
Virtualizing Software and Humans for Elastic
Processes in Multiple Clouds– a Service
Management Perspective

Schahram Dustdar and Hong-Linh Truong
Distributed Systems Group, Vienna University of Technology, Austria
e-mail: {dustdar, truong}@infosys.tuwien.ac.at

There is a growing trend of combining human-based computation with machine-based com-

putation to solve complex problems which cannot be answered with machine-based computation

alone. From the computing perspective, integrating machine-based computing elements with

human-based computing elements and provisioning them under the same model will facilitate the

resource elasticity required by complex applications. Although certain works investigate tech-

niques for integrating human-based computing elements with machine-based computing elements,

existing computing models for such integrated computing systems are very limited. In fact, the

architectures, interconnections, non-functional properties of human-based computing elements are

very different from that of contemporary machine-based counterparts. Human-based computing

elements are built based on social and bio concepts, thus their architectures, interconnects and non-

functional properties are extremely complex and dynamic, compared with that of machine-based

computing elements. In this paper, we examine fundamental issues in virtualizing human-based

computing elements and machine-based computing elements using service-oriented computing

concepts in order to create highly scalable computing systems of hybrid services to support the

elasticity of software and people in complex applications. We will outline our Vienna Elastic Com-

puting Model which aims at introducing techniques and frameworks to support multi-dimensional

elastic processes atop multiple cloud systems of software-based and human-based services. This

paper will analyze several service management issues to support the virtualization of machine-

based and human-based computing elements to support such elastic processes.

Categories and Subject Descriptors: H.3.5 [Online Information Services]: Web-based services; C.0 [Computer
Systems Organization]: General—Modeling of computer architectre; D.1.3 [Software]: Concurrent Program-
ming—Distributed programming; D.2.9 [Software]: Software Engineering—Management

General Terms: Management, Desgin, Human Factors

Additional Key Words and Phrases: human-based computing, elasticity, cloud computing, social

computing

Author’s address: Argentinierstrasse 8/184-1, 1040 Vienna, Austria.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profitor commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol. , No. , 20, Pages 1–0??.

2 · Schahram Dustdar and Hong-Linh Truong

1. INTRODUCTION

Over the last many years, several architectures of computing systems have been devel-
oped. The Symmetric Multiprocessing (SMP) architecture introduces multiple processors
sharing the same memory. The parallel cluster architectureincludes multiple machines,
each may consists of several computing CPU/cores. The Grid computing architecture
goes further by connecting multiple clusters and SMP machines from different comput-
ing sites. And, recently, the cloud computing architectureconsolidates and aggregates
several machines and software to virtualize and provision them by utilizing virtualization
techniques. These computing architectures have basicallyseveral hardware/software com-
ponents, interconnected by different interconnect networks and they represent so-called
machine-based computation via a combination of hardware and software. In a machine-
based computing system, basically, at the lowest level, we have machine-based comput-
ing elements connected by networks. A machine-based computing element (MCE) typi-
cally has, for example, a CPU, memory and hard disk. Depending specific machine-based
computing systems, e.g., clusters or SMP, multiple programming languages have been
developed to exploit MCEs and different coordination models have been developed to sup-
port multiple, concurrent tasks executed in machine-basedcomputing systems. Until now,
machine-based computing systems scale well and could collectively aggregate the capabil-
ity of millions of MCEs, such as in the case of SETI@HOME[set 2011], solving complex
problems.

On the one hand, recently, the Internet and underlying powerful, pervasive machine-
based computing systems have enabled us to harness vast human capabilities around the
world. Human capabilities can be exploited in a similar way to MCEs: humans perform
certain types of computing activities (with/without assisted MCEs). In this way, humans
establish another type of computing elements namely human-based computing elements.
Human-based computing elements (HCEs) are also called living computing elements be-
cause the core of an HCE is a human, as opposed to MCEs which arenon-living. Lit-
erature has shown that humans have been performing computing since the early history.
However, in this paper, we want to emphasize how humans and software are combined
in order to support large-scale computation. In our view, “software services” empower-
ing human capabilities have a crucial role, allowing us to provide, for example, interfaces,
programming models, and coordination models for human capabilities, in a similar way to
that for machine-based computing systems, thus enabling usto harness massive, collective
capabilities of humans on an integrated and automatic manner.

When HCEs interact with machine-based computing systems, MCEs and HCEs are be-
ing integrated. Although certain works investigate HCEs and how to integrate them with
MCEs, existing computing models for such integrated computing systems are very lim-
ited. In fact, the architectures, interconnects, and non-functional properties of humans
are very different from that of contemporary MCEs. Therefore, building and utilizing
human/software-based computing systems are extremely challenging. To date, the devel-
oper of MCEs knows, more or less, a lot of knowledge about computing capabilities and
topologies of interconnected networks, but the developer of human/software-based com-
puting systems has very little knowledge about capabilities as well as interconnects of
HCEs. For example, given a cluster of MCEs, we can easily obtain the network of the
cluster but given a set of HCEs (e.g., a team of people), we might not know the topology of
their interconnectedness. Furthermore, given an HCE, its computing capability might not

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 3

be powerful, e.g., the manager of a software team might not know how to program Web
services, but it can potentially invoke many other capable HCEs, e.g., members of the team
or external collaborators, that we might not know in advancewhen deciding to employ the
HCE. This poses several challenges in building and utilizing HCE systems efficiently, let
alone the combination of MCEs and HCEs.

In this paper, we examine the architectures, interconnections, and non-functional prop-
erties of HCEs, and how HCEs can be combined with MCEs in orderto facilitate the gath-
ering of collective computing capabilities of both MCEs andHCEs in a large scale. We
examine fundamental issues of HCEs and how they can integrate with MCEs to create com-
plex, highly scalable computing systems. We will outline our Vienna Elastic Computing
Model which aims at introducing techniques and frameworks to support multi-dimensional
elastic processes atop multiple cloud systems of software-based and human-based services.
We will analyze several service management issues in order to support the virtualization
of MCEs and HCEs under the same model to support such elastic processes.

