
Analytics of Performance and Data Quality for
Mobile Edge Cloud Applications

Hong-Linh Truong
Faculty of Informatics, TU Wien, Austria

hong-linh.truong@tuwien.ac.at

Matthias Karan?
Alumnus, TU Wien, Austria
matthias.karan@gmail.com

Abstract—Emerging edge/fog computing models have fostered
new types of applications whose software components and de-
pendent services are provisioned across distributed edge and
cloud infrastructures. The design of mobile edge cloud systems is
complex, thus it is important to understand suitable deployment
models and test them. Since mobile edge cloud computing and
its deployments are quite new, there is a lack of techniques
and knowledge about possible deployments, configurations, and
performance evaluation. In this paper, we present our experiences
on studying the impact of performance and data quality for
mobile edge cloud systems. We use a mobile edge cloud cornering
assistance (MECCA) application to examine various performance
and data quality impact. In this paper, we explain how by using
MECCA to test performance and data quality, we draw key issues
and steps in analytics of edge cloud applications and lessons
learned for mobile edge computing application testing.

I. INTRODUCTION

Recent integration between mobile computing, edge com-
puting and cloud computing have fostered the development of
complex mobile edge cloud applications. While most existing
works still focus on edge offloading applications [1], [2], many
researchers have also started to address complex interactions
between the edge and cloud in an integrated manner [3],
[4]. From the development perspective, not only we have to
examine suitable deployment models for software components
and their dependent third party services in edge and cloud in-
frastructures but also to carry out several tasks of performance
evaluation and testing to detect possible issues and to optimize
the design and the deployment.

Many edge-cloud applications combine features from edge
and cloud so there are various factors that influence the
deployment, provisioning and analysis. In this paper, we focus
on the impact of performance and data quality for edge cloud
applications. Our work experiments performance and data
quality for complex mobile edge cloud applications due to
the lack of tools and the complexity of such applications.
We focus on realistic applications in the connected vehicles
domain that are suitable for edge cloud computing, and we
study performance and data quality impacts in the design and
deployment models. We select a mobile edge cloud corner-
ing assistance (MECCA) application which includes features
from IoT, big data services, and streaming data processing
that are provisioned in edge and cloud infrastructures. Our
contributions are to present steps/techniques for analytics of

?Work performed when the author was a master student at TU Wien

mobile edge cloud applications and lessons learned through
real examples.

The rest of this paper is organized as follows: Section
II describes our mobile edge cloud application. Section III
explains methods for mobile edge cloud performance and data
quality evaluation. Section IV presents experiences for perfor-
mance and Section V presents experiences for data quality.
We discuss the related work in Section VI. We conclude the
paper and outline our future work in Section VII.

II. OVERVIEW OF THE EDGE-CLOUD CORNERING
ASSISTANCE (MECCA) APPLICATION

A. Architecture

To present our analytics of performance and data quality in
mobile edge cloud applications, we select cornering assistance
applications. Figure 1 shows the overall architecture of the
mobile edge cloud cornering assistance (MECCA) application.
Clients hosted in vehicles connect to a service registry to find a
Recommendation Service which is responsible for recommend-
ing suitable speeds for all upcoming curves around a given
location. The recommendation is based on the location data
provided by the clients. To calculate a recommended speed,
Recommendation Service needs information about upcoming
curves and the current weather. An External Database (DB)
is used to permanently store curve results and is queried, as a
cache, by Recommendation Service. Since the database will be
accessed from multiple services running on multiple nodes, it
needs to be highly available, scalable and easily maintainable.
In case DB has no curves stored yet, a Detection Service is
requested to detect and calculate detailed information about
upcoming curves, based on (i) the location data, indicating the
location of the Clients, given by a Recommendation Service
and (ii) map data from an external Maps Provider.

In MECCA, a Service Registry is needed to support ser-
vices discovery for various service instances as we have
many instances from the above-mentioned services. To en-
able high scalability and support the underlying edge/cloud-
infrastructure, the above-mentioned services can be deployed
to different containers/VM nodes. Nodes export metrics about
their current resource usage to a monitor system: Monitoring
is accessible by the other services in the system.



