
Context-aware Programming for Hybrid and
Diversity-aware Collective Adaptive Systems

Hong-Linh Truong and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@dsg.tuwien.ac.at

Abstract. Collective adaptive systems (CASs) have been researched intensively
since many years. However, the recent emerging developments and advanced
models in service-oriented computing, cloud computing and human computation
have fostered several new forms of CASs. Among them, Hybrid and Diversity-
aware CASs (HDA-CASs) characterize new types of CASs in which a collective
is composed of hybrid machines and humans that collaborate together with differ-
ent complementary roles. This emerging HDA-CAS poses several research chal-
lenges in terms of programming, management and provisioning. In this paper, we
investigate the main issues in programming HDA-CASs. First, we analyze con-
text characterizing HDA-CASs. Second, we propose to use the concept of hybrid
compute units to implement HDA-CASs that can be elastic. We call this type of
HDA-CASs h2CAS (Hybrid Compute Unit-based HDA-CAS). We then discuss a
meta-view of h2CAS that describes a h2CAS program. We analyze and present
program features for h2CAS in four main different contexts.

1 Introduction

Collective adaptive systems (CASs) have been researched intensively since many years
[1, 2, 3, 4]. For solving complex problems in business and society, new concepts of
CASs have been emerging by utilizing human-based computing and software-based
computing elements as basic building blocks of CASs. Among them, the Hybrid and
Diversity-aware CAS (HDA-CAS) has emerged as a new type of CAS that consists
of diverse machine- and human-based computing elements [5]. HDA-CASs promise a
new way to solve complex problems that requires both human knowledge and machine
capabilities, such as in simulation, urban planning, and city management.

While CASs can be built based on computing elements from different environ-
ments, in our research, we are particularly interested in HDA-CASs that are built
from software-based services, thing-based services, and human-based services, follow-
ing service-oriented and cloud computing models. In such models, machine-based and
human-based elements provide fundamental computation, data, and network functions
and these elements have well-defined service interfaces and are provisioned under cloud
models. Atop diverse types of services in the cloud, new types of dynamic elasticity
properties have emerged. First, a huge amount of diverse types of resources are avail-
able that can be taken into the construction of CASs on demand. Second, elasticity re-
quirements from the consumer for whom a CAS is provided and problems being solved
by the CAS force us to design CASs capable of handling cost and quality changes.



2 Hong-Linh Truong and Schahram Dustdar

Therefore, we believe that utilizing dynamic, on-demand service units from clouds to
establish HDA-CASs is a promising direction.

Since HDA-CASs are designed to deal with complex problems in an adaptive way,
examining elasticity mechanisms for building HDA-CASs using cloud resources, offer-
ing cloud computing models for HDA-CASs, and dynamically managing HDA-CASs
at runtime is a very interesting but challenging problem. In our previous work, we have
described cloud models for software and people, basic hybrid compute unit models for
establishing computing systems including both software and people, and basic program-
ming APIs for these units [6, 7]. In this paper, we examine how such fundamental build-
ing blocks can be used to build HDA-CASs. We advocate the form of HDA-CASs being
constructed from hybrid compute units (HCUs), which consist of software-, thing- and
human-based service units. These units are provisioned under the service concept (with
well-defined interfaces and utilization model), enabling dynamic programming features
for utilizing them. To this end, this paper presents the following contributions:

– analysis and definition of context associated with HDA-CASs
– analysis of hybridity and elasticity properties of HDA-CASs,
– analysis of the utilization of hybrid compute units for implementing HDA-CASs,

called h2CAS,
– a meta-view of main building blocks for h2CAS, and
– analysis of programming features for h2CAS in four main high-level contexts.

Our contributions provide fundamental work for the development of program specifica-
tion of h2CAS, h2CAS provisioning services, and h2CAS elasticity techniques.

The rest of this paper is structured as follows: Section 2 defines the context of HDA-
CAS and discusses the hybridity and elasticity of HDA-CASs. Section 3 defines HDA-
CASs using hybrid compute units and a meta-view of our h2CAS specification. Section
4 discusses issues in programming h2CAS. Related work is presented in Section 5. We
conclude the paper and outline our future work in Section 6.

