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ABSTRACT

Modern Cyber-Physical Systems (CPS) and Internet of Things (IoT)
systems consist of both loosely and tightly interactions among
various resources in IoT networks, edge servers and cloud data
centers. These elements are being built atop virtualization layers
and deployed in both edge and cloud infrastructures. They also deal
with a lot of data through the interconnection of different types of
networks and services. Therefore, several new types of uncertainties
are emerging, such as data, actuation, and elasticity uncertainties.
This triggers several challenges for testing uncertainty in such
systems. However, there is a lack of novel ways to model and
prepare the right infrastructural elements covering requirements
for testing emerging uncertainties. In this paper, first we present
techniques for modeling CPS/IoT Systems and their uncertainties
to be tested. Second, we introduce techniques for determining and
generating deployment configuration for testing in different IoT
and cloud infrastructures. We illustrate our work with a real-world
use case for monitoring and analysis of Base Transceiver Stations.
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1 INTRODUCTION

Recent advances in the integration between Internet of Things (IoT),
edge infrastructures (including so-called fog computing infrastruc-
tures) [13], and cloud services have fostered the development of
several types of Cyber-Physical Systems (CPS) and IoT systems.
The design, development and operation of such systems are ex-
tremely challenging [29, 32] due to the complexity of IoT elements
and software services and their connectivity. Our research focuses
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on a particular challenge in supporting the design and operation of
IoT, edge and cloud infrastructures that will be used by different
applications, e.g., Geosports, smart cities, and predictive mainte-
nance of equipment. In such applications, software components
are deployed to exploit existing software and hardware elements
of CPS/IoT systems; these elements can be available in public and
private Cloud and IoT infrastructures, such as Google, Amazon,
Azure, and FIWARE (https://www.fiware.org/). During the execu-
tion, applications would need to add new elements (e.g., due to the
elasticity of workload) as well as to be reconfigured (e.g., due to
the adaptation). Since our CPS/IoT systems consist of mainly IoT
devices, edge systems, and cloud-based services in data centers, in
this paper we denote them as IoT Cloud Systems. The term of CPS
and IoT Cloud Systems are interchangeable in our work.

1.1 Motivation

Our motivation is from the need to deploy and test infrastructures
for CPS/I0T systems that include IoT elements at the edge and
cloud services in data centers. Techniques for these tasks are on
high demand by researchers and developers of modern CPS/IoT
systems. Furthermore, since such systems span various IoT, edge
and cloud infrastructures operated by different providers, there are
many types of uncertainties, ranging from known sources of device
characteristics [8] to emerging IoT data and elasticity ones [2], that
must be tested [3]. In our work, uncertainty is considered as the
lack of certainty (i.e., knowledge) about the timing and nature of
input data and request, the state of a system, a future outcome, as
well as other relevant factors [2, 3].

In testing uncertainties of IoT Cloud Systems, however, there
is a lack of tools to enable the developers to easily design such
IoT Cloud Systems under test (SUT). Although it is challenging
to deploy IoT and Cloud resources, various tools have been devel-
oped, such as SALSA [20]. However, with these tools, the main
problem is that the developers are required to have (fixed) existing
(virtual) infrastructures and they have to specify precisely the de-
scription of infrastructures, such as using TOSCA and HOT [12],
for deployment. It is not flexible, and changing the infrastructure
for SUT is a difficult and error-prone task. Furthermore, such tools
are separated from the test purpose, as they focus on deployment
of systems in general. Software engineering tools allow to model
various IoT and Cloud elements [7, 14] but they lack the integra-
tion with deployment tools. Most of them lack the incorporation of
uncertainty objectives (e.g., for testing). Other tools for testing are
able to generate test cases but they lack features for determining
test configuration based on uncertainty models.

Our work is to streamline the way how the developers would test
their IoT Cloud Systems through conventional software design and
development: specify systems and test configuration, uncertainty at
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the high-level, e.g., in terms of UML models, and then automatically
generate the infrastructure configurations and deploy the infras-
tructure. This requires not only an integration between various
tools from different works but also requires new features to glue
design time modeling with runtime deployment and configuration.

1.2 Contributions

We aim at simplifying the preparation and deployment of IoT Cloud
Systems for uncertainty testing. Our approach is to enable the de-
veloper to specify SUT at a high-level view, together with potential
uncertainties that the developer wants to test and test configura-
tion (such as, preferred infrastructure providers and cost). From
the specification, we search existing artifacts for SUT and establish
the SUT by generating SUT configurations and deploying suitable
artifacts to create an IoT Cloud Systems as a SUT. We contribute:

o A novel profile for specifying IoT Cloud Systems elements
together with test configuration and uncertainties: this goes
beyond separate work on, e.g., just modeling IoT or Cloud,
or just focusing on uncertainties.

e Configuration generation and deployment of IoT Cloud Sys-
tems: this goes beyond existing tools by creating suitable
deployments for different underlying systems.

Our contributions are built atop known technologies that allow us
to experiment uncertainty testing in different IoT/Cloud settings. In
this paper, we run a real-world example with an IoT Cloud System
for monitoring and predictive maintenance of Base Transceiver Sta-
tions (BTSs) that is based on IoT and Cloud resources and services.
In our prototype, our profiles are integrated with and supported
by standard UML tools, while our SUT generation and deployment
are for well-established Cloud and IoT services models.

Paper Structure: The rest of this paper is organized as follows: Sec-
tion 2 describes the overall approach and tool architecture. Section
3 describes our Infrastructure, Uncertainty, and Testing modeling.
We present techniques for creating SUT configuration in Section
4. Prototype and experiments are shown in Section 5. We discuss
the related work in Section 6, before summarizing the paper and
presenting the future work in Section 7.