Fig. 1. Overall of main components of MECCA

Fig. 2. Topology of the Apex streaming application to detect curves

B. Algorithms for cornering recommendations

The cornering recommendation algorithms have been imple-
mented but in this paper we do not present the detail. Basically,
we use a streaming processing to implement the detection
of the curve. Figure 2 presents the topology of operators in
the streaming processing, implemented with Apache Apex1.
In particular, the operator OSMQueryOperator is used to
query points of roads from Open Street Map (OSM – the Maps
Provider). This operator can be parallelized –using partitioning
techniques – and results from instances of this operator will
be unified for the curve determination (CurvesOperator).
The curve detection algorithm calculates properties of the
curve including start/center-end points, radius and length.
From every incoming position (specified in data tuples), it is
possible that many curves can be detected and will be emitted
to MongoDBOperator which stores them to the MongoDB
database using the commons library code. To reduce the
number of connections to the database, MongoDBOperator
caches curves for a configurable time interval and then stores
them in one single batch.

C. Prototype implementation

An overview of key technologies and components of
MECCA2 is given in Figure 3. Recommendation Service is
implemented a gRPC and Detection Service is implemented

1https://apex.apache.org/
2An open source at https://github.com/rdsea/EdgeCorneringAssistance

Fig. 3. Key software and infrastructural components

as streaming application using Apache Apex. We use dockers
as our main underlying compute nodes.

III. METHODS FOR ANALYZING EDGE CLOUD
PERFORMANCE AND DATA QUALITY

A. Step 1 – Deciding Edge Cloud Deployment Models

One of the challenges for a complex mobile edge cloud
application is how to partition which services of the applica-
tion in the edge and in the cloud infrastructures. Analysis of
performance and data is important for determining deployment
models and vice versa. We consider two main models:

• cloud-deployment model: all services are deployed in
clouds, whereas clients are in mobile devices. We dis-
tinguish two cases: the application owner deploys his/her
own services (i) not in the same data center with and (ii)
in the same data center with other third party services.

• edge-cloud deployment: application services are deployed
in both the edge and cloud. Similarly, application services
might be co-located or not with third party services.

Note that cloud-deployment model testing is very useful for
the design of edge-cloud deployment because we can detect
suitable services in clouds that can be migrated to the edge
or optimized for cloud deployment. That is the reason why in
this paper we also focus on testing cloud-deployment.
Discussion: We recommend to test with the cloud deployment
first before deciding edge-cloud deployment and testing. This
helps to make better decision on where components should
be deployed and which configurations are suitable for them.
In many situations, like in MECCA, we have to rely on
several third party services. In the production deployment,
one might not be able to influence where such third party
services will be deployed – as they might be fixed. Therefore,
in testing performance, if possible, one should also replicate
such third party services or deploy own services close to



the third party services to examine the connectivity impact
between the application under test and its third party services.
The replication of many third party services, especially the
infrastructural ones, can be achieved due to the availability
of data and software services. In our tests, we replicate third
party services when possible for cloud-only deployment.

B. Step 2 – Criteria for Evaluating Edge Cloud Deployments

There could be many different criteria for evaluating edge
cloud applications. We focus on performance and data qual-
ity in this paper. For the developer and provider of edge cloud
applications, the important analytics questions for evaluating
edge cloud deployment would be: (i) service response time
and failure between edge and cloud, (ii) accuracy of results
w.r.t data accuracy and device availability and (iii) impact of
network performance and reliability.
Discussion: As we focus on applications, it is important to de-
termine application metrics that can be used to map to system
metrics. Monitoring of complex applications requires multi-
layer and cross-system instrumentation, monitoring tools. In
this view, we found that Prometheus and Grafana are very
suitable for mobile edge cloud application monitoring.

C. Step 3 – Preparing Testing Data

The first step is to prepare inputs for testing. For example,
this paper, we evaluate MECCA by using tracks from the
Austrian Road Safety Board (KFV) to extract real trip infor-
mation, including Timestamp, Latitude, Longitude. The second
aspect is to perform data quality experiments, one needs to
have reference data. For example, we used a set of measured
curves from [5] to compare again the output of algorithms.
Third, we also need to prepare how we can use third party
services. For example, to receive latitude and longitude values
of curves for our evaluation, each curve was located manually
by using the provided image and OpenStreetMaps. In case
a curve had two values for the radius, we simply used the
mean value. Finally, we need to prepare data related to mobile
clients. For example, in MECCA, for simulating the location
of the client (the vehicle), we need location data of the curves
the vehicle goes. To this end, we sent listed curve locations
to a public available route service called Project OSRM [6]
which calculates the fastest route between the given points and
returns a list of IDs of OSM nodes. To receive GPS locations
from the resulting node IDs, we used the Overpass API [7].
Discussion: Similar to today’s cloud applications, we expect
that, in typical mobile edge cloud applications, third-party
services will be utilized. Thus, we also have to study possible
performance and data quality issues due to such services.

