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ABSTRACT
In the context of edge computing, IoT-as-a-Service (IoTaaS)
with IoT data hubs and execution services allow IoT tenant ap-
plications (apps) to be executed next to IoT devices, enabling
edge analytics and controls. However, this brings up new se-
curity challenges on controlling tenant apps in IoTaaS, whilst
the great potential of IoTaaS can only be realized by flexible
security mechanisms to govern such applications. In this pa-
per, we propose a Model-Driven Security policy enforcement
framework, named MDSioT, for IoT tenant apps deployed in
edge servers. This framework allows execution policies speci-
fied at the model level and then transformed into the code that
can be deployed for policy enforcement at runtime. Moreover,
our approach supports for the interoperability of IoT tenant
apps when deployed in the edge to access IoTaaS services.
The interoperability is enabled by an intermediate proxy layer
(gatekeeper) that abstracts underlying communication proto-
cols to the different IoTaaS services from IoT tenant apps.
Therefore, our approach supports different IoT tenant apps to
be deployed and controlled automatically, independently from
their technologies, e.g. programming languages. We have de-
veloped a proof-of-concept of the proposed gatekeepers based
on ThingML, derived from execution policies. Thanks to the
ThingML tool, we can generate platform-specific code of gate-
keepers that can be deployed in the edge for controlling IoT
tenant apps based on the execution policies.

ACM Classification Keywords
D.4.6 OPERATING SYSTEMS: Security and Protection;
D.2.2 SOFTWARE ENGINEERING: Design Tools and Tech-
niques; D.2.11 : Software Architectures; D.2.12 : Interoper-
ability

Author Keywords
IoT, Model-Driven Security, Access Control, Edge computing,
ThingML, services computing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoT’18, Santa Barbara, CA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

INTRODUCTION
With the rapid development of IoT infrastructures and plat-
forms, computing power and computing model have been
moving towards the Edge [21]. Edge computing concepts and
IoT infrastructures enable IoT as-a-service (IoTaaS), in which
third-party IoT applications (called IoT tenant apps for short),
carrying IoT data analytics and controls, can be deployed in Io-
TaaS platforms. This model brings up new security challenges
to govern how IoT tenant apps use IoTaaS platforms because
the traditional security and access control mechanisms can
only provide secure communication or enforce coarse-grained
policies. The great potential of IoTaaS platforms can only be
realized by dynamic, flexible, yet manageable and easy-to-use
security mechanisms to control IoT tenant apps. For instance,
in IoTaaS scenarios, authentication and authorization are not
as straight-forward as responding yes or no to access requests
of IoT tenant apps according to a fixed policy. In practice,
these scenarios require various dynamic aspects, such as, time,
physical resources, and payment models, and other security
aspects that must be considered at runtime to enforce IoT se-
curity policies. In other words, IoT tenant apps on IoTaaS
platforms requires dynamic context-based policies.

Moreover, deploying and controlling tenant apps must con-
sider their technologies to ensure that these apps are not
only well supported to run, but also well controlled in terms
of execution and security. If tenant apps are using differ-
ent technologies from the base IoT services of IoTaaS plat-
forms (IoTaaS services), we must ensure the interoperability
among tenant apps and the IoTaaS services in the edge.

Problems: 1) IoT tenant apps must be controllable in IoT
Edge servers whilst allowing them to use IoTaaS platforms.
2) Execution policies for IoT services and devices must be
dynamic context-based policies, local and platform-specific.
IoTaaS providers still need to have a centralized control and
generic platform to specify, and then enforce execution poli-
cies in the edge servers. A centric and systematic IoT execu-
tion policies management and enforcement solution is vital.

