
Evaluating Contract Compatibility for Service

Composition in The SeCO2 Framework⋆

Marco Comerio1, Hong-Linh Truong2, Flavio De Paoli1, Schahram Dustdar2

1 University of Milano - Bicocca, Milano, Italy
{comerio,depaoli}@disco.unimib.it

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. Recently, the Software-as-a-Service (SaaS) model has been
increasingly supported, becoming a major part of the new emerging cloud
computing paradigms. Although SaaS exists in different forms, support-
ing and providing SaaS developed based Web services has attracted a
large effort from industries and academics because this form of SaaS
allows software to be easily composed and integrated to offer new ser-
vices for customers. Even though various service composition techniques,
based on functional and non-functional parameters, have been proposed,
the issue of service contract compatibility has been neglected. This is-
sue is of paramount importance in the Web services-based SaaS model
because services are provided by different providers, associated with dif-
ferent contracts which are defined by different specifications. This paper
proposes techniques for supporting service composers to deal with the
heterogeneity of service contracts in service composition. We describe a
novel approach for modeling and mapping different service contract spec-
ifications, and a set of techniques for evaluating service contract compat-
ibility. Our techniques consider contract terms associated with data and
control flows, as well as composition patterns. Illustrating scenarios are
proposed to demonstrate the efficiency of our techniques.

1 Introduction

We have recently observed the rise of cloud computing and SaaS as a part of
the cloud computing paradigm [1]. In particular, many providers have provided
SaaS using the Web services model. This form of SaaS has been widely supported
because it enables service composition and integration.

Techniques supporting service composition and integration have been de-
veloped for a long time. It is important that when services are selected and
composed from different SaaS providers, their contracts, which govern how the
services should be used, have to be compatible. We need to support both, users
and tools, to deal with issues related to service contracts. This support is of
paramount importance because how services are used is bound to the service

⋆ This work is partially supported by the European Union through the FP7-216256
project COIN



contract. However, there is a lack of supporting tools to deal with the evaluation
of service contract compatibility, which is actually just one of many open ques-
tions about the relationship between service contracts and service composition
discussed in [2]. Current techniques, such as service license compatibility [3], are
not suitable because they assume that service contracts follow the same specifi-
cation and they do not support service contracts for service compositions. To our
best knowledge, until now, there is no work supporting service contract compat-
ibility that takes into account the heterogeneity of service contract specifications
and different aspects associated with data and control flows of the composition.

In this paper, we present an overview of SeCO2, a novel framework for sup-
porting service composers to deal with the heterogeneity of service contracts in
service compositions. The framework is a part of tools and systems for support-
ing the life-cycle management of the ecosystem of service contracts. Within this
paper we present the following contributions: (i) a novel approach for modeling
and mapping different service contract specifications, and (ii) a set of techniques
for service contract compatibility evaluation. Our techniques consider contract
terms associated with data and control flows, as well as composition patterns.

The rest of this paper is structured as follows: Section 2 elaborates the con-
text, motivation, and related work of this paper. We discuss our approach and
give an overview of SeCO2 in Section 3. We present techniques to achieve the
modeling and mapping of service contract specifications in Section 4. We present
the compatibility evaluation in Section 5. Experiments are presented in Section
6. We conclude the paper and give an outlook to the future work in Section 7.

2 Motivation and Related Work

2.1 Motivation

The main motivation of our work is, in general, how to ensure the compatibility
of service contracts for service compositions. In the current service composition
landscape there is the need to compose different services to provide converged
services. In the SaaS model it is assumed that the service customer uses the soft-
ware deployed as a service. This model allows service providers to combine differ-
ent services, potentially characterizing by different service contracts specified by
different languages. With the techniques developed so far, it is not so difficult for
consumers to compose different services based on published service interfaces.
For example, existing platforms like The Process Factory3 and Boomi4 provide
different connectors for consumers to compose their services from various SaaS
providers. However, the consumers need to ensure that the service compositions
do not include conflicting service contracts. This assurance cannot be given by a
single SaaS provider and currently is not available in existing composition tools.

