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Abstract—For predictive maintenance of equipment with In-
dustrial Internet of Things (IIoT) technologies, existing IoT Cloud
systems provide strong monitoring and data analysis capabilities
for detecting and predicting status of equipment. However, we
need to support complex interactions among different software
components and human activities to provide an integrated analyt-
ics, as software algorithms alone cannot deal with the complexity
and scale of data collection and analysis and the diversity of
equipment, due to the difficulties of capturing and modeling
uncertainties and domain knowledge in predictive maintenance.
In this paper, we describe how we design and augment complex
IoT big data cloud systems for integrated analytics of IIoT
predictive maintenance. Our approach is to identify various
complex interactions for solving system incidents together with
relevant critical analytics results about equipment. We incorpo-
rate humans into various parts of complex IoT Cloud systems
to enable situational data collection, services management, and
data analytics. We leverage serverless functions, cloud services,
and domain knowledge to support dynamic interactions between
human and software for maintaining equipment. We use a real-
world maintenance of Base Transceiver Stations to illustrate our
engineering approach which we have prototyped with state-of-
the art cloud and IoT technologies, such as Apache Nifi, Hadoop,
Spark and Google Cloud Functions.

I. INTRODUCTION

A sheer number of equipment to be managed in various
industries requires full automatic systems to capture equipment
operation status, analyze them, and automatically control these
equipment. Therefore, in predictive maintenance [1], [2] we
have observed a number of works that use state-of-the art
Internet of Things (IoT) devices, scalable message brokers,
and big data analytics in the cloud to monitor and analyze
equipment, such as discussed in [3], [4]. However, it is also
recognized by various researchers and practitioners that, in
many cases, we cannot fully rely on software systems and
intelligent algorithms to predict and maintain such equipment.
Several approaches have been discussed, such as using crowd-
sourcing tasks or improving artificial intelligence with humans
[5], [6], in order to deal with complex interactions by com-
bining software and human capabilities.

We focus on Industrial Internet of Things (IIoT) with
predictive maintenance functions built atop big data analysis
and expert capabilities. Considering common maintenance
workflows with big data analytics pipelines and services
in IoT Cloud systems, we identify important places where
insights about system problems and equipment problems will
be communicated to humans and services, utilizing human ca-

pabilities to decide and address possible activities in predictive
maintenance. While other researches focus on what humans
can do in terms of data analytics and data gathering [7], [8],
[9], we focus on how we enable humans to be in the loop
through service design and engineering perspective, but we
do not concentrate on managing and optimizing what humans
will do. We believe that this is a fundamental issue that has
been under-researched in complex IIoT.

To enable complex interactions among software and human
in predictive maintenance, we leverage reactive software de-
sign principles with serverless technologies to allow extensible
and fast integration between functions verifying maintenance
indicators and tasks to be carried out for such indicators.
Furthermore, we address the interdependencies among ICT
system incidents (potential problems of the IIoT-based big
data analytics) and equipment incidents (potential problems
of equipment to be maintained) in an integrated manner,
as we believe the accuracy and effectiveness of predictive
maintenance at a large scale cannot just deal with these two
sectors in a different way. For example, human capabilities
are used not only to verify status of equipment but also
to control sensors and suitable data analytics for deciding
which maintenance tasks should be done. Overall, this paper
contributes to service engineering techniques for operations
that humans play important roles:

• novel architecture and detailed analysis of system inci-
dents and critical analytics of equipment in IIoT inte-
grated analytics,

• holistic task analytics generation and integration for both
software and humans in IIoT maintenance using function
as a service, and

• human interactions in IIoT for (i) performing mainte-
nance of equipment based on critical analytics results
and (ii) controls the IoT Cloud systems for equipment
analytics based on system incidents.

For a proof-of-concept, we will describe various examples
from software design perspectives with the real software
prototype based on the maintenance of infrastructures of a
network of Base Transceiver Stations (BTSs).

The rest of this paper is organized as follows: Section II
present an analysis of complex interactions in IIoT predictive
maintenance. Section III details how we augment IoT Cloud
systems with holistic tasks for software for predictive main-
tenance. Section IV details human interactions and tasks. We



present our prototype and illustrating examples in Section V.
Related work is discussed in Section VI. We conclude the
paper and outline our future work in Section VII.