Goals and the proposed solution: Because edge operations
are very much context-sensitive, the design of security in Io-
TaaS should include support for dynamic context. Moreover,
dynamic context normally also means local-specific, platform-
specific context of IoT scenarios. On the other hand, from the
engineering point of view, IoTaaS providers would go for a
generic framework that allows having a generic, centralized so-
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lution of specifying and developing generic execution policies,
which will be enforced at runtime with dynamic context. In
this work, we propose a domain-specific language (DSL) for
defining generic execution policy for IoT. Our DSL leverages
Access Control and Usage Control concepts [2, 17], with a
focus on dynamic context for IoT scenario. The DSL is part
of our model-based security engineering approach for IoT.
Model-based engineering is gaining more favor as a way to
engineer complex systems, such as IoT and Cyber-Physical
Systems, especially including crosscutting concerns like secu-
rity [14]. Along this line, our model-based security engineer-
ing approach consists of a model-driven framework to automat-
ically enforce the policies defined with our DSL at a high level
of abstraction into local-specific, platform-specific context of
IoT scenarios. Moreover, our security policy enforcement
framework implements some of the key Cloud Design Pat-
terns such as the Gatekeeper and Throttling patterns [9] in
combination with usage control [17].

Contributions: Our main contribution is the generic
Model-Driven Security (MDS) enforcement framework for
IoT (MDSioT) in the edge. The MDSioT framework pro-
vides a centralized execution policy management for IoTaaS
providers. Empowered by an MDS approach, the framework
allows generating security enforcement code, called gatekeep-
ers, for different kinds of IoT tenant apps, and deploying a
tenant app with its corresponding gatekeeper in the edge server.
Moreover, MDSioT supports for the interoperability of tenant
apps when deployed in edge servers. In certain cases, tenant
apps do not need to care about the underlying communica-
tion protocols to the IoTaaS services provided by the IoTaaS
provider. Generated gatekeepers will play as an intermedi-
ate layer between the tenant apps and the IoTaaS services for
enforcing execution policy in the edge. We demonstrate our
approach with an initial prototype using ThingML [8].

In the remainder of this paper, first, we provide motivating
examples and research challenges of our work. Then, we
present our approach to tackling the challenges. After that,
we discuss our current prototype, followed by related work.
Finally, we conclude the paper and present the future work.

BACKGROUND AND MOTIVATION

A motivating scenario
Let us consider the case of IoTaaS having IoT data streams and
edge servers for tenants to perform data analytics in the edge
(Figure 1). Our case, derived from scenarios in the INTER-
IoT project1, is in the seaport management and logistics in
which various data streams from sensors deployed in terminals,
gateways, lanes, etc., in the seaport are aggregated into edge
servers. Each edge server has a mini IoT data hub (running
with MQTT/Mosquitto) for data streams. The sensors moni-
toring data about equipment, cranes, trucks, lights, electricity
grids and the environment in the seaport are provided for third
parties (e.g., truck companies, vessel management companies).
The third parties will deploy their apps in the edge server to
perform various tasks. The main stakeholders are as follows.
The IoTaaS providers making data and edge computing nodes
1http://www.inter-iot-project.eu/

are the telcos/IT companies doing the seaport monitoring.
Some examples of the tenants using IoTaaS are the seaport au-
thority, truck companies, and vessel management companies.
The tenants want to run their apps, called TenantApps, in
the edge server, and access the IoTaaS services provided
by the provider. The IoTaaS services, in this case, are
IoTDataHub for providing data used by the TenantApp and
ExecutionEngineService for running the TenantApp.

One of the first problems is that a TenantApp can only be
allowed to access certain types of data because there are many
tenants using the same IoTDataHub. For example, the tenant
maintaining lights is not allowed to access data about gate
controls, which are performed by another tenant. Furthermore,
each tenant can also use the ExecutionEngineService for
executing their work-flows or dockerized analytic programs
with certain constraints based on their contracts. Note that
one tenant might run the same TenantApp on multiple edge
servers, for example, when the port management has to control
lights based on truck accesses.

From the IoTaaS infrastructure provider’s viewpoint, the
provider does not know the logic of TenantApp in detail.
For example, such TenantApps can be written in simply
Javascript/Python code running atop bare containers or in
work-flows running within, e.g., a Node-RED engine. The
provider offers different execution engines like Docker con-
tainers or Node-RED. Furthermore, TenantApp instances in
different edge servers can communicate with each other. The
requirements are that they should be able to communicate
using services in Edge servers. Here they might face issues
related to interoperability w.r.t. protocols and data among
servers. Thus, the Edge servers should provide such bridges
via the Edge-to-EdgeConnectivityService. There could
be various reasons for instances of TenantApps to exchange
data. For example, due to security constraints, one Edge server
can be a place where data streams from IoT devices are concen-
trated whereas another Edge Service is configured to interface
to controls of equipment. Therefore, one instance might carry
out analytics mainly whilst another instance carries out control
commands based on the analytics.

