
Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@dsg.tuwien.ac.at

76 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

Cloud computing has paved the way for a
new class of computing systems in which
elasticity emerges as a core design principle.

Elasticity has multidimensional properties with
regard to resources, quality, and costs.1 Resource
elasticity is the most common form; it lets com-
puting systems dynamically acquire and release
resources (such as virtual machines) in reaction
to workload fluctuations. Systems supporting
such elasticity stretch the resources they utilize
to increase computation capacity. These systems
can implement elasticity in terms of infrastruc-
ture resources, processes, and human resources.

Systems supporting quality elasticity dynami-
cally adjust the level of quality properties, such
as quality of service (QoS). For instance, they can
run data-intensive applications that dynamically
adjust the data’s consistency level while mini-
mizing poor performance or resource allocation.2
Systems supporting cost elasticity dynamically
adjust the budget devoted to their runs while tol-
erating variable QoS. Most often, systems for sci-
entific workflows3 exploit this type of elasticity.

As effort goes increasingly toward research-
ing and developing elastic computing systems,
we naturally need testing techniques for them.
To test such systems, we must understand that
elasticity is dynamic2 and is influenced by a rich
set of factors, including the application’s busi-
ness logic, the input workload, the control logic
that determines resource allocation (or system
adaptation), the infrastructure that provides the

resources, and other working conditions. These
factors are complex, so correctly designing elas-
tic systems is challenging, and predicting their
evolution under all possible combinations of fac-
tors is difficult. To date, the research community
hasn’t paid enough attention to testing elastic
systems (see the “State-of-the-Art in Testing
Elastic Computing Systems” sidebar).

To this end, we aim to define new methodolo-
gies that extend traditional software and system
testing with concepts defined in the elasticity
context and that are tailored to identify those
problems rooted in the elevated flexibility
inherent to elastic computing systems. Because
resource elasticity is the most prevalent form,
we focus on testing techniques for resource-
elastic systems before investigating those for
other types.

Metaphors for Testing
Intuitively, resource-elastic computing systems
mimic elastic materials that respond to exter-
nal stimuli by self-adapting. In a sense, elas-
tic computing systems stretch when we apply
external stimuli, and will eventually contract
to their original shape once such stimuli are
removed. We thus study two metaphors: that of
elastic materials, to identify the main concepts,
properties, and terminology for describing sys-
tem elasticity in computing systems; and that of
mechanical testing, to define suitable techniques
for testing such systems.

Testing Elastic Computing
Systems
Alessio Gambi, Waldemar Hummer, Hong-Linh Truong,
and Schahram Dustdar • Vienna University of Technology

Elastic computing systems are a new breed of software system that arose with

cloud computing and continue to gain increasing attention and adoption. They

stretch and contract in response to external stimuli such as the input workload,

aiming to balance resource use, costs, and quality of service. Here, the authors

introduce novel ideas on testing for elastic computing systems, identify some

primary research challenges, and discuss future directions for this topic.

IC-17-06-WSWF.indd 76 10/10/13 7:18 PM

Testing Elastic Computing Systems

NOVEMBER/DECEMBER 2013 77

In using the elastic materials
metaphor, we consider the elastic
computing system under test, the
workload, and the change in the sys-
tem’s scale as the specimen (material),
stress factor (such as tensile force),
and specimen’s deformation (for
example, elongation), respectively.
The stress-strain curve (see Figure 1)
is a common approach depicting how
specimens’ elasticity evolves and
identifying points at which materi-
als (sometimes irreversibly) change
their state. Depending on the stress’s
intensity, an elastic material passes
among different states.

Elasticity occurs when the speci-
men returns to its original shape
after deformation. With elasticity, the

relationship between stress-strain is
proportional. Under some linearity
assumptions, we can express elastic-
ity via the elastic modulus, or Young’s
modulus — that is, the deformation
per unit of stress.