The rest of this paper is organized as follows: Section 2 discusses our motivation, ap-
proaches and related work. Section 3 outlines the Vienna Elastic Computing Model. Sec-
tion 4 analyzes service management issues and presents our approaches to these issues in
order to virtualize human-based computing elements under the service model. We con-
clude the paper and outline our future plan in Section 5.

2. MOTIVATION, APPROACH, AND RELATED WORK

2.1 Motivation

Let us elaborate some typical scenarios in which human-based computation is exploited
in order to characterize HCEs and hybrid systems of HCEs and MCEs and to reflect the
challenges when integrating them.

2.1.1 Discovering patterns in images.Figure 1 shows a scenario of using MCEs and
HCEs in finding patterns in satellite images. The scenario isbased on the search of Jim
Gray missing [Hafner 2007] as well as on situational analysis in disaster scenarios [Voigt
et al. 2007]. In this scenario, several images taken from satellites are processed by vari-
ous software (machine-based computing elements) in order to detect patterns required for
specific purposes (such as missing people or victims in a disaster). The problem is that, in
many cases, software cannot detect certain patterns. Therefore, humans must perform the
pattern analysis. In this case, humans act as a computing resource (human-based comput-
ing element). To scale with complex problems (e.g., the number of images and the time
required for analyzing images) HCEs are based on either crowds of novice users/volun-
teers or professional teams, such as disaster response experts and geo-scientists. While
both crowds and professional teams need seamless interactions with MCEs, they pose dif-
ferent requirements. For crowds, every HCE can work independently and there might not
be any constraints on the performance and quality of the work. However, in the case of pro-
fessional teams, performance and quality of results constraints are important. Furthermore,
both cases require different programming models in order toutilize their capabilities. How-
ever, both MCEs and HCEs should be integrated seamlessly into a single application. This
is different from existing systems in which HCEs are utilized separately from MCE-based
systems.

ACM Journal Name, Vol. , No. , 20.

4 · Schahram Dustdar and Hong-Linh Truong

Store raw image

raw images

Process image Detect pattern

unchecked images

images

crowdsourcing results

discovered patterns

found patterns

Fig. 1. Pattern discovery using MCEs and HCEs

2.1.2 Quality evaluation in multi-scale simulations.Figure 2 shows another example
of utilizing HCEs and MCEs. Several long-running scientificsimulations can be performed
by MCEs, but scientists are required to analyze quality of intermediate simulation results
during the simulations. The need to have scientists/HCEs inthe loop is due to the complex-
ity of simulations, such as in multi-scale simulations, anddue to the optimization of MCEs
used, e.g., simulations should be stopped if bad results aregenerated. In addition to the is-
sues mentioned in the previous scenario, there exist work delegations that occur in cliques
(rather than crowds) of scientists. For example, the quality of a simulation result can be
first evaluated by PhD students, then verified by post-docs before checked by professors.
Furthermore, HCEs must fulfill several constraints on computing capabilities (e.g., able to
handle macro bone simulation using finite element methods) and non-functional properties
(e.g., the availability).

2.1.3 Virtualizing HCEs and MCEs for elastic processes.The above-mentioned sce-
narios illustrate the need for scaling in/out both machine-based and human-based comput-
ing elements. For example, in cases of disaster scenarios oremergency situations, several
types of data (e.g., images and events) need to be analyzed quickly by a large number of
humans (provided by crowds) by specialists (provided by professional teams). Further-
more, human-based computing elements need tocollaborateto solve the problem, not just
being invoked separately. Essentially, we need to build theelasticity of hybrid computing
elements within these complex applications. Moreover, these scenarios illustrate the need
to beproactivein scaling in/out of MCEs and HCEs to solve problems underseveral con-
straints, such as time, quality of results, and compliance laws. These applications should
be able to decide when and how to take into account HCEs instead of MCEs actively, rather
than just posting the tasks to crowds and waiting for some HCEs to take the tasks, as shown
in current crowdsourcing systems. As a result of these requirements, we need techniques
to support the integration of HCEs and MCEs into a single system that goes beyond con-
temporary crowdsourcing models. We must virtualize software and human in such a way
that facilitates the management of software and human and enables the programming of

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 5

Micro bone
simulation

input dataset

Marco bone
simulation

Detect pattern

marco results

images

extracted result
discovered patterns

unknown patterns

post-doc

graduate student

professor

external collaborator

bone simulation scientist clique

Fig. 2. Using human-based computing elements to evaluate quality of data in multi-scale
simulations

them in a similar way.

2.2 Concepts of machine and human computation

Table I describes an analogy between MCE- and HCE-based computing systems. As
shown in Table I, there are substantial differences betweenMCEs and HCEs in terms of
architecture, communication and programming models. However, it is of paramount im-
portance to virtualize them under the same model so that we can utilize them in a similar
way. In our work, we aim at conceptualizing them under the service model. To date, the
service-oriented computing (SOC) model has successfully virtualized hardware and soft-
ware capabilities of MCEs and provided capabilities of MCEsthrough well-defined service
interface, service information and service interaction. For example, one can use a well-
defined service interface to launch a (virtual) machine in a cloud-based Infrastructure-as-
a-Service (e.g., in Amazon EC21), to translate a document using a cloud-based Software-
as-a-Service (e.g., using the Google Translation service2), or to run a data query program
in a cloud-based Platform-as-a-Service (e.g., using Microsoft Azure3). Similar to how
SOC techniques have been applied to the virtualization of MCEs and to the provisioning
of MCEs under cloud computing models, we could provide different types of services for
HCEs, such as human-based services for individuals or teamsand hybrid services including
both MCEs and HCEs. From these types of services, we can buildelastic processes/work-
flows (e.g., like in the above-mentioned scenarios) which eventually can be provided under
the service model.