In the SaaS and cloud computing model, no single specification would be
agreed by all, making the service contract compatibility evaluation hard. Past

3 http://www.theprocessfactory.com
4 http://www.boomi.com



research has neglected contracts of composite services when performing service
composition by considering only functional parameters (service interfaces) or
assume that contracts associated with services being composed are described
by a single language. Furthermore, past research has not focused on tools and
algorithms dealing with contract compatibility evaluation when combining dif-
ferent services from different providers. Typically, they deal with only contract
negotiation between consumer and service in a point-to-point manner.

Service contract compatibility is also strongly dependent on the structure of
composition. This is related to not only control flows but also data flows and
composition patterns. While certain works address QoS-based compatibility for
control flows, currently there is a lack of a good understanding of how to check
contract compatibility for data, the input/output of services, whose contract
terms are not always the same to that of the service operations. We stress that
contract terms associated with the use of service and the use of data are different
and our objective is to address the compatibility for both data and service.

2.2 Related Work on Service Contract Compatibility

As stated in [2], the understanding between a service consumer and a service
provider can be established using different approaches (e.g., policies, licenses, ser-
vice level agreements). Even if some philosophical differences exist among these
approaches, in this paper we identify them under the common term service con-
tract which specifies conditions that a service consumer and a service provider
agree. Besides functional terms, a service contract is composed of the specifica-
tion of Quality of Service (QoS), Business, Service Context and License terms of
a service. QoS terms (e.g., response time) represent technical aspects of the ser-
vice. Business terms (e.g., service price) describe financial terms and conditions.
Service Context terms (e.g., service delivery location) define the characteristics
of the context associated with the service. Finally, License terms (e.g., limitation
of liabilities and usage permissions) state responsibilities among involved parties
and conditions on service usage.

Currently, service contracts can be described using several specifications, such
as ODRL-S [4], WSLA [5], and WSOL [6]. Even though these specifications have
some common parts, there exists no reference ontology/thesaurus for describing
contract properties. This means that service consumers and providers specify
their service contracts as they wish, causing many issues when multiple services
governed by different contracts are utilized (e.g., in a composition). Until now we
are not aware of any work dealing with the definition of techniques to evaluate
the compatibility among contract terms specified in different languages.

The most cited works [7–9] are related to contract-based service composition
and reduce the problem to the evaluation of QoS constraints among composite
services and user requirements. The AgFlow framework [7] evaluates the QoS
of composite services with an extensible multidimensional quality model and
considering the control flow of the service composition. Other examples of QoS-
based composition are in [8] that aims at defining composition rules to evaluate
global values of QoS dimensions according to specific workflow patterns. The



constraint-driven Web service composition tool presented in [9] reduces the ser-
vice composition problem to a constraint satisfaction problem focusing on busi-
ness and process constraints. These works consider only a small set of service
contract terms (i.e., QoS). The evaluation of qualitative properties (e.g., license
terms) are not tackled. Moreover, they assume that property descriptions are
always available and specified using a common language.

3 Overview of The SeCO2 Framework

The objective of the SeCO2 framework is to support service composers to deal
with the heterogeneity of service contracts in service composition. In this paper
we focus on techniques used by SeCO2 to support the modeling and mapping
of service contracts defined using different specification languages and the eval-
uation of the compatibility among these service contracts. Figure 1 provides an
overview of actors and data involved in these activities.

Fig. 1. The SeCO2 Framework

The SeCO2 framework overcomes the heterogeneity in service contract spec-
ifications using the SeCO Reference Ontology containing semantic descriptions
of service contract properties and the Contract term knowledge-base specifying
additional information about these properties. The SeCO Reference Ontology is
built based on the Policy-Centered Metamodel (PCM) [10]. The PCM offers (i)
the concept of Policy that aggregates property descriptions into a single entity
with an applicability condition, and (ii) a set of constraint operators that allows
for the description of both qualitative and quantitative properties.

The SeCO2 framework deals with service contracts specified in different lan-
guages (e.g., ODRL-S, WSLA and WSOL). In this paper we assume that SeCO2

receives these contracts from service providers and we show how it makes them
comparable by wrapping them into SeCO Policies. In order to do this, Language



Experts analyze language specifications and create, modify, update and delete
the knowledge stored in the SeCO Reference Ontology and in the Contract term
knowledge-base. The mapping between ontological concepts and contract-specific
terminologies is defined by Language Experts, Service Providers and Consumers
with mapping rules. In order to define techniques for service contract compatibil-
ity evaluation, the SeCO2 framework supports Domain Experts in the definition
of compatibility evaluation rules by means of the SeCO2 Reference Ontology
and the Contract term knowledge-base. Mapping rules and compatibility eval-
uation rules, as well as the SeCO Reference Ontology and the Contract term
knowledge-base, are shared information for the users. This aspect reduces the
effort for their definition and improves reusability. These rules allow SeCO2 to
receive Service contracts and Composition descriptions as inputs, perform the
wrapping to SeCO policies and verify the compatibility among them.