Plasticity occurs when the speci-
men can’t recover its original shape
after we remove the stress. In a
software context, plastic systems
might only be able to scale up (and
risk breaking if a certain scale is
reached), whereas elastic systems
can dynamically scale up and down.

A specimen that doesn’t show
any deformation is inelastic. In our
context, if (part of) a computing sys-
tem is inelastic, it doesn’t adapt to
changes in the workload, and hence

might be over- or under-provisioned.
Finally, necking occurs when the
specimen starts to break.

Of particular interest are the
crossover points: the yield point
between the elastic and plastic
states, the ultimate stress just before
fractures and cracks appear, and the
failure point where the specimen
breaks.

We want to identify the different
states and points for characterizing
elastic computing systems’ behavior,
and develop models that intuitively
correspond to stress-strain curves.
These models will let designers pre-
dict how systems behave under dif-
ferent working conditions — that is,
stress levels — and easily compare

State-of-the-Art in Testing Elastic Computing Systems

To date, we lack conceptual frameworks and research
directions for testing elastic systems. Previous work has

focused primarily on load testing,1 scalability testing,2 and pro-
viding the technological foundation for efficient test execution
in the cloud. One study elaborates on different aspects of test-
ing as a service (TaaS) in the cloud,3 including test parallelization,
fault tolerance, and cost considerations. Elasticity is considered
for the TaaS platform itself, but not particularly for the systems
and applications under test, which is the focus of our work.

Because elastic systems are closely related to self-adaptive
ones, software engineering principles in this field4 are partly
applicable to elastic systems, yet can’t capture all issues. Often,
engineers make strong assumptions about the environment,
the application, and the workload to achieve feasible designs.
For example, many approaches assume perfect actuators,
immediate effects on system behavior due to adaptation, per-
formance stability, and predictable workloads. However, these
assumptions hardly hold in practice, particularly in the cloud,
where noise, transitory behaviors, unexpected events, and
fast workload dynamics are common.5 Indeed, by relying on
these assumptions, elastic computing systems might become
too fragile, and their behavior in terms of quality of service
and cost savings might be far from optimal and sometimes even
counterintuitive.6

This situation clearly conflicts with the requirements of
high software quality and dependability demanded by the
business-critical features that elastic computing systems often
implement. It also highlights the need for novel methodologies,
methods, and tools that not only focus on elastic computing
systems’ design and implementation, but also target important
concerns such as modeling, benchmarking, and validation. We

argue that upcoming research efforts in these directions must
have system elasticity as a central point of investigation, and
must thus be tailored to its peculiarities. In particular, we aim
to improve elastic computing systems’ software quality via sys-
tematic testing, which we can combine with current work on
benchmarking,7 formalization,8 and simulation.9

References
1. A. Avritzer and E.J. Weyuker, “The Automatic Generation of Load Test

Suites and the Assessment of the Resulting Software,” IEEE Trans. Software

Eng., vol. 21, no. 9, 1995, pp. 705–716.

2. W.-T. Tsai et al., “Testing the Scalability of SaaS Applications,” IEEE Int’l Conf.

Service-Oriented Computing and Applications (SOCA 11), IEEE, 2011, pp. 1–4.

3. L. Yu et al., “Testing as a Service over Cloud,” Proc. IEEE Int’l Symp. Service

Oriented System Eng. (SOSE 10), IEEE, 2010, pp. 181–188.

4. Y. Brun et al., Software Eng. for Self-Adaptive Systems, Springer, 2009.

5. A. Iosup et al., “Performance Analysis of Cloud Computing Services for

Many-Tasks Scientific Computing,” IEEE Trans. Parallel and Distributed Sys-

tems, vol. 22, no. 6, 2011, pp. 931–945.

6. A. Gambi et al., “Kriging Controllers for Cloud Applications,” IEEE Internet

Computing, vol. 17, no. 4, 2013, pp. 40–47.

7. S. Islam et al., “How a Consumer Can Measure Elasticity for Cloud Plat-

forms,” Proc. ACM/SPEC Int’l Conf. Performance Eng. (ICPE 12), ACM, 2012,

pp. 85–96.