1http://aws.amazon.com/ec2/
2http://translate.google.com/
3http://www.microsoft.com/windowsazure/

ACM Journal Name, Vol. , No. , 20.

6
·

S
ch

ah
ra

m
D

us
td

ar
an

d
H

on
g-

Li
nh

Tr
uo

ng

Categories Properties Machine-based computing systems Human-based computing systems
Computing ele-
ment

basic processor core/CPU and peripheral devices human brain with computing assisted de-
vices used by humans

Computing
architecture

system architecture SMP, cluster, Grid, Cloud individual, team, clique, crowd
interconnect architecture bus, star, ring, tree free-scale (social) network
communication protocol TCP/IP, Myrinet, Infiniband email, social network, blog, wiki

Programming
model

basic task computing thread/process human activity
task distribution send tasks to schedulers in basic comput-

ing elements that execute the tasks auto-
matically and return the results

send tasks to MCE-based assisted soft-
ware and wait for humans to retrieve the
tasks from the software; humans process
the tasks and upload the results into the as-
sisted software from which the results can
be pulled or pushed.

task intercommunication exchanging messages among thread/pro-
cesses using communication APIs that are
based on different programming models

different types of interactions among hu-
mans

Table I. Analogy between machine and human computation

A
C

M
Jo

ur
na

lN
am

e,
Vo

l.
,N

o.
,

20
.

International Journal of Next-Generation Computing (IJNGC) · 7

2.3 Related work

Although both, MCEs and HCEs, can perform similar work, literature has intensive sources
indicating which tasks MCEs can perform better than HCE and vice versa [Wu et al. 2004;
Brill and Ngai 1999; Baird and Popat 2002]. Literature also indicates that MCEs and HCEs
can coexist as well as that several complex problems need both of them in the same system.
In our paper, we will not discuss the pros and cons of HCEs versus MCEs.

Several applications have shown how to utilize crowds for solving complex problems
[Brew et al. 2010; Doan et al. 2011]. Many of these applications just discuss about how
to utilize crowds inputs to determine solutions for specificproblems; they do not discuss
about how to integrate and virtualize human-based computing elements. From the pro-
gramming language perspective, most efforts have been spent on extending existing lan-
guages (e.g., BPEL4People [bpe 2009]) or integrating with crowd sourcing platforms in
specific query systems [Marcus et al. 2011]. In these effortsfor human-based computa-
tion, the interaction between humans and MCE-based systemsis mainly based on crowd-
sourcing platforms (e.g., Amazon Mechanical Turks [mtu 2011]). However, no existing
programming language has been developed to consider humansas “processors”, like in
conventional programming languages.

Doan and his colleagues present a detailed discussion of howcrowds are utilized in the
Web [Doan et al. 2011]. However, they have not discussed how humans and software can
be integrated into a single computing system.

While empowering collective intelligence by harnessing people capabilities has attracted
a lot of research, our work differs from them as we examine howhuman capabilities can
be harnessed via the service model so that they can seamlessly be integrated into large-
scale, complex applications. Furthermore, in this paper wealso present a detailed study of
fundamental properties of HCEs and the hybrid computation model of MCEs and HCEs.

3. THE VIENNA ELASTIC COMPUTING MODEL

As we discussed in the motivation, several complex applications require techniques to take
into account MCEs and HCEs in multiple clouds in an elastic manner. In other words,
these applications need to scale in/out both MCEs and HCEs. Although current under-
standing of elasticity and elastic techniques in computingis mainly about machine-based
resource elasticity [Chiu 2010], as we have discussed in [Dustdar et al. 2011], elasticity
can be conducted in multiple dimensions, including resource, quality, and pricing elastic-
ity. To support the development of applications with built-in multi-dimensional elasticity
capabilities, we introduce the Vienna Elastic Computing Model (VieCOM) which is built
based on the following key points:

—supporting multi-dimensional elasticity: our computing model supports the principles
of elastic processes [Dustdar et al. 2011]. By considering these principles, we take into
account different dimensions of elasticity. We consider scaling out/in MCEs and HCEs
in our processes. Thus, we consider hybrid systems of MCEs and HCEs in our applica-
tions. Furthermore, we support price/reward/incentive models and quality models in the
context of multiple clouds.

—following the SOC model: our computing model utilizes existing SOC techniques and
concepts to virtualize MCEs and HCEs under the service modeland to provision them
under different forms of cloud systems.

ACM Journal Name, Vol. , No. , 20.

8 · Schahram Dustdar and Hong-Linh Truong

—supporting an end-to-end approach, from modeling to execution: our computing model
aims at providing techniques to cover different layers ranging from modeling to runtime
management. This aims at closing the gap between the modeling techniques and runtime
management techniques for elastic computing.

Figure 3 outlines layers in the Vienna Elastic Computing Model. We briefly explain them
in the following:

—Computing Element: describes fundamental computing elements in VieCOM whichcan
be machines or humans.

—Virtualization: describes virtualization techniques and frameworks thatprovision HCEs
and MCEs under IT services whose properties can be elastic.

—IT Elastic Service: abstracts HCEs and MCEs under the service model.IT Elastic Ser-
vicescan be selected based on their properties and be invoked based on their well-defined
service interfaces, such as based on SOAP or REST.IT Elastic Servicescan be elastic,
e.g., their costs and quality can be dynamically changed, depending on specific contexts.

—IT Elastic Process: specifies IT processes built atopIT Elastic Services. An IT Elastic
Processcan be described in the form of workflows or distributed components.

—Elastic Service: specifies business service which consists of non IT services and of IT
processes.

—Elastic Runtime Management: includes techniques and platforms to manage and execute
IT Elastic Services, IT Elastic ProcessesandElastic Servicesprovisioned from different
clouds.

