Mon-
itoring and Data Integration

3.1. Monitoring Sensor Conceptualization

Figure 2 presents the underlying concept of our mon-
itoring sensors. Sensors are used to capture performance
data, to monitor resources including computational and net-
work resources, and Grid applications. Every sensor mon-
itors one or more resources (e.g. machine, network, Grid
applications) and provides measurement data of the mon-
itored resources; each resource is determined by a unique
resource identifier (Resour ceID) and measurement data
is described in XML. Each sensor presents a sensor pro-
file which describes the sensor, e.g. unique sensor iden-
tifier (SensorID), sensor description and lifetime, how
to control the sensor (e.g. calling parameters) and infor-
mation about the provided sensor data (e.g. XML schema
of data). How a sensor works is described by the sensor
model, e.g. event-driven or demand-driven, or rule-based
monitoring. For measurement data, the tuple (SensorID,
ResourceID) is unique that is used to determine moni-
toring data of a resource.

A sensor can be invoked at different times with different
parameters. Each invocation of a sensor is called sensor
instance referring to a particular instantiation of a sensor at
run-time. Each sensor instance has its own lifetime.
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Figure 2. Conceptualization of monitoring sensors.

3.2. Event-driven and Demand-driven sensors

Sensors in most existing Grid monitoring tools are based
on event-driven model; a sensor measures and collects data
based on events, mostly time-based event. Event-driven
sensors collect the data and store the collected data when
an event happens at a time, without consideration at that
time the data is needed. Demand-driven sensors collect and
provide data only when receiving requests. Demand-driven
sensors are particularly useful for integrating data provided
by other sources. To realize the importance of both types
of sensors, our middleware supports both event-driven and
demand-driven sensors.

3.3. System Sensors and Application Sensors

We distinguish two kinds of sensors: system sensors and
application sensors. System sensors are used to monitor
and measure the performance of Grid computational ser-
vices (e.g. computational hosts) and network services (e.g.
network connections). Application sensors embedded in
Grid applications are used to measure execution behavior



of code regions and to monitor pre-defined events in these
applications. The two kinds of sensors are treated basi-
cally the same. They, however, differ in control and secu-
rity model. This distinction allows us to simplify the man-
agement of two different kinds of sensors.

3.4. Processing and Storing Customizable Data

In order to allow sensors to freely customize their pro-
vided data, SM must receive, process and store multiple
data types with unknown (XML) structures into its data
buffer. To do so, we design a three-phase protocol for ex-
changing data between sensors and SMs.

In this protocol, the interactions between sensors
and SMs involve the exchange of three XML mes-
sages: sensorinit message in the initialization phase,
sensordataentry message in the measurement phase,
and sensorfinal message in the final phase. Measure-
ment data is encapsulated into sensordataentry mes-
sage. The measurement data is enclosed by <! [CDATA [

11> tag. Thus, sensors can customize the struc-
ture of their collected data. Before it stops sending col-
lected data, the sensor instance sends a sensorfinal
XML message to notify the SM. The three XML messages
that always contain SensorID and ResourceID with
other information (e.g XML schema of data which sen-
sor produces, lifetime and description information about
the sensor) are self-explained. Based on (SensorID,
ResourceID), SM can setup appropriate buffers, storing
data into the buffers. Therefore, multiple types of moni-
toring data can be delivered via a transient connection, not
just through a persistent one.

Sensors can send XML schemas to SM even though SM
does not need the schemas in processing the received data.
SM will publish these schemas to DS so that other services
consuming collected data can get schemas in order to make
use of the data. Instead of sending XML schema to SM, the
schemas can be stored at SM. Our approach allows any sen-
sor that implements the above-mentioned protocol to send
the data to SM while SM is not necessarily aware of the
structure of the measurement data.

3.5. Rule-based Monitoring

Different with event-driven sensors in existing Grid
monitoring tools, our event-driven sensors support rule-
based monitoring. Instead of sending monitoring data it
collects, the sensor uses rules to analyze monitoring data,
and reacts with appropriate functions.

As different resources have different characteristics, we
need to setup different rule sets for monitoring different
resources. For example, with two different instances of a
sensor used to monitor the bandwidth of two network paths

which have different characteristics, e.g. one with maxi-
mum 100 MBytes/s, the other with 10 MBytes/s, the rules
used to detect whether the bandwidth is low or high must
be different even though the way to monitor these paths is
the same. Therefore, a rule set is normally associated with
each sensor instance. However, multiple sensor instances
can share the same rule set, e.g. when their monitored re-
sources have the same characteristics.