One of the most innovative characteristics of our framework is how the com-
patibility evaluation is performed. Currently, there is no distinction between
the description of properties related to service usage (e.g., Request Limit) and
properties related to the data produced by the service (e.g., Data Ownership).
This produces ambiguities in service contract specifications. As an example, the
property Price can refer to the amount of money needed for invoking a ser-
vice or it can refer to the amount of money needed for receiving an amount of
data from a service. This distinction is critical for the service contract compat-
ibility evaluation. The SeCO2 framework performs the compatibility evaluation
considering both the control flow and the data flow of the service composition.
Dependencies between each service contract property and control and data flow
are identified and considered during the definition of compatibility evaluation
rules. Furthermore, another characteristics of the service contract compatibility
evaluation performed by SeCO2 is that it is not limited to QoS but it is also
extended to other types of property that can be included in a service contract
like Business, Service Context and License terms. Table 1 shows the influences
between each identified service contract property type and control and data flow.

control flow data flow independent

Quality of Service (QoS) X

Service Context X

Business X X

License X X
Table 1. Data and control flows in contract compatibility evaluation

4 Modeling and Mapping Service Contract Specifications

The first step in order to achieve the service contract compatibility is that we
have to develop techniques to map different service contracts described in differ-
ent specifications and terminologies. In our view, the mapping of service contract
specifications are not a static, but a dynamic process because specifications and
terminologies as well as knowledge about them change over the time.



4.1 Typology of Contract Specifications

Starting from the analysis of ODRL-S, WSLA and WSOL we have identified
three types of languages for the specification of service contract properties:

– Type A: includes languages allowing the specification of predefined properties.
In this type, e.g., ODRL-S, the properties that can be specified are known
by the Language Expert.

– Type B: includes languages allowing the specification of user-defined proper-
ties. In this type, e.g., WSLA, the Language Expert knows only the structure
of the specification but the properties are defined by the Service Provider.

– Type C: includes languages allowing the specification of properties defined in
user ontologies. In this type, e.g., WSOL, the Language Expert knows only
the structure of the specification while the properties are specified by the
Service Provider using external ontologies.

We use the SeCO Reference Ontology for mapping different specifications
and for allowing compatibility evaluation. This ontology is composed of: (i) a
core part containing the specification of common properties (e.g., QoS) and (ii)
a plug-in part that can be enriched by Language Experts with new properties.

Languages in Type A (e.g., ODRL-S) are characterized by profile models
describing all the properties that can be included in a service contract. In this
case, the Language Expert enriches the plug-in part to model all the properties
not included in the ontology. Moreover, the Language Expert can define fixed
mapping rules between properties and ontological concepts.

Languages in Type B (e.g., WSLA) allow new properties to be defined. This
characteristic limits the possibility to perform the modeling and mapping of
properties in these languages into SeCO2 in advance. Thus, interactions to the
Service Providers are still needed when wrapping a concrete service contract
into SeCO policies. However, users of the same domain (e.g., the logistic oper-
ator domain) typically utilize common terminologies, e.g., logistic operator ser-
vice providers utilize the term Shipping Location in their specifications which
has the same meaning of the property Service Delivery Location available
in the core part of the SeCO Reference Ontology. Common terminologies and
domain-specific knowledge are used by Language Experts and Domain Experts
to define customized mapping rules which will reduce the interactions needed
for the wrapping of service contracts.

Languages in Type C (e.g., WSOL) are similar to the ones in Type B but
here the properties are semantically described in external ontologies. Thus, the
possibility to perform the modeling and mapping activities is limited and we
need to define customized mapping rules between concepts in the most common
user ontologies and concepts specified in the SeCO Reference Ontology.