D. Step 4 – Prepare symbiotic testing

Key steps are to prepare the right setting for testing us-
ing simulation and real deployment (symbiotic systems) [8]
because due to the lack of real mobile edge cloud testbeds,
we should not assume that everything can be done in the real
systems. In MECCA, we developed a testing application. Each
test creates a set of clients, which send GPS tuples available

Fig. 4. Cloud-only-deployment model

.csv-files and each client accesses Recommendation Service
via a gRPC-stub.
Discussion: There is a question of if we can rely on simulation
tools for performance and data quality analytics. Although
there exist some tools [9], we believe that they cannot be used
to test the complexity of mobile edge cloud applications, espe-
cially w.r.t quality of data and complex algorithms depending
on data from different third party services.

IV. PERFORMANCE ANALYTICS

A. Metrics

For example, in MECCA, Table I shows the metrics that
are of interest for this test.

TABLE I
EXAMPLES OF METRICS USED FOR PERFORMANCE EXPERIMENTS

Metric Name Description
response-time Average time (in ms) between all sent recommendation

requests and all received responses. This is used to
measure the performance of service responses.

result-time Average time (in ms) between all sent recommendation
requests and only successful received responses that
contain curves.

response-ratio Ratio of all sent requests (recommendation & poll)
to any received response. It is used to measure the
reliability of messages

result-ratio Ratio of all sent requests (recommendation only) to
received curve responses. This is used to measure the
accuracy of the analytics

B. Performance of cloud-only deployment model

1) Setting Testbed: We use multiple virtual machines from
Google Cloud Platform (GCP) for the cloud-only deployment.
Figure 4 shows the deployment configuration where all ser-
vices are deployed in the same data center. To simulate a large
number of clients, we emulated clients on different machines
(local and cloud ones). Tables II and III present configurations
of resources and services for the performance experiments.
Discussion: To keep the system independent from mobile
clients and provide a more realistic setting, the clients should
be deployed in different regions. The available internet speed
at the cloud for clients is very fast (during the test runs it varied
between 75mbps and 300mpbs). Therefore, when we need to
simulate networks in the data centers we need to use different
techniques. For example, the maximum network bandwidth
can be throttled to Long Term Evolution (LTE) using Apple’s
Network Link Conditioner [10]. To give a realistic answer for
mobile edge cloud applications, we should control the network
with LTE capabilities only.



TABLE II
RESOURCES AND SERVICE DEPLOYMENT FOR PERFORMANCE TESTS

Name Service Type Specs
Emulated Local
Client

MacBook Air 8GB RAM, 2 x
1.8GHz, IntelCore
i5, Network: LTE

Emulated Cloud
Client

GCP n1-standard-1 default, Network:
75-300mbps

Recommendation GCP n1-standard-1 default
Detection GCP n1-standard-4 default
OverpassAPI GCP n1-standard-8 default
MongoDB GCP n1-standard-1 default

TABLE III
SERVICES PARAMETERS FOR PERFORMANCE EXPERIMENTS

Software Component Parameter Value
LocalSearchBoundingBox 6

Poll Delay 3s
Max Polls 3 (6)

GRPC Timeout 5s
Recommendation Find Curves Mode ”geohash”

Geohash-Precision 6
Simulate WeatherAPI true

WeatherBoundingBoxSize 4
Detection AggregationTimeWindow 1s

Aggregation BB Size 6
OSMPartitions 5

Overpass-Server private
AngleThreshold 2

TABLE IV
TEST RESULTS OF PERFORMANCE. C/L INDICATES THE RATIO OF CLOUD

CLIENTS VERSUS LOCAL CLIENTS.