2 Analyzing Contexts of HDA-CAS

2.1 Context of HDA-CAS

Our goals to support context-aware programming HDA-CASs are to provide (i) right
constructs for specifying what constitutes a HDA-CAS, (ii) tools and middleware for
deploying, provisioning and instantiating HDA-CASs based on their specifications, and
(iii) means for programming the control and reconfiguration of HDA-CASs at run-
time. Therefore, it is important to understand the context in which a HDA-CAS will
be formed and operated as well as possible contexts inherent in the lifetime of HDA-
CASs. We define a context of a HDA-CAS as follows:

Definition 1 (Context of HDA-CAS). Context of a HDA-CAS describes situational in-
formation about tasks and quality of results (What), structures of the HDA-CAS and its
constituting units for computation/data/network functions as well as for monitoring/-
control/management functions (Who), and the coordination and elasticity mechanisms
that control the operation of the HDA-CAS (How) in a determined time frame (When).



Programming for Hybrid and Diversity-aware Collective Adaptive Systems 3

To support context-aware programming of HDA-CASs, we need to address several
open questions of When, What, Who/Which and How characterizing contexts in which
programming features for HDA-CASs play a crucial role:

– When: When a HDA-CAS is formed and instantiated? From when to when a HDA-
CAS is in a particular context? When does a HDA-CAS switch its context?

– What: What are the tasks that a HDA-CAS has to solve in a particular context? What
are the expected quality of results (QoRs) for these tasks?

– Which/Who: Which types of units are needed for performing computation/data/net-
work functions and for monitoring/management/control functions in a HDA-CAS
context? Which structures can be used to describe a HDA-CAS and its units?

– How: How does a HDA-CAS work? How does a HDA-CAS coordinate its units?
How does a HDA-CAS support and control its elasticity?

Programming a HDA-CAS means that we need to be able to describe several types
of information related to the above-mentioned questions in well-defined specifications.
Based on that, via software-defined APIs, we can create, provision and control HDA-
CASs to enable units within these HDA-CASs to interact and perform their tasks/roles.

Let us consider the case in which a HDA-CAS is built by using a hybrid compute
unit (HCU) [6, 7]. There are complex relationships among the What and Who/Which
within a context and among contexts within the lifetime of a HDA-CAS, as shown in
Figure 1. A HCU is provisioned from different resources (via virtualization techniques).
The HCU is the Who/Which of the HDA-CAS. The HCU is intended for solving prob-
lems which have complex, and possibly evolving, task structures, dependent on the
context. Therefore, under a specific context in the lifetime of the HDA-CAS, HCU
structures may be changed to assure the QoR associated with the tasks.

Fig. 1. High-level view of context (ctx), task structure and units associated with HDA-CAS



4 Hong-Linh Truong and Schahram Dustdar

2.2 Hybridity in CASs

Hybridity is an intrinsic property of HDA-CASs. This property is due to the fact that
HDA-CAS is formed to address complex problems, which require us to employ diverse
and hybrid types of units and roles:

– Different types of resources, including machine-based, human-based and thing-based
resources that offer computation, data, and network functions as well as monitoring,
control and management functions.

– Different roles performed in the same collective: including performing computation/-
data/network functions and supporting management, monitoring and control func-
tions. Different types of resources or a single resource might perform different roles
or the same role at different time based on different capabilities

Therefore, techniques for programming HDA-CASs must support fundamental pro-
gramming constructs and algorithms to deal with the hybridity of computing models
in HDA-CASs. In terms of hybridity, the following aspects are important:

– We must be able to execute, coordinate, and manage computation/data/network func-
tions using hybrid processing units (e.g., CPU/core for machine-based computing,
human brain for human-based computing, and sensor for thing-based computing),

– We must be able to program hybrid architectures (e.g., the cluster of machines for
machine-based computing, the individual/team for human-based computing, and the
web of things for thing-based computing), and

– We must be able to program hybrid communication protocols (e.g., TCP/IP for
machine-based computing, social network for human-based computing, and MQTT
for thing-based computing).

