
Holistic Explainability Requirements for End-to-End
Machine Learning in IoT Cloud Systems

My-Linh Nguyen, Thao Phung, Duong-Hai Ly, Hong-Linh Truong
Department of Computer Science, Aalto University, Finland

{linh.m.nguyen, thao.phungduc, duong.ly, linh.truong}@aalto.fi

Abstract—End-to-end machine learning (ML) in Internet of
Things (IoT) Cloud systems consists of multiple processes,
covering data, model, and service engineering, and involves
multiple stakeholders. Therefore, to be able to explain ML to
relevant stakeholders, it is important to identify explainability
requirements in a holistic manner. In this paper, we present
our methodology to address explainability requirements for end-
to-end ML in developing ML services to be deployed within
IoT Cloud systems. We identify and classify explainability
requirements engineering through (i) involvement of relevant
stakeholders, (ii) end-to-end data, model, and service engineering
processes, and (iii) multiple explainability aspects. We present
our work with a case study of predictive maintenance for Base
Transceiver Stations (BTS) in the telco domain.

I. INTRODUCTION

A huge amount of IoT data is collected within IoT Cloud
systems for analyzing various domain problems. Besides typ-
ical big data analysis pipelines using batch and streaming
processing, ML solutions have been increasingly developed
and integrated into such IoT Cloud systems for inferencing
IoT data [1]. While the development of such ML solutions is
challenging, the need to explain the behavior of ML solutions
is of paramount importance [2], [3]. Therefore, scoping ex-
plainability and identifying explainability requirements must
be carried out at the starting point of the ML development
to provide insightful information for making decisions on the
design and implementation of ML solutions.
Motivating example: We consider the explainability require-
ments for ML solution development for predictive maintenance
within Base Transceiver Stations (BTS). Previous works have
discussed big data and IoT data analytics for predictive main-
tenance in BTS [4]. Leveraging the power of ML, a predictive
maintenance company develops ML solutions for predicting
behaviors of BTS equipment and infrastructures using alarms
and IoT measurement data. For the development, IoT mon-
itoring data within BTS is extracted as input, and possible
existing ML models and techniques are collected. Selecting
suitable techniques to develop ML models, the core part of
an ML service to predict various types of equipment, is also
crucial. Before and during the development of ML solutions, it
is necessary to have a clear plan for collecting requirements for
explainability and their impact on the design and development
of the ML solutions. However, there are also multiple relevant
stakeholders in predictive maintenance of diverse types of
equipment and infrastructures; each stakeholder has different
requirements and contribution for different processes, and

aspects in the end-to-end ML solution. For example, besides
the ML developer, we have the BTS owner (the telco), the
predictive maintenance company, and several different third-
party providers which manufacture or sell the equipment or
provide infrastructure, such as electricity and power backup.
To assure the success of the ML development, apart from
developing ML models with high performance and accuracy,
we must provide explanations based on the explainability
requirements for ML services that are collected from these
stakeholders. Furthermore, some of these stakeholders need the
explanation w.r.t. the aspects for which they are accountable
for. To achieve that, the development team faces common but
challenging questions of “for whom the explanation is”, “the
type of explainability they need” and “proactively collecting
sufficient explainability requirements about different processes
and aspects of the system throughout the ML development
cycle”, especially when explainability might be hard to achieve
with AutoML or pre-defined and black-box models. We can
bring valuable inputs from examining stakeholders using scop-
ing explainability to design suitable decision making, during
different phases of the ML development, and multiple types
of explainability aspects.
Contributions and paper structure: As we discuss in the
related work (Section II), the work of explainability require-
ments so far has not been addressed adequately in an end-to-
end manner. Motivated by the complex relationships among
stakeholders [5], multiple processes and tasks of the ML
design and development, as well as the vast number of possible
explainability aspects [6], we investigate a holistic approach
to have the best coverage of requirements for explainability.
Thus, our work determines and classifies explainability re-
quirements covering multi-stakeholders, multiple aspects in an
end-to-end ML system, instead of only focusing on explain-
ability of model outputs. In this paper, by presenting a holis-
tic approach for explainability requirements, we contribute
methods to scope and identify (i) relevant stakeholders in the
business operation context, (ii) requirements for explainbility
for ML processes/tasks, and explainability aspects in end-
to-end ML service. We will present our work together with
the motivating example to explain our methodology and its
methods. The rest of this paper is structured as follow: Section
II discusses the related work and their limitations. Section
III presents our methods and examples in detail. We discuss
tooling and integration in Section IV. We conclude our work
and outline our future plan in Section V.