Run Vehicles C/L rT rR resT resR cache
1 100 50:50 288 97% 351 87% full
2 500 50:50 361 90% 441 78% full
3 1000 50:50 383 82% 391 70% full
4 1500 67:33 958 77% 1021 65% full
5 2000 75:25 4224 11% 4342 9% full
7 100 50:50 174 99% 1457 61% empty
8 500 50:50 184 99% 527 64% empty
9 1000 50:50 226 99% / 0% empty

10 500 0:100 322 88% 383 77% full
11 500 0:100 321 99% 726 83% empty

2) Performance with cloud-only model: Identifying ser-
vice bottleneck: Table IV shows the increase of latency and
the reduction of response- and result-rate, when more clients
are added to the system. The response-rate and the result-
rate drop due to the timeout of gRPC of the Recommendation
Service whose single MongoDB instance can only handle up
to 500 connection concurrently. Figure 5 shows that with
caching, the streaming application at the Detection Service
never receives more than 75 requests per second, resulting in
very good latencies of only around 500 ms. With 2000 clients,
we see the limits for the prototype. On average, only around
10% of the requests resulted in responses or results. The reason
for the failing requests is that the single Recommendation
Service reached its limits after around 5 minutes of execution.
The gRPC-server could no longer handle requests.Test runs 7-
9 show how the system performs when it is freshly deployed
(empty-cache). While the response-times stay low and 99% of
the requests are responded, the result times went up compared
to running with full-cache. Since every request in the very

Fig. 5. Apex metrics of successful test run 4 running in the cloud with a
”full-cache” with 1500 constant drivers.

Fig. 6. Screenshot of the Apache Apex Operator Widget showing that the
aggregation only reduces incoming requests by 12%, eventually causing the
application to fail to respond to requests.

beginning of the test run results in calling the detection, in
the worst case, the Apex streaming application has to handle
requests from every client at the same time. While the system
still was able to handle up to 500 vehicles, at 1000 vehicles
the detection service failed. The source of the failure is the
OSMOperator. When many requests are incoming at the
same time, the single OverpassAPI instance – a third party
service – blocks the application flow.
Identifying application tasks bottleneck: Even though the
OSMOperator was partitioned to 5 instances, still this did
not resolve the bottleneck. The Apex application contains
a RequestAggregator that tries to aggregate similar requests
by time and location. As shown in Figure 6, in test run
9 this resulted in 1630 tuples that OSMOperators and
OverpassAPI needed to handle. This caused extreme latencies,
i.e. no tuples exited the pipeline and the Recommendation
Service could not serve any further curves. To decrease the
tuples at the Aggregator, in another test run, the TimeWindow
was increased to 3 and the Geohash precision was set to 4



Run 10: 500 drivers, LTE network, “full-cache”

Run 11: 500 drivers, LTE network, “empty-cache”

Fig. 7. Comparison of result times when running 500 vehicles at LTE speed
with full-cache vs. empty-cache

(causing a very large area to create aggregates). Using this
configuration, at 2000 incoming tuples, the operator was able
to aggregate the tuples by almost 87% to only 266. Having
larger aggregates though also implies having larger results in
terms of data. While the latencies of OSMOperators were
reduced, the downstream operator to unify the results was not
able to handle the amount of emitted ways and failed, causing
the pipeline to be halted.
Understanding the role of cache: Test runs 7-9 showed the
importance of caching. When the caches are empty, the system
fails at running 500 to 1000 vehicles. Before deploying the
system to a ready-to-use production, it should be considered
to run the application in detection-mode first for a certain time.
This can be achieved by simply providing geohash locations
that are known to be frequently driven to the Detection Service.
Another option would be to scale the third party Overpass
to multiple high-compute instances. While this would resolve
the bottleneck, if low costs are of importance, this should
be only considered as a second option. With full-cache, the
prototype showed very good results until test run 4, with
vehicles receiving curves with an average delay of only around
1 second. This has been done in test runs 10 and 11, where
a realistic scenario of 500 vehicles with LTE network was
executed. As shown in Figure 7, the maximum result-time on
full-cache, at the very beginning of the run, was at around 1.5
seconds. When the system was up for around 7 minutes on
full-cache, this value dropped and on average vehicles received
curves in 383ms. Compared to when all caches were empty,
the maximum result-time was at around 4 seconds and after 7
minutes of run time dropped to an average of 726ms. When
running 500 vehicles at LTE speed (full-cache), on average a
vehicle receives curve results in less than 0.4 seconds. On a
system start-up (empty-cache) this value almost doubles and
a vehicle still receives curve responses in no more than 0.8
seconds.
Discussion: with the cloud we could utilize load balancing
and caching to solve performance problems. However, if
such services running in the edge, it might not be pos-
sible, because it is hard to implement load balancing and
caching (on the other hand, edge systems can help reducing
latency). For example, in MECCA, in case more instances

