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Cloud computing has paved the way for a 
new class of computing systems in which 
elasticity emerges as a core design principle. 

Elasticity has multidimensional properties with 
regard to resources, quality, and costs.1 Resource 
elasticity is the most common form; it lets com-
puting systems dynamically acquire and release 
resources (such as virtual machines) in reaction 
to workload fluctuations. Systems supporting 
such elasticity stretch the resources they utilize 
to increase computation capacity. These systems 
can implement elasticity in terms of infrastruc-
ture resources, processes, and human resources.

Systems supporting quality elasticity dynami-
cally adjust the level of quality properties, such 
as quality of service (QoS). For instance, they can 
run data-intensive applications that dynamically 
adjust the data’s consistency level while mini-
mizing poor performance or resource allocation.2 
Systems supporting cost elasticity dynamically 
adjust the budget devoted to their runs while tol-
erating variable QoS. Most often, systems for sci-
entific workflows3 exploit this type of elasticity.

As effort goes increasingly toward research-
ing and developing elastic computing systems, 
we naturally need testing techniques for them. 
To test such systems, we must understand that 
elasticity is dynamic2 and is influenced by a rich 
set of factors, including the application’s busi-
ness logic, the input workload, the control logic 
that determines resource allocation (or system 
adaptation), the infrastructure that provides the 

resources, and other working conditions. These 
factors are complex, so correctly designing elas-
tic systems is challenging, and predicting their 
evolution under all possible combinations of fac-
tors is difficult. To date, the research  community 
hasn’t paid enough attention to testing elastic 
systems (see the “State-of-the-Art in Testing 
Elastic Computing Systems” sidebar).

To this end, we aim to define new methodolo-
gies that extend traditional software and system 
testing with concepts defined in the elasticity 
context and that are tailored to identify those 
problems rooted in the elevated flexibility 
inherent to elastic computing systems. Because 
resource elasticity is the most prevalent form, 
we focus on testing techniques for resource-
elastic systems before investigating those for 
other types.

Metaphors for Testing
Intuitively, resource-elastic computing systems 
mimic elastic materials that respond to exter-
nal stimuli by self-adapting. In a sense, elas-
tic computing systems stretch when we apply 
external stimuli, and will eventually contract 
to their original shape once such stimuli are 
removed. We thus study two metaphors: that of 
elastic materials, to identify the main concepts, 
properties, and terminology for describing sys-
tem elasticity in computing systems; and that of 
mechanical testing, to define suitable  techniques 
for testing such systems.
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In using the elastic materials 
metaphor, we consider the elastic 
computing system under test, the 
workload, and the change in the sys-
tem’s scale as the specimen (material), 
stress factor (such as tensile force), 
and specimen’s deformation (for 
example, elongation), respectively. 
The stress-strain curve (see Figure 1) 
is a common approach depicting how 
specimens’ elasticity evolves and 
identifying points at which materi-
als (sometimes irreversibly) change 
their state. Depending on the stress’s 
intensity, an elastic material passes 
among different states.

Elasticity occurs when the speci-
men returns to its original shape 
after deformation. With elasticity, the 

relationship between stress-strain is 
proportional. Under some linearity 
assumptions, we can express elastic-
ity via the elastic modulus, or Young’s 
modulus — that is, the deformation 
per unit of stress.

Plasticity occurs when the speci-
men can’t recover its original shape 
after we remove the stress. In a 
software context, plastic systems 
might only be able to scale up (and 
risk breaking if a certain scale is 
reached), whereas elastic systems 
can dynamically scale up and down.

A specimen that doesn’t show 
any deformation is inelastic. In our 
context, if (part of) a computing sys-
tem is inelastic, it doesn’t adapt to 
changes in the workload, and hence 

might be over- or under-provisioned. 
Finally, necking occurs when the 
specimen starts to break.

Of particular interest are the 
crossover points: the yield point 
between the elastic and plastic 
states, the ultimate stress just before 
fractures and cracks appear, and the 
failure point where the specimen 
breaks.