Since contract specifications use different representations, ontology alignment
tools [11–13], which supports mappings between concepts defined in different
ontologies, cannot be used to fully automate the mapping between different
specifications. Furthermore, as the interpretation of contract terms may vary
from different service providers, fully automatically generation of mapping rules



cannot be achieved. However, these tools can support the definition of mapping
rules when we deal with ontology-based specifications. In this paper, we consider
the use of these tools as external activities triggered by the user of SeCO2.

4.2 Modeling and Mapping Service Contract Terminologies Into

the Reference Ontology

When an XML-based profile model defining properties is available (i.e., Lan-
guages in Type A), a set of general rules is used to extract properties from
XML-based specifications and semantically describe them into the SeCO Ref-
erence Ontology. General rules link an XML-structure to a proper PCM-based
description. The same structure can be associated with several rules because
also the nature of the property must be considered. Examples are: (i) the XML-
structure in which an element C1 has a set of sub-elements can be linked to the
InstanceOf-rule that consider each sub-element as possible values assumed by
C1 ; (ii) the XML-structure in which different elements (e.g., C2 and C3 ) have
the same sub-element C1 is linked to the IsA-rule that considers C2 and C3 as
specializations (i.e., sub-concepts) of C1.

To illustrate the above-mentioned techniques, we focus on modeling and map-
ping ODRL-S terminology. Figure 2 shows how general rules can be used to
model ODRL-S properties into the SeCO Reference Ontology. The following
ODRL-S terms [4] are considered: (i) Permission Rights: defines types of uses
of the service, such as Adaptation, Composition and Derivation; (ii) Payment:
describes the financial terms assuming values, such as PrePay and PostPay.

Fig. 2. Modeling ODRL-S properties in the SeCO Reference Ontology

In ODRL-S, Adaptation, Composition and Derivation are sub-elements of
Permission. For this property the ODRL-S Language Expert uses the InstanceOf-
rule to define a new concept Permissions in the ontology which can assume a
fixed set of values (i.e., pcm#hasParameters impliesType PermissionValue)
that are Adaptation, Composition and Derivation. PrePay and PostPay are
super-elements for Payment. In this case the IsA-rule is applied considering them



as specializations of the term Payment. A new concept Payment and two sub-
concepts (PrePayPayment and PostPayPayment) are added to the ontology.

After the modeling of a property in the SeCO Reference Ontology, the Lan-
guage Expert defines a mapping rule between the property and the related onto-
logical concept; the rule is used in the wrapping of service contract specifications
to SeCO Policies. Moreover, the Language Expert stores information into the
Contract term knowledge-base about the influences of the property on the data
and control flows of the composition. This information is used by Domain Ex-
perts for the definition of the related compatibility evaluation rule.

4.3 Wrapping Service Contract Specifications to SeCO Policy

A proper technique for each type of language must be defined to perform the
wrapping from service contracts to SeCO Policy specifications. The wrapping of
specifications in Type A language is directly performed by applying the mapping
rules defined by Language Experts. For what concern specifications in Type B

and Type C languages the wrapping activity may require interactions with the
Service Providers to handle the absence of knowledge (i.e., mapping rules) on
specified properties. The Service Providers must define the mapping between
their properties (i.e., text labels for Type B and ontological concepts for Type

C) and concepts available in the SeCO Reference Ontology.
For what concern specifications in Type B languages, lexical databases like

WordNet support Service Providers to define mapping rules identifying syn-
onyms between text labels and ontological concepts defined in the SeCO Refer-
ence Ontology. Different types of ontology alignment tools can be also used to
support the wrapping of specifications in Type C languages: (i) tools for defin-
ing a mapping between concepts in two different ontologies by finding pairs of
related concepts (e.g., ANCHORPROMPT [11]) or by evaluating semantic affinity be-
tween concepts (e.g., H-MATCH [12]) and (ii) tools for defining mapping rules to
relate only relevant parts of the source ontologies (e.g., ONION [13]).

In this section, we describe a solution for the wrapping of a WSLA specifica-
tion. The procedure used by SeCO2 is the following: (i) parse the specification
in order to detect properties (i.e., SLAParameters); (ii) search the availability
of customized mapping rules related to the detected properties; (iii) if mapping
rules are not identified, use WordNet to identify a possible mapping between the
SLAParameters and concepts available in the SeCO Reference Ontology and ask
confirmation about the correctness of the mapping to the Service Provider; and
(iv) if the mapping is not correct or not available, ask to the Service Provider
to perform the mapping manually.