View on IoTaaS and current issues

Figure 1. IoT Infrastructure-as-a-Service at the Edge.

Figure 1 shows the normal IoTaaS deployment view, in which
tenant apps have direct access to the provided IoTaaS services
in the edge; tenant apps use typical user authentication and
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service access keys for accessing these services. As IoTaaS
is still in its infancy, approaches for security control of tenant
apps are needed to fill the gaps in the current IoT platforms
and Edge server deployment. For example, MQTT does not
provide support for access control management [13] and tenant
app’s resource consumption control in the Edge. In the current
way of dealing with security, such as capability-based control,
authentication and authorization would mainly be using “trusts”
based on signed paper contracts and the above-mentioned
typical service access methods. In the next section, we will
present our approach to address these issues.

OVERVIEW OF OUR APPROACH

Key principles of MDSioT
Having considered the issues discussed in the previous section,
we propose an approach to fully govern tenant apps in the
Edge. We introduce an intermediate layer to intercept requests
using the gatekeeper patterns, plus monitor and use throttling
patterns [9], for controlling tenant apps. Specifically, we gen-
erate a gatekeeper for each tenant app and deploy both the
gatekeeper and the tenant app together in the Edge server. A
gatekeeper acts as a proxy for its tenant app to execute and
access the base IoT services, according to an execution policy
agreed among the tenant and the provider. We leverage the
concept of “context” in usage control [17] for flexible access
control of IoT tenant apps. There are three main engineering
principles for our approach:
1) Increase interoperability support for different tenant
apps. We understand that tenant apps can be very different
from one to another, such as written in different languages
and using different application-level communication proto-
cols. By generating a specific gatekeeper for each tenant app,
not only we can control its access to the IoTaaS services but
also abstract the communication protocols between tenant
apps and the IoTaaS services. In other words, tenant apps are
loosely coupled, communication protocols-independent from
the IoTaaS services. Generated gatekeepers and IoTaaS plat-
form support for different communication protocols.
2) Distributed, high-performance access control to avoid
"bottleneck" of the centralized PDP-PEP model [16], where
all access requests from tenant apps via Policy Enforcement
Points (PEP) need to be decided by a centralized Policy Deci-
sion Point (PDP). This is also important in the IoT scenario
as the access might involve voluminous data on the move.
Here, with the gatekeeper, we have a specific PDP-PEP for
each tenant. This is a lightweight enforcement solution that
is especially beneficial for Edge servers, which often have
limited resources. If the policy changes, the gatekeeper can be
updated at runtime to enforce the latest policy.
3) Flexible monitoring and throttling processes of tenant’s
activities if over preset limits. Performed as a proxy between a
tenant and the provided services, the gatekeeper can detach its
tenant from using resources and accessing provided services.

Phases and detailed steps
Figure 2 envisions the typical interaction flows of our approach
between various components and security as an output. First,
an IoTaaS provider makes IoTaaS APIs publicly available to
potential tenants, who develop their IoT apps to leverage the

IoTaaS services for their businesses. Tenants are also aware
of different (price) models of execution policies set by the
provider for tenant apps. Tenants can choose a configuration of
execution policy for their app(s) using the xPolicyTemplate.
The output of this process is the xPolicyInstance for a
specific tenant that indicates what, when, how, and where
IoTaaS services are accessible by the tenant’s app(s) as well as
the allowed capability for the resources. xPolicyInstance
is automatically transformed into a platform-specific Tenant
Gatekeeper component, which is deployed together with the
tenant’s app(s) in the Edge server to control those app(s).

Figure 2. Workflow for specifying and enforcing execution policy in IoT.

Figure 3 shows an overview of the main steps of our approach
mapped into DevOps, and different choices of tools for each
step. We aim to support for DevOps, with a focus on IoT/Edge
applications, to enable continuous delivery of tenant apps2.