We want to identify the different 
states and points for characterizing 
elastic computing systems’ behavior, 
and develop models that intuitively 
correspond to stress-strain curves. 
These models will let designers pre-
dict how systems behave under dif-
ferent working conditions — that is, 
stress levels — and easily compare 

State-of-the-Art in Testing Elastic Computing Systems

To date, we lack conceptual frameworks and research 
directions for testing elastic systems. Previous work has 

focused primarily on load testing,1 scalability testing,2 and pro-
viding the technological foundation for efficient test execution 
in the cloud. One study elaborates on different aspects of test-
ing as a service (TaaS) in the cloud,3 including test parallelization, 
fault tolerance, and cost considerations. Elasticity is considered 
for the TaaS platform itself, but not particularly for the systems 
and applications under test, which is the focus of our work.

Because elastic systems are closely related to self-adaptive 
ones, software engineering principles in this field4 are partly 
applicable to elastic systems, yet can’t capture all issues. Often, 
engineers make strong assumptions about the environment, 
the application, and the workload to achieve feasible designs. 
For example, many approaches assume perfect actuators, 
immediate effects on system behavior due to adaptation, per-
formance stability, and predictable workloads. However, these 
assumptions hardly hold in practice, particularly in the cloud, 
where noise, transitory behaviors, unexpected events, and 
fast workload dynamics are common.5 Indeed, by relying on 
these assumptions, elastic computing systems might become 
too fragile, and their behavior in terms of quality of service 
and cost savings might be far from optimal and sometimes even 
counterintuitive.6

This situation clearly conflicts with the requirements of 
high software quality and dependability demanded by the 
business-critical features that elastic computing systems often 
implement. It also highlights the need for novel methodologies, 
methods, and tools that not only focus on elastic computing 
systems’ design and implementation, but also target important 
concerns such as modeling, benchmarking, and validation. We 

argue that upcoming research efforts in these directions must 
have system elasticity as a central point of investigation, and 
must thus be tailored to its peculiarities. In particular, we aim 
to improve elastic computing systems’ software quality via sys-
tematic testing, which we can combine with current work on 
benchmarking,7 formalization,8 and simulation.9
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different implementations, as engi-
neers do when comparing different 
materials (such as the ductile and 
brittle behaviors in Figure 1b). These 
abilities are fundamental for validat-
ing elastic systems against end-user 
requirements, easing the design of 
complex systems that employ elastic 
systems as their inner components, 
and achieving high software quality. 
Using the elastic materials metaphor, 
we can use several types of mechan-
ical testing to reveal computing sys-
tems’ elastic and inelastic behaviors. 

Tensile testing exposes elastic sys-
tems to a stable load that increases 
between each run until failures occur. 
At each load increment, testers check 
if the system recovers the initial con-
figuration and collect data about its 
behavior to derive the stress-strain 
curve. In a software context, tensile 
testing follows the same basic process 
as load testing, but focuses on prop-
erties related to elasticity, rather than 
just performance. 

Stress-strain curves and tensile 
testing don’t explicitly consider time, 
presenting only a static view of sys-
tem elasticity. Additional modeling 
and testing methodologies are required 
when we must understand the dynamic 
aspects of system elasticity. Being 
able to expand and contract during 
operations is useful only if it occurs 

 correctly — that is, with no failures and 
in a timely manner. Consider an exam-
ple in which a resource-elastic system 
uses automatic scaling to maintain 
predefined performances when the 
load fluctuates. If the time to acquire 
additional resources is too long, then 
the elastic system fails to provide the 
expected performance. Similarly, if the 
time to release resources is too long, 
then the system ends up costing more 
than expected. On the flip side, if the 
time to release resources is too short, 
then the elastic system might become 
too aggressive and result in resource 
thrashing, causing it to be more expen-
sive than expected.

Impact testing is one way to 
move toward a more dynamic sys-
tem analysis. It subjects specimens to 
load peaks to determine how much 
energy they can absorb, how fast, 
and whether they fail. In a software 
context, we can use impact testing to 
study system adaptations as well as 
find which conditions lead to failures. 
This is similar to traditional software 
stress testing. For example, impact 
testing can identify the point at which 
a system rejects too many requests if 
subjected to particular loads.

Adaptation speed isn’t elastic sys-
tems’ only time-dependent criticality. 
In fact, system degradation due to 
cyclic adaptations is also a concern. 

For software in particular, we argue 
that — if improperly designed — elastic 
systems might show quality degrada-
tion sooner than traditional systems 
because they pass through several 
cycles of scaling and shrinking that 
might consume them. For similar rea-
sons, faults can propagate faster in 
elastic computing systems, and could 
quickly lead to hard system failures.

