
Characterizing Incidents in Cloud-based IoT Data
Analytics

Hong-Linh Truong
Faculty of Informatics, TU Wien, Austria

hong-linh.truong@tuwien.ac.at

Manfred Halper?
Alumnus, TU Wien, Austria

manfred.halper@gmx.at

Abstract—Systems for big Internet of Things (IoT) data an-
alytics are extremely complex. Different software components
at different software stacks from different infrastructures and
providers are involved in handling different types of data. Various
types of incidents may occur during execution of such systems
due to problems in software stacks, the data itself, and processing
algorithms. Here incidents reflect unexpected context-specific
situations that might happen within data themselves, machine
learning algorithms, data analytics pipelines, and underlying big
data services and computing platforms. It is important to address
any incident that prevents the pipeline running correctly or
producing the expected quality of analytics. In this paper, we
show the need to characterize incidents for IoT data analytics
in the cloud with real-world examples. We characterize incidents
based on various aspects in IoT data analytics, including analytics
phases, status of data, software services, and stakeholders. We
introduce a meta-model for capturing knowledge about incidents.

I. INTRODUCTION

Nowadays a big IoT data analytics has many parts, e.g.,
(i) collecting data from IoT devices, (ii) pushing the data
into data messaging systems, e.g., using IoT data hubs from
Amazon, Google and Azure or using Apache Kafka, MQTT,
and other pub/sub middleware, (iii) ingesting data from mes-
saging systems to data storage or to streaming data processing
engines, and (iv) performing data analysis, e.g., using machine
learning (ML) algorithms atop Apache Spark or streaming
analysis with Apache Flink. These parts are realized through
various pipelines of software services, platforms and infras-
tructural resources. Thus different software components at
different software stacks from different infrastructures and
providers are involved in handling different types of data.
Due to the complexity of systems and data and the speed of
data processing, various types of incidents may occur during
execution of such big data analytics systems, where incidents
indicate unexpected situations that might happen within data
themselves, ML algorithms, data pipelines, and underlying
big data services and computing platforms1. Even running
a data analytics pipeline using Apache Nifi2, Hadoop3 and

?This work was performed when the author was a master student at TU
Wien

1The IT Infrastructure Library (ITIL) defines an incident “as an unplanned
interruption to an IT service or reduction in the quality of an IT service or a
failure of a Configuration Item that has not yet impacted an IT service”.

2http://nifi.apache.org
3https://hadoop.apache.org/

Apache Spark with a small number of virtual machines (VMs)
can be expensive, especially for small business and research
companies/teams. Thus, it is important to address any incident
that prevents the pipeline running correctly or producing the
expected output.

Characterizing, quantifying and detecting incidents during
the execution of cloud-based big IoT data analytics in an
end-to-end view across software layers and infrastructures are
of paramount importance. However, considering the current
support for incident quantification and detection, most works
deal with system/service incidents [1], [2], [3], e.g., the failure
of VMs running ML algorithms, or with the error of data,
e.g., missing values in a time series of IoT data, in a separate
manner. Furthermore, many tools for performance monitoring
and analysis of cloud services exist, but there is a lack of
tools for understanding IoT data analytics incidents. Mostly,
the data analyst, the developer of different software stacks
and data analytics phases, and the operator of the analytics
and infrastructures manually and separately deal with different
types of incidents. Another important aspect is that studied
incidents are mostly not data-centric (due to errors of IoT
data or the processing of IoT data), e.g., they focus on
security and system incidents [4]. While incidents might be
detected in different specific points, e.g., within a cloud service
and within a data processing task, without a coherent and
correlated end-to-end cross-system view, we cannot understand
and optimize incidents for the data analytics as a whole. An
incident might be due to errors propagated through multiple
middleware, libraries, and services across different layers and
infrastructures within a data analytics pipeline.

In this paper we focus on the first aspect of incident
quantification and detection for big IoT data analytics by
characterizing incidents. We analyze incidents to determine
their key relevant information, focusing on big IoT data
analytics. We make the following contributions:

• analysis of incidents in IoT big data systems
• a classification of possible incidents in big IoT data ana-

lytics and a graph-based model for capturing knowledge
about incidents

• analysis of data-centric incidents and monitoring tech-
niques

Our contributions will help fostering the developing new inci-
dent monitoring and analytics tools for IoT big data analytics,

which are currently under researched.
The rest of this paper is structured as follows: Section II

presents the motivation of our work. Section III characterizes
incidents in big IoT data analytics and provides an incident
information meta-model. Section IV presents related work. We
conclude the paper and outline our future work in Section V.