In the planning phase, the IoTaaS provider makes the APIs of
its IoTaaS services and the execution policy (xPolicy) tem-
plate available to potential tenants. This step is supported by
a public cloud portal where potential tenants can browse Io-
TaaS services and subscribe to services with execution policies.
Based on the provided xPolicy template, a tenant registers
its IoT service with the IoTaaS provider by specifying how
it uses the IoTaaS services: which services it registers to use,
data amount, the resource needed and so on. The xPolicy
template contains the specification on what available options
for tenant apps to use the provided IoTaaS services. This
template is, in fact, a model that conforms to the metamodel
IoTxPo_MM presented in the next section. The metamodel can
be created in EMF3 or using UML profiles [5]. The service
contract agreements are stored by IoTaaS Provider’s system
in the form of model instances (xPolicy instances) of the
metamodel IoTxPo_MM.
In the coding phase, based on the provided APIs, tenants will
develop their IoT apps that use the provided IoTaaS services
for their businesses. Tenants are free to choose how they
develop their tenant apps, e.g., simply standalone Javascrip-
t/Python code or part of existing frameworks such as SMOOL4,

2https://www.enact-project.eu
3https://www.eclipse.org/modeling/emf/
4https://bitbucket.org/jasonjxm/smool/wiki/Home
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Figure 3. Overview of phases and tool chain for our MDSioT approach from DevOps viewpoint.

FIWARE5, or SOFIA26. By using a model-to-model trans-
formation (MMT) engine, such as ATL or Epsilon, we can
automatically derive the Gatekeeper ThingML model (code)
from the xPolicyInstance. Depending on the target platform
for the tenant app, ThingML toolchain generates platform-
specific gatekeeper code to be built and deployed together
with the tenant app. This step can also be achieved by other
model-based code generation tools, such as Acceleo7, but we
chose ThingML toolchain8 for implementing our prototype
because of its specialized support for IoT engineering. We
present more about ThingML in the related work section.
In the building phase, depending on the target platform for
running tenant apps, different tools can be used, e.g., Maven
for Java. We do not focus on build, test, release in this paper.
In the deployment phase, depending on the target platform
of the tenant app, we can use different tools for supporting
this step such as Docker, Kubernetes9 or Node-RED10. The
deployment stage is overlapping with the operation stage in
terms of the tool because the same tool can be used in operat-
ing the tenant apps and gatekeepers.
In the operation phase, tenant apps can access to the
IoTaaS services via the gatekeepers according to execution
policies. The gatekeepers are components that not only con-
trol tenant apps but also support for tenant apps to access
to the IoTaaS services without knowing about the underlying
communication protocols. We present more details about this
aspect in the next sections.

THE KEY PARTS OF OUR APPROACH
Our approach aims at enabling security control and manage-
ment at a high level (models) and automating the policy en-
forcement process from models (e.g., in the cloud or edge
server) to code (in edge server, IoT gateway). In other words,
our approach is to follow the end-to-end MDE for IoT and
along MDE we address execution policy. Figure 4 illustrates
the overview of our approach to derive the gatekeeper code
from the policy, which briefly described in the next subsection.
5https://www.fiware.org
6http://sofia2.com/home_en.html
7http://www.eclipse.org/acceleo
8https://github.com/HEADS-project/training
9https://kubernetes.io/

10https://nodered.org/

Next, we present our domain-specific language (DSL, namely
IoTxPo_MM) for specifying the execution policies of tenant
apps. Then, we describe the enforcement framework.

MDS for IoT policy enforcement
In this subsection, we present our MDSioT approach for spec-
ifying and enforcing execution policies for tenant apps in the
Edge. Figure 4 shows how execution policies specified at the
model level can be enforced at the code level.

Figure 4. From policy model to gatekeeper code.