A HDA-CAS will consists of a mixture of these processing units, architectures and
communications.

2.3 Elasticity in HDA-CASs

One of the main issues in programming and provisioning HDA-CAS is to support the
elasticity principles, covering resource, quality, and cost/benefit elasticity. These prin-
ciples should be the core mechanisms for, e.g., managing and controlling the operations
of HDA-CASs (thus, addressing the How aspect of HDA-CAS contexts). The main
reason is that HDA-CAS is a dynamic entity whose structures, tasks, and QoRs are
dynamically changed. The type of resource elasticity can be seen through the change,
reduction and expansion of units for computation/data/network functions. Other types
of elasticity can be observed through the following aspects:

– Mixture of different QoRs from a single collective, given a specific goal: a collec-
tive is dynamic w.r.t. structures, interactions, and performance, thus, it can produce
different QoRs, depending on different settings (e.g., time, availability, incentives, to
name just a few).

– Mixture of cost/benefit models: a collective might perform a goal (offering a capa-
bility) with different cost/benefit models with different or the same quality.



Programming for Hybrid and Diversity-aware Collective Adaptive Systems 5

Such elasticity capabilities must be captured, modeled and associated with HDA-CASs,
enabling the management and control of HDA-CASs via programming features. For
example, we must be able to program the selection and utilization of suitable units
for different types of tasks and QoRs (e.g, specifying expected performance, cost, and
quality of data). Overall, we foresee the following levels of elasticity:

– Processing Units: The basic mechanisms are (i) to add/remove new processing units
based on the load and (ii) to replace existing processing units with new processing
units. If units are humans, then we can search clouds of human-based services to
find relevant units. If it is software then we can find new software based on service
selection techniques.

– Architecture: the architecture reflects how different units performing computation/-
data/network functions and monitoring/control/management functions can be glued.
The basic mechanisms are (i) to provision different static and runtime topologies
for different types of units, and (ii) to change different protocols/algorithms within
monitoring/control/management units.

– Communications: There will be multiple communication protocols among different
types of units, e.g., communications among units performing computation/data/net-
work functions and among monitoring/control/management units. The basic mecha-
nisms are (i) adding/removing communication protocols, (ii) reconfiguring existing
protocols, and (iii) replacing existing protocols with new protocols.

3 h2CAS– HDA-CAS using Hybrid Compute Units

3.1 Hybrid Compute Units and HDA-CAS

Based on the two main properties of hybridity and elasticity of HDA-CASs, to specify
and program HDA-CAS’s structures, we rely on the hybrid compute unit (HCU) con-
cept – a unified model that is able to capture different types of service units and their
relationships. Using service units and relationships modeled in the HCU, the HDA-
CAS programmer can define HDA-CAS structures, including topologies and commu-
nications, and configure other elements, such as algorithms for selecting units for per-
forming computation/data/network functions, for evaluating quality of results, and for
controlling the elasticity of units by considering costs and benefits. The HCU model is
described in detail in [7]. Service units are associated with elasticity capabilities; each
capability can be programmed via software-defined APIs. A general concept is that the
consumer of HDA-CASs acquires a HCU representing the HDA-CAS structure. Then
consumer can control the elasticity of the HDA-CAS via APIs, triggering suitable set
of actions, each mapped to some primitives of units. We define a model of HDA-CAS
based on the HCU as follows:

Definition 2 (HCU-based HDA-CAS). A HCU-based HDA-CAS (h2CAS) includes a
set of service units which can be software-based services, human-based services and
thing-based services that can be provisioned, deployed and utilized as a collective on-
demand based on different quality, pricing and incentive models.