Figure 3 illustrates the above-mentioned steps when wrapping a WSLA-
based service contract consisting PrePayment = 9.99 Euros and ServiceUsage

= ’’adaptation’’. In this example, a customized mapping rule for PrePayment
is identified. On the contrary, the term ServiceUsage is not known and no rules
are available. Moreover, no synonym relations are specified in WordNet between
ServiceUsage and terms defined in the SeCO Reference Ontology. In order to
handle this absence of knowledge, the Service Provider is asked to navigate the



ontology and map the SLAParameter ServiceUsage to any ontological concept.
The result is the mapping of ServiceUsage with Permissions.

Fig. 3. Mapping between WSLA and SeCO Policy

After this preliminary step, the mapping proceeds considering the Expressions
defined in each Service Level Objective of the WSLA specification. Each
Expression follows the first order logic, including predicates and logic opera-
tors. According to the logic operators, different mapping rules can be applied.
The simplest form of a logic expression is a plain predicate. The mapping to a
SeCO policy includes the following steps: (i) the mapping rule is used to iden-
tify in the SeCO Reference Ontology the concept related to the SLAParameter

specified by the Service Provider; (ii) a new instance of this concept is created.
It must be characterized by an expression having constraint operator and pa-
rameter equals to Type and Value of the Service Level Objective; (iii) a new
SeCO Policy containing the concept instance is created.

In Figure 3, the logic operator ”And” is used to specify the aggregation of
two plain predicates stating conditions on PrePayment and ServiceUsage. The
mapping to a SeCO Policy consists in defining the concept instances related to
all the plain predicates. The final result for the considered example is a SeCO
Policy containing: (i) an instance of Permissions characterized by an expression
stating that the value adaptation is assumed (i.e., pcm#hasOperator hasValue

pcm#all; pcm#hasParameters hasValue adaptation) and (ii) an instance of
PrePayPayment stating that the amount is equal to 9.99 Euros (i.e., pcm#hasOper
ator hasValue pcm#equal; pcm#hasParameter hasValue 9.99; pcm#hasUnit
hasValue euro).

5 Contract Compatibility Evaluation for Service

Composition

The service contract compatibility evaluation supported by the SeCO2 frame-
work accepts a full or part of a full description of service compositions, e.g., the
complete structure of a composite service or a workflow region.



5.1 Contract Compatibility Evaluation Rules

The evaluation of service contract compatibility is based on rules defined for
service contract properties. As described in [10], service contract properties can
be classified into qualitative and quantitative properties. Moreover, as shown in
Table 1, properties can differently influence control and data flows.

Qualitative properties must be evaluated considering the relations stored in
the SeCO Reference Ontology. Examples of compatibility evaluation rules are:

– ”Relation-based” rule: it is applicable to properties assuming values charac-
terized by semantic relations among them. Examples are partnership (i.e.,
values characterized by partOf relations) and subsumption (i.e., values char-
acterized by isA relations). These relations are checked to verify the com-
patibility among values associated to a property.

– ”Compatible value list” rule: it is applicable to properties assuming a small
set of possible values. The compatibility list among these values is stored
into the reference ontology by the definition of isCompatibleWith relations.

Quantitative properties must be evaluated considering the constraint opera-
tors used to specified the offered values. As described in [10], constraint operators
can be binary (e.g., =,≤,≥) or ternary (e.g., range of values). ”Binary operator”
and ”Ternary operator” rules (see [14] for details) evaluate a numeric values in
the range [0..1] stating the degree of compatibility between two offered values
and the overlap between ranges of values respectively.

Property Type Data Flow Control Flow Rule

Service Delivery Location Service Context partnership
Pricing Business X compatible value list
Payment (for data usage) Business X binary, ternary
Payment (for service usage) Business X binary, ternary
Scalability QoS X binary, ternary
Request Limit QoS X binary, ternary
Availability Time Range QoS X ternary
Data Ownership License X compatible value list
Permissions License X subsumption

Table 2. Examples of common rules

Table 2 presents some common rules for the evaluation. We explain some
of them in the following. The Service Delivery Location property is inde-
pendent from data and control flows since its value must be checked in all the
contracts of the services involved in the composition. The compatibility is eval-
uated applying a ”Relation-based” rule focusing on partnership relations (⊒). In
particular, services s1 and s2 are compatible if s1.value ⊒ s2.value or s2.value

⊒ s1.value. For example, let us assume that s1 delivers in the Worldwide,
s2 in Europe and s3 in the US. The following partnership relations are hold:
Worldwide⊒Europe and Worldwide⊒US. Thus, services s2 and s3 cannot be
included in the same composition since their provision is limited to different
geographical area.