—Elastic Alignment: specifies techniques and frameworks to support the alignment be-
tweenElastic Serviceand its corresponding IT process (specified byIT Elastic Process),
and betweenIT Elastic Processand itsIT Elastic Service.

—Elasticity Modeling: specifies techniques and frameworks for modeling elastic proper-
ties and trade-offs for services and processes.

—Elasticity Monitoring: specifies techniques and frameworks for monitoring the elasticity
of services, processes and computing elements.

—Application: specifies different types of applications that are built byutilizing Elastic
Services.

In this paper, we will focus on theVirtualizationandIT Elastic Servicelayers and discuss
issues and state-of-the-art techniques that can support usto virtualize MCEs and HCEs into
IT Elastic Services. We will focus on the following open questions:

—Question 1: how to utilize SOC techniques for virtualizing humans and how do we
provision human capabilities in clouds?

—Question 2: how to model and manage capabilities and interactions MCEsand HCEs.
This is essential for us to understand how to virtualize and manage them in a single
system?

—Question 3: how to model interfaces for tasks and communications amongHCEs and
between HCEs and MCEs?

—Question 4: what are service relationships among HCEs?
—Question 5: which non-functional properties are important and how to specify and in-

terpret them?

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 9

Simulation
 Application

IT Management
Application

Elastic Service

Elastic
 Alignment

IT Elastic Process
Elastic

 Runtime
 Management

IT Elastic Service

Virtualization

Software-based Computing
Element

Human-based Computing
Element

....
Application

Elasticity
Modeling

Elasticity
Monitoring

Disaster Management
Application

Fig. 3. Conceptual view of the Vienna Elastic Computing Model

In the following section, we will discuss about current state of the art and some of our
answers to these questions.

4. SERVICE MANAGEMENT APPROACHES AND ISSUES

4.1 Service models for virtualizing software- and human-based computing ele-
ments

In traditional service-oriented systems we have:

—software-based service (SBS): hardware and software are provisioned under the service
model. The capabilities of MCEs can be accessed via well-defined service interfaces.
This model is well developed and supported. Note that a service can be atomic or com-
posite (internally presented by a composition that specifies how different services to be
composed into a single service)

—service-based process/workflow: a set of connected activities, e.g., based on specific data
and control flows, in which activities are mapped to SBS. Notethat a process/workflow
could be also provisioned as an SBS.

To virtualize HCEs under the service model and provision them in a similar manner
to that for MCEs, we need to develop novel frameworks and techniques to support the
development of these services, and subsequently, to develop complex applications (e.g.,
described by process and workflows) by utilizing these services. To this end, we have in-
troduced two novel concepts to virtualize HCEs namely Human-provided Service (HPS)
and Social Compute Unit (SCU). They are fundamental building blocks for the provision-
ing of clouds of human capabilities and hybrid systems of software and humans.

4.1.1 Virtualizing individual capabilities.the Human-provided Service (HPS) model
[Schall et al. 2008] introduces techniques and frameworks for humans to specify their

ACM Journal Name, Vol. , No. , 20.

10 · Schahram Dustdar and Hong-Linh Truong

capabilities using Web services interfaces. The key concept is that human computing ca-
pabilities can be represented by so-called HPS which can be invoked by any software via
Web service interfaces. In order to achieve this a middleware is introduced to act as an in-
termediate between humans and their corresponding HPS. By using HPS, we can assume
that an individual human can be virtualized via the service model.

4.1.2 Virtualizing team capabilities.The Social Computing unit (SCU) [Dustdar and
Bhattacharya 2011] introduces a concept of a team of individuals that can be selected and
composed to perform complex tasks on-demand. An SCU is similar to a set of MCEs with
communication and storage capabilities to perform the work. An SCU is also similar to
a composite SBS but composes different humans and provides well-defined interfaces for
any software to invoke it. Furthermore, an SCU has a life-cycle which can be created,
virtualized, deployed and dissolved on-demand, similar toSBS.

The SCU service goes beyond the service model for individuals (e.g., HPS). A set of
HCEs can be grouped into an SCU, which is established based oncertain constraints, such
as all HCEs have similar computing capabilities, similar social behaviors, organizational
structures, domains, or locations.

4.1.3 Hybrid systems of SBS and HBS.By virtualizing HCEs we can provision human
capabilities under human-based services (HBS). Thus thereexist two new forms of HBS
namely HPS (for individuals) and SCU (for composition of HCEs). By introducing HBS
in a similar form for SBS, we can establish hybrid systems consisting of SBS and HBS.
This will bring a new form of services that will not be found inconventional SBS-based
systems or in uniform HBS-based systems: hybrid composite service of SBS and HBS
whose aggregated services are software-based or human-based.

Under these types of services, we can develop hybrid processes/workflows which a pro-
cess/workflow including atomic and composite SBS and HBS. However, techniques for
modeling and managing such hybrid processes need to be developed. Currently, existing
workflow techniques can only consider HCE in a simple way, e.g., via the utilization of
WS-HumanTask [wsh 2009] and crowdsourcing systems [Barowy et al. 2011; mtu 2011].

4.1.4 Clouds of hybrid services.By utilizing the service model, different types of
cloud computing systems, including uniform SBS, uniform HBS, and hybrid SBS/HBS,
can be provisioned. Potentially, an application can be programmed to take into account
SBS and/or HBS from these clouds in a similar way. First, we could develop programs
that scale to a very large number of SBS and HBS using SOC techniques for discovering,
comparing and composing SBS and HBS based on their capabilities, interfaces and non-
functional properties. Second, since SBS and HBS are all service-based, we can provide
an integration model that enables seamless execution of tasks across SBS and HBS and
simplifies how HBS could be used in complex applications.

