
Cost-aware scalability of applications in public
clouds

Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, TU Wien

E-mail: {d.moldovan, truong, dustdar}@dsg.tuwien.ac.at

Abstract—Scalable applications deployed in public clouds can
be built from a combination of custom software components
and public cloud services. To meet performance and/or cost
requirements, such applications can scale-out/in their components
during run-time. When higher performance is required, new
component instances can be deployed on newly allocated cloud
services (e.g., virtual machines). When the instances are no
longer needed, their services can be deallocated to decrease cost.
However, public cloud services are usually billed over pre-defined
time and/or usage intervals, e.g., per hour, per GB of I/O. Thus,
it might not be cost efficient to scale-in public cloud applications
at any moment in time, without considering their billing cycles.

In this work we aid developers of scalable applications for
public clouds to monitor their costs, and develop cost-aware
scalability controllers. We introduce a model for capturing the
pricing schemes of cloud services. Based on the model we
determine and evaluate the application’s costs depending on its
used cloud services and their billing cycles. We further evaluate
cost efficiency of cloud applications, analyzing which application
component is cost efficient to deallocate and when. We evaluate
our approach on a scalable platform for IoT, deployed in
Flexiant1, one of the leading European public cloud providers. We
show that cost-aware scalability can achieve higher application
stability and performance, while reducing its operation costs.

Keywords-Cloud, Scalability, Run-Time Control, Cost Effi-
ciency, Elasticity

I. INTRODUCTION

Run-time costs evaluation is required for understanding
and controlling scalable cloud applications running in public
clouds [1]. Currently, applications deployed in public clouds
can be built from a combination of custom software compo-
nents, and public cloud services. Such services span from vir-
tual infrastructure, to image storage, monitoring, and platform
services such as message queues. Many cloud applications are
scalable, capable of automatic/manual scale-out/in according
to particular requirements [2]. Depending on requirements,
scale-out actions allocate additional cloud services to run new
instances of scalable application components. In turn, scale-in
actions deallocate the added instances, reducing the number
of used cloud services, and the application’s running costs.

While applications are scaled-out due to performance re-
quirements, cost is the main driver for scale-in [3], [4]. Cost-
aware scalability controllers consider the costs of different
types of cloud services used by the application, rather than

This work was partially supported by the European Commission in terms
of the CELAR FP7 project (FP7-ICT-2011-8 #317790)

1www.flexiant.com/

just manipulate their number [5]. However, cost of scalable
applications is complex, some services having multiple cost
elements. E.g., a VM service could be billed both every hour,
and separately per each GB of generated I/O. Certain costs can
be static, such as costs for reserving a cloud service [6], [7],
[8]. Other costs can be dynamic, such as discounts for certain
service usage levels. Costs of cloud services can also depend
on service combinations. For example, the reservation cost of
an Amazon EC22 VM service depends both on its type, and
its storage configuration, a VM optimized for high I/O costing
more than a regular one. Additionally, public cloud services
are usually billed over pre-defined time and/or usage intervals.
This means it might not be cost efficient to deallocate such
services at any moment in time. For cost efficiency, we must
analyze the cloud service’s usage w.r.t., its billing cycle. E.g.,
a cloud service billed per GB of I/O, which has generated 1.5
GB of I/O, can generate another 0.5 GB at no additional cost.

Due to this cost complexity, developers of scalable cloud ap-
plications require support for monitoring costs and developing
cost-aware scalability controllers. The usage of cloud services
employed by different scalable component instances can also
diverge in time. Thus, different component instances can be
billed differently over time, being more/less cost-efficient to
deallocate during scale-in operations. In existing work such
as [5], [7], [12], the authors highlight the cost complexity of
scalable applications. However, they do not give insight in
their cost efficiency, and do not capture all their cost aspects.

In our work we introduce a platform for monitoring costs
and analyzing cost efficiency of scalable applications running
in public clouds. To this end, we introduce a model for
capturing the pricing schemes of cloud services, and define
algorithms for evaluating application costs. We further define
and evaluate the cost efficiency of cloud applications and their
scalable components’ instances. Based on their cost efficiency,
we recommend to cost-aware scalability controllers which
component instance to deallocate and when.

The rest of the paper is structured as follows. Section II
presents the motivation and approach. Section III details our
costs analysis algorithms. Section IV introduces our cost
efficiency concept, and its computation formula. Section V
presents our integrated cost analysis platform. Section VI
evaluates our approach. Section VII discusses related work.
Section VIII concludes the paper and outlines future work.

2http://aws.amazon.com/ec2/

Fig. 1: Cost-aware scalable cloud platform for smart environments

Fig. 2: Example of scalable component costs

II. MOTIVATION AND APPROACH

A. Motivation

It is not cost efficient to scale-in applications running in
public clouds at any moment in time. In private clouds,
services can be deallocated when they are no longer needed
[10], as no billing is involved. However, public cloud services
are usually billed over crisp time and/or usage intervals,
rounding up the service usage. For example, let us consider
two VMs billed per hour and per GB of I/O. If allocated at the
same time, and one generates 0.5 GB, and the second 0.9 GB,
it is cost efficient to deallocate the second one, as each would
be billed for one GB of I/O. If not allocated at the same time,
their run-time costs must also be considered. Thus, for cost-
aware scalability in public clouds, all costs must be analyzed,
ensuring unused but paid for services are not deallocated.

