
A Platform for Run-time Health Verification of
Elastic Cyber-physical Systems

Daniel Moldovan, Hong-Linh Truong
Distributed Systems Group, TU Wien, Vienna, Austria

E-mail: {d.moldovan,truong}@dsg.tuwien.ac.at

Abstract—Cyber-physical Systems (CPS) have components de-
ployed both in the physical world, and in computing environ-
ments, such as smart buildings or factories. Elastic Cyber-physical
Systems (eCPS) are adaptable CPS capable of aligning their
resources, cost, and quality to varying demand. However, failures
can appear at run-time in the physical or software resources
used by the eCPS. Failures can have different origins, from
hardware failure, to management operations, software bugs,
or resource congestion. While static verification methods can
determine failure sources, they are less applicable to eCPS with
complex hardware and software stacks. To this end, in this paper
we introduce an approach and supporting platform for verifying
at run-time eCPS health, and evaluate it on an eCPS for analysis
of streaming data from smart environments.

Keywords-elastic system, run-time verification, cyber-physical

I. INTRODUCTION

A Cyber-physical System (CPS) has components deployed
both in the physical world (e.g., industrial machines, smart
buildings), and in computing environments (e.g., data centers,
cloud infrastructures)[1]. For example, a smart factory could
be considered as a CPS having components: (i) inside assem-
bly robots, (ii) inside sensor gateways deployed in the factory
to collect environmental conditions, and (iii) deployed in a
private data-center to analyze data collected from robots and
sensor gateways. An Elastic Cyber-physical Systems (eCPS)
can further add/remove components at run-time, from comput-
ing resources to physical devices, aligning their costs, quality,
and resource usage to load and owner requirements.

eCPS have started to generate interest in various domains
due to their adaptability, such as Industrie 4.01, where they
can enable manufacturing processes to adapt to varying usage
patterns and requirements. However, industrial systems are
usually mission critical, designed with strict requirements.
Combining such systems with elasticity introduces particular
challenges and problems. First failures can occur at the cloud
provider end [2]. Failures can also originate in the eCPS hard-
ware resources such as servers, storage, or network elements
[3], due to various causes such as physical failures, software
bugs, or resource congestion. Furthermore, today’s eCPS can
use cloud or virtualized resources [4], which increases the
complexity of managing them.

To this end, run-time health verification is required to ensure
eCPS fulfill their operating requirements. Most of existing

This work was partially supported by the European Commission in terms
of U-Test H2020 project (H2020-ICT-2014-1 #645463)

1http://www.plattform-i40.de/

verification approaches focus on the specification of properties
that must be verified at run-time [5], [6], simulate the system
behavior in order to verify it [7], [8], or do not consider their
elasticity [9], [3]. eCPS require a mechanism for run-time
health verification designed with system elasticity in mind.
Due to eCPS novelty, the mechanism should be usable both
by humans and software controllers.

Let’s consider an elastic cyber-physical system (eCPS) for
analysis of streaming data coming from sensors (Fig. 1). The
system can scale to adapt to changes in load by adding/remov-
ing both physical and cyber components. Sensors send data
to physical devices called Sensor Gateways. The gateways
perform a first data processing step, and send it through
a HAProxy2 HTTP Load Balancer to Streaming Analytics
services hosted in virtual machines in a Private Cloud. Each
Streaming Analytics service is hosted in a Tomcat3 web server.

In such eCPS failures can occur during scaling, or during
normal system operation. At software level, common sources
of failure can be software bugs, incorrect configurations, or
resources congestion. Virtual machines and containers can
also exhibit failures from configuration errors, virtualization
middleware errors, resources congestion, or hardware failure.
Physical devices can exhibit failures generated by external
sources such as power, network, or device hardware.

In this paper we introduce an approach for verifying at run-
time if eCPS components are: (i) deployed and running, (ii)
correctly configured, and (iii) provide expected performance.
To this end in the rest of this paper we identify and answer
the following research questions:
• How to capture and manage the structure and deployment

stack of Elastic Cyber-physical Systems?
• How to describe run-time verification strategies for Elas-

tic Cyber-physical Systems with varying structure and
deployment stack complexity?

• How to verify Elastic Cyber-physical Systems at run-
time considering their particular verification capabilities,
structure, and deployment stack?

The rest of this paper is structured as follows. Section II
details our eCPS run-time verification approach. Section III
introduces our verification platform prototype and evaluation.
Section IV discusses related work. Section V concludes the
paper and outlines future work.