2 TOOLING PIPELINE FOR UNCERTAINTY
TESTING

In developing IoT Cloud systems and applications, various software
artifacts are developed by different stakeholders and made available
as service instances or deployable images in software repository
(e.g., Docker images, virtual machine images, or executable soft-
ware package). The development of such software might or might
not be part of the software (uncertainty) testing. In our work we
distinguish the following types of artifacts:

o public artifacts about elements of IoT Cloud Systems from exist-
ing providers — denoted as Pg: include, e.g., virtual machine (VM)
images, Docker container images, VM/container images with mid-
dleware and application components, and executable software
programs. These artifacts are generally developed and stored in
public and private IoT and Cloud systems and their images are
available for downloading and deploying.

o customized artifacts of elements in system under test (SUT) — de-
noted as SUTy: are part of SUT. They may or may not be based
on P, but they are specific for SUT. For example, one can design
a software sensor within a Docker container as an SUT,, which
will be executed atop a virtual machine as a P,,.

o test utilities — denoted as TU,: they are utilities designed specially
for testing purposes. They are part of the test infrastructure
(not necessary part of the system under test). Given the above-
mentioned example, a log collector inside the container of SUT,
can be considered as a test utility as it helps to collect logs within
the container for testing.

Figure 1(a) describes the relationships among artifacts and their
deployment for testing. Generally, these artifacts have APIs for
deploying and executing them; such APIs are understood by the
developer and they can be modeled or specified by the developer.
For example, most P, can be instantiated or used through tools
provided by corresponding providers, while SUT, are usually asso-
ciated with specific operations/API so that one can configure and
invoke them for testing. Consider the complexity from IoT Cloud
systems development and provisioning, we cannot simply make the
assumption that a single tool would be able to deal with all steps
in modeling, provisioning and testing. We therefore leverage the
pipeline concept to create and employ a set of tools for provisioning
SUT. First, the developer can follow certain engineering workflows
to provide different views of the SUT via textual and/or graphical
models [9] by using some tools. Structural and behavioral infor-
mation are further enriched with uncertainties to suitably tailor
the provisioning of the SUT. Based on that, we can extract various
information from design models and test configuration. From such
extracted information, one can decide how to select suitable ele-
ments and test utilities to perform the test. This requires a complex
set of tools as there are several steps spanning from model engi-
neering to runtime provisioning and configuration. In particular,
depending on the test configuration and the availability of resource
providers, we might need to have different provisioning strategies.
Figure 1 (b) presents the testing process and tooling pipeline for
provisioning infrastructures:

e Modeling: describes IoT Cloud Systems under test, potential
uncertainty and other behavior information. We rely on UML
profiles for modeling.

¢ Extracting model information: extracts various types of in-
formation specified in the model and makes the information
available for other tools.

o Generating Test Configuration: creates different test configu-
rations based on uncertainties, the availability of resources and
other parameters. Each configuration will be associated with
appropriate deployment configuration for SUT.

e Deploying SUT: performs the deployment of SUT and test util-
ities.

One of the key points of our framework is the extensibility. In the

modeling phase, the developer can specify various information and

we can extract them. However, when generating test configurations,
we need to consider various parameters, related to the cost and other
underlying IoT and cloud infrastructures. Therefore, we expect to
have several ways, e.g., implemented through plug-ins, to generate
suitable configurations and deployment. Our design enables this,
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Figure 1: (a) Artifacts and their deployment, (ii) Tool pipeline for dynamic SUT provisioning

but in this paper we will focus on a specific implementation of our
configuration and deployment generation.

3 MODELING IOT CLOUD
INFRASTRUCTURES AND UNCERTAINTY
FOR TESTING

One of the first step is to model IoT cloud systems under test (SUT),
their configuration and uncertainties. This requires us to deal with
a great challenge in terms of conceptualizing uncertainties and
modeling various integrated aspects. Although models for IoT and
clouds are quite popular, putting uncertainties, IoT, cloud, etc., into
a same SUT has not been addressed. Although there are works that
separately deal with IoT modeling [10] and cloud based systems [1]
as part of a model-driven engineering (MDE) process, a combination
of modeling and testing activities with uncertainty as an explicit,
cross-cutting concern throughout the process, is missing. This is
the key, multifaceted issue we are tackling in this paper.

We leverage model-driven engineering (MDE) approach to tackle
the complexity of SUT to guarantee the correct design, implementa-
tion and operation of IoT Cloud Systems under uncertainty. For this
purpose, we capture infrastructures as SUT in Unified Modeling
Language (UML) [26] models. UML is a standard, general purpose
modeling language that is currently the most used by practitioners
in companies [15, 22].

3.1 Modeling IoT Cloud Systems under Test

Our goal is to extend UML with a minimal set of concepts to repre-
sent the underlying Infrastructure and the constituting Infrastruc-
tureElements of the cloud-based cyber-physical systems. Shown
in Figure 2, our an envisaged IoT Cloud System, represented by
Infrastructure, includes both software and hardware Units. We aim
at representing both kinds of units in a specular manner to pro-
vide the same modeling expressiveness, with the only exception
of communication devices and protocols, as detailed later. There-
fore, we apply the following design rules in the definition of the
Infrastructure profile:

(1) We introduce a generic, abstract stereotype for concept cross-
cutting software and platform representations.

(2) We add two specialized, concrete stereotypes adding the Virtual-
and Physical- prefixes to the name of the generic, abstract stereo-
type if it helps disambiguating terms applicable to both software
and hardware domains.

(3) We add common properties within to generic abstract stereo-

types.

The Infrastructure is composed of multiple, generic Units, each
one with its own identifier, location, description, and configuration
properties. In particular, a configuration represents the settings
associated to the Unit. Units are distinguished in PhysicalUnits and
VirtualUnits that represent hardware and software resources, re-
spectively. Both physical and virtual units are complex elements
and can be composed of other physical and virtual units, respec-
tively. A PhysicalUnit has associated Actuators and Sensors , which,
in turn, are themselves particular kinds of PhysicalUnits.