6 Hong-Linh Truong and Schahram Dustdar

In our work, programming h2CAS means that: (i) we are able to specify relevant in-
formation of h2CAS, (ii) h2CAS specification will be compiled and executed by some
middleware, and (iii) h2CAS operations will be controlled at runtime by the h2CAS it-
self or by external controllers via software-defined APIs. Main programming features
that a h2CAS programming framework should support:

– Initialization: we must be able to describe the structure of h2CAS including units, ar-
chitectures and communications. The Who/Which must be structured based on types
of the tasks and the QoRs (the What). We must be able to initiate the h2CAS based
on the structure, deployment, and configuration

– Elasticity Management: we must be able to understand elasticity contexts of h2CAS,
which must be monitored. The elasticity of h2CAS will be used to control dynamic
changes of h2CAS structures to meet the expected QoR. During runtime, depending
on specific contexts, we can measure/monitor/predict QoRs and perform elasticity
actions by calling elasticity APIs of h2CAS.

3.2 Meta-program for h2CAS

To specify h2CAS, we need to determine the types of units needed for performing
computation/data/network functions and for performing management/control/monitor-
ing functions, possible coordination and communication protocols/models among dif-
ferent types of units and elasticity capabilities of these units to control the elasticity of
h2CAS. They can be determined before the initialization of a h2CAS or during the
lifetime of a h2CAS, based on specific contexts of h2CAS. In this section, we discuss
h2CAS meta-view and leave the detailed design and implementation of the meta-view
specification for the future work.

Figure 2 presents a meta-view of h2CAS programs describing possible service
units and interactions. h2CAS includes four main building block specifications:

– Task Management: three main types of units should be specified for task manage-
ment. InputTaskStorageUnit is used to manage input tasks (e.g., from the
consumer of h2CAS) that need to be solved by h2CAS. TaskMatchingUnit
and TaskControlUnit are used to match tasks to units performing computation/-
data/network functions and to manage tasks performed by such units, respectively.

– Result Management: at least three main types of units should be specified.
OutputResultStorageUnit is used to manage results of h2CAS that will be
sent to the consumer. QoREvaluationMatchingUnit and
QoREvaluationControlUnit are used to find units for performing the QoR
evaluation and manage QoR evaluation tasks.

– Computation/Data/Network Task Execution and Control: types of possible units used
for performing computation/data/networks should be specified. Three main units for
managing computation/data/network units (CDNElasticityControlUnit), for
supporting communications (CDNCommunicationUnit and for interacting with
clouds of services (CloudConnectorUnit) should be specified.

– Elasticity Monitoring and Control: two main units should be specified. First,
MonitoringUnit is used for performing different monitoring activities, including



Programming for Hybrid and Diversity-aware Collective Adaptive Systems 7

Fig. 2. h2CAS meta-view

monitoring task management, result management, computation/data/network func-
tions, etc. Second, ElasticityControlUnit is specified for performing elas-
ticity controls, such controlling units for performing computation/data/network func-
tions, communication units, task management units, etc.

In terms of programming, these types of units are “class” and when initialized, we can
have different instances of these units based on different implementations and config-
urations. Each building block will require different ways to specify and program units,
architectures and protocols. Among different building blocks, there will be protocols
for their interactions. Similar to the types of units, these protocols can also have differ-
ent instances. It is important to note that these units can be software-based, thing-based,
or human-based. For example, TaskControlUnit or CDNElasticityControl
can be human-based services. Therefore, h2CAS operations are not fully automatically
managed and controlled. Instead, these operations are carried out through a combination
of human and machine activities.

4 Context-aware Programming Features for h2CAS

In the following, we discuss programming features for h2CAS that are centered around
four main specific contexts:



8 Hong-Linh Truong and Schahram Dustdar

– consumer-generated independent continuous task context: in this context, a h2CAS is
established and used for solving independent tasks sent continuously by the consumer
of the h2CAS.

– consumer-generated dependent task context: in this context, a h2CAS is established
and used for solving a task graph sent by the consumer of the h2CAS.

– evolving independent task context: in this context, a h2CAS is established and used
for solving a set of independent tasks but during the problem solving time, several
new independent tasks are created by the h2CAS.

– evolving dependent task context: in this context, a h2CAS is established and used for
solving a set of dependent tasks and during the problem solving several dependent
tasks are created newly by the h2CAS.