Let us consider a company managing smart environments,
relying on sensors sending data for processing to a cloud-based
platform (Fig. 1). Sensors are enabled/disabled depending on
requirements (e.g., expected data frequency), or special events
(e.g., activate water sensors during fire). Thus, the platform is
designed as a scalable application, adding/removing at run-
time instances of its components. Components are scaled-
out by allocating cloud services at run-time, to cope with
varying demand, and scaled-in to reduce operating costs. Data
is received by a Sensor Data Queue, and analyzed by Local
Data Processing components. It is further sent through a Load
Balancer to instances of Event Processing components, and
stored in a distributed data repository.

All application’s components use Virtual Machine (VM) and
Network cloud services. The scalable components (depicted

in pairs in Fig. 1) use OS Image services for storing custom
OS images used in allocating new components’ instances. The
Data End tier’s components also use high performance Cloud
Storage services. Finally, the Sensor Data Queue and Load
Balancer use Public IP services for exposing their functional-
ity to users. The application’s control mechanism enforces per-
formance and costs requirements. It analyzes the application’s
state, plans and executes scaling actions by adding/removing
instances of the application’s scalable components, relying on
monitoring and costs information. However, costs of scalable
applications deployed in public clouds can be very complex.
The costs of a scalable component, e.g., the Data Node
(Fig. 2), can be composed of: (i) the cost for each Common
service shared by all instances of the component, e.g., OS
image; (ii) and costs of all the cloud services used by each
component instance, e.g., VM, Storage or Network. Each cost
element can be further billed over different cost metrics, which
should be considered in cost-aware scalability.

For cost-aware scalability of applications in public clouds,
developers and scalability controllers must understand the
application’s costs, posing several research questions:
• ”How does each application component contribute to the

overall application’s costs?”, i.e., which component is
more expensive, and over which cost elements.

• ”What are the current application costs?”, i.e., the rate at
which application components are spending money.

• ”What application component instance is cost efficient
to deallocate and when?”, allowing controllers to avoid
deallocating services paid in full but underused.

B. Approach

In our work cloud providers are black boxes, providing APIs
for allocating/deallocating services on-demand and querying
their pricing schemes. Developers are using such cloud ser-
vices to run their applications, and want to maximize their
usage, while maintaining the same or lower costs. The devel-
opers have no access to the inner workings of the clouds they
use, interacting only with their user APIs.

For achieving cost-aware scalability in public clouds, we
develop a platform for monitoring costs and analyzing cost
efficiency of scalable applications (Fig. 3), providing.
• A model and mechanism for describing and managing

complex pricing schemes of cloud services (1©).

Fig. 3: Approach for cost-aware scalability in public clouds

Billing Billing Required monitoring information
type function for computing service cost

per Fixed - service allocation time

Reservation per Interval - service reservation time (allocation/deallocation)
- number of allocated service instances

per Fixed - current value of the cost billing metric

Usage per Interval - current value of the cost billing metric
- summed historical values of the billing metric

TABLE I: Billing types of public cloud services

• A mechanism for describing scalable cloud applications
and their used cloud services (2©).

• A mechanism for collecting cost billing metrics from
instances of application components and associating them
to the application structure (3©).

• A service evaluating the total and instant costs for the
application, its components, and used cloud services (4©).

• A service evaluating cost efficiency of component in-
stances, providing insight in how much was used from
what it has been paid for (5©).

• A service recommending which application component
instance to be deallocated during scale-in operations
based on desired cost efficiency, providing support for
cost-aware scalability in public clouds (6©).

III. EVALUATING COSTS OF SCALABLE APPLICATIONS

We first capture the pricing schemes of cloud providers. We
then determine and evaluate the application’s costs, depending
on the cloud services used by the application.

A. Capturing the pricing schemes of public cloud services

Cloud providers offer multiple types of services, with
configuration options under different prices. To capture their
pricing schemes, we define a representational model based
on previous work [11], centered on the Cost Element con-
cept (Fig. 4). Each Cost Element has a type, either service
Reservation flat rate (e.g., hourly), or per Usage (e.g.,I/O).
Cost is computed per billing cycle, over service reservation
time (e.g., used hours) or usage Unit (e.g., 1 GB I/O), defined
over a billing Metric (e.g., VM uptime, I/O). Additionally, cost
can be specified in intervals, a costFunction defining the cost
over intervals of measured billingUnits over the billing Metric.
Finally, a Cost Element might be applicable only if the service
is used in a particular configuration or combination with other
services. This is specified with an applicableIfServiceHas
property, defining which Resource and Quality properties, or
other Cloud Services the service should have. Thus, we can
describe from fixed costs, to costs if used in conjunction with
other services, w.r.t. usage and reservation time.

Fig. 4: Cost model of public cloud services

During run-time, horizontally scalable components will be
instantiated more times, each component instance using cloud
services with potentially different configurations. Thus, the
application structure and associated cloud services can change
at run-time [9], [5], [12]. After any scaling action we deter-
mine the applicable Cost Elements for the current application
structure. For each cloud service used by each component, we
search in the service’s cloud provider for the complete service
description, and applicable cost functions. Then, for each cost
element, we verify its applicability conditions, evaluating if the
component uses the Resources, Quality, or associated Cloud
Services specified in the cost element’s description.