II. ANALYSIS OF COMPLEX INTERACTIONS IN IIOT
PREDICTIVE MAINTENANCE

A. IoT Cloud systems for IIoT Predictive maintenance

To maintain a large number of equipment from various
manufacturers, commonly we rely on different sensors, ac-
tuators, gateways, cloud storage, data processing algorithms
and intensive domain-knowledge. In particular, the sensor
and actuator parts are specifically designed to interface to
equipment to monitor and control the equipment. However,
other software and system parts are quite common to enable
large-scale data collection and analytics. Typically, the main
goals of IIoT predictive maintenance are (i) to use streaming
analysis to detect early warning situations and (ii) to gather
historical data for batch analytics, which can provide more
insights into equipment problems. State of the art tools are
usually built atop various big data services and scalable
message brokers, such as MQTT Mosquitto, IoT Hub (e.g.,
from Google, Microsoft Azure, and Amazon EC2), BigQuery,
Apache Hadoop, Apache Spark, Apache Kafka, Apache Flink,
to name just a few. However, for predictive maintenance,
domain knowledge is also crucial. Therefore, each third party
in predictive maintenance usually has its own way of handling
situations based on results from data analytics and its domain
expertise.

Figure 1 presents an IIoT system that we have built for
maintaining equipment in Base Transceiver Stations (BTSs)
and tested in research pilots with several BTSs in Vietnam. In
a BTS, we have sensors, actuators and gateways to monitor and
control equipment, such as power generator, backup battery,
HVAC, grid electricity sources, etc. BTS infrastructure main-
tenance companies have private clouds to gather equipment
monitoring data: these companies can share the data to the
telco company (BTS owners) as well as other third-party
companies doing the maintenance for specific equipment.
In general, maintenance companies and the telco company
have infrastructures for Data Sources to gather monitoring
data, covering status of equipment and performance of telco
network nodes (e.g., NodeB). Such data sources are shared to
various services in Predictive Maintenance Analytics, which
are built atop Apache Nifi, Hadoop FS and Spark (using
Google Dataproc), Google Big Query, Elastic Search and
Kibana, Apache Kafka and Apache Flink.

The above-mentioned system has several common com-
ponents and interactions that we see in typical IoT Cloud
systems. First, IoT subsystems are used for monitoring and
controlling equipment. Second, enterprise Cloud subsystems
for data processing, analytics and storage. Except the infras-
tructure services, these services can be on private or public
cloud but they are completely owned by the telcos and predic-
tive maintenance companies due to the sensitivity of data to be
processed. With current virtualization and service engineering
techniques, some important aspects we have observed are:

• Sensors and actuators: to support different data gathering
capabilities, sensors can be reconfigured at runtime.

• Data Sources: several data sources are available, Besides
sensoring data sent through gateways, we also have data
sources from other parts of the BTSs (e.g., telco NodeB)
and from extracted sensoring data. However, sharing such
data sources can be based on requests from analytics
triggered by humans.

• Cloud data processing and analytics: various analytic
pipelines are available, especially for big historical data.
To save cost they can be deployed and undeployed on-
demand. They include various cloud services to deal
with data forwarding, storage and processing. For data
analytics, typically we have streaming analytics and peri-
odically pre-configured cron jobs of batch analytics; they
are used for short term view on maintenance indicators
of equipment. Many batch processing algorithms are ex-
ecuted only on-demand for in-depth equipment analytics.

Since the software systems are complex, IoT Cloud systems
also are supported by service management systems, which
perform typical IT tasks, such as controlling sensors and
data analytics. Human interactions are thus required for IoT
Cloud system maintenance, besides human interactions for
investigating industrial equipment being maintained.

B. Integrated System and Application Domain Maintenance

1) IIoT and systems incidents: For predictive maintenance,
we rely on various near real time and historical data sources.
Many of them are collected by sensors from various places and
transferred to the cloud through complex software systems.
First, it is well-known that IoT data can have many data
quality problems [10], [11]. Second, since the system is
complex, various system incidents may occur across layers
and subsystems [12], such as failed algorithms due to a bad
data quality.