II. MOTIVATION

A. Motivating Examples

Fig. 1. A simplified big IoT data analytics system for BTS monitoring

Let us consider the case in which we use IoT and big data
analytics to analyze telco infrastructures, such as equipment
and operations of Base Transceiver Stations (BTS). Shown in
Figure 1, a big data analytics for that case mostly relies on:
(i) IoT or data collectors for collecting data, (ii) connectivity
for pushing the data to the fog/edge and cloud services,
(iii) and the fog/edge and cloud systems (public or private)4.
The data analyst and developer identify and select suitable
libraries, services and systems for building data pipelines.
However, at runtime, an outstanding problem across software
layers and systems is how to deal with data-centric incidents
across complex data sources, and systems within the context
of specific analytics. Let us see the following cases:
Case 1: We monitor BTS in a large-scale telco network of
a leading mobile provider. We need to gather location data
together with many IoT data to support clustering of behavior
of equipment. Due to a minor error in the location data, several
stations are wrongly clustered. This error is detected only by
human analyst. This error may be easily detected by examining
location information but not when we need to correlate IoT
data with other dynamic data, such as quality of voice and text
traffics from NodeB5. This might create errors in clustering
tasks (due to the error of the data not the clustering) and might
also create system errors, e.g., the failure of the clustering
algorithm due to errors in data, or the failure of VMs due to
the lack of memory.
Case 2: We performed the analytics of logs from various parts
of the telco network, like NodeB, Radio Network Controller,
and Base Station Controller. These parts are from specific
systems of different vendors, including Huawei, Ericsson and
Nokia, so logs are different. Each system has voluminous log

4The BTS scenario is extracted from the complex real-world BTS imple-
mented from our collaborative industry. A simplified version for research
purpose is currently provided at http://github.io/rdsea/IoTCloudSamples.

5https://en.wikipedia.org/wiki/NodeB

data, which are extracted and then merged together. Due to
some mistakes in tasks for extracting logs and merging data,
tasks for data analytics have produced some wrong results.
However, this incident is not detected until data analysts care-
fully examine the results and debug the Apache Spark tasks.
This cannot be detected by existing functions in ML libraries.
Even the developer can write some customized functions to
check the problems, she/he does not have a systematic way to
collect and relay such problems for different parts of the data
analytics pipelines.

We observe such situations in our real-world applications
for big data analytics by utilizing ML algorithms for IoT
data, combined with Apache Nifi, Apache Hadoop, Apache
Spark MLib, and Elasticsearch6. However, these problems are
generic. State-of-the-art tools do not provide features for us to
quantify and detect such incidents across the whole big data
analytics. Current cloud monitoring tools [5] lack support for
incident detection for big IoT data analytics.

B. Research Statements

The first research issue is that we need to identify and clas-
sify potential incidents in big IoT data analytics, e.g., related
to IoT data sources, status of data (e.g., data in transit or data
in processing), big data system services, or to stakeholders.
To have a classification and means to manage incidents help
us to determine relevant measurements and logs for detecting
and evaluating incidents. The ultimate issue is that the data
analyst, developer and provider must have a coherent view
on types of incidents and relevant data for understanding the
incidents. Current cloud and big data monitoring tools are very
much at the system level (e.g., performance and failure of
services and infrastructures), while we have to manually carry
various error-prone, time-consuming tasks to monitor and
analyze data incidents within analytics pipelines. Therefore,
the second research issue is to determine important, focused
data-centric incidents in IoT data analysis systems, fostering
the development of new development of new performance
measurement and monitoring tools for understanding issues
related to data and its impact on performance and failure of
services and infrastructures.