We use ABLE Rule Language (ARL)[10], which sup-
ports if-then-else rules, when-do pattern match rules, etc.,
to define rule sets for sensors. ABLE toolkit [9] provides a
wide range of inference engines to process the ARL rule-
sets, e.g. boolean forward/backward chaining, fuzzy for-
ward chaining, pattern match engine. For example, to de-
fine a fuzzy variable for monitoring bandwidth of a net-
work path in the Austrian Grid [4], we used Iperf [22] to
test the bandwidth, and obtained the maximum observed
bandwidth which never exceeds 5 MBytes/s. We divided
the bandwidth into 5 states by using fuzzy logic as shown
in Figure 3. Based on this fuzzy variable, we define a rule
set, presented in Figure 4. With this rule set, depending
on the status of bandwidth of the network path, e.g. very
low, low or very high, the sensor will react with appropriate
functions, e.g. to send events to SM.

In the case where rules are not specified when creating
a sensor instance, the instance will work as in the normal
model (e.g. sending monitoring data when the event hap-
pens). Rule-based monitoring approach brings many ad-
vantages as it allows to control the monitoring actions. In
addition, we can implement autonomic features that con-
sider changing systems as an effect of the monitoring be-
havior. However, there is no common rule set for all re-
sources even those monitored by a single sensor. Rules
have to be built for each resources based on best practices.

3.6. Performance Data Integration by Using
Demand-driven Sensor
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Figure 5. Using a demand-driven sensor to integrate
performance data.

Besides using demand-driven sensors to monitor re-
sources, we also exploit them for data integration. Fig-
ure 5 presents the model of using demand-driven sen-
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Figure 3. A fuzzy variable describing status of the bandwidth of a network path.

S1: bandwidth = getBandwidth();
R_VERYLOW: if (bandwidth is VERYLOW) {

doReactionWhenBandwidthVeryLow () ;

}
R_LOW: if (bandwidth is LOW) {

doReactionWhenBandwidthLow () ;

}
R_VERYHIGH: if (bandwidth is VERYHIGH)

doReactionWhenBandwidthVeryHigh () ;

}

R_OTHER: doNormalReaction() ;

Figure 4. Example of rule set for bandwidth of a network path.

sor for integrating performance and monitoring data from
other providers, e.g. MDS (Monitoring and Directory Sys-
tem) [12], NWS (Network Weather Service) [35], Ganglia
[25]. To access different providers, we develop different
demand-driven sensors taking the role of data mediators.
As shown in Figure 5, when the sensor receives an XPath-
based request from a requester, based on XML schema,
it parses the request, extracting information of the request
such as tag names with their associated attributes. The sen-
sor then constructs a provider-specific request, calling the
information provider with that request, and obtaining the
result in provider-specific format. The sensor then parses
this result and builds a new result described in XML. The
XML-based result will be sent back to the requester. With
this approach, other services use the same mechanism to
access data in other providers as in our service.

When a demand-driven sensor is activated, the sensor
returns information about resources whose monitoring data
it can collect to the SM which in turn publishes the informa-
tion to DSs. With that information, consumers can create
requests for monitoring data. For instance, consider the
path.predict.bandwidth.capacity.TCP sen-
sor which obtains predicted network bandwidth from
NWS. The startup information for an instance of this sensor
is configured in Figure 6.

When this sensor starts it queries the NWS NameServer
and returns network paths whose predicted bandwidth val-
ues it can collect to the SM. A consumer specifies an

XPath-based request as follows

/sensordata[@SensorID="path.predict.band
width.capacity.TCP"] [source="blindis.dps.
uibk.ac.at:8060"] [destination="olperer.dps.
uibk.ac.at:8060"]

in order to obtain the predicted bandwidth of
network path (blindis.dps.uibk.ac.at:8060,
olperer.dps.uibk.ac.at:8060). This request is
then translated into an nws_extract command as fol-
lows

nws_extract —-f,time,mae_forecast -N
olperer.dps.uibk.ac.at:8090 bandwidthTcp
blindis.dps.uibk.ac.at:8060 olperer.dps.
uibk.ac.at:8060

which is used to obtain predicted bandwidth values from
NWS. The output of nws_extract is then translated into
XML that is sent back to the requester. The requester only
knows the XML schema of requested data in order to spec-
ify the request. The rest, where the requested data lo-
cates and how to get the requested data, are done by the
middleware. Our integration approach aims at providing a
uniform, flexible interface for accessing data collected by
lower-level, domain-specific information providers.