For all of these incidents, related to data, algorithms and
system services in the IoT Cloud systems, we call them
system incidents since they are not related to the equipment
being maintained but the IoT big data systems supporting
the maintenance. System incidents are in the focus on the
IoT Cloud operation management and are usually treated
differently from problems associated with industrial equipment
and by different teams. However, in our view, such incidents
should be also treated together with possible problems detected
in equipment (analyzed from the maintenance application
domain view). The rationale is that, for example, any issue
in IoT data could lead to wrong analytics of equipment as
well as could prevent further analytics of equipment. All of
these are part of integrated predictive maintenance tasks.

2) Equipment status and critical analytics result: The key
objective of predictive maintenance is to identify indicators
of equipment, e.g., discussed in [13], which are used to
trigger the maintenance of equipment. While conceptually
we can list different types of indicators, such indicators are
determined only through specific algorithms and data analytics
together with domain experts. In our system, we have two



Fig. 1. BTS, data sources and services for predictive maintenance

steps: algorithms and data analytics present possible indicators
encapsulated in what we call critical analytics results, then
these results will be propagated into the right components,
whether software or humans for further consideration. Thus,
one critical analytic result can lead to the trigger of another fur-
ther analytics. Our goal in this paper is not focused on specific
indicators (and how to determine them) but the interactions
among components in handling critical analytics results. One
important issue is that we consider the system incidents and
critical analytics results together as system incidents may
strongly influence the analytics producing the result leading
to equipment incidents.

C. Human interactions

Naturally, the ultimate goal is to reduce as many as possible
human interactions by using (machine learning) algorithms.
For example, one algorithm could, theoretically, predict a
power generator status by analyzing its alarms and decide
when a maintenance should be done. In practice, they are
extremely challenging and still we need to support human
interactions. This requires us to (re)design complex IoT Cloud
systems to accommodate humans interactions. We also have
to consider that, for complex maintenance, human capabili-
ties are not pre-defined (static assignment); they have to be
provisioned on-demand.

One of the first human interactions is to control and validate
IoT data collection processes. For example, more data sources
might be needed for analytics, but the data obtained might
have quality problems. Second, monitoring data from sensors
will be analyzed by different data analytics functions; each
function can be described in a form of data analytics pipelines.
Which functions and their parameters to be deployed are
heavily relied on domain knowledge and we can have different
functions for different purposes. Therefore, another type of
interactions is to allow humans to change and deploy these
functions on the fly, based on certain types of critical analytics
results of equipment operation and system incidents of IoT
Cloud systems. Concretely, we must distinguish different tasks
that humans can solve within predictive maintenance:

• change/configure sensors for data collections: humans
observe analytics results (e.g., data quality measured
by analytics processes) and decide that more sensoring

data are necessary for improving analytics. For this,
humans can select specific types of new sensors to be
deployed (e.g., with specific configurations), and modify
configurations of existing sensors.

• controlling cloud resources for handling/sharing col-
lected data: in certain situation, humans know better to
prepare the cloud resources for handling collected data. In
this case, humans can control cloud resources in advance,
instead of relying on reactive control rules of clouds.

• selecting and deploy suitable data analytics: humans
receive certain types of critical analytics results of equip-
ment that the analytics system does not know which types
of analytics should be done next to examine the problem.
In this case, humans can select and deploy or reconfigure
suitable analytic functions based on their expertise.

• optimizing equipment: humans might decide which pa-
rameters are the best in order to control equipment to fix
equipment through its actuators.

• fixing the physical systems of equipment: suitable people
can fix equipment physically.

The next important human interaction is actually to allow
a transparent communication of tasks with humans w.r.t.
requests and results. Both Streaming Analysis and Batch Anal-
ysis put analytics results into Analytics Results Management
database and storage. Besides storing results of analytics in
database and dashboards, for people decide what to do next,
we need to communicate potential issues, derived from analyt-
ics results, to human computation systems which automatically
determine right experts and enable automatic human tasks
assignment. In this view, it is important to define critical
analytics results and system incidents that trigger human tasks
(besides invocations of software services).