Papers/work Summary of the papers/work End- to-end
ML

Multi-
stakeholders

Multi-aspect
explainability

Application
domain/focus

L. Chazette and K.
Schneider [6]

considers “explainability as non-functional require-
ment”; focus on the need for explanation from users

No No Yes Software in
general

U. Bhatt et al. [5] designing explainability with “context explanations”,
“evaluation of explanations”, “appropriate design for
affected groups”, and “stakeholder education”

No Yes Yes ML in general

R. Selvaraju et al.
[7]

explainability for the ML model by applying “Gradient-
weighted Class Activation Mapping technique”

No No No CNN model-
families

A. Galli et al. [8] focus on the interpretability of the model’s prediction;
explain a deep learning model’s outcome.

No No No Deep learning
model in IoT

Y. Xie et al. [9] explain the predictive models results by identifying
failure reasons

No No No IoT

M. Ribeiro et al.
[10]

using explanation techniques to understand the classifier
prediction based on locally model representatives

No No No ML in general

P. J. Phillips et al.
[11]

focus on the links between human factors and explain-
able decisions

No No Yes ML in general

TABLE I: Explainability requirement approaches

II. RELATED WORK

Explainability in ML is an important subject intensively
studied in recent years. There is a wide range of topics
that has been discussed, including explainability for multiple
stakeholders [5], requirements for explainability [6], [11], and
systems for achieving explainability in ML models [10], [7].
Table I summarizes the main related work in the explainability
requirements. Overall, the related work emphasizes various as-
pects in explainability, indicating a wide range of requirements
from multiple stakeholders. However, most of them do not
focus on end-to-end ML, thus, fail to capture the requirements
of a wide range of stakeholders whose input impacts the ML
service directly. The work in [12] discussed having domain
knowledge to obtain explainability and suggest differentiating
between scientific and algorithmic explanations. In our holistic
approach, instead, we observe the end-to-end ML through
different views so that we can obtain a large number of related
explainability requirements.

In terms of supporting explainability associated with ML
processes and multiple explainability aspects, Table II shows
related work. Most of the work focuses on the training phase
for model explainability. From the technical perspective, there
have been several works to tackle explainability for ML
models. They focus on presenting “explainers” – the tool to
provide explanation – mainly for the ML model. Our work
is on explainability requirements, thus complementing these
“explainers”. However, by studying these works, we see that
many explainability aspects must be supported. Our approach
considers many requirements for aspects from these tools.

III. HOLISTIC EXPLAINABILITY REQUIREMENTS

Our holistic approach for explainability requirements con-
sists of three main steps: (i) scoping stakeholders in the
ML development and operations in an end-to-end manner, (ii)
identifying key relevant ML processes and tasks and their asso-
ciated explainability aspects, and (iii) collecting explainability
requirements. We will explain our methodology for the holistic
approach in the following.

A. Scoping explainability

Scoping Stakeholders: The final goal of an ML solution
integrated into an IoT Cloud system is an ML service, which
is delivered through several development processes in the
so-called “ML pipeline”. The development involves many
stakeholders who are not only affected by the service but
also influence the design and performance of the service.
It is crucial that the stakeholders could understand the ML
service in use to trust and utilize the output of the service.
To achieve that, first, we have to know who the explanation
is for, and what are their needs in terms of explainability. If
we leave out a relevant stakeholder, we might miss important
aspects linked to the ML service. For example, if we do not
consider the IoT providers’ expertise on the characteristic of
the data, we might overlook the causal impact between the
specific characteristic dataset and the ML inference accuracy.
Secondly, some stakeholders act as explainers to other stake-
holders, therefore, identifying these dependencies would help
analyze stakeholders’ needs. Therefore, defining the scope of
stakeholders, to which the explainability covers, should be
taken as the first fundamental step.