The compatibility on Pricing terms in service contracts is checked consid-
ering the data flow. The evaluation is performed using a ”Compatible value list”
rule stating the compatibility among possible pricing models. For example, flat
rate is compatible with pay per use with subscription but it is incompat-
ible with free per use.

The property Scalability is checked considering the composition patterns
included in the control flow specification and applying a ”Binary operator” rule.
For example, assume that service s1 and s2 follow a sequential execution and
that s1 and s2 have Scalability = sc1 and Scalability = sc2, respectively.
Services s1 and s2 are compatible if sc1 ≤ sc2.

5.2 An Algorithm for Contract Compatibility Evaluation

Let S = {s1, s2, · · · , sm} denote the set of services involved in the composition.
Each service is characterized by a service operation associated with one or more
SeCO Policies. Let P (si) = {p1, p2, · · · , pn} indicate the set of policies associated
to service si. Each policy is composed of one or more offered properties. Let
PR(pi) = {pr1, pr2, · · · , prw} be the set of properties offered by policy pi. Each
property is specified by: (i) a name stating the related ontological concept; (ii) a
type defining if the property is CF-inf (i.e., influence the control flow), DF-inf
(i.e., influence the data flow) or F-ind (i.e., flow independent); (iii) an operator;
(iv) a value and (v) a unit of measure.

Let CF (si) = {cf1, cf2, · · · , cfm} denote the control flow where each cfj in
CF (si) specifies the composition pattern between si and sj. Possible values are
sequential, parallel and conditional execution. Let DF (si) = {df1, df2, · · · , dfm}
denote the data flow where each dfj in DF (si) specifies if there is a dependency
in data provisioning between si and sj .

Our service contract compatibility algorithm is listed in Algorithm 1. The
algorithm evaluates the compatibility among all the policies of all the couples of
services available in the composition. Line 3 defines Ω(si, sj) as a set of triples.
Each triple will contain a policy pw associated to si, a policy pz associated to
sj , and the result of the compatibility evaluation λ(pw, pz) among them. The
evaluation of λ(pw, pz) starts in Line 7 defining Υ (pw, pz) as a set of compara-
ble properties [pr1, pr2] specified in pw and pz. Υ (pw, pz) is populated by the
Matching procedure (Line 8) that applies matching rules similar to the ones
shown in [10]. For each identified couple [pr1, pr2] of comparable properties, the
algorithm retrieves the related evaluation rule using the procedure Extract and
specifying the property name (Line 10). As stated above, at this point the eval-
uation proceeds considering the property type. If the property is CF-inf then
procedure EvalRuleF is invoked specifying the retrieved rule, the two compa-
rable properties [pr1, pr2] and the control flow information about the services
si, sj that offer the properties (Line 12). If the property is DF-inf then the same
procedure EvalRuleF is invoked but specifying the data flow information about
the services si, sj (Line 15). Finally, if the property is F-ind then the procedure
EvalRule that does not consider composition flows is invoked (Line 17). The re-
sult of the evaluation is saved in λ(pw, pz) that contains the evaluation of all the



Algorithm 1 Compatibility Evaluation

1: for all si ∈ S do

2: for all sj ∈ S(j 6= i) do

3: Ω(si, sj) = φ where Ω(si, sj) is a set of triples [pw, pz, λ(pw, pz)]
4: for all pw ∈ P (si) do

5: for all pz ∈ P (sj) do

6: λ(pw, pz) = φ, where λ(pw, pz) is a set of triples [pri, prj , result]
7: Υ (pw, pz) = φ, where Υ (pw, pz) is a set of comparable properties [pr1, pr2]
8: Υ (pw, pz) = Matching(pw, pz)
9: for all [pr1, pr2]∈ Υ (pw, pz) do