2http://www.haproxy.org/
3http://tomcat.apache.org/

Fig. 1: Architecture, components, and deployment stack of eCPS for analysis of streaming data

Fig. 2: High level eCPS model
II. RUN-TIME HEALTH VERIFICATION APPROACH

We introduce a platform for run-time health verification of
elastic cyber-physical systems (eCPS), providing functionality
for: (i) specifying the logical structure of eCPS, (ii) managing
the run-time structure of eCPS, (iii) specifying verification
strategies, (iv) executing verification strategies, and (v) no-
tifying third-parties about the verification result.

A. Health verification tests

We consider verification as enforcement of verification tests
considered black box. This enables us to manage tests cus-
tomized for specific systems, increasing the applicability of our
approach. To this end we conceptually define a verification test
as a function Test : D → R ∈ [0, 100]. The function applies a
set of custom operations having as domain D system specific
parameters, and as output a real non-negative number in the
[0..100] domain. The output indicates the degree with which
the system passed the test, 0 indicating test failure and 100
complete success, according to particular system requirements
and beliefs over its health [10].

B. Modeling elastic cyber-physical systems

For specifying the logical structure of elastic cyber-physical
systems we define a model for capturing the deployment stack
and dependencies of system components (Fig. 2). Our model
targets only the infrastructure of eCPS and is designed with
simplicity and generality in mind. While the model’s generality
conceptually allows the specification of non-realistic system
structures, such as an OS Process hosting a Physical Machine,
this can be easily restricted in practice, and it allows the model
to be applied to a wide range of systems.

We first capture Physical Machine, Physical Device, and
Virtual Machine (VM) components, used in systems which run
both in the cloud and in the physical world. We capture Virtual
Container components to describe virtualization containers
such as Docker. Increasing the detail, we capture OS Pro-
cess, and Service components. Capturing different stack levels
enables hierarchical testing, in which we can verify the lower
level (e.g., VM), and if that succeeds, verify the higher levels
(e.g., OS Process running inside a VM). Additional component
types can be defined by extending the Type enumeration.

A system Component can have at run-time one or more
Component Instances. E.g., multiple instances of the Stream-
ing Analytics component from Section I. A component in-
stance can be hostedOn another component. The reverse
relationship of hostedOn is hosts. Instances can also com-
municate with other instances, captured with a connectsTo
relationships. Further, we use the Composite Component to
describe combinations of system components. For example,
the Streaming Analytics component using a VM hosting a
Web Server hosting in turn a RESTful Service.

C. Preparing eCPS for health verification

To verify cyber-physical systems, the user of our platform
must first answer the next questions:

1) What characterizes a system and its components as
healthy?: Decide what does healthy means for each system
component and deployment stack level.

2) When and how can the system and its components
encounter health issues?: Decide if unhealthy behaviors can
appear anytime, or after certain events.

3) What verification capabilities provide information about
system health?: Understand what are the verification capabili-
ties provided by the system, and which must be implemented.

Answering these questions enables the definition of appro-
priate verification strategies, for which we introduce in the
next section a domain specific language.

D. Defining verification strategies

For specifying system verification strategies we introduce a
domain-specific language. The language uses a set of concepts
required to define the system component to be verified, the
verification tests to be enforced, and the events specifying
when the verification tests should be executed (Table I). The
language keywords are defined and explained in Table II.

Literal Description
Type Defines a component type according to elastic system representation

model captured in Fig. 2
ID Defines the component ID from the system’s static structure

UUID Defines the unique ID of a deployed system component instance.
Event Defines a custom defined system event identified by its ID

TABLE I: Literals in verification strategy grammar
Keyword Description

Description Identifies the test description section
name Identifies the name of the test to be executed

description Human-readable description of the test to be executed
timeout Time to wait for result before considering the test failed
Triggers Identifies the test triggers section defining when the test is executed

event Specifies that the test should be executed when certain events are
encountered

on Used to specify on which system component the event must be
detected to trigger the test execution

every Used to specify periodical test execution
Execution Identifies the section describing what component executes the test
executor Defines for which components the test is executed, and which

components will execute it
for Used to define for which component the test is executed

TABLE II: Keywords in verification strategy grammar

In the following we describe in Extended Backus-Naur
Form (EBNF) our grammar for specifying verification strate-
gies. Non-terminals are marked using <>, optional specifica-
tions with [], and groupings with (). | should be interpreted as
logical OR, and ::= as ”is defined as”.