On the one hand, we have developed a DSL (IoTxPo meta-
model) for specifying IoT execution policy models (IoTxPo
models) (see the next section). On the other hand, we use
another DSL extended from ThingML [8] to express the bind-
ings between the endpoints of tenant app(s) with the IoTaaS
ServiceEndpoint(s) and the execution policy for the bind-
ings. The bindings are like port-binding in component-based
approaches, which also contain the logic of execution policies.
By using model transformations, we transform the IoTxPo
model into GateKeeper.thingml, which conforms to the
ThingML metamodel. The Gatekeepers are ThingML models
that can be used to automatically generate platform-specific
code for policy enforcement (GateKeeper.*), e.g., Javascrip-
t/NodeJS, C or Java. Depending on the platform-specific IoT
Gateway and tenant apps, from ThingML models of gatekeep-
ers, we use the ThingML toolchain to generate the gatekeeper
code for policy enforcement, which can be deployed together
with the corresponding tenant app(s). In this way, IoT tenant
apps and gatekeepers can be deployed to enforce execution
policies, and even can be updated at runtime. Tenant apps and
gatekeepers are organized in a component-based approach to
facilitate separation of concerns and reusability. The gatekeep-
ers play as proxy-components to control access and execution
between tenant apps and the IoTaaS services.

A metamodel of execution policy for tenants
An IoTaaS provider manages its execution policies for differ-
ent tenants based on the IoTxPo model, which conforms to
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Figure 5. The metamodel of IoT Execution Policy.

the metamodel described in Figure 5. The metamodel shows
the conceptual design of our DSL for specifying execution
policies of tenant apps. The main concepts of the DSL show
what EdgeService(s) that the IoT Edge server offers, via
what ServiceEndpoint(s). The policy also indicates the
Context of each Permission that a tenant can do with the
registered ServiceEndpoint(s) as well as when, how it can
use these services. Each permission contains the Capability
of each ServiceEndpoint that tenant’s Endpoint is allowed
to use. To support the deployment process, the policy also
contains the specification for deployment DeploymentSpec
for each IoT tenant, such as configuration (resourceConfig)
and required libraries (requiredLib).

As an example, the IoTaaS provider specifies the
IoTaaS services (EdgeService) that are deployed on its Edge
server(s) such as Security Camera, Light Service, Temperature
Sensor, and Presence Sensor. Each service is offered to its ten-
ants via its ServiceEndpoint (API) such as request-for-sensor
information or command, with the corresponding capability of
the service. On the other hand, the policy model also allows
specifying each IoT tenant that contracted to use the IoTaaS. It
captures the deployment specification(s) of IoT tenant service,
e.g., SMOOL libraries, and more importantly, the endpoints
that accessing the IoTaaS services. The main part of the policy
models specifies the rules about what, when, how tenant apps
can use the provided base services. More specifically, each
endpoint of IoT tenant is associated with a permission stating
which IoTaaS services it has access to, and how it is allowed
to use those services, specified in the contexts associated with
the rules. For example, a tenant may be only allowed to ac-
cess to a provided service during a certain time period, with a
specific location, and with limitation in reading sensors’ data.

IoT execution policy enforcement
This subsection presents the architecture for IoT execution
policy enforcement. Figure 6 shows the distributed model
for policy enforcement. Each tenant app is deployed with its
own local PDP-PEP embedded in the gatekeeper for access
control and execution management. Gatekeepers abstract the
access from tenant apps to services. Tenant apps cannot ac-
cess directly to the IoTaaS services without the gatekeepers.
Moreover, the PDP in the gatekeeper is fed by the Executio-
nEngineService about the real-time contexts of the tenant apps
at runtime. This means that the access control decision is
not only based on the static policy but also dynamic runtime

Figure 6. The IoT Execution Policy Enforcement in the Edge.

context, such as a change of location, need for IoT resource
balancing, time-factors. In this work, we mainly focus on the
access control of tenant apps to the base services. Some simple
examples of execution policy instances can be found in [19].
We have not detailed the monitoring and throttling solutions
yet. But the basic ideas were to leverage existing execution
platform’s features such as from Docker or Node-RED to get
the runtime status of tenant apps and control them according
to execution policies, e.g., throttling [9].

PROTOTYPE FOR A LIGHTWEIGHT IOT EDGE SERVER
Let us consider the case to provision Edge servers with a
lightweight configuration, e.g., a typical small server. A simple
tenant app to demonstrate for this case is a lighting control
app that accesses the IoTaaS services to turn on, turn off, and
adjust the lighting in the seaport based on trucks access to
lanes and the light sensor’s value. The light sensors and events
about trucks access to the port are published via MQTT.