of Recommendation Service would be available with load
balancing enabled, this state would have been avoided. We
see a complex dependencies among various factors, such as
the design of parallel tasks, external services, etc. This requires
complex design of the application and suitable deployment.
For example, in MECCA, we have the bottleneck due to the
third party service deployment – although we run parallel
operators. one solution to fix this problem would be to also
partition the downstream DetectCurves operator. When the
OSMPartitions are set to 5, this would also lead to 5 additional
containers for the DetectCurves operator. However, having 5
additional containers would increase the already very high
memory usage even more. While on a cloud instance this could
be easily achieved by buying a larger VM (but increase more
costs), at the edge this is not yet a solution since computational
resources are very limited. Here we also see another issue: it is
not easy to use deployment to decide certain processing parts.
The design of the part might be strongly associated with either
cloud or edge resources. The question of interoperability in
terms of execution and uploading is not straightforward like
in other types of mobile-edge applications like [11]. Caching
is very important and we can enable this well in case of cloud-
only deployment model. However, it is much more challenging
to support caching when we deploy components in both edge
and cloud infrastructures.

C. Performance of edge-cloud deployment model

1) Testbed: As deploying applications to mobile edge
servers is not yet possible, we emulated edge resources. For
edge-cloud deployment, shown in Figure 8, we use different
resources for different services being tested, depending on
their capabilities. The resources run with OpenStack and the
used virtual machines are configured in a way to be compara-
ble to a high compute edge node that is currently used in the
industry3. Table V specifies the VMs for running the simulated
edge node and the cloud node. When summing up all resources
of the VMs running in the simulated edge node, the CPU
and memory specifications almost exactly match the one’s
specified by Cisco’s high compute edge node. Differences
are 1 additional CPU core, around 1.5 GB additional RAM
and slightly more disk space of 20GB in total. To fit the
specification of the simulated edge node, for the detection, an
instance type of ”m1.large” results in around 8GB memory,
compared to 15GB in cloud-deployment tests.
Discussion: In this paper, based on performance in cloud-only
deployment tests, we decide such an edge-cloud deployment
but in principle there are many combinations, especially when
we have quite different number of services. While we can emu-
late edge resources, it is important to note that the applications
have to be reconfigured to suitable with edge resources. This
requires the application components to be developed with this
mindset. For example, to run the Apex application with the
same partition size, as in the cloud-only deployment, in edge

3specified at https://www.cisco.com/c/en/us/products/collateral/
cloud-systems-management/edge-fog-fabric/datasheet-c78-738866.html



Fig. 8. Edge-cloud deployment possibilities
TABLE V

RESOURCES FOR EDGE CLOUD DEPLOYMENT

Name Service Type Specs
OverpassAPI GCP n1-standard-8 default
Recommendation DSG Cloud m1.medium CPU Cores: 2

Memory: 3.75GB
DiskSpace: 40GB

Detection DSG Cloud m1.large CPU Cores: 4
Memory: 7.68GB
DiskSpace: 40GB

MongoDB DSG Cloud m1.small CPU Cores: 1
Memory: 1.92GB
DiskSpace: 40GB

Simulated Edge DSG Cloud CPU Cores: 7
Node (total) Memory: 13.5GB

DiskSpace:120GB

nodes each operator memory was reduced from 512 MB to
256MB.

2) Evaluation of edge-cloud model: During the tests, the
client deployed in a laptop was run inside the TU Wien
library, hence the actual distance to the simulated edge node
was around 500m. For each test run, the metrics number-
of-vehicles, response-time rT , response-rate rR, result-time
resT and result-rate resR will be analyzed. Test runs 1-4
executed on full-cache and 5-7 on empty-cache.