Fatigue testing subjects specimens 
to cyclic stress that causes localized 
adaptations, and could  eventually 
result in structural damage. Its goals 
are to measure the system lifetime 
until failures occur, and to understand 
how and whether specimens’ elastic 
capabilities degrade over time. The 
cyclic stress can be of fixed amplitude 
and frequency, or randomly gener-
ated. The motivations and processes 
underlying fatigue testing are similar 
to those for endurance testing in soft-
ware. The difference is that endurance 
testing targets specific bugs related to 
memory management, memory leaks, 
and buffer overflows, which might be 
hard to identify in “instantaneous” 
tests. Fatigue testing aims to find 
problems that relate to continuous 
and cyclical system  adaptations, such 
as  computing nodes joining and leav-
ing elastic clusters.

Fatigue testing can also help us 
study how faults propagate in elastic 
materials with regard to their cyclic 
adaptations. During testing, cracks 
and ruptures might result from mate-
rial weaknesses, or testers can inject 
them. While subjecting a specimen 
to cyclic stress, testers investigate 
whether cracks expand and eventually 
lead to specimen failure. Similarly, in 
software we might study how local-
ized faults propagate in the system, 
whether elastic systems can automati-
cally absorb them (self-healing), or if 
faults will eventually lead to hard sys-
tem failures. In the form of resonance 
testing, fatigue testing lets us discover 
cyclic stress that leads to uncontrolled 
oscillations in resource allocation. 
Understanding whether systems have 

Figure 1. Stress-strain curves for elastic materials. The curve identifies points 
at which materials change their state. We can see (a) crossover points, which 
are of particular interest, and (b) behaviors at different stress levels.
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such resonant frequencies might let 
designers compensate or even filter 
them out.

Several factors that aren’t directly 
observable or controllable can affect 
the elasticity that a given software 
system achieves at runtime. For 
example, if an elastic system shares 
infrastructure resources with other 
cloud users that are resource-eager 
(sometimes called “noisy neigh-
bors”4), then the system’s quality 
might degrade as a secondary effect 
of resource contention. This situa-
tion can also drive the elastic system 
toward non-optimal and even risky 
states. So, understanding the side 
effects from other infrastructure 
users can help developers measure 
elastic systems’ robustness.

For these cases, shear testing 
might be useful. In the context of 
mechanical testing, shear tests  subject 
 specimens to lateral forces that aren’t 
directed toward elongation but that 

still result in material deformations. 
Under this stress, the material might 
adapt up to the point at which it even-
tually breaks. Similarly, for software, 
we might find tests that lead the sys-
tem to misbehave as a consequence 
of “lateral forces” such as resource 
contention.

We can map these metaphors to 
the context of elastic computing sys-
tem testing to determine our testing 
framework’s main concepts and iden-
tify important guidelines on how to 
implement such tests. Table 1 lists 
some important examples of possible 
mappings between our mechanical 
testing metaphors and testing tech-
niques for elastic systems.

Conceptual Framework
Guided by elasticity concepts and 
our testing metaphors, we propose 
a conceptual framework for testing 
resource-elastic computing systems 
(see Figure 2). We developed this 

framework around testers — that is, 
the actors in charge of testing the 
system. It employs four common 
test activities: test-case genera-
tion, test execution, data analysis, 
and test evolution. Testers provide 
the initial input as regards primary 
testing goals and optional test con-
straints. Then, the testing activity 
sequence begins, and each activity’s 
output becomes input for subsequent 
activities.

Test-case generation receives test-
ing goals as input and produces a 
set of test specifications — that is, a 
test suite — as output. Test cases in 
our context specify the characteris-
tics and configurations of the elastic 
system under test, the load generators 
that will generate the input workload, 
and the type of workload being gen-
erated. This includes defining request 
intensity, the request mix, input 
data, and their variations during test 
 execution to create load fluctuations. 

Table 1. Mapping metaphors to elastic computing systems.