We write one verification strategy for each verification test,
structured in three parts: (i) test properties Description,
(ii) specification of test execution Triggers , and (iii) test
Execution information. The test properties can be defined
using Production 1, specifying for each test a name, a human-
readable description, and optional timeout. The name is used
to identify the test. A timeout is used to mark as failed tests
which do not return results in the specified interval of time.
We use triggers to specify when a particular test should be
executed. A trigger can be an event, or a periodic timer.

< dExpr >::= Description (name ” : ” < string >)

(description ” : ” < string >)

[(timeout ” : ” < integer > < timeUnit >)] (1)
We support direct and indirect tests (detailed in Sec-

tion II-E). We specify using Production 2 which component
will execute the test. A distinct executor than the test
target can be specified, useful in indirect tests from similar
components (e.g., pinging a VM from another VM).

< eExpr >::= Execution+ {executor ” : ”

< idExpr > for + {< idExpr >}[distinct]} (2)

E. Verification strategies enforcement process

For enforcing verification tests we use two components: (i)
a centralized run-time Verification Orchestrator responsible
for managing the system structure, dispatching tests, and
collecting results, and (ii) a Test Executor. One Test Executor
can be deployed for each component, executing tests received
from the orchestrator, and sending events to the orchestrator
when a component instance is added/removed. We determine
two types of verification tests to support: direct and indirect.
Direct tests are executed by the test executor of the tested

Fig. 3: Run-time verification process and interactions

component. E.g., verifying CPU usage from inside the VM.
An indirect test is executed by a third party executor. E.g.,
verifying if a VM is running by pinging it from another VM.

eCPS can be controlled using centralized or decentralized
mechanisms. A centralized controller could inform about
changes to the system’s structure. In distributed control each
system component might be its own controller. To cover both
scenarios, we design a mechanism in which the Verification
Orchestrator receives events about system changes. We rep-
resent the steps and interactions in our approach in Fig. 3.
When a new component instance is added it queries (step 1.1)
the unique identifier (UUID) of the component hosting it (if
any). It then uses it to instantiate a Test Executor (step 1.2),
which notifies the Verification Orchestrator (step 1.3) that a
new component instance was added. Direct tests (step 2.1) are
executed by the test executor of the targeted component (i.e.,
hostedTE:TestExecutor). Indirect tests (step 3.1) are executed
by the test executor receiving the test command (e.g., host-
ingTE:TestExecutor). Finally, when a component is removed
from the system, it notifies its test executor (step 4.1), which
in turn notifies the orchestrator (step 4.2).

III. EVALUATION

A. Verification platform prototype

We implement our run-time verification platform proto-
type4 (Fig. 4) in Python. We expect custom test execu-
tors to be implemented for particular systems, and pro-
vide a Messaging Queue using RabbitMQ5 acting as
communication broker between the Verification Orchestrator
and Test Executors. The platform’s functionality is divided

4http://tuwiendsg.github.io/RuntimeVerification/
5https://www.rabbitmq.com/

Fig. 4: Run-time verification platform prototype

between: (i) a System Structure Manager handling
structure-related operations; (ii) an Events Manager pro-
cessing events received from test executors; (iii) a Tests
Execution Manager dispatching verification tests; (iv) a
Persistence Manager using SQLite6 to persist system
and verification information; and (v) a UI Manager handling
interactions with platform users. We implement our run-
time verification platform with RESTful services using Flask7

and JSON8. We implement a web-based interface relying on
HTML and Javascript for human users. A verification test is
a self-contained sequence of Python code, and we provide a
library to report the test result. We contextualize each test with
information about test target and executor.

B. Defining What?, When?, and How? to verify

We highlight the capabilities of our platform using the sys-
tem described in Section I. Sensor Gateways are deployed
on RaspberryPi9. A private OpenStack cloud is used to deploy
instances of Streaming Analytics composite compo-
nent. For each component instance a VM is deployed, running
a Tomcat process hosting a Streaming Analytics web service.
Finally, a the Messaging Service uses a third party
message queue software as a service from CloudAMQP10.