III. HOLISTIC TASK ANALYTICS AND GENERATION

A. System Overview

Figure 2 elaborates and augments the architecture in Figure
1 with integrated integration of humans and software in IIoT
predictive maintenance systems. First, we identify points of in-
strumentation where critical analytics results indicating issues
of equipment and system incidents impacting the data analytics
to be communicated to software services and to humans via
human tasks. Such results and incidents will be delivered



Fig. 2. IoT & Analytics for Predictive Maintenance

through a scalable message broker. A set of functions, in
Function Catalog, will be triggered based on such results
and incidents. Such functions will create human tasks that
will be sent to HumanServiceProvisioning Systems (HSPS).
HSPS will determine suitable professionals to perform the
tasks and communicate the tasks to the professional via
SmartCommunication. Professionals take the tasks and then
perform suitable actions, such as control sensors (e.g., by using
apps that call Webhooks/REST of services), deploy new data
analytics functions, etc.

The key issue of the above-mentioned system is that several
domain knowledge about predictive maintenance algorithms,
equipment and professionals are specific. Thus, we need
customized solutions for integrating them. We focus on service
engineering aspects and the use of severless functions to create
tasks that can be easily extended. To enable the integration
between different professionals, we use MessageBroker to
enable communication with different instances of HSPS, each
instance may be provisioned for a maintenance company.
SmartCommunication also enables different communication
means for humans. In our current prototype, we use Rab-
bitMQ as the MessageBroker, Google Functions for function-
as-a-service, and RAHYMS1 for HPSP. The communication
is based on utilities using conversational cloud tools (e.g.,
SendBird and Applozic).

B. Points of instrumentation

Points of instrumentation (PoI) are where in an IoT Cloud
system we capture information for generating tasks for possi-
ble maintenance activities. Technically, we can instrument the
code (e.g., using a library to evaluate the analytics results at the
end of the PySpark program), intercept the data flow (e.g.,
using a Nifi Processor implemented as an ExecuteScript
to monitor quality of input data), or event-trigger evaluation
(e.g., a function checking the analytics results when they are
uploaded into Google Storage). We support these types of PoI.

In the architecture shown in Figure 2 we have not presented
PoI for obtaining critical analytics results and system incidents.
To identify such PoI, it is important to note that they are

1https://github.com/tuwiendsg/RAHYMS

dependent on specific predictive maintenance systems. Given
IoT Cloud systems for predictive maintenance shown in Figure
1, the following PoI have the usual flows and the point to
report to other software services and humans:

• critical analytics results: warning, critical status, etc.,
detected from analytics results of equipment.

• system incidents: problems of quality of data in data
collection, services failure, etc.

Within PoI, we need to write the logic to determine if a result
or an incident requires software services or human tasks. We
focus more on the interface and the message structure for PoI
and leave the logic to be user-defined functions.

C. Reactive operations and extensible serverless functions

For reporting system incidents and critical analytics results
to trigger other tasks, we leverage messages and reactive and
serverless. Shown in Figure 2, instrumented code will create
events, which triggers serverless function that generate suitable
tasks for the next steps. The reactive principles2 are important
for this scale. For this maintenance, it is more than just waiting
for report from algorithms periodically and let the human
decides. We need to identify various situations:

• from the application domain based on critical analytics
results: the outcome from one analytics could trigger
other analytics automatically.

• from system operation based on system incidents: the
incident of a system would trigger humans to look at
potential issues in predictive maintenance analytics.

Combined with many tasks required human involvement, we
need a flexible way to easily add, remove, and change func-
tions which are loosely decoupled with other services and pro-
fessionals for maintenance. We choose serverless [14] model
as a way to integration to allow us to focus on events and
functions that can be supplied by various stakeholders. Fur-
thermore, choosing serverless function also enables flexibility
and extensibility in developing functions performing mapping
and invocation of issues to software or human tasks. To date
serverless has been widely used in various domains [15] but
its use in predictive maintenance with big data has not been

2https://www.reactivemanifesto.org/



seen. With serverless functions, various human capabilities in
principle are function that we need to invoke through the right
interactions. Serverless functions can be used to implement to
trigger both interfaces for humans and integrated with IoT,
big data and cloud systems directly. Second, functions can
also be used to develop mappings of events to tasks and such
mappings are changed other the time.

In principle, we can focus on writing functions that glue
output and input of various services and algorithms in IIoT
big data cloud systems, shown in Figure 1. Currently, we
consider this work done by through software integration:
function calls can be inserted during the software development
and operation. Such functions are invoked based on events of
system incidents and critical analytics results.