8. A. Gambi et al., “Iterative Test Suites Refinement for Elastic Computing

Systems,” Proc. Joint Meeting of the European Software Eng. Conf. and ACM

SIGSOFT Symp. Foundations of Software Eng., (ESEC/FSE 13), ACM, 2013,

pp. 635–638.

9. R. Buyya et al., “Modeling and Simulation of Scalable Cloud Computing Envi-

ronments and the CloudSim Toolkit: Challenges and Opportunities,” IEEE Int’l

Conf. High Performance Computing & Simulation (HPCS), IEEE, 2009, pp. 23–50.

IC-17-06-WSWF.indd 77 10/10/13 7:18 PM

Web-Scale Workflow

78 www.computer.org/internet/ IEEE INTERNET COMPUTING

different implementations, as engi-
neers do when comparing different
materials (such as the ductile and
brittle behaviors in Figure 1b). These
abilities are fundamental for validat-
ing elastic systems against end-user
requirements, easing the design of
complex systems that employ elastic
systems as their inner components,
and achieving high software quality.
Using the elastic materials metaphor,
we can use several types of mechan-
ical testing to reveal computing sys-
tems’ elastic and inelastic behaviors.

Tensile testing exposes elastic sys-
tems to a stable load that increases
between each run until failures occur.
At each load increment, testers check
if the system recovers the initial con-
figuration and collect data about its
behavior to derive the stress-strain
curve. In a software context, tensile
testing follows the same basic process
as load testing, but focuses on prop-
erties related to elasticity, rather than
just performance.

Stress-strain curves and tensile
testing don’t explicitly consider time,
presenting only a static view of sys-
tem elasticity. Additional modeling
and testing methodologies are required
when we must understand the dynamic
aspects of system elasticity. Being
able to expand and contract during
operations is useful only if it occurs

 correctly — that is, with no failures and
in a timely manner. Consider an exam-
ple in which a resource-elastic system
uses automatic scaling to maintain
predefined performances when the
load fluctuates. If the time to acquire
additional resources is too long, then
the elastic system fails to provide the
expected performance. Similarly, if the
time to release resources is too long,
then the system ends up costing more
than expected. On the flip side, if the
time to release resources is too short,
then the elastic system might become
too aggressive and result in resource
thrashing, causing it to be more expen-
sive than expected.

Impact testing is one way to
move toward a more dynamic sys-
tem analysis. It subjects specimens to
load peaks to determine how much
energy they can absorb, how fast,
and whether they fail. In a software
context, we can use impact testing to
study system adaptations as well as
find which conditions lead to failures.
This is similar to traditional software
stress testing. For example, impact
testing can identify the point at which
a system rejects too many requests if
subjected to particular loads.

Adaptation speed isn’t elastic sys-
tems’ only time-dependent criticality.
In fact, system degradation due to
cyclic adaptations is also a concern.

For software in particular, we argue
that — if improperly designed — elastic
systems might show quality degrada-
tion sooner than traditional systems
because they pass through several
cycles of scaling and shrinking that
might consume them. For similar rea-
sons, faults can propagate faster in
elastic computing systems, and could
quickly lead to hard system failures.

Fatigue testing subjects specimens
to cyclic stress that causes localized
adaptations, and could eventually
result in structural damage. Its goals
are to measure the system lifetime
until failures occur, and to understand
how and whether specimens’ elastic
capabilities degrade over time. The
cyclic stress can be of fixed amplitude
and frequency, or randomly gener-
ated. The motivations and processes
underlying fatigue testing are similar
to those for endurance testing in soft-
ware. The difference is that endurance
testing targets specific bugs related to
memory management, memory leaks,
and buffer overflows, which might be
hard to identify in “instantaneous”
tests. Fatigue testing aims to find
problems that relate to continuous
and cyclical system adaptations, such
as computing nodes joining and leav-
ing elastic clusters.