An Actuator represents a hardware component that changes
the status of the surrounding environment. Each Actuator realizes
one or more PhysicalCapabilities. A Sensor is a component through
which a PhysicalUnit monitors its environment (e.g., temperature
sensor, humidity sensor). Each PhysicalUnit has associated Metrics
that it is capable to collect. For example, a thermostat physical unit
can include both a sensor to collect temperature and humidity (i.e.,
the physical capability to collect two metrics), and an actuator that
has the capabilities to modify temperature and humidity of the
surrounding environment. A particular kind of PhysicalUnits are
IODevices that can be found in CPS like gateway, router, switch,
hub, and protocol converter. For this purpose, an IODeviceType
enumeration type is defined with a distinct EnumerationLiteral for
each of them.

Each PhysicalUnit has associated one or more VirtualUnits that
run on top of it (e.g., PLC code running and governing machines
within a production system). As anticipated, we assume a spec-
ular set of concepts to describe the software architecture of the
Infrastructure. A VirtualUnit has associated VirtualActuators and
VirtualSensors, which, in turn, are themselves particular kinds of
VirtualUnits. A VirtualActuator represents the software component
through which the owning VirtualUnit controls the hardware plat-
form elements that interact with the environment. Each VirtualAc-
tuator realizes one or more VirtualCapabilities A VirtualSensor is a
software component through which physical sensors are controlled.
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Figure 2: Infrastructure profile: excerpt of stereotypes and their relationships.

Each VirtualUnit has associated one or more SoftwareDefinedMet-
rics that it is capable to collect and measure, e.g., temperatures,
defined dynamically. The SoftwareDefinedMetric has an id, name,
description, endpoint, period, measuredProperty, and measurement-
Protocol. These are the attributes necessary for accessing the sensor
information.

Concerning the modeling of communication units and protocols,
it is worth noting that we did not introduce a specific stereotype for
communication devices, like routers or cables, but we model them
as PhysicalUnits. On the contrary, we introduce a specific Com-
munication stereotype to model interactions between VirtualUnits.
Each communication realizes a particular ProtocolType between
different infrastructure elements. The supported protocol values
are popular protocols, such as MQTT, HTTP, TCP, UDP, and AMQP.
Finally, any Infrastructure provide CloudServices of different types
(see CloudServiceTypes enumeration including VM, Disk, Storage-
Service, and DataAnalyticsEngine) corresponding to cloud offerings
by cloudProvider and dataProvider.

3.2 Uncertainty Modeling

In testing uncertainties of IoT Cloud Systems, we need to capture
possible uncertainties and model them in a systematic way. Based
on our uncertainty taxonomy [2] we develop an Uncertainty Profile
to model uncertainties inherent in IoT Cloud Systems.

An excerpt of the profile is depicted in Figure 3. The Infrastruc-
tureUncertainty extends the core Uncertainty stereotype and it is

characterized by the following properties modeled as UML Enu-
meration types, namely: TemporalManifestationType, LocationType,
NonFunctionalDimensionalityType, CauseType, ObervationTimeType,
FunctionalDimensionalityType, EffectPropagationType. We then iden-
tify different UncertaintyFamilies, namely: DataDeliveryUncertainty,
ActuationUncertainty, ExecutionEnvironmentUncertainty, Governance-
Uncertainty, ElasticityUncertainty, StorageUncertainty.

Each family is characterized by a particular set of values assigned
to infrastructural uncertainty properties that determine whether an
uncertainty belongs to a particular family. The Infrastructure Level
Uncertainty profile is part of the Uncertainty Modeling Framework
(UMF) provided by U-Test project [3]. In [2] a detailed domain
model is provided. Due to space limitation, detailed uncertainty
family descriptions are given in [2].

3.3 Test Configurations Modeling

In order to test IoT Cloud Systems, we need to further extend the
system model with testing-specific concepts. Therefore, we define a
Testing Profile (see Figure 4). Together with the Infrastructure and
Uncertainty Profiles (see Figures 2 and 3, respectively), it represents
a core asset to create the UML input artifacts to our tool pipeline.
Given the system Infrastructure and the associated Infrastructure-
Uncertainty information, different testing goals are possible, e.g.,
i) testing the DataDeliveryUncertainty between Units like Virtual-
Gateways and CloudServices and/or ii) testing the performance of
VirtualGateways and CloudServices. Furthermore, there are many
providers and infrastructures that can be selected by developers
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and then used for testing. Because of that, we need to capture Test-
ingConfigurations, depicted in Figure 4. Metrics to be tested is then
associated to TestConfigurations and strongly influenced by Infras-
tructureUncertainties. The TestConfiguration has a name, description
and a timeout. The timeout gives the maximum amount of time in
which the associated TestExecutor should answer the test.

The TestExecutor has a description, targets to be tested (i.e., SUT
infrastructure elements), test utilities (used to perform the test) as
well as SUT deployment. Therefore, TestExecutor is quite similar
to test cases in contemporary testing systems but it is extended
with dynamic deployment of IoT and Cloud resources for SUT.
Multiple strategies (e.g, executing all the possible execution paths
or minimizing a certain cost function) can be specified to influence
its execution.

TestTrigger describes when a test should be executed and it is of
two types, either EventTrigger or PeriodicTrigger. The EventTrigger
has two attributes, description of the event, and the event source,
and it is used for event-based testing (e.g., when, during system run-
time, the quality is too low). The PeriodicTrigger has two attributes,
i.e., the period and the time unit, and it is used for tests executed in
specific periods described under various units of time.

Note that not all information need to be specified during the
modeling. Many types of information can be generated from differ-
ent tools. For example, the Metric and TestExecutor can be generated
from models, uncertainties and other information. At runtime, for
testing, we have descriptions of test plans. Such test plans can be
generated in different ways. One example is to generate the test
plans based on our DSL in [24] or model-based test case generation
[33].