10: rule = Extract(pr1.name)
11: if pr1.type =′ CF − inf ′ then

12: λ(pw, pz) = λ(pw, pz) ∪ EvalRuleF (rule, pr1, pr2, cfj ∈ CF (si))
13: else

14: if pr1.type =′ DF − inf ′ then

15: λ(pw, pz) = λ(pw, pz) ∪ EvalRuleF (rule, pr1, pr2, dfj ∈ DF (si))
16: else

17: λ(pw, pz) = λ(pw, pz) ∪ EvalRule(rule, pr1, pr2)
18: end if

19: end if

20: end for

21: Ω(si, sj) = Ω(si, sj) ∪ [pw, pz, λ(pw, pz)]
22: end for

23: end for

24: end for

25: end for

comparable properties in pw and pz. Finally, the triple [pw, pz, λ(pw, pz)] is saved
in Ω(si, sj) (Line 21) that contains the evaluation for all the policies offered by
si and sj .

6 Illustrating Scenarios

In order to demonstrate the contract compatibility evaluation techniques pro-
posed in Section 5, we consider a process of purchase data analysis inside a supply
chain management scenario. This process involves multiple services collaborating
with each others: (i) a Request Service (RS) issuing a purchase request; (ii) a
Purchase Processing Service (PPS) managing the standard e-commerce pro-
cess; (iii) a Merchant Validation Service (MVS) verifying and providing data
about a shopping merchant; (iv) a Payment Verification Service (PS) vali-
dating data related to the payment (e.g., the credit card number); (v) Shipping
Evaluation Service (SES) calculating shipping charges and (vi) a Purchase

Validation Service (PVS) analyzing data and validating the purchase. These
services can be composed using different control and data flows. Figure 4 shows
two different possible composition structures.



Fig. 4. Different composition structures for the Purchase Data Analysis service.
.

Let us assume that a service consumer wants to create a Purchase Data

Analysis (PDA) service by composing his/her RS with the following Web ser-
vices: (i) Yahoo! Shopping Web Service5 as MVS; (ii) XWebCheckOut Web Ser-
vice6 as PPS; (iii) Aivea Shipping Web Service7 as SES; (iv) ValidateCreditCard
Web Service8 as PS and (v) DOTS Lead Validation Web Service9 as PVS. For
our experiments, we focus only on service contracts. Thus, let us assume that
these Web services match the functionalities required for the PDA service.

The selected Web services are characterized by service contracts available
only as HTML texts in their Websites (i.e., ODRL-S, WSLA and WSOL specifi-
cations are not available). Moreover, these contracts are unclear, ambiguous and
limited to few information. This forces the service consumer to manually com-
pare them and, often, further information from the service providers are needed.
Modeling and mapping techniques presented in Section 4 are not applicable due
to the absence of structured specifications. In order to overcome this strong
limitation, we produce SeCO Policies using information described in the HTML
texts and inserting realistic properties in case of limited descriptions. These poli-
cies are summarized in Table 3. For each selected Web service, we consider the
properties Service Delivery Location, Pricing and Scalability described
in Section 5. Moreover, we consider Data Ownership (a license term stating how
the data produced by the service are protected) and Request Limit (a license
term defining the maximum number of requests that a user can submit to the
service in a day).

Applying evaluation rules like the ones described in Section 5, the compatibil-
ity evaluation results produced by our SeCO2 framework are given in Figures 5
and 6. The following results must be underlined: (i) incompatibility on Service

Delivery Location is found in both the compositions since the property is inde-
pendent from data and control flows; (ii) incompatibility on Pricing is found in
both the compositions because both are characterized by a data flow from RS and

5 http://developer.yahoo.com/shopping/V1/merchantSearch.html
6 http://www.xwebservices.com/Web Services/XWebCheckOut/
7 http://www.aivea.com/shipping-web-service.htm
8 http://www.webservicex.net/WCF/ServiceDetails.aspx?SID=14
9 http://www.serviceobjects.com/products/composite/lead-validation



Del.Loc. Data Own. Request Limit Pricing Scalability

Request Service (RS) US personal-use unlimited free 100tr/min
Yahoo! Shopping (MVS) Worldwide copyrighted 5000q/day free 100tr/min
XWebCheckOut (PPS) Worldwide free-distrib. unlimited 100$/year 100tr/min
Aivea Shipping (SES) Europe free-distrib. unlimited 49$/month 100tr/min
ValidateCreditCard (PS) Worldwide free-distrib. unlimited free 500tr/min
DOTS Lead Valid. (PVS) Worldwide free-distrib. unlimited free 500tr/min