When evaluating cost of scalable applications, the informa-
tion required by different cost billing types must be considered.
To classify the billing types of public cloud services (Table I)
we analyze main cloud providers: Amazon EC23, Flexiant4,
Azure5, IBM Cloud6, and Rackspace7. Cost can be billed over
service reservation time or usage, as a fixed rate (e.g., α$ per
hour), or over an interval (e.g., first x GB of I/O free, next β$).
For computing Fixed Reservation cost, we must retrieve from
the cloud provider the service instantiation time. For Interval
Reservation cost we must monitor how many service instances
where reserved and for how long, depending if the cost is
billed over instance count or time. For Fixed Usage cost, we
must monitor the billing metric, while for Interval Usage cost
we need to record the historical usage over the billing metric,
to determine the applicable cost interval.

B. Evaluating cloud application’s services’ usage and lifetime

To use the correct pricing interval in cost evaluation, using
Algorithm 1 we maintain an updated view over the usage
and lifetime of the cloud services employed by the appli-
cation. Starting from the applicable cost functions, for each
cost element, we retrieve its billing metric (Line 4).
If the element is billed per Reservation, we compute
how many billing cycles have passed between the last two
monitoring intervals (Line 7), and add it in the application
usage. If the cost is per Usage, we record the total usage over
the billing metric (Line 13). Monitored metrics can also be
cumulative, i.e., they never reset, continuously increasing
by adding new monitoring values to the previous ones. With

3https://aws.amazon.com/ec2/
4https://www.flexiant.com/
5https://azure.microsoft.com/
6http://www.ibm.com/cloud-computing/
7http://www.rackspace.com/

Algorithm 1 Determining usage of cloud services
Input: el : Component|Tier|Application
Input: p : previousely determined usage
Input: aC : applicable cost scheme
Input: m : current monitoring snapshot
Output: u : updated element usage snapshot

1: function UPDATEELEMENTUSAGE(el, p,m, aC)
2: for s in el.usedServices do
3: for ce in aC.GetApplicableCost(el, s) do
4: metric = ce.billingMetric
5: if ce.type == Reservation then
6: t=GetTimeBetween(m.timestamp,p.timestamp)
7: billingCycles=GetBillingCycles(metric, t)
8: if p.Contains(s) then
9: billingCycles += p.GetLifetime(s,el)

10: end if
11: u.UpdateLifetime(s,el,billingCycles)
12: else if ce.type == Usage then
13: currVal = m.GetValue(metric,s,el)
14: if metric.type == Cumulative then
15: u.SetValue(s,el,metric,currVal)
16: else
17: prevVal = 0
18: if p.Contains(s) then
19: prevVal = p.GetValue(metric,s,el)
20: end if
21: usage = prevVal + currVal
22: u.SetValue(s,el,metric, usage)
23: end if
24: end if
25: end for
26: end for
27: return u
28: end function

such metrics, we use their value as the updated application
usage (Line 15). Otherwise, we add their current value to the
previous usage (Lines 17-23).

C. Evaluating current and total costs of scalable applications

For cost-aware scalability, developers and controllers re-
quire information about the application’s current cost, i.e., the
billing rate for its current configuration. Such information is
crucial in evaluating if the current overall application cost is
too high. Thus, we apply Algorithm 2 to evaluate the current
costs of cloud applications, based on the latest monitoring
information and the application’s usage evaluated with Algo-
rithm 1. For each of the cloud services used by the application
(Line 4), we analyze each applicable cost element (Line 5).
For cost per Reservation, we compute the applicable cost
based on the element’s cost intervals, w.r.t. the lifetime of the
used service (Line 9), and store the value directly in the current
cost. For cost per Usage, we determine the applicable cost
value based on the application’s usage so far (Line 13). With
cumulative metrics we add the cost value to the current cost

Algorithm 2 Determining application current costs
Input: el : Component|Tier|Application
Input: sU : total application usage snapshot
Input: aC : applicable cost scheme
Input: m : current monitoring snapshot
Output: iC : instant costs

1: function EVALCURRENTCOST(el, sU, aC,m)
2: elementCost=0
3: . compute current cost rate for each used service
4: for s in el.usedServices do
5: for ce in aC.Get(el, s) do
6: metric = ce.billingMetric
7: if ce.type == Reservation then
8: lifetime = sU.GetLifetime(s,el)
9: cmICost = ce.GetCostForValue(lifetime)

10: iC.SetValue(metric, s, el, cmICost)
11: else if ce.type == Usage then
12: metricVal = m.GetValue(metric, s, el)
13: compCost=ce.GetCostForValue(metricVal)
14: if metric.type == Cumulative then
15: iC.SetValue(metric, s, el, compCost)
16: else
17: cmICost = metricVal * compCost
18: iC.SetValue(metric, s, el, cmICost)
19: end if
20: end if
21: elementCost += cmICost
22: end for
23: . compute hierarchical cost composition
24: for childEl in el.containedElements do
25: cChild = EvalCurrentCost(childEl, sU, aC, m)
26: iC.AddCost(cChild)
27: elementCost += iC.GetElementCost(childEl)
28: end for
29: end for
30: iC.SetElementCost(elementCost)
31: return u
32: end function

(Line 15). Otherwise, the latest metric value is multiplied with
the cost, and added in the current cost (Lines 17-18).