Systems view without MDSioT
Without MDSioT, because the Edge server configuration is
light, we could deploy only basic IoT services, such as MQTT
for IoTDataHub, Node-RED for ExecutionEngine, ufw-based
firewall11 for network function and n2disk for DPI. All of such
IoT services can be provisioned through a provider. In our test,
we use the GenericIoTFunctionProvider12 to make such a de-
ployment of IoT services for lightweight Edge servers. In this
example, since our selected edge server is very lightweight,
it is possible that multiple tenants have to share the same de-
ployment of IoTaaS services and access them (at will). The
tenant app in the example will need to implement the support
for exchanging data using two different communication pro-
tocols: MQTT for monitoring data and REST for controlling
lights. Each tenant app has to implement its own support for
connecting to the services via the provided protocols.

11https://wiki.ubuntu.com/UncomplicatedFirewall
12https://github.com/rdsea/IoTCloudSamples/tree/master/
IoTProviders/GenericLightweightIoTProvider

https://wiki.ubuntu.com/UncomplicatedFirewall
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTProviders/GenericLightweightIoTProvider
https://github.com/rdsea/IoTCloudSamples/tree/master/IoTProviders/GenericLightweightIoTProvider


MDS-enabled view with MDSioT
With MDSioT, we can generate the gatekeepers for different
tenant apps accessing different types of IoTaaS services. The
deployment process will not only deploy the tenant app but
also its gatekeeper, including the support for communication
protocols to different IoTaaS services. Figure 7 shows the ar-
chitecture after deployment. The TenantApp is paired with
the generated Adapter4Tenant via endpoints (like ports in
component-based engineering). Listing 1 shows an example of
adapter in ThingML that will access to the ServiceEndpoint
via Gatekeeper to provide light sensor’s value to TenantApp.
The Gatekeeper contains policy enforcement logic for this
TenantApp, and only allows data access if the request con-
forms to the policy for this tenant at runtime (Listing 2).
The ServiceEndpoint provides the data access layer to IoT-
DataHub (like Mosquitto, Listing 3). The ServiceEndpoint
does not need to be generated but can be already provided by
the IoTaaS provider. The SmoolLightingSensorService
streams light sensor’s value to a Smool consumer for calcu-
lation, and by combining with truck access data, and take
actions like turn on or turn off lights along the lanes. Note
that ThingML supports code generation for different target lan-
guages such as Java, C, Javascript/NodeJS, or Go, enabling the
engineering of our approach for diverse types of Edge servers
and IoT services. In this prototype, we use ThingML to gen-
erate Java code of gatekeeper (and adapter) for TenantApp
SmoolLightingSensorService.java.

Figure 7. TenantApp accessing ServiceEndpoint via Gatekeeper.

1 i m p o r t " a p i . t h i n g m l "

3 t h i n g JavaSmoo lDa taP roduce r i n c l u d e s API

5 @src " . . / s r c "
@maven_dep "<dependency >< groupId > org . smool . kpi < / groupId ><

a r t i f a c t I d >common </ a r t i f a c t I d >< v e r s i o n > 2 . 2 . 4 < / v e r s i o n
> </ dependency >"

7 @maven_dep . . .

9 {
p r o v i d e d p o r t pp

11 @sync_send " t r u e "
{

13 r e c e i v e s l i g h t i n g S e n s o r D a t a
}

15

s t a t e c h a r t SmoolDataProducer i n i t send ingSmoolData {
17 s t a t e send ingSmoolData {

i n t e r n a l e v e n t s : pp ? l i g h t i n g S e n s o r D a t a
19 a c t i o n do ‘

S m o o l L i g h t i n g S e n s o r P r o d u c e r L i b p r o d u c e r =
S m o o l L i g h t i n g S e n s o r P r o d u c e r L i b . g e t I n s t a n c e ( ) ;

21 i f ( p r o d u c e r . c o n n e c t ( ) ) {
p r o d u c e r . sendValue ( ‘ & s . s e n s o r D a t a & ‘ ) ;

23 } e l s e {
System . o u t . p r i n t l n ( " \ n P r o d u c e r i s n o t

c o n n e c t e d t o SMOOL s e r v e r ! " ) ;