III. CHARACTERIZATION OF INCIDENTS IN CLOUD-BASED
BIG IOT DATA ANALYTICS

A. Cloud-based Big IoT data analysis pipelines

Conceptually, typical (big) data analysis pipelines have
different phases: collecting data, ingesting data, data analysis
and data visualization [6]. In this paper, we focus on big IoT
data pipelines in which data is collected from IoT networks
[7] but analyzed in the cloud. Therefore, a typical way of
collecting data is that suitable protocols and message brokers,
such as MQTT or AMQP, and Kafka, will be used to push
data from IoT devices to the IoT data hubs in the cloud, as
shown in the motivating example in Section II. From the IoT
data hubs/message brokers data will be extracted to storage for

6https://www.elastic.co

Fig. 2. A simplified view of main components in big IoT data analytics

batch processing later or be pushed into streaming processing
components. We can use various frameworks and architectures
to support this, such as, from industries including Google7,
Amazon IoT8, Azure IoT9, Predix10, and from academics like
[8]. Figure 2 abstracts a simplified view of main components
in big IoT data analytics. With this model, incidents can occur
as long as IoT data are being pushed to message brokers.

We see that incidents might be happened at the infrastruc-
ture and platform levels, e.g., within the underlying computing
resources and middleware used for the pipelines, as well as at
the application level, e.g., within instances of ML algorithms
or data load/extract/transform tasks employed in analytics
pipelines. Based on the NIST Big data architecture11, existing
big data view [6], and the concept of IoT Cloud, we focus on
the four following phases, Acquisition, Preparation, Analysis,
and Delivery. These phases are not sequential; instead they can
be interwoven. We explain possible incidents in these phases
through examples in the following subsections.

1) Acquisition phase: incidents might happen when we
collect data from IoT devices. This can happen within sensors
sending data, connectivity between sensors and messing bro-
kers/IoT data hubs, or within the brokers and data hubs. Let us
consider an example of IoT sensors sending data to an MQTT
broker. In one design, the data acquisition tasks are realized
through sensors, the MQTT-based message broker, and the
MQTT-based connectivity protocol, whereas these tasks spread
in IoT networks (sensors) and edge/fog/cloud systems (e.g., the
broker). Incidents might happen when we have many sensors
which suddenly increase the sending rate (e.g., by changing
setUpdateRate() of sensors at runtime), leading to a
sudden voluminous data sent to the broker to slowdown or
even kill the broker.

2) Preparation phase: incidents might happen when we
load/extract data (e.g, from data storage and message brokers)
and transform the data to the form ready for analysis tasks.
Let us consider the following example in which we need to
load and merge various types of data – quality of service in

7https://cloud.google.com/solutions/architecture/
real-time-stream-processing-iot

8https://aws.amazon.com/iot-platform/
9https://docs.microsoft.com/en-us/azure/iot-suite/

iot-suite-what-is-azure-iot
10https://www.predix.io/
11https://bigdatawg.nist.gov/

NodeB, quality of traffic, and alarms12 – before we perform
analysis, such as clustering NodeBs/BTSs:

. . .
. . . i n p u t d a t a

inpu tQoSData =” h d f s : / / spa rk−m/ d a t a / r a w d a t a / KPI−QoS−Data / KPI−
QoS−Nodeb−DN∗ . c sv ”

i n p u t T r a f f i c D a t a =” h d f s : / / spa rk−m/ d a t a / r a w d a t a / KPI−T r a f f i c−
Data / KPI−l u u ∗ . c sv ”

d f q o s = s p a r k . r e a d . csv (inputQoSData , h e a d e r =True , i n f e r S c h e m a =
True)

d f t r a f f i c = s p a r k . r e a d . csv (i n p u t T r a f f i c D a t a , h e a d e r =True ,
i n f e r S c h e m a =True)

i n p u t A l a r m D a t a =” h d f s : / / / spa rk−m/ d a t a / r a w d a t a / Alarm−nodeB−DN
/ Alarm nodeB DN∗ . c sv ”

d f a l a r m = s p a r k . r e a d . csv (inpu tAla rmData , h e a d e r =True ,
i n f e r S c h e m a =True)

. . . p r e p a r a t i o n o f d a t a by merging
f i l t e r d a t a
d f qo s2 = d f q o s . s e l e c t ([’NODEBNAME’ , ’ VOICE CSSR (%) ’])
d f t r a f f i c 2 = d f t r a f f i c . s e l e c t ([’NODEBNAME’ , ’SHO ATT ’]) . show ()
d f a l a r m 2 = d f a l a r m . withColumnRenamed (”RNW O b j e c t Name ” , ”

NODEBNAME”)
d f a l a r m 3 = d f a l a r m 2 . s e l e c t ([’NODEBNAME’ , ’ S e v e r i t y ’])
j o i n
j o i n 1 = d f t r a f f i c 2 . j o i n (dfqos2 , ”NODEBNAME”)
j o i n 2 = j o i n 1 . j o i n (d fa l a rm2 , ”NODEBNAME”)
c l e a n j o i n = j o i n 2 . d i s t i n c t ()
. . .
a n a l y t i c s
. . . .