TABLE VI
TEST RESULTS OF EDGE-CLOUD DEPLOYMENT

Run Vehicle rT rR resT resR cache
1 100 395 99% 489 86% full
2 500 493 84% 587 84% full
3 1000 513 72% 584 84% full
4 1500 951 88% 996 76% full
5 2000 4551 8% 4612 7% full
6 100 291 99% 1649 70% empty
7 300 284 49% 1846 25% empty
8 500 450 42% / /% empty

Table VI shows the results of edge-cloud experiments.
Until test run 5, the prototype running in the simulated edge
node performed very well. Similar to cloud-only model, the
maximum number of concurrent clients when running on full
cache is 2000. The cloud-only deployment’s response and
result times are slightly better. The reason for this was the
higher network bandwidth between the simulated vehicles and
the servers. When running on empty cache, compared to the
cloud prototype, the edge prototype already failed earlier, at

500 vehicles. The reason for this is the lower memory capacity
for running the Apex application, causing OSMOperators to
fail. This experiment shows that the prototype is able to handle
between 1500 and 2000 vehicles on resource configurations
that can be compared to an edge node currently used in the
industry. Running the prototype on an empty-cache reduced
this number to only 300 vehicles. This is due to the lower
available memory for running Apache Apex to detect curves.
Discussion: Certain components will be the same in edge or
cloud resources, e.g., in our case the Recommendation Service
implemented in gRPC. However, to guarantee the benefit of
edge computing, such components should be deployed in
resources with enough elastic capabilities, unless the workload
for them is fixed. This leads to two important aspects: certain
components implemented with complex software, like our
Recommendation Service with Apache Apex, (i) either are
deployed in enough elastic edge resources, (ii) or should not
be deployed in the edge, as it might cause resources contention
and errors. It is important to establish a baseline of network
and hardware similar to the state of the art of edge systems
in order to understand performance. For example, the scenario
showed that, with using current LTE network standards, the
response times are almost as low as the one’s measured
between simulated vehicles and the cloud services. This, in
principle, would not be expected in the future, real mobile
edge cloud systems.

V. DATA QUALITY ANALYTICS

A. Metrics for data quality evaluation
TABLE VII

METRICS USED FOR DATA QUALITY EXPERIMENTS

Metric Name Description
detection-rate Percentage of successfully detected curves.

approaching-rate Percentage of successfully classified curves as they
approach while driving.

radius-error Average error of calculated radius compared to mea-
sured radius.

Evaluating the quality of data is crucial for mobile edge
cloud applications because the data delivery and collection
are influenced by several factors. Table VII shows the metrics
in our tests. Our simulation application to run the data quality
tests reads in our predefined test-track and replays the GPS
coordinates in sorted order. We tested performance using only
one client at a time on the predefined track.

B. Testbed for data quality experiments

Compared to the performance experiments, hardware and
software configurations for running the data-quality evaluation
do not change and are the same for all following experiments,
except the Overpass-Server is based on the public main server.

C. Analysis of quality of results

Our predefined test-track is simulated once from the start to
the end. The monitoring client tracks the following metrics:
measured radius mR, detected radius dR and radius error
rError, shown in Table VIII. From the result, we received an



TABLE VIII
TEST RESULTS OF QUALITY OF RESULTS

ID Detected Approached mR dR recSpeed rError
1 true true 286 341 78 55
4 false false 286 / / /
5 true true 245 262 68 17
7 true true 296 459 91 163
9 true false 352 703 112 352

11 true true 226 260 68 34
13 true true 246 267 69 22
15 true true 150 162 54 12
17 true true 229 242 66 14
19 true true 294 360 80 66
21 true true 250 256 68 7
23 true true 197 191 58 6
25 true true 161 190 58 30
27 true true 212 292 72 80
28 true true 107 531 97 424
29 true false 176 439 88 263
31 true true 108 246 66 138
33 false false 169 / / /
35 true true 220 253 67 33
39 false false 71 / / /
40 true true 93 234 65 141

average radius error of 103.06 meters. The overall detection-
rate is 86% and the overall approaching-rate is 76%. A
detection-rate and approaching-rate of around 80% indicates
that the system performs very well when detecting curves.
Having an average radius of over 100m though, in general,
would suggest that the prototype cannot yet be classified
as reliable when recommending speeds. To study the results
in more detail, we found that the detection seems to have
problems with the curves: 2,7,9,28 and 29. Curves 7 and 40
are overlapping with other curves. Overlapping curves are still
very error-prone for the detection. Curve 9 is a very large
curve (radius > 300m). Curves with very large radius barely
have angle differences between points. The curve detection
algorithm does not perform well if angles are too low. Curve
29 has very few data points. If there are too few data points,
the curve detection is very error-prone. Discarding these 4
problematic curves the average error of the radius drastically
drops to 46.64 meters.
Discussion: When third party data is heterogeneous, the
quality of results can be varying. Thus, optimization based
on quality of results should consider the quality of input data.