Developers or controllers might be interested only in certain
cost information. They could monitor application’s cost until
a threshold, after which they would be interested in the most
expensive components. Thus, we build a hierarchical view over
application’s cost, computing for each component its current
costs by recursively computing the costs of all its used cloud
services (Lines 24-28). In turn, the costs of each tier and
overall application are evaluated from the costs of its contained
components and tiers, and the used cloud services.

We apply a similar algorithm for computing total application
costs since its deployment. For this we multiply the total
application usage (obtained using Algorithm 1) with the cost
element’s values, for each of the element’s cost intervals.

Fig. 5: Service instance cost efficiency w.r.t. billing cycle

IV. EVALUATING COST EFFICIENCY OF SCALE-IN ACTIONS

We define a function evaluating the cost efficiency of
deallocating application component instances, based on the
pricing schemes of the cloud services used by the application.

After multiple allocations/deallocations of cloud services
during scaling, the billing cycles of the cloud services used by
different application components can become desynchronized.
Billing can occur at different points in time, depending on
when each component instance was allocated, and on its cloud
services’ usage (Fig. 5). For increasing the application’s cost
efficiency, cost-aware control is required, understanding which
component is more cost efficient to deallocate, and when.

When scaling-in an application component, a cost-aware
controller should analyze which component instance is more
cost efficient to deallocate. This depends on the billing cycle of
the used cloud services. For maximum cost efficiency, a cost-
aware controller should deallocate the component instance
having a usage of 100% over all its cost elements (e.g.,
Instance i in Fig. 5). For example, if a component uses cloud
services billed per hour and per GB of data, it is cost efficient
to deallocate it when it has run for an integer number of hours,
and has generated an integer number of GBs. To this end,
we define a function E for evaluating the cost efficiency of
deallocating an application component instance i, based on
the application total usage obtained with Algorithm 1. The
function E computes a cost-weighted sum of the instance
usage over all its cost elements, both over reservation time
and monitored usage, reported to the overall billed cost units:

E(i) =

∑
s∈i.serv

∑
c∈s.cEl

c.value ∗ (s.usage(c.metric) mod c.cycle))∑
s∈i.serv

∑
c∈s.cEl

c.value

(1)

, where i.serv are the cloud services used by the component
instance i; s.cEl are the applicable cost elements for used
cloud service s; c.value is the cost value in units of the cost
element c (e.g., I/O cost) for one billing cycle c.cycle (e.g., 1
GB, 1 hour); and s.usage(c.metric) is the current usage interval
over the metric c.metric over which cost is billed.

Weighting the instance usage with the cost value ensures
that each cost element has a contribution proportional to its
cost to the cost efficiency. Thus, a cost efficiency E of 1 means

Fig. 6: Platform for analyzing costs of scalable applications

Listing 1: Cloud pricing scheme description fluent API
C l o u d S e r v i c e s e r v i c e = new C l o u d S e r v i c e () . withName (”Name”)

. withUuid (UUID) . withCategory (”Name”) . withSubcategory (”Name”)

. withCostFunct ion (new C o s t F u n c t i o n ()
. w i t h A p p l i e d I f S e r v i c e I n s t a n c e U s e s (L i s t<Unit >)
. withCostElement (new Cos tE lemen t ()

. withCostMetr ic (new M e t r i c (”name” , ” u n i t / t ime ” , Type))

. w i t h B i l l i n g I n t e r v a l (new M e t r i c V a l u e (v) , c o s t U n i t s)

. w i t h B i l l i n g I n t e r v a l (. . .

that the instance usage is the same as the total billed usage,
and by deallocating it, the cost efficiency does not decrease.

V. COSTS ANALYSIS PLATFORM PROTOTYPE

We implement a costs analysis platform8 (Fig. 6) for
monitoring costs and analyzing cost efficiency of scalable
applications, applying our approach from Sections III and IV.

A. Managing pricing schemes of cloud providers
Cloud providers expose their pricing schemes under dif-

ferent mechanisms, from proprietary APIs to plain HTML
descriptions. Thus, we provide an easy to use mechanism for
describing the cloud services and their cost elements from any
cloud provider. To this end we extended MELA [13], a frame-
work for monitoring and analyzing scalable applications. We
add a new platform component for managing the description of
cloud services, relying on an XML-based representation of the
pricing model defined in Section III-A. As manually managing
XML descriptions can be difficult, we provide a Java-based
Fluent API (Listing 1) for generating them. Cloud services
are described using their unique identifiers (UUID), name,
category and subcategory, provided by the cloud provider.
Their cost is specified as cost functions with applicability
restrictions (applicableIfServiceInstanceUses). Each cost func-
tion can have multiple cost elements with different billing
metrics and intervals. Custom adapters for retrieving the
pricing scheme of cloud providers can be built using the fluent
API to generate the cloud’s XML description.