In our method, we first determine stakeholders into a
business-as-usual scope and a corrective scope, as illustrated
in Figure 1. The business-as-usual scope includes stakeholders
that have a direct dependency w.r.t. to explainability: when
stakeholder A uses tools to produce an explanation for stake-
holder B directly, A and B have a direct dependency. In
corrective scope, we have stakeholders with indirect depen-
dencies, stakeholder C can indirectly influence the explanation
for stakeholder D through a chain of stakeholders. Second,
for a direct explainability dependency, an explanation can be
triggered through an explain task which considers various
trails from data, software components and other stakeholders.
This may require metadata, model experiments, or logging
parameters to provide explanation for stakeholder requests.
The explain task can be provided by existing tools, e.g
SHAP [20], SAP [23], GEMS [24]. For an indirect depen-
dency, we will follow a chain of direct dependencies to identify
the relevant stakeholders. Given the expected requirements



Aspect/Process Data & Model
Collection

Data Preprocess-
ing

Model Devel-
opment

Feature Engineer-
ing

Training Serving

Data Summary Carvalho et al.
[13]

- Bhatt et al. [5] - - -

Data Drift - Webb et al. [14] - - - -
Quality of Data - - Udo et al. [15] Truong et al. [16] T.Halvari et al. [17],

Udo et al. [15]
-

ML Method Selection - - - - Linardatos et al. [18] -
Model Selection - - Schlegel[15],

Xin et al. [19]
- - -

Training
Configuration

- - - - Lundberg et al. [20] -

Feature Attribution - - - - Pieter et al. [21] -
ML Platform - - - - Reddi et al. [22] Reddi et al. [22]

TABLE II: Related researches on explainability aspects in existing ML processes/tasks

established from the explainability dependencies, we collect
sufficient data for suitable explainers to be used/developed.

Fig. 1: Stakeholders in direct and indirect dependencies

Scope of explainability-related ML processes/tasks: We
need to scope ML development processes/tasks to be consid-
ered for the explainability of the service. To meet the stake-
holders’ needs, the scope of explainability needs to cover all
relevant development phases that they are responsible for and
interested in. This requires mapping identified stakeholders
to development phases, which generally cover requirement
elicitation, ML service design, and ML development (data
preparation, training, serving). This constitutes the explain-
ability in an end-to-end ML service development. Providing
explainability for an end-to-end ML service would preserve
the informative connection among stakeholders, related entities
(ML models, data, software), and ML processes for producing
detailed explanations.
Scoping explainability aspects: Each stakeholder either
works directly with specific entities or supervises processes/-
tasks applied to these entities. Thus, there is a wide range
of entities, and constraints (metrics and aspects) that they are
associated with. We could determine these entities and their
required explainability aspects by analyzing their role in each
process/task, and mapping out requirements, and constraints
they need to follow. For example, the developer is responsible
for building the prediction model, and care about the accuracy
of the model; the dataset used in the model comes from the
data provider, who is responsible for the quality of the data;
and the requirements for the deployment of the prediction
model come from the IoT Cloud service provider, which also

needs to ensure the response time constraint of the deployment,
or the possibility of security breach influencing the result of
the prediction.
Overall scoping approach: After analyzing the scope of
explainability, we think explainability for an ML solution
should be holistic and consider multiple stakeholders, and
multiple aspects for an end-to-end ML service explainability.
Examples with BTS: Figure 2 shows how we apply our
scoping methods for the BTS case. In this example, the stake-
holders include the BTS owner, the predictive maintenance
software company, lead developer, and ML developers. From
the development team’s perspective, ML developers have a
direct dependency with the predictive maintenance company,
and have an indirect dependency with the BTS owner. When
we map these stakeholders with development phases, we see
that BTS owner and the predictive maintenance company
are involved with requirement elicitation. The development
team works on the ML service design to identify the features
and constraints of the service. The ML developers work on
the ML service with 2 different approaches (AutoML with
HpSklearn [25], manual with LSTM [26]), and take care of
the infrastructure and serving in the ML service development.

B. Correlating Requirements in ML Processes and Explain-
ability Aspects

From scoping explainability, we have identified explainabil-
ity requirements associated with multiple ML processes/tasks
and explainability aspects, due to the involvement of multiple
stakeholders in an end-to-end ML development. Figure 3
presents key ML processes/tasks and important explainability
aspects associated with these processes/tasks.