IV. INTEGRATION OF BIG DATA ANALYTICS WITH HUMAN
TASKS

A. Mapping incident records to human tasks

Fig. 3. Detailed serverless functions

From Figure 2, we have functions to be continuously
developed and deployed into the Function Catalog. Sources of
triggers are system incidents and critical analytics results from
streaming analytics or batch analytics. The output of a function
performed by humans is fed into, e.g., cloud deployment of
services, control commands of devices, and messages to other
humans. Events will trigger invocations of suitable functions
producing human tasks, which will then be submitted to HSPS
that can relay the tasks to humans. Figure 3 shows components
in our focus for predictive maintenance for specific domains
by leveraging generic serverless platforms in the cloud.

Events are triggers that are from various sources. Events
related to IoT Cloud systems come from cloud monitoring,
such as errors detected in Apache Nifi and failure of ana-
lytics algorithms from Apache Spark. Events related to BTS
equipment are based on output of analytics, e.g., the streaming
analytics processing detect some warning indicators about
equipment status. Functions are continue to be developed and
added into systems. This allows us to support extensibility of
maintenance functions.

B. Human Task Function Catalog
As mentioned, human tasks are needed for critical analytics

results of equipment as well as for system incidents. Figure

4 shows how human capabilities are integrated with IoT
Cloud systems for predictive maintenance through catalogs of
functions mapping human expertise and system incidents and
critical analytics results. As the top level we have IoT systems
and BTS equipment. At the second layer we have tasks (i)
for controlling the IoT systems – there tasks aim to tune the
IoT Cloud systems for dealing with data and analytics – and
(ii) for equipment maintenance, dealing with issues related
to equipment, based on analytics results. Such functions are
based on specific domains, however, their structure and model
are generic (our focus is on the structure and model). For
the Function Catalog, currently, we use MongoDB to manage
documents about the catalog. Besides other information, these
documents record the relationships between (incident,
function name) whereas incident indicates types of
incidents and function name is used to identify the func-
tion which will be invoked to create human tasks.

Generally, such a task catalog will be extended to accom-
modate new development and changes of PoI and functions
for mapping problems to human tasks. In our prototype, a
PoI code will send to functions key information shown in
Listing 1. The structure of IncidentRecord can be easily
extended and customized to suit with predictive maintenance
requirements as well as with other human task programming
languages.

Listing 1. Task structure description
"IncidentRecord": {

"name": "indicate the name",
"id": "indicate the id",
"log": "human readable content of tasks",
"incident": "indicate the type of incident

",
"severity":"indicate the severity of the

incident",
"tags":"possible tags about the incident",
"meta": {
"attribute_name":"value"

}
}

When a function receives an IncidentRecord, it will
perform the mapping of the record to suitable task models of
the underlying HPSP.

C. Scheduling Tasks to Humans

One important issue is to integrate with HSPS for solving
problems with human tasks carried out by a collective of
professionals (here we call a collective); in certain cases the
collective might include only 1 professional at the beginning
and its can be elastic during runtime. We note that this main-
tenance problem is not carried out by crowds but professionals
from third party maintenance companies. When an analytics or
a system monitoring concludes that a critical situation occurs
and requires human intervention to investigate or to fix an
incident, a human task request is created. This task contains
a detail description of the situation, as well as a tag, which
defines the kind of situations and a severity of the task. Shown
in Figure 5, our work is to utilize existing human services



Fig. 4. Professional tasks and the function catalog

Fig. 5. Interactions within HumanServiceProvisioning Systems (HSPS)

which perform task assignments3. In terms of concepts and
implementation, existing HSPS are quite complex.

1) Integration with RAHYMS: In this work, we explain
key issues for integrating with HSPS through examples of
our integration with RAHYMS, which is our HSPS in the
prototype. RAHYMS provides runtime components and an-
alytic tools for establishing a collective of professionals or
individuals [19]. RAHYMS exposes its functionalities through
client interfaces that can be used to manage tasks, to manage
units (humans) performing the tasks, and to define a set
of domain-specific rules that controls the composition of
professionals for executing the task. Internally, when a task
request is received, RAHYMS finds an appropriate rule on
the DB matching the tasks tag and severity. The rule maps the
task to a set of required humans to execute the task. Based
on that RAHYMS composes professionals that provides the
required services for the task.