Fatigue testing can also help us
study how faults propagate in elastic
materials with regard to their cyclic
adaptations. During testing, cracks
and ruptures might result from mate-
rial weaknesses, or testers can inject
them. While subjecting a specimen
to cyclic stress, testers investigate
whether cracks expand and eventually
lead to specimen failure. Similarly, in
software we might study how local-
ized faults propagate in the system,
whether elastic systems can automati-
cally absorb them (self-healing), or if
faults will eventually lead to hard sys-
tem failures. In the form of resonance
testing, fatigue testing lets us discover
cyclic stress that leads to uncontrolled
oscillations in resource allocation.
Understanding whether systems have

Figure 1. Stress-strain curves for elastic materials. The curve identifies points
at which materials change their state. We can see (a) crossover points, which
are of particular interest, and (b) behaviors at different stress levels.

Strain Strain

St
re

ss

St
re

ss

Proportionality limit

Yield point

Ultimate stress

Failure

Failure

Failure

Brittle behavior

Ductile behavior

Necking

El
as

tic
ity

Plasticity

(a) (b)

IC-17-06-WSWF.indd 78 10/10/13 7:18 PM

Testing Elastic Computing Systems

NOVEMBER/DECEMBER 2013 79

such resonant frequencies might let
designers compensate or even filter
them out.

Several factors that aren’t directly
observable or controllable can affect
the elasticity that a given software
system achieves at runtime. For
example, if an elastic system shares
infrastructure resources with other
cloud users that are resource-eager
(sometimes called “noisy neigh-
bors”4), then the system’s quality
might degrade as a secondary effect
of resource contention. This situa-
tion can also drive the elastic system
toward non-optimal and even risky
states. So, understanding the side
effects from other infrastructure
users can help developers measure
elastic systems’ robustness.

For these cases, shear testing
might be useful. In the context of
mechanical testing, shear tests subject
 specimens to lateral forces that aren’t
directed toward elongation but that

still result in material deformations.
Under this stress, the material might
adapt up to the point at which it even-
tually breaks. Similarly, for software,
we might find tests that lead the sys-
tem to misbehave as a consequence
of “lateral forces” such as resource
contention.

We can map these metaphors to
the context of elastic computing sys-
tem testing to determine our testing
framework’s main concepts and iden-
tify important guidelines on how to
implement such tests. Table 1 lists
some important examples of possible
mappings between our mechanical
testing metaphors and testing tech-
niques for elastic systems.

Conceptual Framework
Guided by elasticity concepts and
our testing metaphors, we propose
a conceptual framework for testing
resource-elastic computing systems
(see Figure 2). We developed this

framework around testers — that is,
the actors in charge of testing the
system. It employs four common
test activities: test-case genera-
tion, test execution, data analysis,
and test evolution. Testers provide
the initial input as regards primary
testing goals and optional test con-
straints. Then, the testing activity
sequence begins, and each activity’s
output becomes input for subsequent
activities.

Test-case generation receives test-
ing goals as input and produces a
set of test specifications — that is, a
test suite — as output. Test cases in
our context specify the characteris-
tics and configurations of the elastic
system under test, the load generators
that will generate the input workload,
and the type of workload being gen-
erated. This includes defining request
intensity, the request mix, input
data, and their variations during test
 execution to create load fluctuations.

Table 1. Mapping metaphors to elastic computing systems.

Mechanical testing metaphor Analogy in elastic computing system

Specimen deformation (elongation or shortening) Increase or decrease in system scale when resources are allocated or
removed

Recovery of original shape Release of computing resources

Plasticity System inability to scale down

Necking (Unrecoverable) system failure, caused by scale-in and out operations

Tensile testing Detecting elastic states and elastic transitions along particular system
configuration paths — for example, generating a finite number of
requests at constant rates to force system scale-out and check
whether the system can recover its initial configuration

Impact testing Testing techniques that study how fast resources can be allocated
to an elastic computing system — for example, generating requests
according to a step function to trigger system scale-out without
reaching the necking state (without failures), and measuring the time to
reach the final configuration