B. Managing the structure of scalable cloud applications
Scalable cloud applications change their structure at run-

time by allocating/deallocating cloud services. Thus, we pro-
vide a mechanism for updating the application’s structure

8Prototype and supplement materials are available at
http://tuwiendsg.github.io/MELA/costEvaluationService.html

Service Cost Element
Category Subcategory Service Billing metric Billing unit Billing cycle Billing interval Cost units

IaaS

VM 1.0CPU1.0 - 1 CPU 1GB RAM instance # hour 0→Inf. 3
2.0CPU4.0 - 2 CPU 4GB RAM 10

Cloud Storage VM-attached cloud storage disk size GB month 0→Inf. 5
I/O GB 2

Network Public data transfer GB 0→Inf. 5
Private instance # month 0

Image Custom operating system image snapshot size GB month 0→Inf. 5

TABLE II: Subset of described Flexiant pricing scheme

Listing 2: Cloud application structure description fluent API
Moni to redElemen t vm = new Moni to redElemen t (”UUID”)

. withCloudOfferedServ ice (
new U s e d C l o u d O f f e r e d S e r v i c e ()

. withCloudProviderID (”UUID”))

. withCloudProviderName (” P r o v i d e r ”)

. withId (”UUID”) . withInstanceUUID (”UUID”)

. withName (” ServiceName ”)

. w i t h R e s o u r c e P r o p e r t i e s (Map<P r o p e r t y , Value>)

. w i t h Q u a l i t y P r o p e r t i e s (Map<P r o p e r t y , Value>)
) . withCloudOfferedServ ice (. . .

and the used cloud services during run-time, relying on the
XML representation of the model introduced in [13]. Using
this model, a cloud application is represented as a cascading
set of Monitored Elements representing the application’s
components, which in turn are grouped in tiers. We extend the
model to allow specification of the used cloud services, and
provide a fluent API for describing the application’s structure
(Listing 2). The used cloud service instances are identified by
the unique identifier (UUID) of the cloud provider offering the
service, the UUID of the service in the provider’s service’s
list, and the UUID of the service’s instance. Further, if the
same service has different costs for specific configurations, the
concrete configuration is specified in terms of resource/quality
properties. The description must be updated after each scaling
action, to ensure costs analysis consistency. The platform
exposes the description to interested stakeholders in XML and
JSON formats, and as a tree-based visualization.

C. Collecting and enriching monitoring information

The structure of scalable applications is dynamic, as VMs
are created/destroyed dynamically at run-time. If monitoring
information is associated only with each VM, it will be lost
during scale-in operations. Addressing this, we use MELA
[13], which provides a mechanism enriching and associating
to the current application structure monitoring information
collected from existing monitoring systems. For example,
associating a CPU usage metric collected from a VM to
the instance of the application component hosted on the
VM. Moreover, monitoring data can be enriched by applying
aggregation operations over collected metrics (e.g., average
CPU usage over all instances of a component), or injecting
information using a set operation. The metric composition
rules can be described directly in XML, or using a fluent API.

As cloud applications use a wide range of monitoring
mechanisms, we extend MELA with poll-based data collec-

tion adapters for Ganglia9 and JCatascopia [14]. We also
implement a generic push-based adapter, exposing a queue
for receiving monitoring information.

D. Evaluating application costs and cost efficiency

The algorithms from Sections III and IV are applied to
evaluate the total and instant costs, and cost efficiency of
cloud applications. The algorithms use the enriched moni-
toring information, application structure, and the cloud pric-
ing schemes. Cost analysis information is exposed through
RESTful services, and the complete cost decomposition is
provided in comma-separated-values (CSV) format. Services
are implemented for evaluating the cost efficiency of scaling
in one or more instances of an application component, and for
recommending which component instance to deallocate w.r.t.,
to desired cost efficiency. Aiding human users, we provide
web-based visualizations for the application’s costs, both using
tree and pie charts, implemented in D3.js10.

VI. COST ANALYSIS PLATFORM EVALUATION

We evaluate our costs approach on the scalable cloud
platform from Section II (Fig. 1), deployed in Flexiant11,
one of the leading European public cloud providers. The
application developer deploys our platform on a separate VM,
and uses it to understand the application’s costs under expected
load. The used application has a shared-nothing architecture,
each component using its own cloud services. However, our
approach is also applicable on shared architectures, with
multiple components sharing a cloud service. In such a case
finer-grained monitoring is required to differentiate the service
usage generated by different components.

A. Configuring the platform for the target application

First, the application developer describes the pricing scheme
of the cloud services offered by Flexiant12 (Table II), and
submits it to our platform. While some services have monthly
cost rates, the billing is done per hour, and thus the pricing
scheme is specified in hourly rates.

Next, the developer describes the application structure with
the used cloud services. As Flexiant provides separate billing
for VM and Cloud Storage services, separate services are spec-
ified for each component. Components accessible from outside

9http://ganglia.sourceforge.net/
10http://d3js.org/
11We use Flexiant as an illustrative example in this paper, but similar issues

apply to other public cloud providers
12www.flexiant.com/2010/04/14/flexiscale-2-0-pricing/

Fig. 7: Cloud service’s costs associated to monitoring information for the Event Processing Tier

the cloud use Public VLAN services providing public IPs
(e.g., Load Balancer). The scalable components use OS Image
Storage services in instantiating new component instances
on top of new VMs. The described application’s structure
is visualized using our platform, Fig. 7 depicting the Event
Processing tier’s structure after the initial cloud deployment
(before scaling). Used cloud services are represented with S©.

Metric resolution for associating the cost billing metrics to
the ones collected from the application components is done
based on name and measurement unit. Thus, the developer
ensures the necessary monitoring information can be collected,
i.e. the billing metrics specified by the cost elements cap-
tured in Table II are available. The application is configured
to expose the required information through our platform’s
Ganglia13 adapter, implementing the required plug-ins, such
as collecting disk I/O for analyzing IO cost. To evaluate
OS Image Storage service cost, information hard to monitor
directly is required, such as the size of each OS image. We add
this information directly in the monitoring data using MELA
metric composition rules, creating the image size metrics for
each scalable component.