To verify the health of an eCPS, the user first needs to
determine What?, When?, and How? to verify. In the follow-
ing we focus on the Streaming Analytics composite
component, and capture in TABLE III the health indicators
determined from answering the above questions. Focusing on
What, the user determines the following health indicators:
• The VM component is healthy if it is network accessible

(TABLE III row 1)
• The Tomcat component is healthy if its Java process

runs and it receives requests from the Load Balancer
(TABLE III row 2)

• The Service component is healthy if its response time
is < 1s (TABLE III row 3)

6https://www.sqlite.org/
7http://flask.pocoo.org/
8http://www.json.org/
9https://www.raspberrypi.org/
10https://www.cloudamqp.com/

Component What When Verification test
to verify? to verify? to verify? implementation

1. VM VM network
accessible

After event: VM
ADDED Linux ping

commandPeriodically:
every 30
seconds

2. Tomcat

Tomcat Java
process runs.

After event: VM
ADDED

Linux-specific
commands: ps
aux | grep
tomcat

Tomcat receives
requests from the
Load Balancer

After event: VM
ADDED

Custom system
capability to
verify if IP of VM
hosting Tomcat
processes is in
Load Balancer
configuration file

3. Service Service response
time is < 1s

Periodically:
every 30
seconds

Custom
service API
exposing response
time

TABLE III: Health indicators for Streaming Analytics com-
posite component

Listing 1: VM network accessible: verification strategy
1 D e s c r i p t i o n
2 t imeout : 30 s
3
4 T r i g g e r s
5 event : ” Added ” on ID . ”VM. S t r e a m i n g A n a l y t i c s ”
6 every : 30 s
7
8 Execut ion
9 e x e c u t o r : d i s t i n c t Type . V i r t u a l M a c h i n e f o r

10 Type . V i r t u a l M a c h i n e

Answering When to verify, the user defines one or more
verification descriptions for each health indicator. The strategy
for verifying if the VM component is healthy is depicted in
Listing 1. As the Streaming Analytics is elastic, network
accessibility should be verified when a VM is created. A test
Trigger entry is added (Line 5) for the event: "Added"
for ID.”VM.StreamingAnalytics” representing the Streaming
Analytics VMs. VMs can also fail at run-time due to various
factors, meaning the network accessibility should also be ver-
ified periodically. To this end a every: 30 s periodic test
trigger is defined (Line 6). VM network accessibility should be
verified from outside the VM. Thus, a distinct executor
is specified (Line 9), having the type VirtualMachine.
Finally, a timeout specifies to wait 30 seconds for the test
result before considering that it has failed (Line 2). This is
useful if something happened to the test executor component.

The user then decides How each health indicator can be ver-
ified. The VM network accessibility indicator can be verified
by pinging it. The test is defined as a standalone Python
script (Listing 2), and uses contextualized variables
injected at test execution by our platform, such as targetID,
which for VMs is their IP (Line 3). Domain-specific knowl-
edge is used in implementing the test logic (Lines 5-8). Each
test result returns the type defined by our platform (Line 9).

Using our language a user can easily specify what, when,
and how to verify.

C. Managing structure of elastic cyber-physical systems

The system static structure is submitted to our platform
as JSON according to the model introduced in Section II-B.

Listing 2: VM network accessible: test implementation
1 os = impor t (’ os ’) # s t a n d a l o n e code w i t h l o c a l i m p o r t s
2 # c o n t e x t u a l i z e d ” t a r g e t I D ” v a r i a b l e
3 r e s p o n s e = os . sys tem (” p ing −c 1 ” + t a r g e t I D)
4 # T e s t R e s u l t t y p e p r o v i d e d by our p l a t f o r m
5 i f r e s p o n s e == 0 : # i f p ing f a i l s r e s p o n s e i s 256
6 s u c c e s s = 100
7 e l s e :
8 s u c c e s s = 0
9 re turn T e s t R e s u l t (s u c c e s s , r e s p o n s e)

Listing 3: Static system structure JSON description
{ ’name ’ : ’ System ’ , ’ containedComponents ’ : [

{ ’name ’ : ’ S t r e a m i n g A n a l y t i c s ’ , ’ type ’ : ’ Composite ’ ,
’ containedComponents ’ : [
{ ’name ’ : ’VM. S t r e a m i n g A n a l y t i c s ’ ,

’ type ’ : ’ V i r t u a l M a c h i n e ’
} ,{ ’name ’ : ’ P r o c e s s . Tomcat ’ ,

’ type ’ : ’ P r o c e s s ’ ,
’ hostedOn ’ : ’VM. S t r e a m i n g A n a l y t i c s ’

} ,{ ’name ’ : ’ S e r v i c e . S t r e a m i n g A n a l y t i c s ’ ,
’ type ’ : ’ S e r v i c e ’ ,
’ hostedOn ’ : ’ P r o c e s s . Tomcat ’

}]} , . . .