1) ML processes and tasks: Researchers and practitioners
have a common view on key processes/tasks in ML pipelines,
shown in Figure 3. These processes/tasks can be implemented
manually by humans, automatically by AutoML tools, or by
a combination of both.
Data and Models Collection: To start ML solutions, we
need to collect data and possible existing models (e.g., from
model marketplaces [27]). Here the explainability require-
ments would be centered on when, where, and why the data
and models are collected and the original owners/providers.



Fig. 2: BTS stakeholders and their interactions in an end-to-end ML service development

Fig. 3: ML processes/tasks and associated explainability as-
pects

This allows any explanation to be traced back to the crucial
inputs at the beginning of the end-to-end ML system.
Data Preprocessing: Many data preprocessing tasks have to
be carried out by humans, especially when we need the domain
knowledge for preparing data for ML. For IoT Cloud systems,
we focus on explainability requirements associated with the
domain knowledge and the data preprocessing methods to
be used. These requirements would be best obtained by
interviewing the stakeholder who understands the data and the
domain. One example with the BTS case is the explainability
for the use of model ensembles [28]. The time-series data
can be divided into separated slots within a day based on the
BTS usage and location, whereas data of each slot would be
trained differently to create different models. Another example
is the explainability of the method and its impact for handling
missing IoT data.
Model Development: We have many ways to develop an
ML model. The development process may start by selecting
target subjects and prediction types, e.g., the target is elec-
tricity whereas the type is the trend of disruption. Then the
process may continue with selecting a model type, e.g., a pre-
trained model or an existing, fine-tuning model . Thus, “which
stakeholder is involved in the model development” and “how
the stakeholder develops the model” are crucial questions to
provide more explainable aspects. Furthermore, explainability
requirements can impact whether we should use black-box or
interpretable models [29].
Feature Engineering: As feature engineering creates proper
input dataset and model compatibility data features, the ex-
plainability requires us to capture feature engineering tech-
niques used for IoT data and the reasons for using these
techniques. For example, in our BTS case, existing feature

engineering techniques, such as Feature Split, Grouping Op-
erations, and Scaling, can be used, hence, recording these
techniques allows us to provide a better explanation for the
ML service result.
Training: Many types of explainability requirements are asso-
ciated with training. The first aspect is to capture who carries
out the training, whether this is done manually by a developer
or automatically by an AutoML tool [30]. Second, we need
to capture the parameters and architectures configured during
the training process [19]. This is done by the stakeholder or
by recording parameters from the AutoML tool. More detail
of the model architectures and parameters selection will allow
us to explain the influences of parameters and models on the
performance of the results [16].
Serving: We focus on dynamic ML serving for IoT data
that implements dynamic inferences, serving predictions on
real IoT time data, due to the domain requirements. Thus,
explainability requirements are strongly related to the model
used for dynamic serving, the ML service platform and its
elasticity that hosts the serving model, type of servings the
service provides, classification, or regression. For example, in
the BTS case, to explain one false prediction which triggers
wrong maintenance, one may need to traverse back to the
trained model used for serving. Once we determine that model,
we can extend the explainability by utilizing explanations of
previous corresponding processes.

2) Explainability Aspects: Besides common explainability
aspects such as ML Method Selection [16] and Model Selection
[15], due to the nature of IoT data, we focus on several
explainability aspects associated with data:
Data Summary: When a ML service fails to predict correctly,
the data summary can be used to explain to stakeholders which
attributes are not valid, causing ML problems. Furthermore,
data summary gives overall statistics that strongly impact on
the selection of data preprocessing and appropriate runtime
techniques in ML processes and tasks, such as data cleansing
or data patterns detection techniques [31]. Thus, we focus on
explainability requirements associated with static data sum-
mary in Data Collection and with runtime data summary
during Serving.
Data Drift: Many ML models cannot perform well when
facing data drift problems [14]. Examples of issues are data
inconsistencies, malicious traffic from input sources, or ab-