The basic integration model for SBS and HBS is shown in Figure4 . Note that when
receiving a task to be executed, an SBS or HBS can use different facilities to spawn new
sub-tasks and ask for other SBS/HBS to process the newly-created sub-tasks (e.g., via
delegation and escalation mechanisms). Despite several platforms have been developed for
utilizing human computation capabilities, surprisingly,unlike for SBS-based computing
systems, the coordination and task distribution for harnessing HCEs is quite simple. As
shown in Table II, current support can be divided in three approaches: (i) using plug-ins to
interface to human, such as BPEL4People or tasks integratedinto SQL processing systems

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 11

hardware

Human

Task Execution Task Execution

Task Distribution and Coordination System

task task

act as an interface

to human

Fig. 4. Basic integration model

[Marcus et al. 2011], (ii) using separate crowdsourcing platforms, such as MTurk [mtu
2011], and (iii) using workflows, such as Turkomatic [Kulkarni et al. 2011]. A drawback
is that all of them consider HCEs individually and HCEs in these systems have not been
provisioned as HBS. As a result, an application must split tasks into sub-tasks that are
suitable for individual HCEs, which do not collaborate eachother, before the application
can invoke HCEs to solve these sub-tasks. Furthermore, the application must join the
results from several sub-tasks. This is not trivial for the application when dealing with
complex problems required human capabilities. Therefore,two issues must be addressed:
existing techniques must be extended to interface to HBS andSCU-based HBS should be
considered. By taking into account SCU-based HBS, we expectthat complex tasks can be
tackled by SCUs whose members can decide how to split tasks and join the results in a
way that is suitable for humans, e.g. based on context dependency rules for context-aware
and social collaboration processes [Liptchinsky et al. 2012].

From the basic integration model discussed above, Figure 5 presents our vision on how
we can utilize computing capabilities from clouds of SBS andHBS. Consider a developer
has to write a program that scales in/out a large number of SBSand HBS. In her view, there
exist multiple cloud computing systems of SBS and HBS. Thus,she needs to be able to
design, submit, and monitor her programs executed in such systems. Regardless of whether
SBS or HBS are needed for tasks, tasks in her programs are submitted to these systems in
a similar way, based on common interfaces, capability description and discovery, and non-
functional properties monitoring. To support this vision,essentially, we need to develop
system software that can manage, discover, and monitor bothSBS and HBS. Currently,
such system software are missing.

ACM Journal Name, Vol. , No. , 20.

12
·

S
ch

ah
ra

m
D

us
td

ar
an

d
H

on
g-

Li
nh

Tr
uo

ng

Category Systems Task Description Task Distribution Task Coordination Notes

Language
extension

[Marcus et al.
2011]

Specific task de-
scription integrated
into SQL

Push by SQL pro-
cessing systems

Split-and-join, cen-
tralized coordination

Use a procedure which
waits for human input

BPEL4People
[bpe 2009]

WS-HumanTask
[wsh 2009]

Push by BPEL en-
gine

One-to-one , Cen-
tralized coordination

Plug-in to BPEL

AutoMan
[Barowy et al.
2011]

domain-specific lan-
guage object

tasks are pushed by
the runtime environ-
ment

centralized coordina-
tion

Tasks are designed in Au-
toman, a domain-specific
language based on Scala.

Platform MTurk [mtu
2011]

Specific human-
readable only
description

humans put and get
tasks into/from the
platform

One-to-one, central-
ized coordination

Task is defined by a hu-
man and stored into MTurk.
Then the task is retrieved
by another human who per-
forms the task and put the
result into MTurk.

Workflow Turkomatic
[Kulkarni
et al. 2011]

Human-readable
task only

Tasks are arranged
in workflows and
pushed to humans

Complex tasks are
automatically and it-
eratively divided into
workflows by soft-
ware and humans

Utilize MTurk

Table II. Example of task distribution and coordination models

A
C

M
Jo

ur
na

lN
am

e,
Vo

l.
,N

o.
,

20
.

International Journal of Next-Generation Computing (IJNGC) · 13

Grid site

Cloud computing system

personal computer

cluster

Crowd/SCU

Clique of e-professionals (SCUs)

Internet

user

process submission

Fig. 5. Clouds of SBS and HBS computing systems

4.2 Describing and managing service information

First, let us consider the description for computing capabilities. With MCEs, we have de-
scription information about CPU/cores, memory, storage capabilities, software features, to
name just a few. However, for HCEs, there exists no such a similar capability descrip-
tion. HCEs are currently characterized by vague description, such as skill and expertise
information. Such information actually cannot describe which types of and how many ac-
tivities that an HBS can handle. When a developer considers a possibility that a task in her
programs should be mapped to an MCE or an HCE, e.g., between a software or a lawyer
as indicated in [Markoff 2011], capability description between MCEs and HCEs must be
compared. However, many existing systems, while are able toharness human capabili-
ties, do not consider the role of the description of capabilities for HCEs. Table III shows
examples of HCE capability description. There is no such a system that compares MCE
capability versus HCE capability. Currently existing systems let people select the tasks
themselves and, in these systems, types of tasks are statically designed either for MCE
or HCE. This way may work in crowdsourcing platforms with volunteering HCEs or in
uniform HCE-based systems for non-critical businesses. However, it will not support the
utilization of MCE and HCEs capabilities in business critical setting in which the applica-
tion would like to determine the capabilities of HCEs beforehandling the tasks to HCEs
and/or to proactively, intelligently and dynamically decide whether an MCE or an HCE
should be utilized based on specific context. By provisioning MCEs and HCEs under SBS
and HBS, their capabilities can be modeled and described using similar specifications. Ob-
viously, certain properties in HBS capability descriptions are different from that for SBS
but this difference can be represented in different tuple values of the description. Since
existing service capability description specifications have not been designed for accommo-
dating human-specific capabilities, new extensions must bedeveloped to support service

ACM Journal Name, Vol. , No. , 20.