D. Data quality due to sensing

For edge-cloud it is important to test data quality due to
sensing. In the first run, inaccuracies are added to the GPS
positions. This has been done by simply offsetting the GPS
coordinates by a certain amount of meters. Based on existing
evaluation by Zandbergen et al.[12], for this experiment we
used the worst case scenario of 30 meters as upper bound
for the maximum error. Thus, for each GPS coordinate, a
random error between 0 and 30 meters was added. The other
3 runs simulate GPS outages at random locations. To simulate
outages we simply skip tuples for a certain duration. The
number of outages and their duration are configurable and
were changed as follows: In test run 2 we defined 5 outages

TABLE IX
TEST RESULTS OF INACCURATE GPS

Run Detection Rate Approaching Rate
1 86% 67%
2 86% 76%
3 86% 76%
4 86% 67%

with each having a duration of 10 seconds. In the next test
run 3 we increased the duration to 20 seconds. In the last test
run 4 we defined 10 outages with a duration of 20 seconds.

Table IX shows the test results when the GPS was inaccu-
rate. When 5 outages occurred with a duration of 10 or even
20 seconds, both the detection-rate and the approaching-rate
were not affected and both stayed at 86% and 76%. Only when
the number of outages was doubled to 10, with each outage
lasting 20 seconds, the approaching-rate slightly drops by 9%
to 67%. The output measures for this specific test of course
highly depend at what exact time the outages happen. Since the
tests places the outages randomly (at certain intervals given by
the number of outages), the results though show that again, the
system is very fault-tolerant even to complete outages. Again
this is achieved by using geohashes and pre-calculating curves.
Discussion: Connecting to a remote service at certain points
and performing offline detection using the local cache makes
the system highly fault-tolerant. For example, in general the
detection is very fault-tolerant to inaccuracies and outages,
because we pre-calculate curves for an area around the current
location using geohashes. If vehicles would connect to a
remote service to fetch curves on every GPS update, the rates
would drop significantly in case of GPS errors.

E. Data quality due to network problems
TABLE X

NETWORK PROFILES WITH APPLE’S NETWORK LINK CONDITIONER [10]

Profile Bandwidth Delay(ms) Packets Dropped(%)
LTE 50mbps% 50 0

Edge(2G) 240kbps% 400 0

We used two profiles in Table X to specify the downlink
properties. Since the uplink values are almost the same for
every profile, they are left out here. For all previous data
quality experiments, LTE network conditions were used. In
the first test run of this experiment, we simulate a very slow
network connection using Edge (2G). In all previous test
runs, both the recommendation and the central database made
use of caching and already had curves in their caches. To
simulate a worst-case scenario, additionally to using only Edge
(2G) network, we also clear all caches. The monitoring client
tracks the metrics average-result-time and average-response-
time. Table XI shows the test results. If the network is slow,
both detection rates and approaching rates stayed unaffected
at 86% and 76%. Figure 9 shows the average response and
result times when executing different runs of the experiments.
Discussion: A right pre-calculating by running services, e.g.
determining curves for areas around the current location (using
geohashing) in MECCA, makes the system highly tolerant
against slow and even very slow network conditions. However,



TABLE XI
TEST RESULTS OF DATA QUALITY DUE TO NETWORK PROBLEMS

Run Detection Rate Approaching Rate rT (ms) resT (ms)
1 86% 76% 1127 1127
2 86% 76% 1976 5891

Experiment 4 - Run 1: WiFi + full caches

Experiment 5 - Run 1: Edge (2G) + full caches

Experiment 5 - Run 2: Edge (2G) + empty caches

Fig. 9. Screenshot of the Prometheus monitor showing average response-and
result times of selected test runs during data quality evaluation.

this means that the client should be proactive to monitor the
network and to perform pre-calculating. Furthermore, this can
also create wasted calculation if many tasks (e.g., curves) need
to be done but unused. A tradeoff must be made for that.