They are high-level contexts which can be subdivided into different types of sub-
contexts based on the What aspect (e.g., a sub-context in which only the same type
of tasks is solved), the Who/Which aspect (e.g., a context in which all tasks are solved
by human-based compute units), and/or the How aspect (e.g., a context in which only
cost elasticity is needed).

4.1 Consumer-generated independent continuous task context

Context Description In this context, a h2CAS is provisioned for solving a flow of
independent tasks from its consumers. All the tasks are atomic and the tasks are created
by the consumer of the h2CAS. QoR is associated with individual tasks. It is possible
to have different types of tasks, which require different types of units performing com-
putation/data/network functions. Tasks are continuously given to h2CAS. This kind of
task delivery is highly related to works in crowdsourcing tasks [8]. However, the main
difference is that the task flow is continuous.

Initialization For independent tasks, h2CAS will receive a flow of independent tasks
which are put into InputTaskStorageUnit by the consumer of the h2CAS. We
can safely assume that there is only one service unit working on a specific task at a
given time. If the QoR of a task does not match the requirement (e.g., the task cannot be
finished by a unit), the task should be reassigned and performed by another unit. For this
reason, we can also decide not to include CDNCommunicationUnit for units per-
forming computation/data/network functions. Thus, h2CAS could be programmed by
forming h2CAS based on general task descriptions without CDNCommunicationUnit.

A minimum set of units for performing tasks can be established by programming/-
configuring suitable (pre-)runtime/static unit formation algorithms within
CDNElasticityControlUnit. The h2CAS can coordinate task execution based
on different coordination models programmed in TaskControlUnit.

Elasticity Depending on the task types, h2CAS could be deployed to use only
clouds of human-based services or clouds of hybrid services. At runtime, based on
monitoring information, especially QoR (e.g., higher or lower QoR than expected),
ElasticityControl and CDNElasticityControlUnit can apply elasticity
controls to individual units performing computation/data/network functions, to change



Programming for Hybrid and Diversity-aware Collective Adaptive Systems 9

coordination protocols within task management and output management units, or to
interact with other clouds to negotiate pricing models and acquire/release resources.
Elasticity controls can be performed via different control algorithms and can be also
programmed via elasticity APIs.

4.2 Consumer-generated dependent task context

Context Description This context is quite similar to the previous context in Section
4.1, except a complete task graph is given to the h2CAS. The task graph includes de-
pendent tasks, e.g., in terms of data or control dependencies.

Initialization Similarly to the previous context, a h2CAS can be established with
a minimum cost and a limited number of units performing computation/data/network
functions. Thus, initially the h2CAS can be just enough for solving a sub-graph and
then eventually be extended to solve other tasks, e.g. followed the strategies in [6]. Al-
though tasks are dependent, communications among h2CAS units performing tasks
may or may not be established. When CDNCommunicationUnit is not needed, the
dependencies among tasks can be managed by TaskManagementUnit. All task re-
sults have to be routed back to the TaskControlUnit. Otherwise, the dependencies can
also be managed by units performing tasks and using CDNCommunicationUnit
to send/receive messages about task results to other units. Another benefit of using
CDNCommunicationUnit is to facilitate the discussion among units performing
tasks, when these units are human-based.

Elasticity The elasticity in this context is similar to the previous context in Section 4.1.
However, the elasticity of units performing computation/data/network functions could
be relied on different strategies, such as expanding and reducing units by considering
Business-as-Usual and corrective action cases [6].

4.3 Evolving independent task context

Context Description In this context, a set of independent tasks needs to be solved
by a h2CAS; each task has its own expected QoR. However, solving an indepen-
dent task might lead to the creation of sub-tasks. This requires two ways of in-
teractions among a unit performing a task in h2CAS, TaskControlUnit and
QoREvaluationControlUnit to decide how sub-tasks should be assigned, ex-
ecuted and evaluated.