<startupsensor name="path.predict.bandwidth.capacity.TCP">

<startupparam name="NWSNameServer"

value="olperer.dps.uibk.ac.at:8090"/>

</startupsensor>

Figure 6. Startup information for path.predict.bandwidth.capacity.TCP Sensor.

4. Self-Managing Services

4.1. Service Group

Each SM or DS group has a set of operations associated
with the group. These operations address (i) how the re-
quests for performance data are handled, and (ii) how the
requested data are delivered. The real number of members
of a group is dependent on the actual deployment which
can dynamically change. In the whole system, there could
exist many different groups.

The group operations associated with SM group are
group-based DQS. One member in the group can act as a
mediator for other members. Given a DQS request, an SM
can provide requested data even though its storage does not
contain the requested data by collaborating with other SMs
in the same SM group. For a DS group, the group-based
operation supports the discovery of data providers. Given a
request to find the provider of a needed data type, DSs in a
DS group can cooperate to determine the data provider.

4.2. Data Dissemination and Maintenance

Instances of sensors are executed on monitored nodes
and send data collected to SM which in turn stores the data
into its data container. SM automatically publishes charac-
teristics of received data to a set of DSs, not to a single DS.
Each SM keeps its group name and a list of DSs to which it
publishes data. The list of DSs can be dynamically changed
over the time. Each SM keeps a list of Registries where it
can search information about DSs. When an SM is created,
the SM gets a maximum number p of DSs it should regis-
ter with and a pre-defined updated interval ¢ seconds. In the
cycle of ¢, SM looks up Registries to get n DSs. The SM
then selects min (n, p) DSs from n ones. A DS is chosen
based on the following procedures. Firstly DS is selected
based on domain-name approximation, and then based on
the latency of ping operation, and finally based on random
selection. SM then disseminates information about data it
stores to its selected DSs.

A DS can publish information about itself to multiple
Registries. In the current implementation, one DS belongs
to a DS group. A DS keeps a list of Registries with which
it registers its information. A DS maintains a list of DSs in
its groups; these DSs are its edge peers. Repeatedly with
predefined ¢, seconds, the DS searches Registries for up-

to-date information about its edge peers. DS also performs
ping test to its edge peers to check whether its edge peers
are alive. To make sure that it provides the updated in-
formation, the DS checks its data in the database periodi-
cally based on a pre-defined ¢; seconds. During the check-
ing procedure, DS invokes ping operation of its registered
SMs. If a ping to an SM failed, DS assumes the SM is out
of service and then DS removes all information associated
with that SM. In the cycle of #, seconds, DS publishes its
information to Registries. Before DS finishes its execution,
it unregisters its information from the Registries.

As common in service-oriented computing, the avail-
ability of Registries, DSs and SMs is the key issue to fault-
tolerance of the middleware. Instead of storing data into
a centralized SM, collected data are stored over a set of
distributed SMs, thus guaranteeing that a failure of one or
many SMs does not bring the whole service down. Differ-
ing from existing monitoring tools where SM mostly pub-
lishes data to a single DS, our SM publishes its information
to multiple DSs. Thus, not only data is widely dissemi-
nated, highly available but also it makes sure that if a DS is
failed to serve requests from clients, still other DSs can do.

4.3. Discovery of Data Providers

Any client that wants to subscribe or query perfor-
mance data of a resource has to locate a corresponding SM
which provides the data. The discovery of data providers
is based on requests containing tuples of (SensorID,
ResourcelD). A tuple (SensorID, ResourcelD) is
unique that determines monitoring data of a resource. Each
DS provides a set of operations for other services to re-
trieve and search its registered data. Based on a tuple
(SensorID, ResourcelID), a client can call operations
of a DS in order to discover data providers registered with
that DS. (SensorID, ResourceID) can also be speci-
fied in the data content filters of DQS requests.

Data discovery can also be done automatically by CS
thus a client does not need to interact with DSs. CS parses
client requests to get detailed elements such as SensorID,
ResourcelID. A list of DSs will be obtained from given
Registries. The request is then sent to DSs which in turn
cooperate to locate SMs by using group-based operations.
When a DS cannot locate the provider of the requested data,
it forwards the request to all its edge peers, otherwise it just
sends back the results. These edge peers conduct the search



and return the result to the peer who calls them. The DS
then sends back the result to the requester. A parameter is
used to control the request forwarding policy.