Table 3. Contracts offered by services involved in the composition

Fig. 5. Resulting compatibility evaluation for Composition a (Figure 4(a))

Fig. 6. Resulting compatibility evaluation for Composition b (Figure 4(b))

PPS; (iii) incompatibility on Request Limit is found in both the compositions
but between different services. This is determined by the different data flows in-
volving MVS; (iv) incompatibility on Scalability is found only in composition

a. This result depends on the different control flows (i.e., in composition a SES
is invoked after PS instead in composition b it is invoked after PPS); (v) in-
compatibility on Data Ownership is found only in composition b. This result
depends on the different data flows (i.e., in composition a MVS data are man-
aged by RS instead in composition b they are managed by PVS).

7 Concluding Remarks

In this paper, we have presented our approach to checking service contract com-
patibility for service compositions. Our SeCO2 framework provides support to
define, update, and share knowledge about service contracts specified by different
specifications. Our work can map different service contracts and determined the
compatibility based on control and data flows, as well as composition patterns.

Our approach is currently tested with ODRL-S, WSLA, and WSOL. There
is no way to automatically determine the typology of a language, thus mapping
rules still involve domain experts. We think that it is inevitable, unless termi-
nologies are well-defined and agreed by all service providers. Currently, we do not
consider the dynamic changes of contracts during the composition. For exam-
ple, when performing the composition, the customer and service providers might
negotiate the contracts, as the contract changes certain steps have to be rerun.



However, currently we consider this change can be solved only by re-running the
compatibility checking. Our future work includes enhancing this dynamic in-
teraction among actors when dealing with service contracts. Furthermore, data
specific contract compatibility will be improved.

References

1. Armbrust, M., Fox, A., Grifth, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. Technical report, University of California at Berkeley
(2009)

2. Truong, H., Gangadharan, G., Treiber, M., Dustdar, S., D’Andrea, V.: On recon-
ciliation of contractual concerns of web services. In: In NFPSLASOC’08 (2nd Non
Functional Properties and Service Level Agreements in SOC Workshop), Dublin,
Ireland (2008)

3. Gangadharan, G.R., Weiss, M., D’Andrea, V., Iannella, R.: ”Service License Com-
position and Compatibility Analysis”. In: ”Proceedings of the International Con-
ference on Service Oriented Computing (ICSOC’07), Vienna, Austria”. (2007)

4. Gangadharan, G.R., D’Andrea, V., Iannella, R., Weiss, M.: ”ODRL Service Li-
censing Profile (ODRL-S)”. In: ”Proceedings of the 5th International Workshop for
Technical, Economic, and Legal Aspects of Business Models for Virtual Goods”.
(2007)

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: ”Web Service Level Agree-
ment (WSLA) Language Specification”. IBM Coporation (2003)

6. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: ”Management Appli-
cations of the Web Service Offerings Language (WSOL)”. Information Systems
30(7) (2005) 564–586

7. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5)
(2004) 311–327

8. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service com-
position using workflow patterns. In: EDOC ’04: Proceedings of the Enterprise
Distributed Object Computing Conference, Eighth IEEE International, Washing-
ton, DC, USA, IEEE Computer Society (2004) 149–159

9. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service
composition in meteor-s. In: Proceedings of the 2004 IEEE International Confer-
ence on Services Computing (SCC 2004). (2004) 23–30

10. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-
Functional Property Descriptions of Web Services. In: Proceedings of the IEEE
International Conference on Web Services (ICWS), Beijing, China (2008)

11. Noy, N.F., Musen, M.A.: The prompt suite: Interactive tools for ontology merging
and mapping. International Journal of Human-Computer Studies 59 (2003) 2003

12. S. Castano, A. Ferrara, S.M.: H-match: an algorithm for dynamically matching
ontologies in peer-based systems. In: Proc. of the 1st VLDB Int. Workshop on
Semantic Web and Databases (SWDB 2003), Berlin, Germany (2003)

13. Mitra, P., Wiederhold, G., Decker, S.: A scalable framework for the interoperation
of information sources. In: Stanford University. (2001) 317–329

14. Comerio, M., De Paoli, F., Maurino, A., Palmonari, M.: ”NFP-aware Semantic Web
Services Selection”. In: ”Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC)”. (2007)