Figure 6 presents basic descriptions for task assignment and
service units within RAHYMS (with our minor extension).
For solving a complex task, Task submitted by functions,
RAHYMS creates a collective Collective. A collective
has many professionals, each described by Unit and the
number of professionals can be dynamic changed. Unit
describes basic information about a professional that can offer
certain services for Predictive Maintenance. It also includes

3Task assignment is a complex problem with many papers, such as [16],
[17], [18]

information for interacting with the professional. Note that
additional properties of Units can also be specified on the
consequence part (e.g., skill level, load factor, etc) for enabling
collective compositions. The key information for making the
decision of the Collective and Professional is the TaskRule,
which is domain specific knowledge about the type of incident
indicators and severity and the expertise. All of these descrip-
tions are HSPS specific whereas domain knowledge will help
to create the right instance of such descriptions. Since we use
RAHYMS these descriptions are built atop RAHYMS.

2) Principles for integration with existing HSPS: We can
have a generic way for integrating with other systems that
provide similar mechanisms to interact with professionals. Two
important points for us to support complex interactions with
humans, who are often managed and provisioned by external
systems of third party companies, are

• for integrating with other services in IoT Cloud systems,
HSPS must provide well-defined APIs, e.g., REST API
calls and task structure (see Listing 1),

• HSPS must allow domain-specific knowledge to be de-
fined, e.g., rules and human specifications with BTS pre-
dictive maintenance and IoT Cloud systems in our case.
Without such features, it is difficult to utilize existing
HSPS for predictive maintenance.

Note that in our work, we assume the real human will perform
the task. In principle agent acting on behalf of humans (e.g.,
https://github.com/huginn/huginn) can also be investigated.



Fig. 6. Data models for assigning tasks to professionals based on RAHYMS

D. Communications with Humans

A SmartCommunication (see Figure 2) is used to exchange
messages among humans and from software services to hu-
mans in IoT Cloud systems. We use common techniques
in conversation, such as emails, chats, and video through
webhooks, emails and mobile apps. We can also use other
cloud services, such as Slack to transfer messages among
professionals. Furthermore, it is also possible to use (i) Smart-
Communication as a channel for reporting tasks that the HSPS
can receive tasks and schedule the collective, or (ii) integrated
industry systems for incident management systems, such as
OpsGenie [20], for interacting with humans. However, this
feature is not in the focus of this paper.

E. Instantiating multiple HSPS

As we see in complex interactions in predictive mainte-
nance, in principle, we need to interface to multiple HSPS
because the predictive maintenance for different equipment
might come from different companies. Such instances can rely
on a single HSPS infrastructure, which supports a multi-tenant
model, or on different HSPS infrastructures.

V. PROTOTYPES AND EXAMPLES

We have implemented a proof-of-concept of our proto-
types by utilizing Apache Spark, HDFS, AMQP, Google
PubSub, serverless framework with Google Cloud Functions,
and RAHYMS. In this section we present some examples to
illustrate the engineering of our integrated analytics4.

A. Capturing system incidents related to data movement

One example is to move data from the third-party mainte-
nance company to the cloud for analytics of equipment. Using
Apache Nifi, the data movement, e.g., from SFTP sources
to Hadoop FS, is seamlessly integrated. However, a system
incident might happy to the data file, e.g., data is not complete

4We use the real implementation to illustrate examples. However, due to
sensitive reasons in industrial collaboration, we adapted code for examples to
reflect ideas rather than to show the real code.

due to missing files. A quick check within Nifi will trigger an
event that informs a person from the maintenance company to
examine the issue. The following code illustrates an example
of a PoI in Nifi sending a system incident through RabbitMQ.

var flowFile = session.get();
var company ="REMOVED";
var sender ="DCIS-NIFI";
if (flowFile !=null) {

//check if we have the expected data
//...
// we also customize attributes for a

specific company

var incidentrecord = {
"incident": "missingdata",
"severity": "WARNING",
"meta": {

"absolutehdfspath":absolutehdfspath,
"company": company,
"sender" : sender,
"occurredAt" : occurredAt

}
};

//send event to the output stream which is
connected to RabbitMQ output

flowFile = session.write(flowFile, new
OutputStreamCallback(function(
outputStream) {
outputStream.write(JSON.stringify(

incidentrecord, null, " ").
getBytes(StandardCharsets.UTF_8));

}));
//other code

}

B. Triggering in-depth analytics based on streaming analytics

One example is to trigger in-depth batch analytics of several
months of historical data based on critical analytics results
produced by a streaming analytics. Based on a window of
time of events about alarms of a power generator, a critical
analytics result is generated and sent to the message queue.