S. Data Query and Subscription

5.1. Query and Subscription Operations

SM provides a set of service operations for other ser-
vices to subscribe and query data available in the SM. Be-
low, we just outline main operations.

e subscribeData(consumer_dr, SensorID, Resour-
celD, content filter, ResultID, duration, relay):
consumer_dr specifies the Data Receiver of the
consumer; the Data Receiver indicates the endpoint
receiving the resulting data. A consumer performs
a subscription of monitoring data of a resource
determined by ResourceID; the data is collected
by a sensor determined by SensorID. Parame-
ter content_filter specifies the content filter
applied to the requested data. SensorID and
ResourcelID are optional as they can be specified
in the content filter. Subscription time is specified
by a duration. ResultID specifies the identifier
of the resulting data. If the subscription operation is
successful, a subscription_id will be returned
to the caller whereas resulting data is delivered to
consumer via TCP-based streams. relay specifies
whether SM should relay the subscription to other
SMs when it cannot serve.

o unsubscribe(subscription_id): this operation is used to
terminate an existing subscription.

e renew(subscription_id, duration). renew or ex-
tend an existing subscription (determined by
subscription_id)tonew duration.

o queryData(consumerdr, SensorID, ResourcelD, con-
tent filter; ResultlD, relay): similar to subscribeData
operation but for querying data.

Content filters are described in XPath that can be easily
written based on XML schemas of data provided by sen-
sors.

By using operations of SM, CS supports both one-fo-
one and one-to-many DQS requests. In one-to-one mode,
a subscription or query request is used to obtain perfor-
mance data provided by a single SM whereas in one-to-
many mode a client subscribes or queries data from many
SMs by using a single subscription or query request.

5.2. Automatic Query and Subscription

Clients can also perform DQS automatically without
knowing where the requested data is located. The con-
tent filter, specified in DQS requests that clients pass to
CS, can contain characteristics of data such as SensorID,
ResourcelID. Given an XPath-based content filter, we
can obtain XML tags, attributes (e.g. SensorID,
ResourcelID),etc., of the filter by using an XPath parser.
For example, by processing the following content filter

/sensordata[@SensorID="host.mem.used’]
[ResourceID='"bridge.vcpc.univie.ac.at’]

VAN

s we obtain (host .mem.used,
bridge.vcpc.univie.ac.at) as the value of
(SensorID,ResourcelD).

When receiving a request from clients, CS processes the
content filter and obtains (SensorID, ResourcelD)
information. It then searches DSs in order to find SMs that
provide the requested data; the search is mentioned in Sec-
tion 4.3. CS then sends requests to SMs which provides
the requested data. As a result, the client does not nec-
essary know where the monitoring data is stored. If DQS
requests contain information about sensors and monitoring
resources, the middleware can automatically handle DQS
requests.

The middleware provides simplified APIs for clients
to conduct automatic querying and subscribing perfor-
mance and monitoring data. The APIs hide all the
lower-level details of the middleware. For exam-
ple, Figure 7 presents a simple code which is used
to query available monitoring data of CPU usage of
the machine schareck.dps.uibk.ac.at. The
ConsumerService class, part of CS, is responsible
for processing DQS tasks. The client knows a Registry
Service. It indicates the service handle of Registry Ser-
vice (variable handle), specifies the content filter (vari-
able content_filter), and calls the CS. CS returns a
DataSensorReader from which the resulting data is
retrieved. The client can call APIs (blocking and non-
blocking) or set up a call-back on DataSensorReader
to obtain the data.

5.3. Group-based Data Query and Subscription

An SM can act as a mediator for other services to access
data provided by other SMs in its group. When a client
sends a DQS request to an SM, if the SM does not provide
the requested data, SM will search its registered DSs to find
SMs that can serve the request. If the search is success-
ful, the SM acts as a super-peer between the data requester
and the SM provider by forwarding the request to the SM



ConsumerService cs = null ;
cs = new ConsumerService();
cs.activateUpDataService();

String handle="http://bridge.vcpc.univie.ac.at:8765/ogsa/services/
samples/registry/VORegistryService";
String content_filter="/sensordata[@SensorID=\"host.cpu.used\"]
[@ResourceID=\"schareck.dps.uibk.ac.at\"]";

SensorDataReader out =

cs.distributedQueryDataWithRegistry (handle, content_filter);

Figure 7. Example of querying monitoring data by using information from Registry Service.

provider. The provider first tries to communicate with the
requester. If successful, the provider sends requested data
to requester, otherwise it sends data back to the caller SM.
If an SM receives request from another SM, it will not prop-
agate the request when it cannot serve the request.