An excerpt is shown in Listing 3, detailing the Streaming
Analytics composite component. Each component has a name,
type, and potential containedComponents. A compo-
nent can also be hostedOn another component.

In the following we apply our platform to detect when the
system structure changes due to addition/removal of Streaming
Analytics components. We implement a cloud controller which
scales-out the system by adding 10 Streaming Analytics com-
ponent instances, one instance every 2 minutes. After the initial
additions, the system goes through 10 scale-in/out operations
adding/removing one Streaming Analytics component instance
every 10 minutes. Finally, the system scales-in by removing
one Streaming Analytics instance every 2 minutes. In the
current evaluation setup the test executors are deployed as OS
services inside each VM.

Adding a component instance implies allocating a new VM,
and deploying and starting a Tomcat process on it. One Test
Executor is deployed for each VM, Process, and Service
components. Our executor sends events to the verification
platform when it is started (on VM addition) and stopped (on
VM removal). Table IV shows the events from the Streaming
Analytics test executors. Each event defines the type, ID, and
UUID (unique instance id) of the added component, along with
information not shown here, such as the system ID. Based on
these events we depict in Fig. 5 the number of VM, Tomcat,
and Service instances over time.

This evaluation shows that our platform can be applied on
elastic cyber-physical systems, as it can be used to detect when
component instances are added or removed.

D. Determining system health problems due to scaling

Next we evaluate our platform on determining unhealthy
components by injecting failures in scaling the Streaming
Analytics component. We use three VM images in scaling:
(i) one correctly configured, (ii) one in which the Tomcat
process does not register itself in the Load Balancer, and (iii)
one in which the Tomcat process fails to start. We use the

No. Component Information
Type ID UUID

1 VirtualMachine VM.StreamingAnalytics 10.99.0.68
2 Process Process.Tomcat 10.99.0.68-Tomcat
3 Service Service.StreamingAnalytics 10.99.0.68-Tomcat-

StreamingAnalytics

TABLE IV: Events information for added/removed Streaming
Analytics instance

Fig. 5: Number of component instances determined from
added/removed events

previously implemented cloud controller and iteratively scale-
out the Streaming Analytics component by adding one VM,
iterating through the three images. We define 2 tests: (i) a
Tomcat Running direct test verifying if the Tomcat process
is running, and (ii) a Registered in Load Balancer
indirect test verifying if the Load Balancer configuration
contains the IP of VM hosting the Tomcat process.

In Fig. 6 we depict with columns for each test Passed
and Failed events generated by our platform for the first 6
scale-out actions. We further depict with a line the number
of Streaming Analytics instances, to highlight that the test
results belong to a newly added component instance. In the 6
scaling actions, 3 instances are created for each configuration.
From the figure we see that the first instance using the correct
configuration passes all tests. The second instance fails the
second test, due to configuration 2 not registering the instance
in the Load Balancer. The third instance fails both tests.

Thus, using our platform, users can define fine-grained
verification strategies and test their systems at multiple levels.

E. Determining system health problems at run-time

In the following we detect virtual infrastructure failures
occurring at run-time. We focus on the health indicator from

Fig. 6: Verification results for Streaming Analytics instances

Fig. 7: Determined virtual infrastructure failures

row 1 in Table III, and periodically test if each VM is
network accessible. We use the previously implemented cloud
controller, deploy 10 Streaming Analytics VMs, and introduce
iteratively 10 infrastructure failures by suspending one ran-
dom VM at a time. Fig. 7 depicts the test failures determined
by our platform and the associated VM IP.

This evaluation scenario highlights that our platform can
be used to determine health problems emerging during system
run-time, identifying the failed component.

IV. RELATED WORK

Relying on formal specification of properties that must
be verified at run-time, [11] formally verifies configuration
changes in adaptive cyber-physical systems, [5] uses historical
monitoring data to trigger transitions in a Petri net that
describes behavioral and temporal properties of the system,
while [6] employs Time-Basic Petri nets to specify and verify
the behavior of self-adaptive systems. Simulating run-time
behavior and verifying state transitions, [7] uses symbolic code
execution to maintain the system state and verify its behavior.
Security properties in eHealth systems are verified by [12]
through run-time verification enablers inserted in feedback
adaptation loops. In [8] the authors define a pattern-based
mechanism for describing system behavioral requirements as
contracts, while [13] defines an adaptive complex event pro-
cessing architecture for analysis of cloud systems. Verifying
running systems, [9] detects behavioral anomalies in cloud-
based systems. The authors of [3] present a machine learning
approach for predicting job-level and task-level failures in
clouds based on historical resource usage metrics, [14] propose
a time-triggered approach to run-time verification, while [15]
relies on code introspection for run-time verification. Most
verification approaches require detailed knowledge about the
eCPS, or do not consider its elasticity. We differ as we view
system components as black boxes. Our approach further
relies on verification capabilities exposed by each system
component, and is tailored for systems which change their
structure at run-time.