Mechanical testing metaphor Analogy in elastic computing system

Specimen deformation (elongation or shortening) Increase or decrease in system scale when resources are allocated or 
removed

Recovery of original shape Release of computing resources

Plasticity System inability to scale down

Necking (Unrecoverable) system failure, caused by scale-in and out operations

Tensile testing Detecting elastic states and elastic transitions along particular system 
configuration paths — for example, generating a finite number of 
requests at constant rates to force system scale-out and check 
whether the system can recover its initial configuration

Impact testing Testing techniques that study how fast resources can be allocated 
to an elastic computing system — for example, generating requests 
according to a step function to trigger system scale-out without 
reaching the necking state (without failures), and measuring the time to 
reach the final configuration

Fatigue testing Testing techniques that study whether systems can go over budget 
within an observation period — for example, generating waves of 
requests that trigger consecutive scale-up and down, and then measure 
the resource usage costs according to a specified billing model

Shear testing Testing techniques that study the changes in systems’ elastic behavior 
that occur due to interference and physical resource contentions in the 
underlying platform — for example, pinning the system’s computing 
resources under test on physical servers, deploying resource-eager 
virtual machines next to them on the same physical servers, and then 
comparing the resulting elastic behavior with baseline cases
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For example, a test case might vary 
the number of active users according 
to a time-dependent, wave-oscillating 
pattern. A workload generated in this 
way reaches the elastic system and 
triggers its elasticity mechanisms. 
Test cases can contain additional 
specifications about environmental 
settings and variations. For example, 
a fatigue test might specify that in a 
given moment, a network link fails, 
or additional resource-eager virtual 
machines must be deployed in the 
cloud to increase resource contention.

During test execution, one or mul-
tiple instances of an elastic comput-
ing system are running, subjected to 
different workloads and execution 
conditions. The actual number of 

concurrent system instances varies 
depending on cost and resource con-
straints. During test execution, testers 
collect the system metrics listed in the 
test-case specifications. Meanwhile, 
testers can monitor the execution’s 
progress, as well as effort, in terms of 
time, costs, and resources invested.

The data analysis stage follows test 
execution and elaborates the moni-
tored metrics to eventually produce 
the final test results. Depending on 
the selected testing goals, test results 
might contain pass/fail reports, cov-
erage measures, fault-localization 
results, and more. Testers can inspect 
the results, interpret their meaning, 
and check their accuracy, which lets 
testers identify bugs or problems in 

the system that might trigger code 
fixes, as well as flaws and inaccura-
cies in the test cases that could neces-
sitate test-suite refinement.

Test evolution manages the test-
suite life cycle by reflecting changes 
in the code on one side and improving 
test-case quality on the other. If a new 
version is released, testers can repeat 
the entire activity sequence to test it. 
Similarly, they can reiterate the cycle 
if they want to improve test quality.

To put such a conceptual frame-
work into practice, we must address 
several research challenges.

Methodological Approach
Testers need languages that can easily 
describe the prescriptive  elasticity that 

Figure 2. Conceptual framework for testing elastic computing systems. Testers provide the initial input as regards 
primary testing goals and optional test constraints. Then, the testing activity sequence begins, and each activity’s output 
becomes input for subsequent activities.
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systems under test should achieve, as 
well as a way to measure the descrip-
tive elasticity actually achieved. 
These formalisms must be expressive 
enough to capture elastic behaviors’ 
static (or time-less) and dynamic 
(time-dependent) characteristics, and 
the relations among resource alloca-
tion, cost, and quality. Testers must 
couple formalisms to new languages 
to capture stakeholder requirements 
on system elasticity, and use novel 
tools to discover, define, monitor, and 
check elastic properties. 

Testers also need novel cover-
age metrics and criteria that might 
require defining new abstractions 
over the code and runtime behavior. 
For example, testers might want to 
cover all possible system configu-
rations and the transitions among 
them, as well as particular paths 
across system configurations that 
form elastic state transitions.

Testers must determine whether 
to test elastic properties at the sys-
tem, component, or unit level. Inte-
gration tests become critical when 
software employs elastic systems as 
components, and testers must under-
stand the mutual effects of putting 
elastic components together. These 
additional tests require new tools that 
support their execution — for exam-
ple, by creating and managing mock-
ups and scaffoldings in the context of 
unit- and component-level tests.

No matter the scope, testers must 
follow precise guidelines about tests’ 
applicability for elastic systems. 
Some techniques — for example, 
those that we derived for impact 
and fatigue testing — can be used 
to implement similar test goals, 
whereas others — such as shear test-
ing or resonance testing — have a 
more focused target and thus limited 
applicability. Context can also limit 
a test’s applicability. When multiple 
techniques can achieve a specific 
test goal, the guidelines must clearly 
state the conditions under which one 
technique is preferable.