14 · Schahram Dustdar and Hong-Linh Truong

information management in hybrid systems of SBS and HBS. However, we should note
that being able to capture and manage SBS and HBS service information together only
facilitates the capability comparison between SBS and HBS:this does not solve questions
about whether an HBS can replace or be equivalent to an SBS. Specific algorithms must
be developed for such comparison.

Systems Modeled capa-
bilities

Description

LinkedIn[LinkedIn] individual profile personal information, location, pro-
fessional position

Live Person[Cohen 2010] individual profile personal information, cost, avail-
ability

Table III. Example of current support in describing human computation capabilities

Second, let us consider service information describing quality and compliance guaran-
teed by HBS. Such service information is crucial as potentially HBS can be taken from
anywhere in the world, and unlike SBS, the quality of the taskproceeded by HBS is hard
to know and to predict. SBS has a well-researched descriptions for quality and compli-
ance that cover several aspects, such as regulation and legal [Gangadharan and D’Andrea
2011]. However, we observe that it is not clear how to describe quality and compliance
information for HBS. In particular, existing human descriptions have not specified qual-
ity of results, compliance, in crowdsourcing platforms. However, quality of results and
regulatory compliance are crucial as applications built atop HBS can scale in/out HBS in
very-large settings. In terms of service management, we need to provide techniques to
allow HBS to specify possible compliance and quality of result assurance.

4.3 Service task and communication interfaces

In our view two types of interface exist among HBS namely HBS communication interface
and HBS task interface:

—HBS task interface specifies which types of tasks an HCE can perform, e.g., translating
documents or evaluating products.

—HBS communication interface characterizes communicationprotocols of an HCE, such
as communication means (e.g., via email or via MTurk), bandwidth (e.g., how many
tasks per day), and latency (e.g., read task only 2 hours).

Figure 6 depicts an overview of service tasks and communication interfaces between an
HCE and its consumers. While HBS task interface can be straightforwardly modeled using
WSDL or REST (e.g., in the HPS framework), it is more complex tomodel and man-
age HBS communication interfaces. In uniform SBS-based systems, these interfaces are
typically well-defined and associated with non-functionalproperties. However, they are
not well-described and unified for HCEs and that hinders a seamless integration among
HCE and HCE with MCEs. Table IV shows examples of existing works that support the
modeling and management of communication interfaces.

In our previous work in HPS, SOAP is used as a communication protocol between any
consumer and HBS, and the communication from HBS to human is via specific middle-
ware. However, in general, these communication links couldbe implemented via different

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 15

Fig. 6. General view of service tasks and communication interfaces

protocols, depending specific contexts. From a service management perspective, we need
to manage different communication interfaces to support the utilization of different HBS
in global marketplaces.

System Communication
Interface

Description

MTurk [mtu
2011]

Push and pull/me-
diator

MTurk plays an HBS for multiple HCEs. An
HCE pulls requests from MTurk and pushes
results to MTurk. The communication is
based on Web.

HPS [Schall et al.
2008]

Push and pull/me-
diator

HBS is modeled as an HPS managed by a
specific middleware. Specific means for HCE
to obtain requests from and returns results to
HPS via specific middleware. With this mid-
dleware, potentially communications can be
implemented using SMS, Web, or Email

Table IV. Examples of current communication interfaces

4.4 Managing service relationships

With respect to relationship management, both SBS and HBS have common types of rela-
tionships but they also have their own distinguished types of relationships (shown in Table
V). Unlike SBS, whose relationships are typically based on software and hardware depen-
dencies, HBS have certain social relationships, such asknowsor friends. While several
works have been investigated for relationships in softwareand SBS [Treiber et al. 2008a;
2008b; Papazoglou et al. 2011], currently there is a lack of techniques to understand and
manage relationships between HBS. While MCEs can be linked via social networks, we
foresee a difference between relationships in social networks and in service ecosystems.
The latter type of relationships reflect how HBS can be composed and interacted in ap-
plications. For relationship management, we need to develop new novel frameworks that
consider all types of relationships mentioned in Table V.

4.5 Managing elastic, dynamic non-functional properties

4.5.1 Classification of non-functional properties.The first issue in managing dynamic
non-functional properties (NFPs) is how to characterize NFPs for both SBS and HBS under

ACM Journal Name, Vol. , No. , 20.

16 · Schahram Dustdar and Hong-Linh Truong

Relationships Description
Common dependency and

similarity
these relationships are based on system/software
dependencies and functionality/non-functional
properties similarity

SBS-to-SBS versioning and
variant

these relations are based on software service evo-
lution [Treiber et al. 2008b; Papazoglou et al.
2011]

HBS-to-HBS knows, friends,
trusts

these relations are based on social concepts

HBS-to-SBS knows, trusts these relationships are based on the concept of
service-enriched social network [Treiber et al.
2009]

Table V. Common and different relationships

the same classification to support the selection and composition of SBS and HBS in a single
application. Certain NFPs, such as cost, availability, reliability, energy consumption, etc.,
are crucial information for utilizing HBS. For example, in some cases, it does not make
sense to put a task, such as translation of a new sustainability governance law that is needed
urgently, to the crowd without strict constraints because the result could be available only
after a long time or the quality of the translation is too bad.Overall, in many cases, a
developer of HBS-based programs needs to proactively decide to which HBS the tasks
should be assigned. In particular, it is important when we need teamwork and when we
are dealing with business critical problems. Although several efforts have been devoted for
studying dynamic properties of humans and teams (see Table VI), to date, we lack unified
metrics for characterizing HBS and their interactions thatare comparable, searchable and
programmable. The question here is that not only these metrics should be well-defined
so that selection can be made, but they should also be associated with other HBS service
information, such as capabilities and interfaces to support a programmable HBS system.