Fatigue testing Testing techniques that study whether systems can go over budget
within an observation period — for example, generating waves of
requests that trigger consecutive scale-up and down, and then measure
the resource usage costs according to a specified billing model

Shear testing Testing techniques that study the changes in systems’ elastic behavior
that occur due to interference and physical resource contentions in the
underlying platform — for example, pinning the system’s computing
resources under test on physical servers, deploying resource-eager
virtual machines next to them on the same physical servers, and then
comparing the resulting elastic behavior with baseline cases

IC-17-06-WSWF.indd 79 10/10/13 7:18 PM

Web-Scale Workflow

80 www.computer.org/internet/ IEEE INTERNET COMPUTING

For example, a test case might vary
the number of active users according
to a time-dependent, wave-oscillating
pattern. A workload generated in this
way reaches the elastic system and
triggers its elasticity mechanisms.
Test cases can contain additional
specifications about environmental
settings and variations. For example,
a fatigue test might specify that in a
given moment, a network link fails,
or additional resource-eager virtual
machines must be deployed in the
cloud to increase resource contention.

During test execution, one or mul-
tiple instances of an elastic comput-
ing system are running, subjected to
different workloads and execution
conditions. The actual number of

concurrent system instances varies
depending on cost and resource con-
straints. During test execution, testers
collect the system metrics listed in the
test-case specifications. Meanwhile,
testers can monitor the execution’s
progress, as well as effort, in terms of
time, costs, and resources invested.

The data analysis stage follows test
execution and elaborates the moni-
tored metrics to eventually produce
the final test results. Depending on
the selected testing goals, test results
might contain pass/fail reports, cov-
erage measures, fault-localization
results, and more. Testers can inspect
the results, interpret their meaning,
and check their accuracy, which lets
testers identify bugs or problems in

the system that might trigger code
fixes, as well as flaws and inaccura-
cies in the test cases that could neces-
sitate test-suite refinement.

Test evolution manages the test-
suite life cycle by reflecting changes
in the code on one side and improving
test-case quality on the other. If a new
version is released, testers can repeat
the entire activity sequence to test it.
Similarly, they can reiterate the cycle
if they want to improve test quality.

To put such a conceptual frame-
work into practice, we must address
several research challenges.

Methodological Approach
Testers need languages that can easily
describe the prescriptive elasticity that

Figure 2. Conceptual framework for testing elastic computing systems. Testers provide the initial input as regards
primary testing goals and optional test constraints. Then, the testing activity sequence begins, and each activity’s output
becomes input for subsequent activities.

Test re�nement
& maintenance

Elastic computing system

Elastic controller

Synthetic clients

Cloud IaaS

Tester

Progress & effort
 monitoring

Interpretation
& accuracy

Testing goals
& constraints

Test
execution

Test
evolution80%

Test case
speci�cation

Time

Time

System metrics

80%

Test results

Re�ned test suite

Impact

ResonanceFatigue Tensile

Shear

Test case
generation

Models

Properties
Oracle

X %

Coverage
Time

Time

Time

Resource

Workload

Quality

Data
analysis

IC-17-06-WSWF.indd 80 10/10/13 7:18 PM

Testing Elastic Computing Systems

NOVEMBER/DECEMBER 2013 81

systems under test should achieve, as
well as a way to measure the descrip-
tive elasticity actually achieved.
These formalisms must be expressive
enough to capture elastic behaviors’
static (or time-less) and dynamic
(time-dependent) characteristics, and
the relations among resource alloca-
tion, cost, and quality. Testers must
couple formalisms to new languages
to capture stakeholder requirements
on system elasticity, and use novel
tools to discover, define, monitor, and
check elastic properties.

Testers also need novel cover-
age metrics and criteria that might
require defining new abstractions
over the code and runtime behavior.
For example, testers might want to
cover all possible system configu-
rations and the transitions among
them, as well as particular paths
across system configurations that
form elastic state transitions.