A simple incident might occur when wrong input data files
are specified, leading to mismatch of input data (e.g., times
among various data sources are not related). Incidents might
occur in select and join due to missing data in the above-
mentioned data. This might lead to the failure of the analysis
tasks or the wrong result produced by the analysis.

3) Analysis phase: incidents can happen during analysis
tasks, which examines data based on various statistical, ma-
chine learning or user-defined algorithms. For example, given
the previous example in the Preparation phase, after the data
preparation, we can run statistic analyses to find top prob-
lematic NodeBs or carry out clustering algorithms to group
NodeBs based on their quality of services. In such analysis
tasks, incidents might occur when the underlying system, e.g.,
Apache Spark, has not enough resources, e.g., run out of
memory or compute nodes, to run various analysis tasks. Note
that in many cases it is difficult to separate between Analysis
and Preparation tasks. For example, in the above-mentioned
example in the Preparation phase, select() and join()
data frames might be interwoven with statistics functions.

In other cases, we also see separate sub pipelines for
Preparation and Analysis phases using different techniques and
systems. For example, let us consider the following sample of
alarms and location of stations:

/ / sample d a t a o f a l a r m s
/ / s t a t i o n i d , a l a rm id , alarm number , s t a r t t i m e w i n d o w ,

end time window
1161114077 ,309 ,16 ,2017−04−16 00:00:00 ,2017−04−16 0 1 : 0 0 : 0 0

/ / sample d a t a o f l o c a t i o n
/ / s t a t i o n id , code , name , name eng , a d d r e s s , d e s c r i p t i o n ,

l a t i t u d e , l o n g i t u d e , s t a t u s , . . .

12Examples are based on real data obtained from NodeB in BTS, but we
simplified the code to illustrate our examples.

1161114077 ,DLMD15, DL Mdrak5 , DL Mdrak5 , ” Thon Ho , . . . a k Lak
. ” , IMSV2−REMOVE, 1 2 . 7 3 2 3 5 , 1 0 8 . 7 5 3 8 , 1 ,

Preparation tasks are used to enrich results from a sub data
analysis pipeline and then the enriched results can be used
by another sub analysis pipeline, shown in Figure 3. In this
example, various tools/services are used, such as Apache
Spark, Elasticsearch, and Google Storage. Therefore, incidents
might be propagated from one pipeline to another pipeline.
For example, a wrong data within the location would lead to
wrong clustering results of NodeBs/BTS based on alarms and
location.

4) Delivery phase: incidents occur when we perform trans-
fers of data and results, e.g., using message brokers and
visualization services. Consider the following example in
which we ingest the data into BigQuery. A problem in the
network could prevent us to store data, leading to missing
data for analytics.
/ / i n i t i a l i z e b igQuery
c o n s t b igQuery = BigQuery ({

p r o j e c t I d : c o n f i g . p r o j e c t I d ,
keyF i l ename : p a t h . j o i n (dirname , ’ k e y f i l e . j son ’) ,

}) ;

/ / i m p l e m e n t i n g f u n c t i o n t o i n g e s t d a t a t o b i g que ry
f u n c t i o n i n s e r t (t o p i c , d a t a){

i f (t o p i c s [t o p i c]) {
r e t u r n t a b l e s [t o p i c s [t o p i c]] . i n s e r t (d a t a) . c a t c h ((

e r r) => {
l o g g e r . e r r o r (‘ f a i l u r e i n s e r t i n g i n t o b igQuery

o b j e c t : ${JSON . s t r i n g i f y (d a t a) } ‘) ;
l o g g e r . e r r o r (e r r) ;
}) ;

}
}

B. Characterizing incidents

Characterizing incidents identify possible data sources,
monitoring techniques and analytics for incidents. This will
help to build sufficient knowledge for developing monitoring
and analytics of incidents. In complex big data analytics, we
tend to discuss abstract phases, such as in [6], as each phase
groups a set of relevant tasks and often relies on the same
system to do these tasks. However, in addition to associate in-
cidents according to phases in big data analytics, we need also
to identify incidents based on (i) software layers (e.g., systems
and infrastructures, services, algorithm libraries, applications),
(ii) types of systems (IoT, edge or cloud), (iii) types of data,
(iv) connectivity (e.g., error due to data transfers), and (v)
dependencies among the above-mentioned types.