normalities occurred at levels IoT devices [32]. Under this ex-
plainability aspect, we focus on two issues: data drift in Data
Preprocessing (which will influence feature engineering
and training) and data drift in Serving (which will influ-
ence the prediction result). First, explainability requirements
will focus on whether the extracted data is representative,
or the difference between ground truth baseline and target
distribution can be observed. It is expected that developers
run multiple experiments with samples of data distribution to
evaluate the model performance. Thus for explainability we
need to capture such different evaluations. For Serving, the
requirements will focus on methods capturing and managing
runtime data drifts for correlating data drift to performance of
ML services.
Quality of Data: Many problems of IoT ML solutions can
be linked back to quality of data, which depends on different
factors such as measurement errors, precision, environmental
noise, and discrete observations [1]. Such problems can be
explained in different places, such as Data Collection,
Data Preprocessing and Feature Engineering
tasks. For Data Collection and Training, require-
ments will focus on what data properties should be checked,
which records are used, where the data is extracted, and
the association between quality of data and trained model
performance. At Serving, the requirements will focus on
methods to detect quality of data and cause-effect between
quality of data and ML service performance for dynamic
inferences, which is the major focus in IoT Cloud systems.
Feature Attribution: For IoT data, domain experts know
which data fields (considered for features) play an important
role. Furthermore, there are many features extracted from IoT
data. Therefore, for feature attribution explanation, require-
ments will be centered on the list of important features based
on IoT data and domain knowledge, the explanation methods
selected by the developer (e.g., SHAP values [20] or Integrated
Gradients [7]) and the presentation forms of feature impact
suitable for the stakeholder. Another type of requirements is
related to how the developer and the domain expert design the
input baselines used by explainers. For example, in our BTS
case, such baselines are missing.
Training Configuration: The cause of poor behavior for a
ML model may be related to the parameters of the ML model
and its training data [19]. Stakeholders need explanation for
ML model behavior and selection via training configurations,
which indicate trained models, data and tuning parameters.
Typically, different experiments are carried out by the de-
veloper to select the optimal parameters and to measure the
robustness of the models through different datasets, by also
adjusting the baseline configurations. Therefore, our explain-
ability requirements will be focused on training configurations
and obtained measurements (robustness, parameter influences
[17]) as well as suitable tools for managing experiments.

C. Explainability requirements elicitation

Section III-A illustrates how to identify the scope of
stakeholders for holistic explainability. However, it is not

sufficient to meet their requirements if we cannot identify their
specific needs in different ML processes/tasks and explain-
ability aspects mentioned in Section III-B. To achieve that,
we recommend the following method, (1) identify concrete
individual stakeholders, (2) collect their requirements through
survey or interview, (3) continue to update their requirements
as the development progresses, e.g. every sprint if the Agile
development method is employed.

Fig. 4: Steps to collect and document explainability require-
ments

Figure 4 presents steps to collect and document explain-
ability requirements from stakeholders. To help formulate
the survey to collect requirements, we present an explain-
ability requirement template with basic information specified
in ExplainabilityList. This template covers relevant
explainability aspects, phase, requirement source, stakehold-
ers, reason, and priority. We use such a template to collect
requirements from stakeholders. After the survey has been
answered by individual stakeholders, it can be analyzed to
extract explainability requirement details. Given the collected
requirements, we transform the explainability requirements
into explainability focuses. Each explainability focus consists
of stakeholders, the related process in end-to-end ML, and the
relevant explainability aspects. Explainability focuses could
be the concise standard way to document and visualize the
explainability requirements, and could be used as a means of
communication in explainability solution design and planning.
Examples of BTS Explainability Requirements: Figure 5
illustrates an example of collected explainability requirements.
For example, one high priority requirement is about the quality
of the dataset from ML developer (requirement source) to the
predictive maintenance company (target stakeholders - who
are expected to satisfy the requirement). The reason is that
the quality of the dataset is important to explain the problem
of the model due to data. Another example is associated with
response time in the serving process. BTS requires a timely
response for the prediction to be useful, the BTS owner needs
not only the explanations for the delay in the service but also
the explanations for the model design with regard to the trade-
off between response time and model accuracy.

After analyzing the survey, processed requirements
can be extracted into ExplainabilityFocus.
ExplainabilityFocus can be stored in the JSON,



Fig. 5: Example of requirements

or CSV format for later usage. This example presents how
we can effectively find the explainability focus by involving
multi-stakeholders in collecting the requirements. The range
of processes and aspects shows a holistic explainability is
essential to capture the requirements from multi-stakeholders.
At the same time, we could capture the dependencies
between stakeholders, and their roles for the explainability
through this method, which enables better planning to collect
explainability requirements.