Initialization We could start with a common strategy of initializing a h2CAS with
a minimum capability (e.g., based on costs) and later on we can use elasticity mech-
anisms to expand or reduce the h2CAS. Since a unit performing a task needs to in-
teract with TaskControlUnit to decide how to assign, execute and evaluate sub-
tasks, two different possibilities can be configured: (i) the unit performing a task re-
turns the outcome – either sub-tasks or the result of the task – to management units in
TaskManagement and let them to manage the outcome and (ii) the unit performing
a task coordinates the execution of sub-tasks it creates. In the latter, the initialization



10 Hong-Linh Truong and Schahram Dustdar

requires CDNCommunicationUnit and another protocol to allow the unit to call
TaskMatchingUnit and CDNElasticityUnit to assign and manage its sub-
tasks.

Elasticity When a unit performing computation/data/network functions or QoR evalu-
ation is not responsible for its newly-created tasks, the typical elasticity mechanisms in
previous contexts (Sections 4.1 and 4.2) could be utilized. Otherwise, different elasticity
mechanisms can be performed by the unit by calling CDNElasticityControlUnit.
When the unit is a human-based compute unit, the elasticity actions are manually done
by the human. In case, the unit is a software-based compute unit, we need to program
suitable algorithms for executing, managing and evaluating sub-tasks. Note that when
a unit utilizes elasticity controls to acquire other units to perform its sub-tasks, it is
possible that the newly acquired units are the core elements for a new h2CAS. In other
words, a unit can create a new h2CAS to solve its sub-tasks.

4.4 Evolving dependent task context

Context Description In this context, a set of dependent tasks is given to h2CAS.
Usually the number of tasks is small but the complexity of the task is high. Furthermore,
QoR is associated with the whole set of tasks. While solving tasks, new tasks, also
dependent on other tasks, could be created. Overall, the task graph will be expanded
and reduced until the h2CAS completes all the tasks in the graph.

Initialization A h2CAS could be formed based on the task graph using strategies
similar to thos in Section 4.3.

Elasticity The elasticity can be carried out in a similar way to the context in Section
4.3. Since the QoR is associated with the whole task and tasks are strongly dependent
by each other, elasticity control mechanisms need to be programmed in such a way that
takes into account these strong dependencies.

5 Related Work

In [1], a formal model for socio-technical CAS is discussed. It discusses how to spec-
ify CAS using different formal models. Generally, there is no software framework for
programming h2CAS as we describe in this paper. In the state-of-the art, typically
a specific CAS is built with several components and it is used for different purposes
by varying inputs into the CAS. Another way to solve complex problems by using
human-based services and software-based services is to design a specific middleware/-
platform to manage and distribute tasks to different resources, which can be software
or humans. An example of such platforms is Jabberwocky [9] which allows specifying
types of people based on personal properties and expertise and route tasks and comb-
ing humans with machines. These platforms are not systems for HDA-CAS. Our work
actually aims at generalizing these platforms by providing techniques for programming
and provisioning such specific CASs or middleware using service units.



Programming for Hybrid and Diversity-aware Collective Adaptive Systems 11

Software architectures describing the interactions between humans and other soft-
ware service units have been discussed, e.g. in [10]. They aim at supporting design
techno-social software systems that allow people to work with machines. Our work
is different as, in the programming perspective, we support the developer to write
h2CAS program of which, in addition to other types of information, some architec-
tures of software-based and human-based units are specified by the developer.

Several task management models, coordination and communication protocols for
collaborative complex problem solving have been developed. For example, two ap-
proaches in designing task processes for humans are studied in [8] but managing task
processes is just one feature that influences the design and operation of a collective
in our work. In fact a major related work in human computation focus on designing
task processes and distributing tasks to different human compute units [11, 12]. Our
work differs from them as we focus on programming systems that enable the execution
of different task processes and on the elasticity of these systems to deal with elastic-
ity requirements of tasks. In [13] several researchers have discussed several issues for
supporting collaborative, dynamic and complex tasks performed by crowds. In general,
they analyze several research challenges and we believe that certain types of collectives
built atop human units should address these challenges. Our h2CAS model built for
elasticity and based on hybrid compute units could be used to program platforms to
support some of these mentioned challenges.