B. Evaluating costs of scalable applications

Using our platform, the developer visualizes the appli-
cation’s monitoring snapshot enriched with cost (Fig. 7).
Evaluated cost is represented with darker rectangles. Cost
of individual component instances is summed up in overall
cost for each component, tier, and the overall service, under
a element_cost metric (highlighted with thick line). The
costs of the used cloud offered services (e.g., Cloud Storage)
are associated to the component instances running inside
virtual machines. The costs of each component instance are
further aggregated in the costs of each component (e.g., Event
Processing component). These in turn are aggregated in the

13http://ganglia.sourceforge.net/

Fig. 8: Application costs composition

costs of the parent tiers, up to the overall application costs.
Thus, cost information can be retrieved at the desired level,
from component to application, along monitoring information.
This increases the potential applicability of our approach.

What is the cost contribution of each application component
and tier? is visualized by our platform in Fig. 8. The appli-
cation costs are composed of the costs of its tiers, composed
from the costs of their components. The cost of individual
components consists of the costs of the used instances of VM
services, and the costs of the Cloud Storage, reported both
in price per disk size, and per size of read/written data. We
also have the costs of additional used services, such as the
Public VLAN. From the cost proportion of each cost element,
the developer understands which components have low cost
impact (e.g., Local Processing component), and which are

Fig. 9: Cost efficiency variation after multiple scaling actions between instances of the Event Processing component

costly (e.g., Data Node). Under the given load, for the Event
Processing, the Cloud Storage cost is roughly 1/3 of the
component’s cost. The biggest contributor to storage cost is
IO DataSize, i.e., cost for read/written data. This is not the
case for all components, for the Data Controller, the 3 CPU
6GB RAM VM being more expensive than the Cloud Storage.
Using this information, the developer can reduce the Event
Processing’s costs by changing its I/O rate, or switching to
cloud services or cloud providers with less I/O cost.

C. Comparing cost-aware and cost-agnostic scalability

Further, the developer uses our platform for building a
cost-aware scalability controller considering cost efficiency
information. While the application has three scalable tiers,
in the following we focus on a single component, the Event
Processing component. This both fully covers the addressed
research questions, and increases the evaluation’s readability.

We implement a scalability controller supporting different
scaling strategies (Table III), for evaluating the application’s
cost efficiency improvement under cost-aware scalability. We
provide two cost-agnostic scaling strategies which do not
consider cost efficiency, and two cost-aware relying on our
platform. The two cost-agnostic strategies deallocate the Last
and First allocated component instance. The first cost-aware
strategy deallocates a component instance and its associated
cloud services when its VM has run over 90% of its reservation
billing cycle, i.e., run over 54 minutes. The second cost-
aware strategy deallocates a component instance when its
cost efficiency is over 80%. We selected 80% after repeated
experiments, noticing that 90% cost efficiency is not always
achievable for our application due to the difference in the

Strategy type Deallocating Strategy description
w.r.t. - deallocates the component instance

Cost-aware
Reservation time if it has run over 90% of reservation cycle

w.r.t. - deallocates the component
Cost efficiency instance with cost efficiency over 80%

Last allocated - deallocates the last allocated

Cost-agnostic component instance

First allocated - deallocates the first allocated
component instance

TABLE III: Evaluated scalability control strategies

Fig. 10: Decomposed cost efficiency of VM cloud service

cost elements’ billing cycles. Using such a limit (90%) can
actually increase costs, by waiting too much to deallocate
services. The Event Processing is scaled with each strategy
for over 12 hours. To reduce the variables influencing our
results, and better evaluate the scaling strategies, we apply a
fixed load of 450 sensors per second. Requests are distributed
by the Load Balancer in a round-robin manner. We start with
five component instances, and repeatedly request 2 scale-out
followed by 2 scale-in actions, each action being requested
every 45 minutes. Requesting the actions in a time interval < 1
hour (the Reservation billing cycle of the used services) we
mimic normal behavior of scalable applications which can add
and remove component instances anytime. The fixed action
periodicity also allows us to compare the efficiency of the
scaling strategies under the same conditions.

What is the application’s cost efficiency evolution in time?
is answered by analyzing over time the cost efficiency of
the Event Processing component’s instances (Fig. 9). The
component is scaled-in with our second cost-aware strategy.
Initially, all 5 instances have similar cost efficiency. However,
their cost efficiencies start to differ as scaling actions are
enforced, due to the different billing cycles of their cost
elements. We decompose the billing cycle of the VM service
used by the Event Processing component in Fig. 10. We show
for a single component instance its evaluated cost efficiency
obtained by applying the function from Section IV over (i) VM
reservation cost, (ii) disk I/O cost, and (iii) all cost elements.
From the figure we notice that the disk I/O and the VM
reservation cost efficiencies have different cycles, as it roughly

Fig. 11: Scale-in cost efficiency under different strategies

takes 2 reservation periods (1 hour each) to complete a disk
billing cycle, i.e., to generate 1GB of I/O. Cloud services could
have even more cost elements with separate billing cycles. This
highlights the need for cost-aware scalability, understanding
which used services are cost efficient to deallocate, and when.