IV. DISCUSSION ON TOOLING AND INTEGRATION

For our holistic approach for explainability requirements,
we must also select and provide suitable tools for collecting
and maintaining such requirements and data for appropriate
explainers to provide a useful explanation. We identify the
following directions that we need to address:

Integrate explainability requirements into cloud-native De-
vOps: Given that today’s ML solutions are cloud-native and
ML engineering is based on DevOps [33], we need to in-
tegrate the explainability requirement workflows into cloud-
based tools to manage their requirements to avoid duplicate or
missing requirements. To the best of our knowledge, there have
not been any tools concentrating solely on ML explainabil-
ity requirements collection. However, there are several tools
available to capture common requirements from stakehold-
ers in software development, such as Accompa [34], Visure
[35], and MindManager [36]. Existing cloud-based, continuous
requirements management tools could be integrated into the
requirements identification in Section III-C.

Provide techniques and services for managing diverse types
of trails for explainability: for the holistic approach, we
must collect trails from different phases of end-to-end ML
including data and model collection, experiments, quality
of analytics, and requirements to provide explanations to
stakeholders. There are some tools available for supporting
monitoring data quality tools such as Great Expectations [37],
Databand [38], and Dataform [39]. Additionally, MLFlow
[40] and Data Version Control (DVC) [41] also support data
collection and management for model experiments, datasets,
and parameters. However, these frameworks do not support

a holistic explainability approach by keeping track of multi-
aspect requirements discussed in Section III concerning end-
to-end ML. This proposes future research about framework/-
tool integrated with the centralized management platform
mentioned above to capture various explainability aspects for
data and ML pipelines, as well as keep track of documentation
for requirements when validating data quality tests, metadata
experiments during model development, or explaining data
issues to relevant stakeholders in term of datasets, ML models,
services, experiments.

Identify, recommend and configure explanation tools: Given
collected requirements from different views of stakeholders,
multiple explainability aspects (related to data, models, and
services), and ML processes, we can identify and recommend
suitable explanation tools. Such tools have been increasingly
developed but it is difficult to know which tools are suitable
for which types of requirements. Furthermore, the combination
of different explanation tools, e.g., tools working with model
internals and tools with benchmarks/blackbox tests methods,
and newly developed explanation tools can address the multi-
aspect explainability as well as can support the explainability
across phases in end-to-end ML.

V. CONCLUSIONS AND FUTURE WORK

Explainability is complex and being able to identify the
scope to collect adequate requirements for explainability is
crucial. A scope of explainability is dependent on specific ML
solutions but it must be carried out from a holistic view. Our
focus is on requirements for explainability in developing ML
in IoT Cloud systems and we have presented a methodology
with three distinguishable aspects for explainability require-
ments: multiple stakeholders, end-to-end ML, and multi-aspect
explainability. Using our methods, the team developing ML
solutions could gather a rich set of requirements, steering
the ML design and development with the right solutions for
explainability.

Our future work is to complete templates and steps for
requirement elicitation. Furthermore, we are working on data
collection techniques and services for analyzing requirements
and relevant data for developing context-aware explainability.



REFERENCES

[1] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis: a
survey,” Digital Communications and Networks, vol. 4, no. 3, pp. 161–
175, 2018.

[2] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), 2018, pp. 80–89.

[3] A. Barredo Arrieta, N. Daz-Rodrguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[4] H. Truong, “Integrated analytics for iiot predictive maintenance using iot
big data cloud systems,” in IEEE International Conference on Industrial
Internet, ICII 2018, Seattle, WA, USA, October 21-23, 2018. IEEE,
2018, pp. 109–118.

[5] U. Bhatt, M. Andrus, A. Weller, and A. Xiang, “Machine learning
explainability for external stakeholders,” Jul 2020.

[6] L. Chazette and K. Schneider, “Explainability as a non-functional
requirement: challenges and recommendations,” Requirements Engineer-
ing, vol. 25, no. 4, p. 493514, 2020.

[7] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” 2017 IEEE International Conference on
Computer Vision (ICCV), 2017.

[8] A. Galli, V. Moscato, G. Sperl, and A. D. Santo, “An explainable arti-
ficial intelligence methodology for hard disk fault prediction,” Lecture
Notes in Computer Science Database and Expert Systems Applications,
p. 403413, 2020.

[9] Y. Xie, D. Feng, F. Wang, X. Tang, J. Han, and X. Zhang, “Dfpe:
Explaining predictive models for disk failure prediction,” 2019 35th
Symposium on Mass Storage Systems and Technologies (MSST), 2019.