Metrics Work Description
Trust [Walter et al. 2009],

[Skopik et al. 2009]
Monitor and determining trust
of individual

human-to-service,
human-to-human,
and service-to-service
interaction metrics

[Truong and Dustdar
2009b]

monitor and determining met-
rics based on human and ser-
vice interactions

QoS [Ran 2003] describing QoS metrics for
Web services

Licensing [Gangadharan and
D’Andrea 2011]

specify licensing for service

Quality of data [Truong and Dustdar
2009a]

Determining and specifying
quality of data for services

Table VI. Examples of metrics

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 17

While several NFPs are common and considered in different works, putting them into a
single classification will enable the comparison among HBS and between HBS and SBS.
To enable the integration of HBS and SBS, we need to use the same definition for each NFP,
no matter whether an NFP is associated with a SBS or an HBS. Unified metrics are impor-
tant because this enables us to see human computation capabilities in a similar way with
machine computation capabilities, simplifying the integration among human and machine
to foster collective intelligence. Therefore, our approach is that our services will be as-
sociated with a unified classification of dynamic non-functional properties to characterize
them. Figure 7 presents main metrics in our classification. Note that unlike most existing
works which consider only a few metrics, like performance and pricing, we also consider
other metrics, such as rights, law and jurisdiction, and context, as they are also critical in
the way we utilize HBS and HBS’s outputs. Furthermore, we also consider human-specific
properties, such as Return on Opportunity (ROO), which tends to associate with HBS, to
reflect opportunities that an HBS could bring to its customers. Similar to ROO, we need to
determine HBS-specific metrics that cannot be found in SBS.

4.5.2 Interpretation of non-functional properties.Although similar NFPs for SBS and
HBS can be put into the same classification, their interpretations for SBS and HBS may
be different in many cases. When utilizing an NFP, a developeror a system must know
whether the metric is associated with an SBS or HBS in order tomake the decision. For
example, in a global economic, the availability of a SBS and aHBS can be defined as the
time it is available for use. However, it is expected that an SBS should have almost 100%
availability, while the availability of HBS is much lower than 100%. Thus, just using
the value of an NFP is not enough. Another important point is that not all NFPs will be
associated with all SBS or HBS, similarly, the importance ofan NFP is also different for
SBS and HBS. For example, quality of data, including the quality of the result, maybe a
very important for selecting HBS instead of SBS in certain cases. So to enable the search
and discovery of SBS and HBS in a similar manner, we associateNFPs with the types of
the service as well.

When we are able to access a large number of HBS, then monitoring and analysis of
NFPs become extremely challenging. While we propose metrics, the monitoring and anal-
ysis techniques for such integrated systems do not exist today. This calls for further inves-
tigation in this direction.

5. CONCLUSIONS AND FUTURE WORK

Elastic computing is needed for scaling software services and teamwork efforts. Virtu-
alizing human-based computing and machine-based computing elements under the same
service model will require the development of novel middleware and management mech-
anisms. In this paper, we consider human-based computing elements (HCEs) and dis-
cuss fundamental characteristics of HCEs and how we could integrate HCEs and machine-
based computing elements (MCEs) in order to collectively gather computation capabilities
of both human and machine in a large-scale setting. We discuss techniques to virtualize
HCEs based on the service model to exploit HCE capabilities under different forms of
human-based services (HBS), such as HPS and SCU. By integrating HBS and SBS under
the same SOC concepts, we could model a new computing system that includes a new class
of computing elements with very dynamic and complex properties.

We argue that the service computing model can be used to harness human capability and

ACM Journal Name, Vol. , No. , 20.

18 · Schahram Dustdar and Hong-Linh Truong

Fig. 7. Examples of non-functional properties for SBS and HBS

to integrate their collective intelligence into a complex application. However, we show that
several issues need to be solved in order to achieve this. In this paper we have identified
several research topics. Currently, we are working on a novel programming model for HBS
and SBS and techniques for monitoring and scheduling HBS. Furthermore, we are working
on novel applications that utilize HBS in evaluating quality of simulations and situational
information.

Acknowledgments
We would like to thank several our colleagues and students, Kamal Bhattacharya, Muham-
mad Zuhri Catur Candra, Hoa Khanh Dam, Aditya Ghose, Yike Guo, Lam-Son Le, Frank
Leymann, Vitaliy Liptchinsky, Mirela Riveni, Benjamin Satzger, Ognjen Scekic, and Ros-
tyslav Zaboloznyi for their fruitful discussions in the topics of elastic computing in hybrid
systems.

REFERENCES

2009. Web Services Human Task (WS-HumanTask) Specification Version 1.1. http://docs.oasis-
open.org/bpel4people/ws-humantask-1.1-spec-cd-06.pdf.

2009. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1. http://docs.oasis-
open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf.

2011. Amazon mechanical turk. Last access: 27 Nov 2011.

2011. Seti@home.http://setiathome.berkeley.edu/. Last access: 27 Nov 2011.

BAIRD , H. S. AND POPAT, K. 2002. Human interactive proofs and document image analysis. In Proceedings

ACM Journal Name, Vol. , No. , 20.

International Journal of Next-Generation Computing (IJNGC) · 19

of the 5th International Workshop on Document Analysis Systems V. DAS ’02. Springer-Verlag, London, UK,
507–518.

BAROWY, D. W., BERGER, E. D., AND MCGREGOR, A. 2011. Automan: A platform for integrating human-
based and digital computation. Technical Report UMass CS TR 2011-44, University of Massachusetts,
Amherst. http://www.cs.umass.edu/ emery/pubs/AutoMan-UMass-CS-TR2011-44.pdf.

BREW, A., GREENE, D., AND CUNNINGHAM , P. 2010. Using crowdsourcing and active learning to track
sentiment in online media. InProceeding of the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence. IOS Press, Amsterdam, The Netherlands, The Netherlands, 145–150.