25 }
‘

27 end
}

29 }
}

Listing 1. An example of adapter code in ThingML

i m p o r t " a p i . t h i n g m l "
2

t h i n g J a v a G a t e k e e p e r i n c l u d e s API
4 {

r e q u i r e d p o r t rp { . . . }
6 p r o v i d e d p o r t pp { . . . }

8 s t a t e c h a r t P o l i c y E n f o r c e r i n i t c h e c k i n g P o l i c y {
on e n t r y p r i n t " P o l i c y E n f o r c e r c h e c k i n g p o l i c y ! \ n "

10 s t a t e c h e c k i n g P o l i c y {
i n t e r n a l e v e n t sd : pp ? l i g h t i n g S e n s o r D a t a

12 gua rd sd . s e n s o r D a t a > 0
a c t i o n do

14 / / c h e c k i n g t h e p o l i c y b e f o r e s e n d i n g s e n s o r d a t a
‘ i f ( PDP . i s A l l o w e d ( ‘& sd . x & ‘) ) { ‘

16 rp ! l i g h t i n g S e n s o r D a t a ( sd . s e n s o r D a t a )
‘} e l s e { ‘

18 / / n o t a l l o w e d
‘ } ; ‘

20 end
. . .

22 }
}

Listing 2. An example of PolicyEnforcer of JavaGateKeeper.thingml

1 i m p o r t " a p i . t h i n g m l "
i m p o r t " JavaSmoo lDa taP roduce r . t h i n g m l "

3 i m p o r t " J a v a G a t e k e e p e r . t h i n g m l "

5 t h i n g J a v a E n d p o i n t i n c l u d e s API {
p r o v i d e d p o r t pp { . . . }

7 r e q u i r e d p o r t rp { . . . }

9 s t a t e c h a r t i n i t INIT {
s t a t e INIT {

11 on e n t r y p r i n t " MQTTDataService r e a d y ! \ n "
i n t e r n a l e v e n t e : pp ? l i g h t i n g S e n s o r D a t a

13 rp ! l i g h t i n g S e n s o r D a t a ( e . s e n s o r D a t a )
}

15 . . .
}

17 }

19 / / TODO: Compile and run f o r t h e Java p l a t f o r m
p r o t o c o l mqt t

21 @ s e r i a l i z e r "JSON"
@ mq t t _b ro ke r_ ad d re s s " l o c a l h o s t " / / " t e s t . m o s q u i t t o . o rg "

23 @mqt t_b roke r_por t " 1883 "
@ m q t t _ s u b s c r i b e _ t o p i c " l i g h t i n g S e n s o r 1 _ D a t a "

25 @ m q t t _ p u b l i s h _ t o p i c "Cmd"

27 c o n f i g u r a t i o n j a v a c f g {
i n s t a n c e e n d p o i n t : J a v a E n d p o i n t

29 i n s t a n c e s moo lD a ta P r odu ce r : J avaSmoo lDa taP roduce r
i n s t a n c e g a t e k e e p e r : J a v a G a t e k e e p e r

31

c o n n e c t o r e n d p o i n t . pp ove r mqt t
33 c o n n e c t o r e n d p o i n t . rp => g a t e k e e p e r . pp

c o n n e c t o r g a t e k e e p e r . rp => sm oo lDa ta P ro du ce r . pp
35 }

Listing 3. A ServiceEndpoint JavaLightingDataMQTT.thingml

RELATED WORK AND DISCUSSION
Model-driven security (MDS) empowers security for software
systems by specifying and engineering security requirements
with system models [2]. These specifications will be gener-
ated into system architectures automatically by corresponding



tools. In the last few years, MDS has been widely researched
and applied [15]. In the domain of cyber-physical systems
(CPSs), there have been various studies applying MDS in
CPSs, however, most of these studies only focus on general
security analyses, and thus lacking the engineering security
solutions as well as limited tool support [14].