VI. RELATED WORK

Cloud benchmarking is a very popular topic with different
levels of benchmarks, such as virtual machines, message bro-
kers and database [13], [14]. However, mobile edge computing
testing and benchmarking is under-researched, although edge
cloud systems and applications currently are in the focus of
various researchers. The work in [15] represents discussions
w.r.t architecture for edge cloud systems using containers and
clusters. The work in [16] surveys techniques for monitoring
edge applications. Various middleware have been proposed,
such as in [17]. Our focus in this paper differs as we address
performance and quality of data testing.

In [18], the authors benchmarked Hadoop in small cloud
configurations. While such configurations can mimic edge
configuration, the work has not tested edge cloud applications
in realistic edge cloud infrastructures. Many papers have
focused on techniques for optimizing offloading between edge
and cloud [1], [2], utilizing mobile devices for edge services
[3], migrating services [4]. Our work is different as we are
not focus on offloading but understanding performance and
data quality impacts based on different configurations and
application models. Our future work can focus on testing
mobile-edge cloud where such above-mentioned techniques
are also employed for services and resources.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied various performance and data
quality factors for mobile edge cloud applications. We selected
MECCA as a complex application for our study. As we
presented, performance and data quality depend very much
on the deployment model but also the design of software.
We have presented several discussions to recommend possible
techniques for analytics of mobile edge cloud applications.

While our approach does not present a generic tool for
performance analysis, it does bring several experiences that
we could consider in order to optimize edge cloud applications
and to build toolset for performance and data quality. Our
future work is to focus on building a toolset for analytics of
edge cloud applications that can correlate data from various
layers and can be used to setup tests for such applications.

REFERENCES

[1] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.

[3] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in 2015
IEEE 8th International Conference on Cloud Computing, June 2015, pp.
9–16.

[4] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method
for minimizing service delay in edge cloud computing through vm mi-
gration and transmission power control,” IEEE Trans. Comput., vol. 66,
no. 5, pp. 810–819, May 2017.

[5] S. Schmidl, “Untersuchung des fahrverhaltens in unterschiedlichen
kurvenradien bei trockener fahrbahn,” Master’s thesis, Universität für
Bodenkultur Wien, Mar 2011.

[6] P. OSRM, “Osrm api documentation,” http://project-osrm.org/docs/v5.
10.0/api/#general-options, (Accessed on 02/12/2017).

[7] O. Foundation, “Overpass api,” http://wiki.openstreetmap.org/wiki/
Overpass API, 2017, (Accessed on 05/03/2017).

[8] H. L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.

[9] M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bittencourt,
“Myifogsim: A simulator for virtual machine migration in fog comput-
ing,” in Companion Proceedings of the10th International Conference on
Utility and Cloud Computing, ser. UCC ’17 Companion. New York,
NY, USA: ACM, 2017, pp. 47–52.

[10] NSHipster, “Network link conditioner,” http://nshipster.com/
network-link-conditioner/, (Accessed on 02/12/2017).

[11] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 18–24, 2015.

[12] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning,” Transactions in GIS, vol. 13,
pp. 5–25, 2009.

[13] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modern distributed stream computing frameworks,” in 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, Dec
2014, pp. 69–78.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[15] C. Pahl and B. Lee, “Containers and clusters for edge cloud architectures
– a technology review,” in Proceedings of the 2015 3rd International
Conference on Future Internet of Things and Cloud, ser. FICLOUD ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 379–386.

[16] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Mon-
itoring self-adaptive applications within edge computing frameworks: A
state-of-the-art review,” Journal of Systems and Software, vol. 136, pp.
19 – 38, 2018.

[17] J. a. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva, “To-
wards a middleware for mobile edge-cloud applications,” in Proceedings
of the 2Nd Workshop on Middleware for Edge Clouds & Cloudlets, ser.
MECC ’17. New York, NY, USA: ACM, 2017, pp. 1:1–1:6.

[18] M. Femminella, M. Pergolesi, and G. Reali, “Performance evaluation
of edge cloud computing system for big data applications,” in 2016 5th
IEEE International Conference on Cloud Networking (Cloudnet), Oct
2016, pp. 170–175.