To characterize incidents, we focus on the following impor-
tant aspects:
• Context dimension: we utilize existing context dimen-

sions: Where, When, What and How [9]. Where indi-
cates the location of the incident. What indicates affected
areas. When indicates the time when an incident might
happen. How indicates cause and contributing factors.

• Phases in big data analytics: We include basic phases of
big IoT data analytics mentioned in Section III-A.

• Data, software and infrastructures in big IoT data ana-
lytics: we cover both platforms and application services.

For example, we have analysis services/frameworks (e.g.,
Apache Spark), messaging services (e.g., RabbitMQ,
Kafka or MQTT), storage resources (e.g., Amazon S3 or
Hadoop FS), computing resources (e.g., Virtual machines
and docker containers), and network connectivity (e.g.,
MQTT, AMQP and HTTP) between them.

1) Where – Location of incidents: The locations are related
to software stacks as well as where in existing phases of IoT
data analytics. Figure 4 outlines a simplified view of big data
analytics components (with different software layers and sys-
tems) and where we should collect incident related data. Data
collected for incidents will be based on, e.g., the type of data,
within middleware like data brokers and data storage services,
within analysis tasks, instances of ML libraries, and underlying
machines/containers. These types of data must be aggregated
for specific analytics, as different analytics might share various
services and resources. The data will be analyzed together with
the dependency graph of the big data analytics; the graph
covers both application- and system-specific components in
the data analytics. Another perspective in locating incidents is
to link the incidents to data analysis pipelines. We note that a
pipeline might consist of sub pipelines. Furthermore, in many
cases, we might not be able to determine the exact location of
incidents within a large pipeline but we could locate it within
a certain sub pipeline. This way will also help us to identify
how far potential incidents could be propagated through the
analytics as well as to attribute incidents to appropriate service
providers, which are utilized for certain pipelines.

2) What – types of incidents: Concrete incidents are
context-specific as whether some errors and faults reduce
the quality of analytics depend on system and user-specific
constraints. However, evaluating incidents is based on general
measurements, events and monitoring data that should be
identified. In general, typical incidents in contemporary cloud
and IoT, such as performance and system failure [1], can be
part of incidents in IoT data analytics. One important aspect of
incidents in IoT data analytics is related to data and the capa-
bility to handle big data by IoT and cloud services. From that
view, we can classify incidents into: Data Incident, Network
Incident, Storage Incident, Processing Incident, and Combined
Incident. Furthermore, various sub-classes of incidents can
be developed. For example, Data Quality Incident, used to
indicate incidents due to data quality, can be a sub type of
Data Incident. Typical incidents due to performance issues,
Performance Incident, can be associated with Storage Incident
and Processing Incident.

3) When – Time and frequencies of incidents: One aspect
of incident classification and knowledge representation is time
and frequencies. This will be captured using events (time) and
quantitative numbers. The values of When can only be obtained
through the monitoring and analysis. Based on analytics,
we can also represent and update patterns about times and
frequencies. In general, time and frequency characteristics
could be linked to properties of big data (e.g., volume, velocity,
veracity and variety). Another example is that incidents might
occur at the early stage in the pipeline. For example during

data preparation#1data analysis#1 data analysis#2

Waitfor
ResultNotification

GetDataFrom
GoogleStorage

Enrich
LocationData

StoreResultTo
GoogleStorage

Send
ResultNotification

Upload
EnrichedData

Get
EnrichedData

Cluster
Stations

SparkAnalysis

Fig. 3. Data Preparation and Analysis pipelines

Fig. 4. Illustrating places where incidents might occur

the Acquisition phase we miss data. However, due to various
constraints in big IoT data analysis, the incident might be
detected only at the end of the pipeline. Figure 5 presents
one example of this case with alarms of electricity in BTS.
Alarms occurred very often in BTSs then they did not appear
later on. It might not be true that we do not have alarms any
more but it is likely that we miss data during the Acquisition
phase.