4 PROVISIONING SYSTEM UNDER TEST
4.1 Extracting Information from Models

IoT and Cloud resources modeled, communication protocols, ex-
pected uncertainties to be tested, etc., are extracted from models
into JSON-based descriptions. The key thing is to enable various
tools to use the extracted information for different purposes. In this
paper, the extracted information is used to determine test config-
uration and deployment (but not for performing the test - which
is out of the scope of this paper). We implement the information
extraction using the EPSILON framework. EPSILON provides a tool
ecosystem for MDE activities, including a template-based model-
to-text language for generating code, documentation and other
textual artifacts from (UML) models. Listing 1 shows an executable
extraction rule (using EPSILON EGX co-ordination program) that
transforms each UML Class annotated with the VirtualSensor stereo-
type to JSON (using a EGL template), shown in Listing 2. During
the extraction process, the EPSILON framework replaces dynamic
placeholders (i.e., variables declared within [%%]) with property
values extracted from stereotype applications.



Listing 1: Transformation rule for VirtualSensor

rule VirtualSensor2JSON

transform virtual_sensor Class {

guard : virtual_sensor.hasStereotype ("
VirtualSensor")

template "JSONTemplate.egl"

target "virtualsensors/" + virtual_sensor.name+
".json"

3

Listing 2: Template for VirtualSensor JSON files

{

"name": "[%=virtual_sensor.base_Class.name%]",

"swCapabilities": [%=virtual_sensor.swCapabilities
%1,

"deployedOn": [%=virtual_sensor.deployedOn%],

"type": "VirtualSensor"

}

4.2 Artifact Repositories and Runtime
Information Services

In order to support testing, SUT model elements have to be bound
to concrete artifacts and testing utilities, usually stored in repos-
itories. SUT elements, such as, virtual machines, MQTT brokers,
gateway artifacts, are typically prebuilt and managed in different
repositories. Similarly, testing utilities are also diverse, due to dif-
ferences between the underlying infrastructure providers. In this
paper, we consider that artifacts for testing (Pq, SUT, and TU,)
are available!. We leverage software artifacts from i) public repos-
itories (such as Docker hub and Google Registry), which provide
state-of-the-art technologies, such as, for deploying and managing
containers and VMs, and ii) user-provided repositories with similar
technologies, such as using Google Storage and Docker Registry.
For the developer of SUT, our tool needs to connect different reposi-
tories to search suitable artifacts. Therefore, we develop a metadata
service based on MongoDB for our artifacts. While artifacts can be
stored in different repositories, the developer will need to provide
metadata so that our configuration generation tool can search the
right artifacts for the right underlying infrastructures. We also need
to rely on resource information services to provide information
about running instances of artifacts and SUT elements. For example,
when we know that a VM instance P, is available for use, we can
just deploy a SUT, onto Py, instead of deploying another VM. For
runtime information, we use HINC [17] and SALSA [19].

4.3 Selecting SUT-related Artifacts

To enable the search of suitable artifacts for SUT, we impose a set
of guidelines to describe artifact capabilities (there is no model that
describing testing artifacts). After such artifacts are built, they are
deposited into a repository and metadata will be stored into our
services. In order to search the right artifacts, we have different
metadata associated with artifacts. Such metadata will be searched
by using information extracted from the model (e.g., type of service

'How to build such artifacts are out of the scope of this paper. In our work, currently,
the developer develops such artifacts using different techniques.

units, and protocol supports). We use the following convention for
metadata:

o t4u/abstractelement/concreteelement : tag: where as t4u is the

name of our system, abstractelement indicates the abstract type

of SUT elements, e.g., VirtualSensor, and concreteelement indi-
cates concrete type of SUT elements, such asElectricitySensor.
tag is used to add new information. For example, the string

t4u/VirtualSensor/Electr

icitySensor:raspberrypi indicates images and testing utili-
ties for instances of ElectricitySensor in Raspberry PIL

Each artifact has meta information about how to invoke and

reconfigure it. For this, we use a convention: startup, shutdown,
configure scripts with input (JSON) parameters. To be generic,
we do not guarantee the correctness of these functions but we

require these functions in order to reconfigure and start SUT ele-
ments. This requirement is conventional, widely used in practice,
for dealing with configuration of software components, which

can be implemented through REST (for Web service), gRCP (for

RPC call-based objects), and shell scripts (for executable artifacts).

For example, a developer can i) develop a virtual sensor in
Python/Java as an element of the CPS and ii) create a Docker file
for the sensor. A Docker image can be built and deposited into the
repository. Listing 3 shows an example of a Docker file that bind
a concrete MQTT broker to the corresponding CloudService, and
make it available to developers on a repository.

Listing 3: Example of storing artifacts and metadata

$docker tag mqttsensor localhost:5000/t4u/
cloudservice/mqttbroker:vo1l

$docker push localhost:5000/t4u/cloudservice/
mgttbroker

$t4u_metadata add localhost:5000/t4u/cloudservice/
mgttbroker:ve

4.4 Configuration Generation and Deployment

GCloud Geloud deployment
description

Driver

Docker files & Docker
Confi i compose description

Docker Driver
Generator TOSCA Driver

Information
Services/Repositories

Extracted Model
Information Strategy
paramters

Figure 5: Deployment configuration and description genera-
tor

TOSCA

... Driver

From the extracted information, we connect to repositories of
artifacts and we have different techniques to generate deployment
configurations and deployment descriptions. Figure 5 shows the
design. Configuration Generator will provide different possibilities
of deployment configurations for elements of SUTs, e.g., whether
a software sensor will be executed in a small virtual machine or
not. After that, several drivers will be used to provide the detailed
deployment descriptions, which are used to deploy several instances
of SUT elements for testing. For example, a deployment description
can include how many sensors, virtual machines, message brokers,




cloud data services, etc., should be deployed and to where (e.g.,
local cloud or Google). In our work, we use SALSA [18], docker
tools, and cloud-specific tools (e.g., Google gcloud) for deployment
(but this can be done by many other tools). We will provide further
examples in Section 5.2.