A trigger component listening the queue decides to generate a
new event for triggering a function that call an analytics web
service to analyze power generators of stations over the last 6
months:

//...
//based on input event
// determine analytics name and problem, e.g

.,
analytics_name ="powergenerator-alarm";
analytics_problem="

powergenerator_alarm_frequency";
//prepare requests
analyticRequest = {

"companyId":companyId,
"stationId":list_of_stations,
"startTime":last6month,
"endTime": occurredAt,

"dataSource":"hdfs://.../",
"outputFormat":"csv",

}
//call remote service
rest_service_call =analyticsservice_url+"/"+

analytics_name+"/"+analytics_problem;
var options = {

method: ’post’,
body: analyticRequest,
json: true,
url: rest_service_call

}
request(options, function (err, res, body) {
//.. call remote web services

});
//...

}

The in-depth analytics will produce the results that can be
notified to the human (e.g., through company id, we store the
result in Google Storage and inform the human via emails).
Usually such in-depth analytics is carried out only on-demand,
due to the cost of running it. This example shows how we can
link different types of predictive maintenance analytics.

C. Functions for problem-to-human task

One example is to intercept the instance of Apache Nifi that
collects data from Data Sources to trigger a human task to
check the data when the quality is bad. The following excerpt
shows the function triggered when data quality is bad:

//perform mapping ....
var tags =determine_tags(...);
//.... call relevant functions to determine

name and content
//create human task
var humantask ={

"name":task_name,
"content":task_content,
"tag":tags,
"severity": severity,
"meta": {

//...
}

};
//send humantask to HumanServiceProvisioning
//...

Another example for critical analytics results is to instrument
PySpark analytics and create a human task when there are
many alarms (more than usual) determined in a batch analytics.
For example, the following excerpt shows an event sent from
PySpark which runs the analytics for hourly data in HDFS:

"analyticsname": "AirConditionerAlarm",
"problem":"EXCEEDINGALARMS",
"meta": {
"source":"hdfs://REMOVED/csvdata/

station_alarm_data",
"date": "2017-10-19",
"hour": "12",
"outputpath": "gs://REMOVED/

test1_analytics2_20171020"
}

Based on that, the following excerpt shows a function that
creates a human task, including various type of metadata about
the data source and results (in an advanced setting, a similar
function can be used to tell a human to deploy a new analytics
if needed):

//determining content for human tasks
//....
//create human task
var humantask ={

"name":"Run CLUSTERING for HVAC",
"content":"Many alarms occurred for many

stations. DataSource=hdfs://REMOVED.
AnalyticsResult=gs://REMOVED",

"tag":tags,
"severity": severity,
"meta": meta

};
console.log(humantask)
//submit human tasks

D. Examples of Professionals and Tasks

Listing 2 shows examples of rules that one needs to define
for specific predictive maintenance deployment. They are
used by HSPS to determine professionals and schedule tasks.
Listing 3 and Figure 7 present examples of the output of
HSPS algorithms to determine suitable professionals and put
them into suitable collectives for performing tasks5. Figure
7 presents a sample of GUI through which professionals can
accept, reject or delegate the task assignment. Given metadata,
humans can also follow other resources, such as examining
data in Hadoop FS and analytics results in Google Storage. As
mentioned, our work relies on RAHYMS so the scheduling
accuracy and communication for human tasks are based on
RAHYMS.

Listing 2. Rules for handling missing data and HVAC
{

"conditions": {
"tag": "logdata_missing",
"severity": "CRITICAL"
},

5The listing and figure present emulated results in which we removed all
real personal and real deployment information in our tests



"consequences": {
"services_required": ["data_analytics","

bts_operator","cloud_operator"],
}

},
{

"conditions": {
"tag": "hvac",
"severity": "CRITICAL"

},
"consequences": {

"services_required": ["data_analytics",
"hvac_analytics", "bts_maintenance",
"bts_operator"],

}
}

Listing 3. Messages sent by HSPS to professionals
Sending message to kt@iotcloud.removed.com:
You got a task:<br>
Task #1<br>
Tag: logdata_missing<br>
Severity: CRITICAL<br>
Data collection problems. DataSource=sftp://

REMOVED. ApacheNifi=https://REMOVED/nifi.<
br><br>

<a href=’http://REMOVE:8080/web-ui/assignment.
html#/status/1/1’>See details</a>

...
Sending message to dp@pm.removed.com:
You got a task:<br>
Task #2<br>
Tag: hvac<br>
Severity: CRITICAL<br>
Many alarms occurred for many stations.