Testers must determine whether
to test elastic properties at the sys-
tem, component, or unit level. Inte-
gration tests become critical when
software employs elastic systems as
components, and testers must under-
stand the mutual effects of putting
elastic components together. These
additional tests require new tools that
support their execution — for exam-
ple, by creating and managing mock-
ups and scaffoldings in the context of
unit- and component-level tests.

No matter the scope, testers must
follow precise guidelines about tests’
applicability for elastic systems.
Some techniques — for example,
those that we derived for impact
and fatigue testing — can be used
to implement similar test goals,
whereas others — such as shear test-
ing or resonance testing — have a
more focused target and thus limited
applicability. Context can also limit
a test’s applicability. When multiple
techniques can achieve a specific
test goal, the guidelines must clearly
state the conditions under which one
technique is preferable.

Test-Case Generation
Testers can create test cases manu-
ally or employ test-case generators to
create them automatically. Such gen-
erators might adopt different tech-
niques to define new test cases, but
in general are guided toward achiev-
ing specific testing goals, including
identifying yield points and plas-
ticity in the system, sub-optimality
in system adaptation when it comes
to costs and quality, or resonant
oscillations.

In our context, elasticity mainly
reacts to variations in the load, so we
must express test cases in terms of the
workload to force a particular state
of elasticity or trigger specific elastic
adaptations. Generating such loads is
challenging: testers or automatic test-
case generators must deal with a mul-
tidimensional and time-dependent test
input space because elastic systems
implement various operations. Differ-
ent operations can result in different
resource demand, and the intensity
and request mix can vary in time.

To further complicate this situa-
tion, elasticity isn’t directly observ-
able but must be derived from a set
of covariant system metrics, mak-
ing the test-case-generation pro-
cess depend significantly on these
mappings’ complexity. Moreover,
because elasticity is a nonfunctional
property and clouds are generally
noisy environments, test cases must
consider accuracy metrics, and tes-
ters must account for repeated test
executions to gain more evidence.

As much as possible, test cases
should be portable and reusable. They
must be generated following general
principles and processes that don’t
depend on specific cloud applications
or platforms. We argue that test cases
specified in terms of timed request
traces (but also statistical distributions)
can be a first step toward generally
tackling test-case generation for elas-
tic systems. When it comes to gen-
erating test cases that also consider
 environmental characteristics, as with

shear testing, testers must specify
additional elements such as which
faults to inject, virtual machine place-
ment, and other platform settings
that are difficult to express abstractly
 without environmental reference
models. Specific models and fault
taxonomies are available for particu-
lar instantiations of typically elastic
systems — for instance, event-based
data processing platforms.5 Further
efforts are required, however, to study
faults in elastic computing systems in
general.

Test Execution
Testers must deploy and configure
elastic computing systems and their
load generators in the target cloud,
start all components, collect monitor-
ing data, and analyze it at the end of
the execution while releasing comput-
ing resources. Testers thus need generic
tools to automatically manage test
executions over different platforms.
Tool availability and automation
reduce the burden on testers, saving
them time, and are thus a priority.

Testers can deploy multiple in -
stances of elastic systems side-by-side
to parallelize test execution, or across
clouds to compare different outcomes.
Unfortunately, without optimization,
the increase in resources required to
parallelize execution makes it very
expensive. Tools must be effective and
optimally share computing resources
across test executions to fulfill time
and budget constraints.

Test execution tools should be able
to measure the accuracy of the data
they monitor. For example, such tools
can schedule repeated executions if
the working conditions are too noisy,
and should react to transient failures
or illegal states in the platforms.

Data Analysis, Test Results,
and Evolving Test Cases
Test execution can produce large
amounts of data that testers must ana-
lyze to compute the final results. The
data analysis methods employed to

IC-17-06-WSWF.indd 81 10/10/13 7:18 PM

Web-Scale Workflow

82 www.computer.org/internet/ IEEE INTERNET COMPUTING

derive abstractions of elastic behav-
iors, compute coverage metrics, and
check whether system specifications
are respected must be very efficient.
Because tests must help designers
highlight problems and find solutions,
test results must also be accurate. Tes-
ters must refine tests that don’t pro-
duce accurate results, and evolve them
to reflect changes in elastic computing
systems or the platform running them.