5 EVALUATION
5.1 Modeling IoT Cloud Systems under Test

To illustrate our approach, we perform uncertainty modeling and
testing for an IoT cloud system for monitoring infrastructures of
Base Transceiver Stations (BTS Monitor)?. The SUT includes a set
of hardware sensors reading various electricity parameters (Hw-
ElectricitySensor), e.g., high or low AC voltages, backup powers and
power interruption, temperature (HwTemperatureSensor) (outdoor
and indoor of the BTS), status of air conditioners (HwAirCondi-
tioningSensor) (e.g., failures, alarms, etc.), and the corresponding
software counterparts governing these hardware devices through
APIs (ElectricitySensor, TemperatureSensor, and AirConditioningSen-
sor). Within a BTS, these sensors push monitoring data to an IoT
Gateway using Raspberry PI. The IoTGateway uses MQTT protocol
to push monitoring data to the cloud and receives commands from
the cloud (e.g., for controlling air conditioners). At the cloud side, we
have Node]S and Python data ingest components (IngestClient) that
take the data and store into a storage service, which, in turn, can
be realized through Google BigQuery and/or Cassandra. For testing
purposes, we emulate sensors using Java/Python-based software
sensors and reused historical data from the real system. Other com-
ponents are deployed in the real system (although configurations
are not exactly like in the production).

Figure 6 shows an excerpt of the BTS system architecture model
created using Papyrus UML tool. A Class Diagram shows classes and
associations annotated with stereotypes from our profile. They rep-
resent sensors, their virtual counterparts, and Raspberry PI gateway.
Clearly, this way enables the developers to stay at the high-level de-
sign and to customize different parameters for their tests. It is worth
noting that we partially reuse the resource modeling support and
guidelines of the OMG MARTE profile to obtain a parameterized
model. MARTE defines foundation concepts for embedded system
modeling in UML, defining different kinds of resources (process-
ing, storage, and communication) at different level of abstraction
(software, hardware) [27, 30]. In particular, we add i) resource mul-
tiplicities (via Resource stereotypes), ii) speed factors of computing
resources (via HwProcessor) and memory sizes (via HwMemory
and HwRAM). However, strict compliance with MARTE modeling
guidelines is out of scope and left as future work.

The bottom of Figure 6 shows test configuration model elements.
A test configuration (e.g., Test001) is a collection of different con-
figurations for computing, storage, and communication resources
modeled in the SUT architecture depicted above:

e The MQTTConfigClient class collects all the information required
to set up the communication between SUT components via the
MQTT protocol.

e The CassandraConfig1 class collects all the information required
to set up the storage service using Cassandra.

2We rely on a real system for BTSs in Vietnam from our partners. Due to confidentiality
constraints, we abstract only the main parts in our example

e The GoogleBigQueryConfig1 class collects all the information
required to set up the storage service using the Google BigQuery.

In our example, sources of uncertainty are incomplete/wrong
test configurations. Figure 7 shows the expected uncertainty to be
tested. All stereotypes annotations that we have not explicitly intro-
duced in our profiles (see Figures 2,3 and 4) come from the U-Test
core Uncertainty profile [3]. A BeliefAgent, (e.g., a developer), is in
charge of testing the SUT to verify whether beliefs (i.e., BeliefEle-
ments) about the SUT hold or not, and to identify the indeterminacy
source(s) for that beliefs. In our example, a developer knows that
the MQTT protocol will be used for communication among many
infrastructural elements. He/she further believes that at least the
90% of messages sent by each unit are delivered. He/she knows that
MQTT provides a quality of service level (qosLevel of MQTTConfig1
in Figure 6) as an agreement regarding the guarantees of messages
delivery. There are three QoS levels in MQTT expressed as integer:
at most once (0), at least once (1), and exactly once (2)). However,
he/she does not know which QoS level configurations for commu-
nication channels (i.e., the Communication associations in Figure
6) fit best with network reliability. Therefore, MQTTConfig1 repre-
sents an indeterminacy source, caused by missing information, for
beliefs hold by developers. It means that developers have to deal
with DataDeliveryUncertainty (see Figure 7).

For this reason, differnt SUT deployments and configuration can
be generated from the same system infrastructure model, depend-
ing on the identified uncertainties. Note that by connecting to the
configuration generation and information services, the developer
could obtain further information and update his/her models. For ex-
ample, in Figure 6, MQTTConfig2Client can be concrete due to the
availability of a concrete MQT TBroker configuration available in a
Google virtual machine (with a real IP address). Such information
might not be available at the beginning of the modeling due to the
lack of knowledge about existing resources. However, such a lack
of knowledge can be solved through the configuration generation
and deployment of test configuration (even though the test has not
been started).

5.2 SUT Deployment and Configuration

Consider, for example, two different cases in testing data uncer-
tainty. In the first case, the developer is interested in only the data
uncertainty from the gateway to the cloud (one may assume that
this part has many types of uncertainty). In the second case, the de-
veloper is also interested in uncertainties of the IngestClient config-
ured with BigQuery. This requires us to create different deployment
configurations. As our prototype is currently being implemented
and due to the lack of space, we just illustrate some examples>.
From the extracted information in models, we generate differ-
ent types of information: (i) JSON based configurations for single
resources and their communications, and then (ii) concrete deploy-
ment descriptions. For (i) we obtain a valid input model for the
Generating Test Configuration phase (see Figure 1) to generate mul-
tiple deployment configurations, represented in JSON files. In this
step, given the extracted information from an element in the model,
e.g., a BTSBroker, depending on testing strategies (e.g., Local or

3The prototype will be continously updated in https://github.com/rdsea/
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Figure 6: Annotated Class Diagram of the Telco BTS monitoring system showing structure and test configuration.
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Cloud) and uncertainties (e.g., DataUncertainty), possible deploy-

ment configurations will be created, e.g., BTSBrokeriLocal and

BTSBroker2Google. Shown in Listing 4, examples of deployment

configurations are:

e BTSBroker can be in a local deployment or Google deployment,
leading to two deployment configurations: BTSBroker1Local
and BTSBroker2Google.

e MQTTConfigl for any IoTGateway instances when IoTGateway

supports MQTT communication.
e MQTTConfig2 can be used in the case an instance of
ElectricitySensor connects to an instance of IoTGateway de-

ployed in Google VM through CommElectricitySensorIoTGateway1.