4) Phases and Stakeholders in Incident Analytics: There
are mainly possible stakeholders related to incidents in big IoT
data pipelines. In characterizing incidents, we identify which
of following stakeholders are relevant to incidents:
• Data Provider: creates, aggregates and transforms data.
• Data Engineer: creates data models and data systems for

IoT data.
• Service Provider: provides and operates tools, platforms,

services and know-how for IoT and cloud services.
• Data End-user: utilizes the result of big data analytics

pipelines.
• IoT Data Analyst: runs data analytics pipelines atop

existing IoT and cloud services and infrastructures.
• Software developer: develop algorithms, technologies,

methodologies, business models, products and services.
• Regulator: regulates governance and compliance rules for

data.
An important note is that these stakeholders might not belong
to the same organization. They are also responsible only for a
part of the data analytics pipeline. Therefore, their view and
work on monitoring and analysis of incidents are different.

C. Knowledge about Incidents

1) Meta-model of Incidents: From the above-mentioned
characteristics, we classify incidents using a meta-model.
Figure 6 provide an overview of information about incidents.
Incident is used to capture information about incidents,
which can be classified into sub types like DataIncident,

ProcessingIncident, NetworkIncident,
StorageIncident, and CombinedIncident.
Incidents can be linked to AnalyticsPhase,
Stakeholder, SoftwareComponent, different
states of data DataInMotion, DataAtRest,
DataInAnalysis. Incidents have IncidentMonitoringData
being collected for evaluating the severity of incidents.

Based on the meta-model, we provide an implementation
of the knowledge base graph databases. We use Neo4J13 to
capture incident classes and their relationships.

2) Runtime versus prior knowledge about incidents: From
the classification, we can obtain many types of prior knowl-
edge about the incidents, while other information will be only
obtained at runtime and through incident analytics. This will
be done using different monitoring and analysis techniques
for incidents. To store concrete incidents for particular de-
ployed IoT data analytics systems, we use a document-based
system using MongoDB, which stores concrete (high-level)
information sources related to incidents, such as links to log
files, etc. Note that many other sources of information for
incidents might be stored in different systems, such as Hadoop
file systems and Google Storage, due to the diversity of raw
data relevant to incidents14.

IV. RELATED WORK

Well-established data cleansing processes [10] can help
reducing errors in data, reducing incidents. But they are not
means for incident detection. We need mechanisms to detect
and report data errors in correlation with other types of errors.
Chua discusses about dangerous data and how to detect them
[11]. But detecting data problems is just a component of
incident analytics in big data. Abedjan and others discuss
about error detection in data [12]. But it is just related to data
sources and data while incident detection is a complex matter
dealing with many inter-dependent data and system errors.
Certain key challenges in big data management, including
machine learning, are mentioned in the work of Polyzotis
[13], although they focus more on data aspects, like validation
and cleansing. The incident quantification and detection in
this proposal are exactly for solving such challenges. There
are several methods for cleaning and correcting errors within
data [14]. They are limited to errors within data but, in
general, they do not focus on detection of incidents (due to
errors) through big data analytics. Tools and techniques for
monitoring cloud systems and applications are many, from
the research [5] and industries, such as Amazon Cloudwatch,

13https://neo4j.com/
14How to monitor, analyze and store concrete incidents for particular IoT

data analytics systems is out of the scope of this paper.

Fig. 5. Abnormal analytics results indicating some potential incidents in IoT data Acquisition, Preparation or Analysis.

Incident

affects

AnalyticsPhasehappens_in

Stakeholder
is_interested_by

Data

happens_with

SoftwareComponentis_located_at

Time

happens_at

IncidentMonitoringData

is_backed_by

DataAnalyticsPipeline

is_within

is_relevant_to

DataInMotion
has_a_state_of

DataAtRest

has_a_state_of

DataInAnalysis

has_a_state_of

is_part_of

is_part_of

DataIncident

ProcessingIncident

NetworkIncident

StorageIncident

CombinedIncident

MonitoringTool
is_captured_by

Fig. 6. Main types of information in classification of incidents

Stackdriver, and Prometheus. They enable many generic sys-
tem monitoring features, thus we can use them for capturing
logs and transferring monitoring for incidents in big data.
However, they are not designed for incidents in big data. We
can leverage these tools for capturing certain types of data
for incident analytics across layers and across systems for big
data in our cases. Similarly, we can utilize existing techniques
for processing logs [15] to extract information for incident
analytics, but these works are not for incidents in big data
analytics ML techniques for detecting errors has been widely
used. Our work is not focused on ML algorithms. However,
based on incident classification and relevant monitoring data,
our incident analytics will leverage ML techniques.