What is the application’s cost efficiency improvement under
cost-aware scalability? is evaluated by comparing the cost
efficiency of each scale-in operation for every control strategy.
The efficiency values obtained using our efficiency analysis
approach are depicted in Fig. 11. The results show that the
cost-aware controller deallocated services with cost efficiency
over 80% during enforcement of scalability actions. From
Fig. 11 we also notice that except one action, the cost-aware
strategy obtained better cost efficiency even compared to the
one deallocating components at over 90% of their reservation
billing cycle. This highlights that all cost elements need to be
considered when scaling cloud applications, as relying only on
reservation cycle can lead to cost-inefficient solutions in public
clouds with complex pricing schemes. We also noticed that the
cost-agnostic strategies obtained lower cost efficiency for their
scale-in actions, many times deallocating unused services.

D. Improving application control with cost-aware scalability

Under highly fluctuating load, by opportunistic scaling, con-
trollers can decrease cost efficiency by deallocating services
ahead of time, and then allocating new ones to cope with rising
demand. While in the above scenario we improve the cost
efficiency of scalable applications running in public clouds, the
employed uniform control does not capture their dynamicity.
To evaluate dynamic scenarios, we select the best cost-agnostic
(deallocating last added instance), and the best cost-aware
(deallocating w.r.t. overall cost efficiency) strategies from the
previous scenario. We implement a scaling generator which
issues randomly between 1 and 3 scale-in requests at time
intervals between 30 and 60 minutes, mimicking the behavior
of real applications which might be scaled-in anytime depend-
ing on requirements. We apply the same sequence of scaling
requests for each control strategy. Under the cost-agnostic
strategy, the controller deallocates component instances as
soon as requested. In contrast, the cost-aware controller, when
a scale-in is requested, waits until a component instance has
reached 80% cost efficiency before deallocating it. Moreover,
if a scale-out is to be executed, the cost-aware controller will
verify if it is waiting to reach a certain cost efficiency to scale-
in. Then, it would cancel the pending scale-in action, instead
of executing a new scale-out, as a means of reducing cost.

Fig. 12: Number of event processing instances under
cost-aware and cost-agnostic scalability

Evaluation Scalability control Cost-aware scalability
criteria cost-aware cost-agnostic vs. cost-agnostic control
Scaling 10 16 37% less actions
actions (6 out, 4 in) (9 out, 7 in) = increased application stability

Average no. 4.59 4.24 8% more instances
of instances = spare resources for load bursts
Total cost 143 153 7% cost savings

(units) = 3.3 VM hours + 1.5 GB I/O

TABLE IV: Cost-aware scalability control evaluation

What is the benefit of cost-aware scalability in public
clouds? is answered in Fig. 12, depicting the number of
Event Processing component instances under each control
strategy. We have run the scenario over 12 hours, and in
three cases, the cost-aware strategy avoided unnecessary scale-
ins, while the cost-agnostic one deallocated and allocated
back component instances. For example, between 7:30 and
9:30, the cost-aware strategy scaled-in just once. In contrast,
the cost-agnostic controller performed two scale-in and one
scale-out actions. The improvements obtained by the cost-
aware controller over the cost-agnostic one are summarized
in Table IV. Overall, the cost-aware controller performed with
approx. 37% less scaling actions, left 8% more running VMs,
all with a cost saving of 7%. Thus, the application is overall
more stable, as any scaling can introduce instability due to
the cloud infrastructure, and the application adapting to the
change in resources. By running more component instances,
the application has additional spare resources to accommodate
unexpected spikes in load. Additionally, considering the used
pricing scheme, the cost savings obtained can be spent to
run another Event Processing VM for 3 hours, generating
approx. 1.5 GB of I/O. Thus, employing cost-aware scalability
controllers in public clouds can also increase the performance
and stability of cloud applications, while reducing their costs.

VII. RELATED WORK

Andrikopoulos et al. [15] highlight that costs analysis of
complex applications is required from their design, to deploy-
ment and run-time control. Ramakrishnan et al. [1] underline
that cost-benefit evaluation is necessary for e-science clouds,
due to the plethora of available cloud services and configu-
ration options. Lorido-Botran et al. [4] survey cloud scaling
techniques, Hwang et al. [3] underline that cloud productivity
is tied to performance/cost ratio, while Villegas et al. [6]
analyze the relationship between provisioning and allocation

policies in IaaS clouds and their cost. Truong et al. [16]
analyze cost of running scientific applications public clouds,
while Sharma et al. [9] focus on cost-based optimization of
scalable cloud applications, considering the costs of different
types of virtual resources. Douglas et al. [17] estimate the costs
of running scientific simulations in public clouds, retrieving
cost information from the Amazon API, while Lilienthal
[7] computes the optimal resources for hybrid applications
running in private-public clouds. Brighen et al. [8] estimate
running costs of data intensive applications in clouds, while
Guo et al. [18] focus on cost-aware applications deployment
in public clouds. While the related work highlights the cost
complexity of scalable applications, they do not capture all
their costs, and do not give insight in their cost efficiency.

In [5], Mao et al. allocate virtual machines to perform tasks
under time deadlines, shutting down VMs when approaching
full hour operation. Fernandez et al. [10] scale web applica-
tions in heterogeneous cloud infrastructures, executing scale-
in actions by releasing resources if the system load exceeds a
lower threshold. Pooyan et al. [12] scale-in a cloud service if
it has been running a multiple number of hours. Silva et al.
[19] introduce a framework for scaling cloud applications for
understanding their cost/performance trade off. Hwang et al.
[20] focus on cost effective provisioning of cloud services,
considering reserved, and on-demand cost, and three cost
functions: upfront fee, usage charge, and on-demand cost.
Our work can provide to such approaches information about
both the costs, and cost efficiency of scalable applications,
improving their scalability control.