In this model, an SM can take the role of the super-peer
in either/both forwarding requests or/and delivering data.
Any SM may become a super peer at the runtime.

5.4. Notification

In all mentioned DQS, the client conducts DQS based
on available information about monitoring data published
in DS. However, there are many cases in which the client
wishes to subscribe for a notification of interesting data
which is not available at the time of the subscription. For
example, the client may inform the monitoring system that
it wishes to receive execution status of activities of a work-
flow application being executed by the workflow enactment
before it submits the workflow application. We call this
type of data subscription notification subscription.

DS and SM provide two service opera-
tions named subscribeNotification,
unsubscribeNotification for subscribing and
unsubscribing notification data. DS and SM use a table to
keep existing subscriptions of notifications. The client can
subscribe the notification on a specific SM or on the whole
monitoring system. If the client wishes to receive notifi-
cation message from a specific SM, the client can register
with the SM by calling subscribeNotification
operation of that SM. In this case, the client will not
receive notification data collected by other SMs even
though that data satisfies the client’s request.

In our framework, SM gathers and stores performance
data collected from sensors. However, there is no mech-
anism to determine SMs which are capable of distribut-
ing a specific notification data because SMs and sensors
can enter and exit the monitoring system arbitrarily. The
client may only know of a few services to which it con-
tacts, e.g. a DS or an SM, but it wishes to receive a no-

tification without knowing the service which is capable of
providing this notification. We support this type of notifi-
cation subscription by implementing a global notification
mechanism. By using the CS, the client registers with a set
of DSs {DS,DS,,---,DS,} that it knows, and indicates in-
formation about interesting data which it wishes to be noti-
fied. Each DS; updates the table containing subscriptions of
notifications and then calls subscribeNotification
operation of registered {SM;,SM;3,--+,SMim} in its di-
rectory with that indicated information. Similarly, when
a new SM registers with a DS, the DS calls that oper-
ation of the SM with existing subscriptions in its table.
When receiving a subscribeNotification call, the
SM updates a table containing tuples of (ResultID,
Subscription). Whenever SM receives data satisfying
notification constraint, SM delivers the data to CS. If SM
cannot deliver a notification to a client, the SM will remove
the subscription of that notification from the table. To un-
subscribe a notification, CS sends unsubscription requests
to DSs which in turn pass these requests to SMs.

As each SM registers its information with multiple
DSs, an SM can receive duplicate subscriptions for a
notification. Currently, SM accepts the duplication be-
cause ensuring SM not to receive duplicate subscriptions
of a notification might be at a higher cost than calling
subscribeNotification which just updates the ta-
ble containing subscriptions of notifications.

6. Service-based Operations and TCP-based
Data Delivery

Each SM can be viewed as a peer in a P2P network.
It, however, also is a Grid service. In most P2P systems,
a peer processes request and delivers data via TCP/UDP
channels. Our peer node is unique as we try to integrate
both concepts, P2P model and Grid service, into a single
peer. A peer provides Grid service operations for other
peers and high-level clients to access and control its ser-
vice. But, peers use TCP-based streams to deliver moni-



toring data to each other, thus relay functions can easily be
implemented to support data delivery among peers. That
also offers higher performance for data delivery.

Figure 8 depicts how requests for data and requested
data are handled. CS or SM requests data through Grid
service-based invocations whereas requested data is deliv-
ered via TCP-based streams. Data Sender, Data Receiver
and Data Relay of SM and CS are responsible for send-
ing, receiving, and relaying performance data, respectively.
Each Data Receiver or Data Relay is associated with an
endpoint describing the network transport. An endpoint
is described by a unique XML message containing net-
work transport information such as host name, port, etc.
An SM has only one connection to a consumer for deliver-
ing all kinds of subscribed data. The connection is created
at the first subscription and will be freed after pre-defined
ts seconds since the last subscription finishes. For deliv-
ering resulting data of queries, an on-demand connection
will be created and freed when the delivery finishes. A re-
quest for data always specifies a unique Result ID which
is associated with requested data that satisfies the sub-
scribed/queried constraints. SM uses ResultID to route
requested data to the destination while CS uses ResultID
to aggregate results of the same request delivered from mul-

tiple SMs.
Cs
Data Receiver
e ———

=~

SM,
SM5 Data Sender
Data Receiver

— —~, Data requests through
service-based invocations
> Requested data flow via
TCP-based connections

SM, SM,
Data Sender Data Sender

Figure 8. Service-based invocations and TCP-based
data streams.