In this case, the configuration has specific IP address of the IoT-
Gateway instance and concrete QoS, due to test strategies.

Listing 4: Extracted simplified example of deployment con-

figurations
"BTSBrokeriLocal": {
"name": "BTSBroker",

["local"],

"cloudProvider":
["MQTTConfigl"],

"communicationConfigs":
"type": "CloudService"
3
"BTSBroker2Google": ({
"name": "MQTTBroker",
"cloudProvider": ["Google"],
"communicationConfigs": ["MQTTConfigl"],
"type": "CloudService"
3
"MQTTConfigl": ({
"name": "MQTTConfigServer",
"protocolType": "MQTT",
"qosLevel": [1,
"keepAlive": 210,
"type": "CommunicationConfiguration"

3
"MQTTConfig2": ({

"name": "MQTTConfigClient",
"protocolType": "MQTT",
"clientID": "",

"serverIP": "35.189.187.208",

"portNumber": 1883,




"topics": ["/gateway/electricity"],
"qosLevel": [2],

"type": "CommunicationConfiguration"
¥
"ElectricitySensor1":{
"name": "ElectricitySensor",
"swCapabilities": ["setRate", "getRate"],
"ownedUnits": ["HwElectricitySensor"],
"type": "VirtualSensor"
3
"CommElectricitySensorIoTGatewayl": {
"name": "CommElectricitySensorIoTGateway",
"connection_end_points": ["
ElectricitySensor1", "
IoTGatewaylGoogle"],
"communicationConfigs":"MQTTConfig2",
"type": "Communication"
}

From the JSON-based deployment configurations, we determine
concrete deployment descriptions; the descriptions must be con-
crete for existing tools to perform the deployment. This is also
based on a concrete decision on where to test, cost, availability
of underlying infrastructures. As shown in Section 4.4, this will
be done by processing all deployment configurations and using
different drivers to provide concrete deployment descriptions. For
example, Listing 5 shows docker compose files for deployment de-
scription in local machines for testing. List 6 shows TOSCA-based
descriptions for SALSA to deploy the SUT. Similarly, one can also
have gcloud-based scripts (https://cloud.google.com/sdk/gcloud/)
to deploy SUT.

Listing 5: Extracted simplified example of a Docker-
compose deployment description

version: '3'
services:
ingest:
build:
volumes:
- ./:/t4u
electricitysensor:
image: "localhost:5000/t4u/mqttsensor/
realsensor:vel"
iotgateway:
image: "localhost:5000/t4u/cloudservice/
mgttbroker:ve1"

Listing 6: Example of TOSCA deployment description

<ns2:NodeTemplate maxInstances="10"
id="electricitysensor" type="salsa:os">
<ns2:Properties>
<MappingProperties>
<MappingProperty type="salsa:os">
<property name="provider">...</property>
<property name="instanceType">...</property>
<property name="baselmage">...</property>
</MappingProperty>
</MappingProperties>
</ns2:Properties>
</ns2:NodeTemplate>

6 RELATED WORK

Various applications and systems based on IoT and Cloud resources
have been developed, such as [5, 16]. While various aspects in terms
of design of such systems and applications have been discussed,
e.g., network and protocols, we have not seen the issues of testing
and how to connect from the design to the deployment of systems
in an integrated manner. Recently, some work have focused on
analyzing uncertainties and failures [4, 21], but they do not focus
on connecting IoT/CPS design and engineering tasks with test-
ing. Nevertheless, they recognize the importance of dealing with
uncertainties.

Modeling IoT Cloud Systems Elements: Most MDE approaches and
tools for cloud just map model elements to cloud resources, e.g.
[7, 14]. 10T is a new field for modeling [25] and model-driven tech-
niques are recognized as a mean to develop applications for the IoT
[28]. Many papers address the modeling IoT and CPS [11, 31]. Our
paper goes in this direction i) by explicitly representing uncertainty
as first class concept in our models and, then ii) supporting model-
driven deployment and testing under uncertainty. Our approach is
built on the view that programming of IoT cloud systems will be
moved to higher levels [28]. Most of existing work do not include
uncertainties in their modeling, let alone the SUT provisioning and
testing.

Modeling Test Configuration and Uncertainty: Testing is well-
known domain but testing uncertainty in IoT Cloud systems and
CPS is very new, emerging direction. Our focus in this paper is to
enable testing uncertainty, not on the test process itself. Neverthe-
less, our SUT is provisioned based configurations generated from
various types of information, including uncertainties to be tested,
artifact information, test strategies, etc. Due to the lack of space
and as the prototype is still being developed, we have not detailed
all possibilities but presented main designs and examples.

Generating and Deploying Infrastructures: Deploying and config-
uring IoT and cloud are hot topics. In the Cloud it is quite mature
[20, 34], but it is ongoing work for IoT [6]. In [23] an approach to
the generation of IoT infrastructures has been presented, but it has
no connection to testing purpose. In this paper, we leverage existing
techniques, including our own previous development. However,
existing techniques have not well-integrated with modeling and
testing. Different from existing work, which focus on deployment
techniques based on existing system description, we generate de-
ployment of SUT in IoT Cloud infrastructures based on the need
of uncertainty testing. Therefore, our work is complementary to
others.