Test-Case Generation
Testers can create test cases manu-
ally or employ test-case generators to 
create them automatically. Such gen-
erators might adopt different tech-
niques to define new test cases, but 
in general are guided toward achiev-
ing specific testing goals, including 
identifying yield points and plas-
ticity in the system, sub-optimality 
in system adaptation when it comes 
to costs and quality, or resonant 
oscillations.

In our context, elasticity mainly 
reacts to variations in the load, so we 
must express test cases in terms of the 
workload to force a particular state 
of elasticity or trigger specific elastic 
adaptations. Generating such loads is 
challenging: testers or automatic test-
case generators must deal with a mul-
tidimensional and time-dependent test 
input space because elastic systems 
implement various operations. Differ-
ent operations can result in different 
resource demand, and the intensity 
and request mix can vary in time.

To further complicate this situa-
tion, elasticity isn’t directly observ-
able but must be derived from a set 
of covariant system metrics, mak-
ing the test-case-generation pro-
cess depend significantly on these 
mappings’ complexity. Moreover, 
because elasticity is a nonfunctional 
property and clouds are generally 
noisy environments, test cases must 
consider accuracy metrics, and tes-
ters must account for repeated test 
executions to gain more evidence. 

As much as possible, test cases 
should be portable and reusable. They 
must be generated following general 
principles and processes that don’t 
depend on specific cloud applications 
or platforms. We argue that test cases 
specified in terms of timed request 
traces (but also  statistical  distributions) 
can be a first step toward generally 
tackling test-case generation for elas-
tic systems. When it comes to gen-
erating test cases that also consider 
 environmental  characteristics, as with 

shear testing, testers must specify 
additional elements such as which 
faults to inject, virtual machine place-
ment, and other platform settings 
that are difficult to express abstractly 
 without environmental  reference 
models. Specific models and fault 
taxonomies are available for particu-
lar instantiations of typically elastic 
systems — for instance, event-based 
data processing platforms.5 Further 
efforts are required, however, to study 
faults in elastic computing systems in 
general.

Test Execution
Testers must deploy and configure 
elastic computing systems and their 
load generators in the target cloud, 
start all components, collect monitor-
ing data, and analyze it at the end of 
the execution while releasing comput-
ing resources. Testers thus need generic 
tools to automatically manage test 
executions over  different platforms. 
Tool availability and automation 
reduce the burden on testers, saving 
them time, and are thus a priority.

Testers can deploy multiple in -
stances of elastic systems side-by-side 
to parallelize test execution, or across 
clouds to compare different outcomes. 
Unfortunately, without optimization, 
the increase in resources required to 
parallelize execution makes it very 
expensive. Tools must be effective and 
optimally share computing resources 
across test executions to fulfill time 
and budget constraints.

Test execution tools should be able 
to measure the accuracy of the data 
they monitor. For example, such tools 
can schedule repeated executions if 
the working conditions are too noisy, 
and should react to transient failures 
or illegal states in the platforms.

Data Analysis, Test Results,  
and Evolving Test Cases
Test execution can produce large 
amounts of data that testers must ana-
lyze to compute the final results. The 
data analysis methods employed to 
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derive abstractions of elastic behav-
iors, compute coverage metrics, and 
check whether system specifications 
are respected must be very efficient. 
Because tests must help designers 
highlight problems and find solutions, 
test results must also be accurate. Tes-
ters must refine tests that don’t pro-
duce accurate results, and evolve them 
to reflect changes in elastic computing 
systems or the platform running them.

Testers must then be able to define 
appropriate quality metrics and deter-
mine when the platforms running the 
systems undergo some evolution that 
could make previous test cases either 
inappropriate or no longer execut-
able. Changes in billing models and 
cloud offers, for example, could result 
in test executions that violate testers’ 
budget constraints. In this context, 
test reuse and regression-testing tech-
niques might need revisiting.

We are currently investigating model-
based search techniques to find 

problematic scenarios and cover elas-
tic transition sequences in the context 
of resonance and endurance testing. 
These contributions are the first steps 
toward proper testing of elastic comput-
ing systems, and their promising results 
stimulate and motivate further research. 
 Furthermore, because elasticity is aris-
ing as one of the core system properties 
that must be provided by cloud-based 
systems, we argue that additional 
research in software engineering — from 
requirements engineering to program-
ming language development to software 
maintenance — must target it. 
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