In our middleware, monitoring data is described in
XML. While using XML to describe performance and
monitoring data provides a widely accessible interface and
simplifies the interoperability among services, XML data
grows in size. In subscription mode, the size of monitoring
data delivered to the consumer each time is small and al-
most unchanged for a given subscription. However, in data
query mode, the size of monitoring data can be large, de-
pending on the query, for example, the consumer may want
to retrieve resource monitoring data for the last 10 hours.
To reduce the size of monitoring data transfered, we com-
press monitoring data before sending it over the network.

Data compression may increase the throughput and

transfer rate. In Table 1, we monitored the data size and
transfer time of CPU usage data from an SM in UIBK do-
main to a client in PAR domain (see Section 7 for more
detail about the experimental test bed); transfer time is the
average value of observed values at different times. In our
measurement, compression ratio, compression and decom-
pression time are all dependent on the data size and the type
of monitoring data. When the data size is small, compress-
ing data will not reduce transfer time because of the small
compression ratio and the impact of compression and de-
compression time on the overall transfer time. However,
when the data size is large, compressing data reduces the
data size substantially which improves both data transfer
time and throughput significantly. For most types of moni-
toring data supported, when the size of data to be transfered
is less than 512 bytes, the compression does not achieve a
better transfer time and throughput because the compres-
sion ratio is close to 1. Moreover, there is an extra overhead
due to the compression and decompression of data. There-
fore, we develop a simple self-adaptive mechanism for de-
ciding whether the resulting data should be compressed be-
fore sending to the requester that is based on the size of
delivered data. If the data size is larger than sg, the data
will be compressed, otherwise data is transfered as normal.
Currently, sg is set to 512 bytes.

Data size Ty Trcq r T.+ Ty
(bytes) (ms) (ms) (ms)
588 110 109 1.863 2

1560 119.33 | 115.24 | 4.537 2.11
3019 12045 | 114.85 | 8.137 2.19
3991 120.68 | 114.68 | 10.207 | 2.44
5449 129.2 | 116.15 | 13.257 | 2.53
6421 130.45 | 116.05 | 14.967 | 2.73
7879 131.63 | 117.85 | 17.316 | 2.76
8851 136.28 | 117.48 | 18.712 | 3.08
10309 141.39 | 117.68 | 20.742 | 3.09
11281 143.25 | 117.93 | 21.949 | 3.22
12739 147.83 | 117.5 | 23.548 | 3.42
13711 149.75 | 117.25 | 24.355 | 3.67

Table 1. Example of transfer time without compres-
sion (Ty), transfer time of compressed data (Ty.),
compression ratio (r), compression and decompres-
sion time (T, + T;) for CPU usage data. Time is mea-
sured with Java System.currentTimeMillis ()
call. Compression and decompression are imple-
mented based on java.util.zip package.



7. Experiments

Our middleware is implemented based on GT 3.2 [19],
Java Cogkit [24], with various other libraries. We have de-
ployed our sensor-based monitoring infrastructure on three
domains: VCPC (University of Vienna), UIBK (Univer-
sity of Innsbruck) and GUP (Linz University) in the Aus-
trian Grid [4]. Figure 9 presents our experimental test-bed.
We set up three SM groups named SM-VCPC, SM-UIBK
and SM-GUP in VCPC, UIBK, GUP, respectively. We es-
tablish a DS group that includes one DS in VCPC (DS-
VCPC) and one in UIBK (DS-UIBK). Each DS stores data
in a PostgreSQL database server which can execute in the
same domain (e.g. in case of DS-UIBK) or different one
(e.g. DS-VCPC). SM stores collected data into XML con-
tainers implemented atop Berkeley DB XML [1]. There
are two Registries in VCPC and UIBK. A client is de-
ployed in PAR domain (in University of Vienna). All DSs
and Registries can be accessed by all SMs and clients, but
only SMs executed on bridge/VCPC, olperer /UIBK,
iris/GUP can directly deliver data to the client executed
on kim/PAR due to the firewall. Most machines in our
test-bed are non dedicated.

gsr401/VCPC  gsr402/VCPC

i
p7d

pghost/PAR

gescher/NVCPC

bridge/VCPC
olperer/UIBK
pc6163-c703/UIBK iris/GUP pan/GUP

DS: Directory Service
RS: Registry Service
SM: Sensor Manager

hafner/UIBK ochsner/UIBK schareck/UIBK Service

Figure 9. Experimental test-bed.