7 CONCLUSIONS AND FUTURE WORK

In this paper we show the need to model and provision IoT Cloud
Systems under test for uncertainty testing from the perspective of
software and system developers. To simplify the task of the develop-
ers, we enable them to model SUT and uncertainties at a high-level
and generate required infrastructures for testing. We presented a
tool pipeline, ranging from extracting modeling information, gen-
erating test configuration, creating deployment and provisioning
10T cloud infrastructures. With such a tool pipeline, one can en-
able testing uncertainties with various underlying cloud and IoT
providers. .


https://cloud.google.com/sdk/gcloud/

Prototyping and validating IoT Cloud Systems configurations
and descriptions of SUT for uncertainty testing are challenging.
While in our prototype the modeling part is mature, our implemen-
tation for possible algorithms for generating optimal deployment
configurations and descriptions, based on various parameters of
uncertainties, test strategies, costs and underlying cloud providers,
is just at an early stage that needs to be addressed in the future. Fur-
thermore, we will focus on building different adapters that enable
the integration with various underlying IoT and cloud platforms
and providers.

ACKNOWLEDGMENT

This work was partially supported by the European Commission
in terms of the U-Test H2020 project (H2020-ICT-2014-1 #645463).
Georgiana Copil and Ivan Pakovic contributed to the development
of profiles when they were at TU Wien. We thank Daniel Moldovan
for his initial contribution on test configuration structures.

REFERENCES

(1]

[2

—

(3]
(4]

=

[10]

[11]

[12]

[13]

=
it

ARTIST Project: Advanced software-based seRvice provisioning and migraTlon
of legacy Sof Tware. http://www.artist-project.eu/. (????). Accessed: 2017-06-22.
U-Test H2020 Deliverable: Revision of deliverable report D1.2: Updated Report
on U-Taxonomy. https://www.simula.no/file/d12pdf/download. (????). Accessed:
2017-06-22.

U-Test H2020 Project Web Site. http://www.u-test.eu/. (????). Accessed: 2017-04-
14.

Ilge Akkaya, Yan Liu, and Edward A. Lee. 2016. Uncertainty Analysis of Mid-
dleware Services for Streaming Smart Grid Applications. IEEE Trans. Services
Computing 9, 2 (2016), 174-185. https://doi.org/10.1109/TSC.2015.2456888
Pandarasamy Arjunan, Mani Srivastava, Amarjeet Singh, and Pushpendra Singh.
2015. OpenBAN: An Open Building ANalytics Middleware for Smart Buildings.
In Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services on 12th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MO-
BIQUITOUS&#39;15). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 70-79.
https://doi.org/10.4108/eai.22-7-2015.2260256

Paolo Bellavista and Alessandro Zanni. 2017. Feasibility of Fog Computing
Deployment Based on Docker Containerization over RaspberryPi. In Proceedings
of the 18th International Conference on Distributed Computing and Networking
(ICDCN ’17). ACM, New York, NY, USA, Article 16, 10 pages. https://doi.org/10.
1145/3007748.3007777

Amine Benelallam, Abel Gomez, Massimo Tisi, and Jordi Cabot. 2015. Distributed
Model-to-model Transformation with ATL on MapReduce. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering
(SLE 2015). ACM, New York, NY, USA, 37-48.

Marie-Luce Bourguet. 2016. Designing More Robust Ubiquitous Systems. In
Proceedings of the European Conference on Cognitive Ergonomics (ECCE ’16). ACM,
New York, NY, USA, Article 39, 4 pages. https://doi.org/10.1145/2970930.2979719
Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-Driven Software
Engineering in Practice. Morgan & Claypool.

Federico Ciccozzi and Romina Spalazzese. 2016. MDE4IoT: Supporting the Inter-
net of Things with Model-Driven Engineering. In International Symposium on
Intelligent and Distributed Computing. Springer, 67-76.

Federico Ciccozzi and Romina Spalazzese. 2017. MDE4IoT: Supporting the Internet
of Things with Model-Driven Engineering. Springer International Publishing,
Cham, 67-76.

Ana C. Franco da Silva, Uwe Breitenbiicher, Kalman Képes, Oliver Kopp, and
Frank Leymann. 2016. OpenTOSCA for IoT: Automating the Deployment of IoT
Applications Based on the Mosquitto Message Broker. In Proceedings of the 6th
International Conference on the Internet of Things (IoT’16). ACM, New York, NY,
USA, 181-182. https://doi.org/10.1145/2991561.2998464

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo
Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne
Riviere. 2015. Edge-centric Computing: Vision and Challenges. SIGCOMM
Comput. Commun. Rev. 45, 5 (Sept. 2015), 37-42.

Michele Guerriero, Saeed Tajfar, Damian A. Tamburri, and Elisabetta Di Nitto.
2016. Towards a Model-driven Design Tool for Big Data Architectures. In Pro-
ceedings of the 2Nd International Workshop on BIG Data Software Engineering

=
i)

[16

[17

(18

[19

[20

[
—

[22

(23]

[24

[25

[26

[27

[28

[29

[30

[31

(32]

[33

[34

(BIGDSE '16). ACM, New York, NY, USA, 37-43.

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011.
Empirical Assessment of MDE in Industry. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE). 471-480.

Sylvain Kubler, Jérémy Robert, Ahmed Hefnawy, Chantal Cherifi, Abdelaziz
Bouras, and Kary Framling. 2016. IoT-based Smart Parking System for Sport-
ing Event Management. In Proceedings of the 13th International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (MOBIQUI-
TOUS 2016). ACM, New York, NY, USA, 104-114. hitps://doi.org/10.1145/2994374.
2994390

Duc-Hung Le, Nanjangud C. Narendra, and Hong Linh Truong. 2016. HINC -
Harmonizing Diverse Resource Information across IoT, Network Functions, and
Clouds. In 4th IEEE International Conference on Future Internet of Things and
Cloud, FiCloud 2016, Vienna, Austria, August 22-24, 2016, Muhammad Younas,
Irfan Awan, and Winston Seah (Eds.). IEEE Computer Society, 317-324. https:
//doi.org/10.1109/FiCloud.2016.52

Duc-Hung Le, Hong Linh Truong, Georgiana Copil, Stefan Nastic, and Schahram
Dustdar. 2014. SALSA: A Framework for Dynamic Configuration of Cloud
Services. In CloudCom. IEEE Computer Society, 146-153.