[10] M. Ribeiro, S. Singh, and C. Guestrin, “why should i trust you?:
Explaining the predictions of any classifier,” Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations, 2016.

[11] P. J. Phillips, C. A. Hahn, P. C. Fontana, D. A. Broniatowski, and M. A.
Przybocki, “Four principles of explainable artificial intelligence,” 2020.

[12] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine
learning for scientific insights and discoveries,” IEEE Access, vol. 8, pp.
42 200–42 216, 2020.

[13] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
p. 832, 2019.

[14] G. I. Webb, L. K. Lee, F. Petitjean, and B. Goethals, “Understanding
concept drift,” Apr 2017.

[15] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim,
“Towards a rigorous evaluation of xai methods on time series,” 2019.

[16] A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss, and R. Farivar,
“Towards automated machine learning: Evaluation and comparison of
automl approaches and tools,” in 2019 IEEE 31st International Confer-
ence on Tools with Artificial Intelligence (ICTAI), 2019, pp. 1471–1479.

[17] T. Halvari, J. K. Nurminen, and T. Mikkonen, “Testing the robustness
of automl systems,” Electronic Proceedings in Theoretical Computer
Science, vol. 319, p. 103116, Jul 2020.

[18] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai:
A review of machine learning interpretability methods,” Entropy, vol. 23,
no. 1, 2021.

[19] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
Knowledge-Based Systems, vol. 212, p. 106622, 2021.

[20] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 47684777.

[21] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Van-
schoren, “An open source automl benchmark,” 2019.

[22] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,

C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” pp. 446–459, 2020.

[23] S. Sean, J. Wang, W. T. Chai, P. Ni, A. Raj, and M. Karthik, “Contextual
ai.” [Online]. Available: https://github.com/SAP/contextual-ai

[24] “Gems ai.” [Online]. Available: https://www.gems-ai.com/
[25] M.-A. Zller and M. F. Huber, “Benchmark and survey of automated

machine learning frameworks,” Jan 2021.
[26] W. Zhang, W. Guo, X. Liu, Y. Liu, J. Zhou, B. Li, Q. Lu, and S. Yang,

“Lstm-based analysis of industrial iot equipment,” IEEE Access, vol. 6,
pp. 23 551–23 560, 2018.

[27] “Deep open catalog,” https://marketplace.deep-hybrid-datacloud.eu/.
[28] T. Tornede, A. Tornede, M. Wever, F. Mohr, and E. Hüllermeier, “Automl

for predictive maintenance: One tool to rul them all,” in IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for
Embedded Machine Learning, J. Gama, S. Pashami, A. Bifet, M. Sayed-
Mouchawe, H. Fröning, F. Pernkopf, G. Schiele, and M. Blott, Eds.
Cham: Springer International Publishing, 2020, pp. 106–118.

[29] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206–215, May 2019.

[30] Z. Weng, “From conventional machine learning to automl,” Journal of
Physics: Conference Series, vol. 1207, p. 012015, 04 2019.

[31] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, pp. 85–126, 2004.

[32] T. S. Sethi and M. Kantardzic, “Handling adversarial concept drift in
streaming data,” Expert Systems with Applications, vol. 97, pp. 18–40,
2018.

[33] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M. Con-
stantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russinovich,
“Toward ml-centric cloud platforms,” Commun. ACM, vol. 63, no. 2, p.
5059, Jan. 2020.

[34] “Accompa.” [Online]. Available: https://web.accompa.com/
[35] “Visure.” [Online]. Available: https://visuresolutions.com/
[36] “Mindmanager.” [Online]. Available: https://www.mindmanager.com/en/
[37] C. James, G. Abe, M. Eugene, L. Rob, and M. Taylor, “Great-

expectations,” GitHub repository, 2021.
[38] “Databand.” [Online]. Available: https://databand.ai/
[39] “Dataform.” [Online]. Available: https://dataform.co/
[40] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski,

S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar,
“Accelerating the machine learning lifecycle with mlflow,” IEEE Data
Eng. Bull., vol. 41, pp. 39–45, 2018.

[41] A. Barrak, E. E. Eghan, and B. Adams, “On the co-evolution of ml
pipelines and source code - empirical study of dvc projects,” pp. 422–
433, 2021.