7.1. Performance Analysis of Data Discovery

To evaluate the performance of the discovery of data
providers within the test-bed, we setup two modes. In one-
to-one mode, a client sends requests directly to DS which
in turns finds data providers of the requested data. If the DS
cannot locate the data provider, it will not send the request
to other DSs in the same group. In group mode, if the DS
cannot answer the request, it sends the request to its edge
peers in its group asking for the location of data providers.

At a random time, for each mode we conducted a se-
ries of 20 tests with the interval 60 seconds between two

consecutive tests. Each test repeats 10 times and we se-
lected the best timing value as result of the test. In both
modes, a client in PAR domain sends requests to DSs at the
same time. We also measure the latency of ping operation
from clients to DSs. The time is measured by using Java
System.currentTimeMillis () call.

700

T T T
Ping latency to DS-UIBK' —+—
One-to-one search on DS-UIBK ---x---
Group search on DS-UIBK ------

Ping latency to DS-VCPC &
One-to-one search on DS-VCPC -—#-—
Group search on DS-VCPC ---e---

600

500 - x p R

Time (ms)

300 - q

200

.
0 2 4 6 8 10 12 14 16 18 20
Test cases

Figure 10. Ping latency and searching time.

Figure 10 presents searching time in one-to-one and
group mode, and latency of ping operation. Overall for
both DSs, the ping latency is larger than a half of the time
spent on the search for data providers in one-to-one mode,
suggesting that the time DS spends in searching its database
is small when compared with ping latency. A considerable
portion of time spent in the discovery process is service-
operation latency from client to service. In our implemen-
tation, for group mode, DS creates a new thread which calls
an edge peer when the DS cannot locate the data provider.
Searching time in group mode nearly doubles that in one-
to-one mode partially because at the same time a DS has
to fulfill a request from an edge DS and to forward a re-
quest to its edge DS. (In other experiments, not shown in
this paper, when a DS just forwarded requests to its edge
DS, the searching time was substantially reduced.) The la-
tency from client domain (PAR) to DS-UIBK is higher than
that to DS-VCPC, also DS-VCPC is executed on an SMP
machine where DS-UIBK is executed on a single CPU ma-
chine. Therefore, conducting group-based and one-to-one
discovery through DS-VCPC is considerably faster than via
DS-UIBK due to the differences of network latency and
computation power. Also search times in group mode im-
ply high variance partially because the search now involves
different DSs running on wide area networks.



7.2. Monitoring and Data Integration Example

We have implemented a GUI client which accesses a va-
riety of types of monitoring data provided by the middle-
ware and conducts the analysis of that data. We present
some examples of using that GUI client to monitor and
analysis the monitoring data.

Figure 11 presents an analysis of profiling data collected
by application sensors. Incremental profiling data of Grid
applications is sent online to SMs. The application profile
analyzer then conducts DQS on profiling data, analyzing
and visualizing the result to the user. The left window of
Figure 11 shows code regions associated with their pro-
cessing units (compute node, process, thread). For each
code region, profiling metrics are incrementally displayed
in the right window.

=| SCALEA-G: Application Profile Data Viewer [
File Setting

4| Metric Marme | Metric Yalue |

GOnline Application Data
Ly [nealls 458

@ [ Experiment Iribs : i
@ [ bridge vepe univie ac at futime 7,016,362

§ O] ProcessD utime | 1,973,693

@ ] Thread 0 5time I 5,935,089

@ [ Region 1:MainProgram[CR_P:0:0] | rrafit 15

@ [ Region 2:SubMyMain[CR_8:0:0] it | 0
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[ Region 5:CAL_ION_YIELDICR_AI
@[] geschervepe.univie.ac.at

| 2

Figure 11. Analysis of profiling data provided by ap-
plication sensors.
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Figure 12. Events generated from a rule-based sen-
sor monitoring network bandwidth.

Figure 12 presents an example of bandwidth monitor-

ing of a network path from VCPC to UIBK. We setup a
simple rule set based on fuzzy variable for the bandwidth,
as presented in Section 3.5. Only when the bandwidth of
the network path is very low, low and very high, the sensor
sends events to SM. Events are subscribed and visualized
by a simple generic event viewer as shown in Figure 12.