Testers must then be able to define
appropriate quality metrics and deter-
mine when the platforms running the
systems undergo some evolution that
could make previous test cases either
inappropriate or no longer execut-
able. Changes in billing models and
cloud offers, for example, could result
in test executions that violate testers’
budget constraints. In this context,
test reuse and regression-testing tech-
niques might need revisiting.

We are currently investigating model-
based search techniques to find

problematic scenarios and cover elas-
tic transition sequences in the context
of resonance and endurance testing.
These contributions are the first steps
toward proper testing of elastic comput-
ing systems, and their promising results
stimulate and motivate further research.
 Furthermore, because elasticity is aris-
ing as one of the core system properties
that must be provided by cloud-based
systems, we argue that additional
research in software engineering — from
requirements engineering to program-
ming language development to software
maintenance — must target it.

References
1. S. Dustdar et al., “Principles of Elastic

Processes,” IEEE Internet Computing,

vol. 15, no. 5, 2011, pp. 66–71.

2. D. Agrawal et al., “Database Scalability, Elas-

ticity, and Autonomy in the Cloud,” Proc.

Int’l Conf. Database Systems for Advanced

Applications, Springer, 2011, pp. 2–15.

3. E.-K. Byun et al., “Cost-Optimized

Provisioning of Elastic Resources for

 Application Workflows,” Future Gen-

eration Computer Systems, vol. 27, no. 8,

2011, pp. 1011–1026.

4. A. Gulati et al., “Cloud-Scale Resource

Management: Challenges and Techniques,”

Proc. 3rd Usenix Conf. Hot Topics in Cloud

Computing, Usenix Assoc., 2011, p. 3.

5. W. Hummer et al., “Deriving a Uni-

fied Fault Taxonomy for Event-Based

Systems,” Proc. 6th ACM Int’l Conf.

 Distributed Event-Based Systems (DEBS

12), ACM, 2012, pp. 167–178.

Alessio Gambi is a postdoctoral researcher vis-

iting the Distributed Systems Group at the

Vienna University of Technology. He has a

PhD in informatics from the University of

Lugano, Switzerland. Contact him at alessio.

gambi@usi.ch; www.inf.usi.ch/phd/gambi/.

Waldemar Hummer is a PhD candidate in the

Distributed Systems Group at the Vienna

University of Technology. Contact him at

hummer@dsg.tuwien.ac.at; dsg.tuwien.

ac.at/staff/hummer.

Hong-Linh Truong is an assistant professor

in the Distributed Systems Group at the

Vienna University of Technology. Con-

tact him at truong@dsg.tuwien.ac.at;

dsg.tuwien.ac.at/staff/truong/.

Schahram Dustdar is a full professor of computer

science (informatics) with a focus on Inter-

net technologies and heads the Distributed

Systems Group at the Vienna University

of Technology. He’s an ACM Distinguished

Scientist and recipient of the IBM Faculty

award 2012. Contact him at dustdar@dsg.

tuwien.ac.at; dsg.tuwien.ac.at/.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Advertising Personnel
Marian Anderson
Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139
Fax: +1 714 821 4010

Sandy Brown
Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144
Fax: +1 714 821 4010

Advertising Sales Represen-
tatives (display)
Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe,
Middle East:
Ann & David Schissler
Email: a.schissler@computer.org,

d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304-4123
Fax: +1 973 585 7071

Advertising Sales
Representative
(Classified Line & Jobs Board)
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304-4123
Fax: +1 973 585 7071

ADVERTISER INFORMATION • NOVEMBMER/DECEMBER 2013

IC-17-06-WSWF.indd 82 10/10/13 7:18 PM