DataSource=hdfs://REMOVED. AnalyticsResult
=gs://REMOVED<br><br>

...
Sending message to cv@telco.removed.com:
You got a task:<br>
Task #2<br>
Tag: hvac<br>
Severity: CRITICAL<br>

Fig. 7. Task assignments received by professionals visualized in RAHYMS

VI. RELATED WORK

For architecture and software design, the work in [13]
presents an “open architecture” for predictive maintenance but
the architecture is not based on big data and IIoT. Also it does

not incorporate novel features like serverless functions and
human tasks. The paper [1] shows how to use mobile agents
for for predictive maintenance. It presents the whole system
which differs from ours w.r.t application domain, architecture
and human interactions. Other systems like [21] include many
components for predictive maintenance but not on the big data
systems at large-scale like ours. The work in [22] shows the
use of big data analytics for agricultural processes but they do
not address maintenance and human tasks.

Many papers discuss about interactions in maintenance that
require human and software [23], [24]. However, our work
differs from these papers in two aspects: (i) they do not focus
on big data systems pipelines cross layers for different kind
of incidents, and (ii)they are not really leverage the human-as-
a-service (although our work is just focusing on integration),
we need to carefully design tasks. Many algorithms and case
studies have been developed for predictive maintenance [2],
[25], [26]. We also develop some but they are not in the focus
of our paper. In general, we can leverage existing algorithms
as long as they fit with equipment and our domain.

Many crowdsourcing papers have presented human tasks to
collect data and evaluate data as well as perform data process-
ing tasks [7]. Our paper is focused on critical business when
only professionals are involved for predictive maintenance. In
this view, our work addresses “hard tasks” required humans
and machines [27]. But we are not aware of similar work
when professionals are involved in predictive maintenance
using big data analytics with IoT Cloud systems. Many authors
present human-machine integration for data integration, data
validation, and workflow [28]. Although it is related, our work
is focused on professionals for analyzing and fixing problems
due to issues of equipment operations detected by big data
analytics. Business process and predictive maintenance utilize
a lot of big data. But these systems do not discuss human-in-
the-loop. In business workflow, the invocation of human tasks
are popular but typically workflows are designed in advance.

A key difference of our work is about software design
to enable various customization of human-in-the-loop. For
example, the use of serverless functions for example enables
us to create many way to generate human tasks in a DevOps
fashion. Various human task programming languages, such as
[29], [30], are related as they can be used by our systems for
executing human tasks, although to our best knowledge they
have not been used for professional work in IIoT.

VII. CONCLUSIONS AND FUTURE WORK

Complex interactions between software and humans for IIoT
predictive maintenance need to be captured and implemented
in an extensible way. The goal of this paper is to analyze
general interactions for integrated analytics and to present
software design and engineering aspects. In this paper, we have
addressed both system incidents and critical analytics results
about equipment in an integrated manner for IIoT predictive
maintenance. While we do not focus on predictive algorithms,
we believe that the integration aspects are crucial for complex



maintenance as IIoT requests various services and supports
beyond typical data analytics.

We use the BTS equipment maintenance in our prototype
for the proof-of-concept. However, the framework is generic
for different types of equipment in other domains, e.g., in
hospitals. Results from a field experiment with real-world
companies would be interesting for our future work. A key
issue is how to map from data analytics results to domain
knowledge so that the right professionals can be invoked. This
requires a strong collaboration between IoT Cloud analytics,
domain knowledge and human provisioning services. They
will be the subject of our future experiments. Various aspects
related to critical analytics results and human tasks generation
are based on domain knowledge so that we will focus on
optimizing the mapping and generation of suitable tasks.
Furthermore, we will extend our model with multi-company
expert systems by enabling different types of function catalogs,
functions and human service provisioning systems.
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