BRILL , E. AND NGAI , G. 1999. Man vs. machine: a case study in base noun phrase learning. InProceedings of
the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics. ACL
’99. Association for Computational Linguistics, Stroudsburg, PA, USA, 65–72.

CHIU , D. 2010. Elasticity in the cloud.Crossroads 16, 3–4.

COHEN, A. 2010. Liveperson api reference: Expert profiles. http://community.liveperson.com/docs/DOC-1009.
Last access: 27 Nov 2011.

DOAN, A., RAMAKRISHNAN , R., AND HALEVY, A. Y. 2011. Crowdsourcing systems on the world-wide web.
Commun. ACM 54,4, 86–96.

DUSTDAR, S. AND BHATTACHARYA , K. 2011. The social compute unit.IEEE Internet Computing 15,3,
64–69.

DUSTDAR, S., GUO, Y., SATZGER, B., AND TRUONG, H. L. 2011. Principles of elastic processes.IEEE
Internet Computing 15,5, 66–71.

GAEDKE, M., GROSSNIKLAUS, M., AND D ÍAZ , O., Eds. 2009.Web Engineering, 9th International Conference,
ICWE 2009, San Sebastián, Spain, June 24-26, 2009, Proceedings. Lecture Notes in Computer Science, vol.
5648. Springer.

GANGADHARAN , G. R. AND D’A NDREA, V. 2011. Service licensing: conceptualization, formalization, and
expression.Service Oriented Computing and Applications 5,1, 37–59.

HAFNER, K. 2007. Silicon valley’s high-tech hunt for colleague. New York Times. http:
//www.nytimes.com/2007/02/03/technology/03search.html?ex=1328158800&en=
e58764b50c8a4508&ei=5090&partner=rssuserland&emc=rss.

KULKARNI , A. P., CAN , M., AND HARTMANN , B. 2011. Turkomatic: automatic recursive task and workflow
design for mechanical turk. InProceedings of the 2011 annual conference extended abstracts on Human
factors in computing systems. CHI EA ’11. ACM, New York, NY, USA, 2053–2058.

L INKED IN. Profile api.https://developer.linkedin.com/documents/profile-api.

L IPTCHINSKY, V., KHAZANKIN , R., TRUONG, H.-L., AND DUSTDAR, S. 2012. A novel approach to modeling
context-aware and social collaboration processes. In24th International Conference on Advanced Information
Systems Engineering (CAiSE’12). Gdansk, Poland.

MARCUS, A., WU, E., KARGER, D., MADDEN, S.,AND M ILLER , R. 2011. Human-powered sorts and joins.
Proc. VLDB Endow. 5, 13–24.

MARKOFF, J. 2011. Armies of expensive lawyers, replaced by cheaper software. http:
//www.nytimes.com/2011/03/05/science/05legal.html?_r=1&adxnnl=1&ref=
science&src=me&adxnnlx=1322516490-gIU31+1mQi19qoeNE3s/Uw.

PAPAZOGLOU, M. P., ANDRIKOPOULOS, V., AND BENBERNO, S. 2011. Managing evolving services.IEEE
Software 28,3, 49–55.

RAN , S. 2003. A model for web services discovery with qos.ACM SIGecom Exchanges 4,1.

SCHALL , D., TRUONG, H. L., AND DUSTDAR, S. 2008. Unifying human and software services in web-scale
collaborations.IEEE Internet Computing 12,3, 62–68.

SKOPIK, F., TRUONG, H. L., AND DUSTDAR, S. 2009. Trust and reputation mining in professional virtual
communities. See Gaedke et al. [2009], 76–90.

TREIBER, M., TRUONG, H. L., AND DUSTDAR, S. 2008a. On analyzing evolutionary changes of web services.
In ICSOC Workshops, G. Feuerlicht and W. Lamersdorf, Eds. Lecture Notes in Computer Science, vol. 5472.
Springer, 284–297.

TREIBER, M., TRUONG, H. L., AND DUSTDAR, S. 2008b. Semf - service evolution management framework.
In EUROMICRO-SEAA. IEEE, 329–336.

ACM Journal Name, Vol. , No. , 20.

20 · Schahram Dustdar and Hong-Linh Truong

TREIBER, M., TRUONG, H. L., AND DUSTDAR, S. 2009. Soaf - design and implementation of a service-
enriched social network. See Gaedke et al. [2009], 379–393.

TRUONG, H. L. AND DUSTDAR, S. 2009a. On analyzing and specifying concerns for data as aservice. In
APSCC, M. Kirchberg, P. C. K. Hung, B. Carminati, C.-H. Chi, R. Kanagasabai, E. D. Valle, K.-C. Lan, and
L.-J. Chen, Eds. IEEE, 87–94.

TRUONG, H. L. AND DUSTDAR, S. 2009b. Online interaction analysis framework for ad-hoccollaborative
processes in soa-based environments.T. Petri Nets and Other Models of Concurrency 2, 260–277.

VOIGT, S., KEMPER, T., RIEDLINGER, T., KIEFL, R., SCHOLTE, K., AND MEHL, H. 2007. Satellite image
analysis for disaster and crisis-management support.IEEE T. Geoscience and Remote Sensing 45,6-1, 1520–
1528.

WALTER, F. E., BATTISTON, S., AND SCHWEITZER, F. 2009. Personalised and dynamic trust in social net-
works. InProceedings of the third ACM conference on Recommender systems. RecSys ’09. ACM, New York,
NY, USA, 197–204.

WU, M., MURESAN, G., MCLEAN, A., TANG, M.-C. M., WILKINSON , R., LI , Y., LEE, H.-J.,AND BELKIN ,
N. J. 2004. Human versus machine in the topic distillation task. In Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval. SIGIR ’04. ACM, New
York, NY, USA, 385–392.

ACM Journal Name, Vol. , No. , 20.