Figure 13 presents few snapshots of monitoring system
load, CPU usage and network delay roundtrip (monitoring
data provided by event-driven sensors), and of forecasting
CPU usage and TCP bandwidth (forecasted data provided
by demand-driven sensors). For example, data about CPU
usage (waiting time, idle time, system time, user time) are
measured per CPU. CPU monitoring data is periodically
collected and the change of CPU usage can be observed on
the fly through data subscription (see window CPU Usage).
The machine gescher almost is idle whereas bridge is
not fully utilized as only one of its four CPUs has high user
time. Demand-driven sensors are used to obtain forecasted
CPU usage and TCP bandwidth from NWS.

8. Related Work

Recently, work that exploits P2P for Grid computing has
shown many advantages, e.g. in [20, 30, 21]. Our work
complements the existing work as we try to integrate P2P
features into a Grid monitoring middleware.

Over the past few years, many Grid monitoring and per-
formance tools have been developed as cataloged in [18].
Several existing tools are available for monitoring Grid
computing resources and networks, e.g. MDS (a.k.a GRIS)
[12], NWS [35], GridRM [5], Gangila [25], GDMonitoring
[11]. However, few tools have been developed for monitor-
ing and analyzing performance of Grid applications. For
example, GRM [27] is a semi-on-line monitor that supports
tracing applications running in a distributed heterogeneous
system. OCM-G [7] is an infrastructure for monitoring in-
teractive Grid applications.

None of aforementioned systems, except MDS, is
OGSA-based service. They support the monitoring of ei-
ther infrastructures or applications while we unify both in
a single system. Most existing tools either employ low
level communication based on TCP streams or high level
communication based on Web/Grid service. Differing from
them, our middleware exploits both Grid service invoca-
tions and TCP data streams. These tools, although con-
duct distributed monitoring, mostly support data discov-
ery and DQS based on hierarchical and centralized mod-
els, and event-driven sensors without rule-based monitor-
ing. We use decentralized data storages, and support event-
and demand-driven sensors, and rule-based monitoring. By
featuring P2P computing, we support group-based opera-
tions for data discovery and DQS, and enhance the avail-
ability, reliability and self-managing capability of the tool.
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Figure 13. Snapshots of online monitoring system load, CPU usage and networks.

The use of actuators to enable and configure resource
management, e.g. in [28], is one aspect of using monitor-
ing data for self-configuring. Based on rule sets, our sen-
sors can self-manage its actions in processing monitoring
data of monitored resources but we do not provide actu-
ators/effectors that control monitored resources yet. Our
rule-based monitoring also differs from the use of fuzzy-
based monitoring to check performance contracts [34]. In
our framework, the rule set which is built based on best
practices can be embedded into the sensor for different con-
trol purposes, not only for checking performance contracts.

9. Conclusion and Future Work

In this paper we have presented a self-managing sensor-
based middleware for performance monitoring and perfor-
mance data integration in the Grid. Due to the diversity
and dynamics of the Grid, monitoring middleware needs
to unify and provide different types of monitoring sen-
sors such as system and application sensors, event- and
demand-driven sensor, to integrate various types of data

from many sources. Exploiting both Grid service-based
operation and TCP-based data stream can help balancing
tradeoffs among interoperability, manageability and per-
formance. Middleware must store collected data on dis-
tributed sites, providing the same mechanism for access-
ing that distributed data. By incorporating P2P and auto-
nomic technologies, Grid monitoring middleware is capa-
ble of self-organization, supporting group-based data dis-
covery and DQS. As a result, it helps increasing availabil-
ity and reliability of the middleware as well as dealing with
the dynamics of large distributed environments. This pa-
per contributes on the design and implementation of a Grid
monitoring middleware that exploits the above-mentioned
points.

We are currently improving our prototype and investi-
gating to port our framework to WSRF [13]. Although P2P
and autonomic features give many promising solutions to
solve challenges in Grid monitoring, to incorporate these
features into an OGSA-based middleware is not a simple
task. Still our work is just at an early stage of develop-
ing and exploiting these features as a part of a middleware



for Grid monitoring and performance data integration. To
continue our effort on utilizing sensor networks, P2P and
autonomic computing features, the set of sensors will be
extended, together with effectors, to support self-healing.
We plan to provide adaptive capabilities for SM and DS so
that they can self-adjust their functions under the comput-
ing capabilities of the hosting environment. Besides, we
also work on supporting monitoring based on ontological
performance data [31].
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