V. CONCLUSIONS AND FUTURE WORK

Motivated by an increasing need of understanding potential
incidents in IoT data analytics in order to guide the devel-
opment of incident monitoring and analytics, in this paper
we present a detailed characterization of incidents in IoT
data analytics. We have presented a classification, proposed
knowledge based and performed detailed analytic analysis of
potential incidents. Our work is just at an early stage as
the knowledge about incidents should be used for monitoring
and analysis of incidents. Our current focuses are not only
to improve the classification and characteristics of incidents
but also to develop monitoring and analysis techniques for
capturing and evaluating incidents. We will update our further
results at https://github.com/rdsea/bigdataincidentanalytics.
Acknowledgment: Various examples shown in the paper
are based on data and code extracted from our industry
collaboration. Students also contribute to the writing code
examples. We thank Huong Ngo, Khiem Ta and Lingfan Gao
for their support.

REFERENCES

[1] S. Sarkar, R. Mahindru, R. A. Hosn, N. Vogl, and H. V. Ramasamy,
“Automated incident management for a platform-as-a-service cloud,”
in Proceedings of the 11th USENIX Conference on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services,
ser. Hot-ICE’11. Berkeley, CA, USA: USENIX Association, 2011.

[2] B. Grobauer and T. Schreck, “Towards incident handling in the cloud:
Challenges and approaches,” in Proceedings of the 2010 ACM Workshop
on Cloud Computing Security Workshop, ser. CCSW ’10. New York,
NY, USA: ACM, 2010, pp. 77–86.

[3] T.-F. Forti and V. I. Munteanu, “Topics in cloud incident management,”
Future Gener. Comput. Syst., vol. 72, no. C, pp. 163–164, Jul. 2017.

[4] N. H. Ab Rahman and K.-K. R. Choo, “A survey of information security
incident handling in the cloud,” Comput. Secur., vol. 49, no. C, pp. 45–
69, Mar. 2015.

[5] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Survey cloud
monitoring: A survey,” Comput. Netw., vol. 57, no. 9, pp. 2093–2115,
Jun. 2013.

[6] J. Klein, R. Buglak, D. Blockow, T. Wuttke, and B. Cooper, “A reference
architecture for big data systems in the national security domain,” in
Proceedings of the 2Nd International Workshop on BIG Data Software
Engineering, ser. BIGDSE ’16. New York, NY, USA: ACM, 2016, pp.
51–57.

[7] E. Borgia, “The internet of things vision: Key features, applications
and open issues,” Computer Communications, vol. 54, pp. 1 – 31,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366414003168

[8] Z. Khan, A. Anjum, and S. L. Kiani, “Cloud based big data analytics
for smart future cities,” in Proceedings of the 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, ser. UCC
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
381–386. [Online]. Available: http://dx.doi.org/10.1109/UCC.2013.77

[9] D. R. Morse, S. Armstrong, and A. K. Dey, “The what, who, where,
when, why and how of context-awareness,” in CHI ’00 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA ’00.
New York, NY, USA: ACM, 2000, pp. 371–371.

[10] J. Van den Broeck, S. Argeseanu Cunningham, R. Eeckels, and
K. Herbst, “Data cleaning: Detecting, diagnosing, and editing data
abnormalities,” PLOS Medicine, vol. 2, no. 10, 09 2005. [Online].
Available: https://doi.org/10.1371/journal.pmed.0020267

[11] C. E. H. Chua and V. C. Storey, “Dealing with dangerous data: Part-
whole validation for low incident, high risk data,” J. Database Manage.,
vol. 27, no. 1, pp. 29–57, Jan. 2016.

[12] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang, “Detecting data errors: Where
are we and what needs to be done?” Proc. VLDB Endow., vol. 9, no. 12,
pp. 993–1004, Aug. 2016.

[13] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data
management challenges in production machine learning,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 1723–1726.
[Online]. Available: http://doi.acm.org/10.1145/3035918.3054782

[14] H. Wang, M. Li, Y. Bu, J. Li, H. Gao, and J. Zhang, “Cleanix: A parallel
big data cleaning system,” SIGMOD Rec., vol. 44, no. 4, pp. 35–40, May
2016.

[15] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 117–132.