Duc-Hung Le, Hong Linh Truong, and Schahram Dustdar. 2016. Managing On-
Demand Sensing Resources in IoT Cloud Systems. In 2016 IEEE International
Conference on Mobile Services, MS 2016, San Francisco, CA, USA, June 27 - July
2, 2016, Manish Parashar, Hemant K. Jain, and Hai Jin (Eds.). IEEE Computer
Society, 65-72. https://doi.org/10.1109/MobServ.2016.20

Duc-Hung Le, Hong-Linh Truong, G. Copil, S. Nastic, and S. Dustdar. 2014. SALSA:
A Framework for Dynamic Configuration of Cloud Services. In Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th International Conference on.
146-153.

Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Borje F. Karlsson,
Dongmei Zhang, and Feng Zhao. 2016. Systematically Debugging IoT Control
System Correctness for Building Automation. In Proceedings of the 3rd ACM Inter-
national Conference on Systems for Energy-Efficient Built Environments (BuildSys
’16). ACM, New York, NY, USA, 133-142. https://doi.org/10.1145/2993422.2993426
1. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. 2013. What Industry
Needs from Architectural Languages: A Survey. IEEE Transactions on Software
Engineering 39, 6 (2013), 869-891.

S. Mohamed, M. Forshaw, and N. Thomas. 2017. Automatic Generation of
Distributed Run-Time Infrastructure for Internet of Things. In 2017 IEEE In-
ternational Conference on Software Architecture Workshops (ICSAW). 100-107.
https://doi.org/10.1109/ICSAW.2017.51

Daniel Moldovan and Hong Linh Truong. 2016. A Platform for Run-Time Health
Verification of Elastic Cyber-Physical Systems. In 24th IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, MASCOTS 2016, London, United Kingdom, September 19-21, 2016. IEEE
Computer Society, 379-384. https://doi.org/10.1109/MASCOTS.2016.14

B. Morin, N. Harrand, and F. Fleurey. 2017. Model-Based Software Engineering
to Tame the IoT Jungle. IEEE Software 34, 1 (Jan 2017), 30-36. https://doi.org/10.
1109/MS.2017.11

Inc Object Management Group. 2015. Unified Modeling Language, UML, version
2.5. http://www.omg.org/spec/UML. (2015). Accessed: 2017-04-14.

Object Management Group (OMG). 2016. UML Profile for MARTE. Version 1.1
http://www.omg.org/spec/MARTE/1.1/PDF.

Pankesh Patel and Damien Cassou. 2015. Enabling high-level application devel-
opment for the Internet of Things. Journal of Systems and Software 103 (2015), 62
— 84. https://doi.org/10.1016/j.js5.2015.01.027

Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-
physical Systems: The Next Computing Revolution. In Proceedings of the 47th
Design Automation Conference (DAC ’10). ACM, New York, NY, USA, 731-736.
https://doi.org/10.1145/1837274.1837461

Bran Selic and Sébastien Gérard. 2013. Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems.
Elsevier.

Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4I0oT-A UML-based
Approach to Exploit IoT in Cyber-physical Manufacturing Systems. Comput. Ind.
82, C (Oct. 2016), 259-272. https://doi.org/10.1016/j.compind.2016.05.010
Hong-Linh Truong and S. Dustdar. 2015. Principles for Engineering IoT Cloud
Systems. Cloud Computing, IEEE 2, 2 (Mar 2015), 68-76.

Mark Utting and Bruno Legeard. 2007. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Matthew S. Wilson. 2009. Constructing and Managing Appliances for Cloud De-
ployments from Repositories of Reusable Components. In Proceedings of the 2009
Conference on Hot Topics in Cloud Computing (HotCloud’09). USENIX Association,
Berkeley, CA, USA, Article 16. http://dl.acm.org/citation.cfm?id=1855533.1855549


http://www.artist-project.eu/
https://www.simula.no/file/d12pdf/download
http://www.u-test.eu/
https://doi.org/10.1109/TSC.2015.2456888
https://doi.org/10.4108/eai.22-7-2015.2260256
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1145/2970930.2979719
https://doi.org/10.1145/2991561.2998464
https://doi.org/10.1145/2994374.2994390
https://doi.org/10.1145/2994374.2994390
https://doi.org/10.1109/FiCloud.2016.52
https://doi.org/10.1109/FiCloud.2016.52
https://doi.org/10.1109/MobServ.2016.20
https://doi.org/10.1145/2993422.2993426
https://doi.org/10.1109/ICSAW.2017.51
https://doi.org/10.1109/MASCOTS.2016.14
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1016/j.compind.2016.05.010
http://dl.acm.org/citation.cfm?id=1855533.1855549

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Tooling Pipeline for Uncertainty Testing
	3 Modeling IoT Cloud Infrastructures and Uncertainty for Testing
	3.1 Modeling IoT Cloud Systems under Test
	3.2 Uncertainty Modeling
	3.3 Test Configurations Modeling

	4 Provisioning System under Test
	4.1 Extracting Information from Models
	4.2 Artifact Repositories and Runtime Information Services
	4.3 Selecting SUT-related Artifacts
	4.4 Configuration Generation and Deployment

	5 Evaluation
	5.1 Modeling IoT Cloud Systems under Test
	5.2 SUT Deployment and Configuration

	6 Related Work
	7 Conclusions and Future Work
	References