V. CONCLUSIONS

In this paper we have introduced an approach and sup-
porting platform for run-time verification of elastic cyber-

physical systems (eCPS). We have highlighted the importance,
challenges, and problems in verifying such systems at run-
time. We have defined a model for representing from simple
to complex system structures and deployment stacks. We have
defined a domain-specific language enabling the specification
of verification strategies with varying levels of complexity,
supporting both direct and indirect execution of verification
tests. We have implemented our approach in a platform for
run-time verification of eCPS and have evaluated our approach
on an eCPS for analysis of streaming data coming from smart
environments. We further plan to study and develop techniques
to classify and analyze the events received from the eCPS.

REFERENCES

[1] E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, p. 4837, 2015.

[2] A. Sampaio and J. Barbosa, “Dynamic power- and failure-aware cloud
resources allocation for sets of independent tasks,” in International
Conference on Cloud Engineering (IC2E), March 2013, pp. 1–10.

[3] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure prediction of jobs
in compute clouds: A google cluster case study,” in International
Symposium on Software Reliability Engineering Workshops (ISSREW),
Nov 2014, pp. 341–346.

[4] H. L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.

[5] O. Baldellon, J. C. Fabre, and M. Roy, “Minotor: Monitoring timing
and behavioral properties for dependable distributed systems,” in Pacific
Rim International Symposium on Dependable Computing (PRDC), Dec
2013, pp. 206–215.

[6] M. Camilli, A. Gargantini, and P. Scandurra, “Specifying and verifying
real-time self-adaptive systems,” in International Symposium on Soft-
ware Reliability Engineering (ISSRE), Nov 2015, pp. 303–313.

[7] N. Cardozo, L. Christophe, C. De Roover, and W. De Meuter, “Run-
time validation of behavioral adaptations,” in International Workshop on
Context-Oriented Programming (COP). New York, NY, USA: ACM,
2014, pp. 5:1–5:6.

[8] O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, C. Sofronis,
and M. DAngelo, “Monitor-based run-time contract verification of dis-
tributed systems,” in International Symposium on Industrial Embedded
Systems (SIES), June 2014, pp. 1–4.

[9] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, “Anomaly detection
in iaas clouds,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 1, Dec 2013, pp. 387–394.

[10] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz,
and R. Norgren, “Understanding uncertainty in cyber-
physical systems: A conceptual model,” Tech. Rep., Nov
2015. [Online]. Available: https://www.simula.no/publications/
understanding-uncertainty-cyber-physical-systems-conceptual-model

[11] M. Garcı́a-Valls, D. Perez-Palacin, and R. Mirandola, “Time-sensitive
adaptation in cps through run-time configuration generation and verifica-
tion,” in Computer Software and Applications Conference (COMPSAC),
July 2014, pp. 332–337.

[12] A. B. Torjusen, H. Abie, E. Paintsil, D. Trcek, and A. Skomedal,
“Towards run-time verification of adaptive security for iot in ehealth,”
in European Conference on Software Architecture Workshops (ECSAW).
New York, NY, USA: ACM, 2014, pp. 4:1–4:8.

[13] A. Mdhaffar, R. Ben Halima, M. Jmaiel, and B. Freisleben, “A dynamic
complex event processing architecture for cloud monitoring and analy-
sis,” in IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, Dec 2013, pp. 270–275.

[14] B. Bonakdarpour, S. Navabpour, and S. Fischmeister, “Time-triggered
runtime verification,” Formal Methods in System Design, vol. 43, no. 1,
pp. 29–60, 2013.

[15] G. Nelissen, D. Pereira, and L. M. Pinho, Ada-Europe International
Conference on Reliable Software Technologies. Cham: Springer Interna-
tional Publishing, 2015, ch. A Novel Run-Time Monitoring Architecture

for Safe and Efficient Inline Monitoring, pp. 66–82.