In our previous work, we focus on HCU and service unit models [6, 7]. We have
presented the hybridity and elasticity of different types of units in HCU in general. In
this paper, we examine how to implement h2CAS using HCUs, therefore, our hybridity
and diversity analysis of h2CAS is bound to the context from/in which h2CAS is
formed and operates.

6 Conclusions and Future Work

HDA-CAS is a new form of collective adaptive systems (CASs) built for solving com-
plex problems by utilizing diverse and hybrid service units offering well-defined cloud
provisioning models. However, we need to support the right programming features to
simplify the creation, provisioning and execution of HDA-CAS. In this paper we ana-
lyze possible contexts associated with HDA-CAS and propose the utilization of hybrid
compute units to program HDA-CAS. In doing so, we focused on context aspects – such
as When, What, Who/Which and How – in programming HDA-CASs. We presented
h2CAS as one way of implementing HDA-CASs as well as outlined a meta-view for
specifying h2CAS and programming features for h2CAS in some general contexts.

Currently, we are working on a specification of programming constructs and models
that can be used to specify h2CAS in detail. Furthermore, we are working on tools
and middleware for compiling h2CAS specification and deploying, controlling and
provisioning techniques for h2CAS.

Acknowledgments : We thank Muhammad Z. C. Candra, Mirela Riveni, Ognjen Sce-
kic and Vincenzo (Enzo) Maltese for fruitful discussions on hybrid compute units, elas-



12 Hong-Linh Truong and Schahram Dustdar

ticity, and collective adaptive systems. The work mentioned in this paper is partially
supported by the EU FP7 SmartSociety project under grant N◦ 600854.

References

1. Coronato, A., Florio, V.D., Bakhouya, M., Serugendo, G.D.M.: Formal modeling of socio-
technical collective adaptive systems. In: Proceedings of the 2012 IEEE Sixth International
Conference on Self-Adaptive and Self-Organizing Systems Workshops. SASOW ’12, Wash-
ington, DC, USA, IEEE Computer Society (2012) 187–192

2. : Fundamentals of collective adaptive systems. http://focas.eu/
3. Andrikopoulos, V., Saez, S.G., Karastoyanova, D., Weiss, A.: Towards collaborative, dy-

namic and complex systems (short paper). In: SOCA, IEEE (2013) 241–245
4. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.: Modelling and analyzing

adaptive self-assembly strategies with maude. Science of Computer Programming (2013)
5. : Hybrid and diversity-aware collective adaptive systems. http://www.

smart-society-project.eu/
6. Truong, H.L., Dustdar, S., Bhattacharya, K.: Conceptualizing and programming hybrid ser-

vices in the cloud. Int. J. Coop. Info. Syst. 22 (2013)
7. Truong, H.L., Dam, H.K., Ghose, A., Dustdar, S.: Augmenting complex problem solving

with hybrid compute units. In: 9th International Workshop on Engineering Service-Oriented
Application (WESOA’s 2013), In conjunction with ICSOC 2013, Berlin, Germany (Decem-
ber 2013)

8. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Exploring iterative and parallel hu-
man computation processes. In: Proceedings of the ACM SIGKDD Workshop on Human
Computation. HCOMP ’10, New York, USA, ACM (2010) 68–76

9. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th annual ACM symposium on
User interface software and technology. UIST ’11, New York, USA, ACM (2011) 53–64

10. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In Notkin, D., Cheng, B.H.C., Pohl, K., eds.: ICSE,
IEEE / ACM (2013) 53–62

11. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing
field. In Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare, M., eds.: CHI, ACM
(2011) 1403–1412

12. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: Proceedings of the 2011 annual conference extended abstracts
on Human factors in computing systems. CHI EA ’11, New York, USA, ACM (2011) 2053–
2058

13. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M.,
Horton, J.: The future of crowd work. In: Proceedings of the 2013 Conference on Computer
Supported Cooperative Work. CSCW ’13, New York, USA, ACM (2013) 1301–1318