Various application architectures have been proposed for
IoT [23–25, 27]. In this work, we consider the IoT infras-
tructures with edge/fog computing models [4, 21]. In these
models, multiple tenant apps can be deployed and executed
atop of a fog software infrastructure that provides services
to the applications [3]. Examples of this architecture include
e.g., Cisco Edge Fog Fabric13, and Azure IoT Edge14. Al-
though there have been several security solutions for IoT,
e.g., [6, 10, 18, 20, 22], these approaches mostly focus on the
authentication and secure connection among the Things, thus
lacking the security for IoT tenant apps in the Edge server with
their complexity of the interoperability. Indeed, in [11], the
authors have addressed various security requirements for a fog
computing architecture for IoT. Despite there are a few general
approaches suggested in [11], these have not been realized and
are not specific to IoT tenant apps as we consider in this paper.

Standard policy languages such as WS-SecurityPolicy, Role-
Based Access Control, or Attribute-Based Access Control, sup-
port coarse-grained policies, thus cannot address the policies
based on context as we have investigated in this work. There
have been a few context-based security policy languages such
as aspect-oriented policy [7], ConSpec [1]. However, these
languages and related tools can enforce are platform-specific
and do not support IoT infrastructure-as-a-service.

Recently, there have been several proposals introducing se-
curity policy enforcement for IoT. For example, in [13], the
authors presented a model-based toolkit to enforce expressive
security policy rules, however, only at the MQTT broker level.
Closely related to our work, P4SINC [19] is an execution pol-
icy framework that can enforce various generic execution and
security policies for IoT application in the Edge. However, the
approach in P4SINC is to instrument the IoT applications to
inline the policy code into the applications before deploying
the applications. Similar to our work’s motivation, Velox [26]
provided a virtual execution environment can control the exe-
cution of IoT applications to ensure their safety and security.
Velox introduced a new high-level programming language that
can be executed in the virtual environment. This approach re-
quires the IoT applications developed in that specific language,
while in our approach, IoT applications can be developed in
any language.

As mentioned earlier, we adopt the ThingML [8], proposed
by The HEADS FP7 EU project, and leverage its strengths in
our implementation. ThingML is a practical MDE approach
with a DSL, a toolchain that supports engineering distributed
resource-constrained embedded systems, especially IoT sys-
tems. ThingML provides methods and tool support for facilitat-
ing the integration of resource-constrained embedded systems

13Cisco Edge Fog Fabric Data Sheet https://bit.ly/2LrctgZ
14Azure IoT Edge https://bit.ly/2JUjPE0

with more powerful computing resources such as servers and
cloud. In other words, ThingML facilitates the collaboration
between IoT service developers and IoT infrastructure/plat-
form operators in a large range of processing nodes and proto-
cols with high heterogeneity [12]. One of the key features is
ThingML’s template mechanism integrated into the language
to integrate with third-party (or legacy) APIs, rather than re-
developing them from scratch. This makes ThingML practical
for integrating with different existing IoT services, supporting
many kinds of target platforms such as Java, NodeJS, Arduino.

CONCLUSIONS AND FUTURE WORK
Enforcing execution policies for IoTaaS is challenging. Model-
driven engineering approaches enable us to deal with the di-
versity and complexity of IoT services and tenants in IoTaaS
while allowing extensibility and interoperability in analytics
and controls of IoT devices across edge nodes in IoTaaS plat-
forms. In this paper, we have introduced an MDS framework
called MDSioT for specifying execution policies of IoTaaS
tenants and enforcing the policies in the Edge. MDSioT con-
sists of a DSL for specifying execution policies and a chain
of model transformations and code generation to generate
platform-specific gatekeepers from policies. The generated
gatekeepers, which are deployed together with tenant applica-
tions, act as an intermediate lightweight proxy layer to control
the access of tenant applications to the IoTaaS services of the
IoTaaS provider. We map the main steps of our framework
into the steps and possible tools for DevOps of IoTaaS, be-
cause we want to support DevOps for IoTaaS engineering. We
have demonstrated our approach in a prototype implemented
using ThingML, a practical MDE approach with tool support
specialized for IoT engineering.

Our work is still at an early stage with the focus on archi-
tectural designs, policy modeling, and engineering approach.
So far, we have mainly addressed access control of IoTaaS
tenant apps. We will improve our framework with the details
of monitoring and throttling techniques to better control tenant
apps. Another step is to work on the implementation of tools
and to perform various Edge analytics and control experiments
with real IoT services in telco and logistics domains to predict
maintenance and seaport management.
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