VIII. CONCLUSIONS AND FUTURE WORK

In our work we focused on aiding developers of scalable ap-
plications for public clouds to monitor their costs, and develop
cost-aware scalability controllers. We introduced a model for
capturing complex pricing schemes of cloud providers, from
fixed service costs to costs per multiple services. We defined
algorithms for determining the application costs depending on
its used cloud services. We defined a function for evaluating
cost efficiency of cloud applications, analyzing which appli-
cation component instance is cost efficient to deallocate and
when. We evaluated our approach on a scalable cloud-based
data center for smart environments, deployed in Flexiant, one
of the leading European public cloud providers.

We have shown that using our approach, developers of
scalable cloud applications can determine the applications’
dominant cost aspects. We have further shown that cost-
aware controllers can achieve higher application stability and
performance, while reducing operation costs, compared to
cost-agnostic ones. We highlighted that cost-agnostic scaling
can lead to deallocating unused services, but paid in full,
increasing the application’s costs. We have shown that cloud
services instantiated at the same time can have different cost
efficiencies over time (Fig. 9), highlighting the need to analyze
cost when controlling scalable applications in public clouds.

In the future we plan to apply our cost analysis approach on
analyzing cost uncertainty in scalable applications, understand-

ing the causes for costs deviations between different instances
of the same application component.

REFERENCES

[1] L. Ramakrishnan, K. R. Jackson, S. Canon, S. Cholia, and J. Shalf,
“Defining future platform requirements for e-science clouds,” in Sym-
posium on Cloud Computing (SOCC). ACM, 2010, pp. 101–106.

[2] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic
processes,” IEEE Computing, no. 5, pp. 66–71, 2011.

[3] K. Hwang, X. Bai, Y. Shi, M. Li, W. Chen, and Y. Wu, “Cloud
performance modeling and benchmark evaluation of elastic scaling
strategies,” IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, pp. 1–1, 2015.

[4] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[5] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in International Conference on Grid Computing
(GRID). IEEE/ACM, Oct 2010, pp. 41–48.

[6] D. Villegas, A. Antoniou, S. Sadjadi, and A. Iosup, “An analysis of pro-
visioning and allocation policies for infrastructure-as-a-service clouds,”
in International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE/ACM, 2012, pp. 612–619.

[7] M. Lilienthal, “A decision support model for cloud bursting,” Business
& Information Systems Engineering, vol. 5, no. 2, pp. 71–81, 2013.

[8] A. Brighen, L. Bellatreche, H. Slimani, and Z. Faget, “An economical
query cost model in the cloud,” in International Conference on Database
Systems for Advanced Applications (DASFAA). Springer Berlin Hei-
delberg, 2013, pp. 16–30.

[9] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in International Conference on
Distributed Computing Systems (ICDCS). IEEE Computer Society,
2011, pp. 559–570.

[10] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web applications
in heterogeneous cloud infrastructures,” in International Conference on
Cloud Engineering (IC2E). IEEE, March 2014, pp. 195–204.

[11] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Quelle - a
framework for accelerating the development of elastic systems,” in Euro-
pean Conference on Service-Oriented and Cloud Computing (ESOCC).
Springer, 2014.

[12] P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provisioning
for cloud-based software,” in International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM,
2014, pp. 95–104.

[13] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: Mon-
itoring and analyzing elasticity of cloud services,” in International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2013, pp. 80–87.

[14] D. Trihinas, G. Pallis, and M. Dikaiakos, “Jcatascopia: Monitoring elas-
tically adaptive applications in the cloud,” in International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE/ACM, May
2014, pp. 226–235.

[15] V. Andrikopoulos, S. Gómez Sáez, F. Leymann, and J. Wettinger,
“Optimal distribution of applications in the cloud,” in International
Conference on Advanced Information Systems Engineering (CAiSE).
Springer, 2014.

[16] H. L. Truong and S. Dustdar, “Composable cost estimation and monitor-
ing for computational applications in cloud computing environments,” in
International Conference on Computational Science (ICCS). Elsevier,
2010, pp. 2175–2184.

[17] G. Douglas, B. Drawert, C. Krintz, and R. Wolski, “Cloudtracker: Using
execution provenance to optimize the cost of cloud use,” in Economics
of Grids, Clouds, Systems, and Services. Springer, 2014, pp. 99–113.

[18] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud
bursting for enterprise applications,” ACM Transactions on Internet
Technology (TOIT), vol. 13, no. 3, pp. 10:1–10:24, May 2014.

[19] M. Silva, M. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. da Silva,
“Cloudbench: Experiment automation for cloud environments,” in In-
ternational Conference on Cloud Engineering (IC2E). IEEE, March
2013, pp. 302–311.

[20] R.-H. Hwang, C.-N. Lee, Y.-R. Chen, and D.-J. Zhang-Jian, “Cost opti-
mization of elasticity cloud resource subscription policy,” Transactions
on Services Computing, vol. 7, no. 4, pp. 561–574, Oct 2014.

