
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

IEEE Internet Computing
www.computer.org/internet

Unifying Human and Software
Services in Web-Scale Collaborations

Daniel Schall, Hong-Linh Truong, and Schahram Dustdar

Vol. 12, No. 3
May/June 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

62	 Published	by	the	IEEE	Computer	Society	 1089-7801/08/$25.00	©	2008	IEEE	 IEEE	INTERNET	COMPUTING

W
eb

-S
ca

le
 W

or
kf

lo
w

 T
ra

ck Editors : M . Br ian Blake • mb7@george town .edu
Michael N . Huhns • huhns@sc .edu

Unifying Human and
Software Services in
Web-Scale Collaborations

Daniel Schall,
Hong-Linh Truong,
and Schahram Dustdar
Vienna University of Technology

As collaborative Web-based platforms evolve into service-oriented

architectures, they promote composite and user-enriched services. In such

platforms, the collaborations typically involve both humans and software

services, thus creating highly dynamic and complex interactions. However,

today’s collaboration tools don’t let humans specify different interaction

interfaces (services), which can be reused in various collaborations.

Furthermore, humans need more ways to indicate their availability and

desire to participate in collaborations. The Human-Provided Services (HPS)

framework lets people manage their interactions and seamlessly integrate

their capabilities into Web-scale workflows as services. It unifies humans and

software services and supports ad hoc and process-centric collaborations.

W eb services have paved the way
for a new type of collaborative
system. Services let us design

collaborative systems in a modular way
in a distributed environment, adher-
ing to standard interfaces — using, for
example, the Web Services Description
Language (WSDL).1 Users can create
collaborative features by (re)using and
composing Web services. Services al-
ready play an important role in fulfill-
ing organizations’ business objectives
because process stakeholders can de-
sign, implement, and execute business
processes using Web services as well as
languages such as the Business Process
Execution Language (BPEL). Services

have started exploiting the Web and
are increasingly found in Web-scale
collaborations. Web services are tools
that users and developers can reuse in
various applications by exposing well-
defined interfaces and APIs.

The spectrum of collaboration ranges
from process centric to ad hoc collabo-
ration models.2 Process-centric collabo-
ration defines process models and
follows a top-down approach. The busi-
ness analyst or process architect must
fully understand the processes before
modeling and then enacting (instanti-
ating) them. Such models’ reusability
is generally high, because we can apply
process models several times. However,

MAY/JUNE	2008	 63

Human and Software Services

flexibility is rather limited; if changes occur
(such as exceptions), process architects have to
remodel the process. On the other hand, ad hoc
collaboration (for example, situations in which
people or businesses must act spontaneously and
creatively) follows a bottom-up approach. It’s
more flexible but less reusable, because many
aspects depend on the actual players (that is, hu-
mans) involved in the process (see Figure 1).

However, Web-scale collaborations demand a
flexible yet reusable approach because they might
involve numerous people and software services.
Here, we introduce Human-Provided Services,
which you can use in ad hoc or process-centric
collaborations. The HPS framework helps inte-
grate humans into service-oriented infrastruc-
tures, thus promoting reusability and flexibility.

Web 2.0’s Collaboration Landscape
The Web 2.0 paradigm encourages users to col-
laborate and share knowledge and information,
so the Web is no longer a “read-only” informa-
tion repository. Consider Figure 2a, in which User
A publishes Web content using open service-ori-
ented applications. Other Web users can then
consume, aggregate, or filter the content. How-
ever, because the depicted scenario relies purely
on ad hoc interactions, users can’t apply the same
procedure in other collaborations (for example,
to share content including documents, videos,
and photos). In addition, the collaboration isn’t
structured because there’s no interaction link be-
tween the users. This makes it difficult — if not
impossible — to manage interactions that might
span multiple users and services.

Figure 2b shows a process-centric collabo-
ration involving human actors (depicted as hu-
man activity in the process model). An example
of such collaboration might be to model human
interactions in BPEL processes as BPEL4People
activity. However, the applicability of such mod-
els in Web-scale collaborations is rather limited
because you can’t model emerging interactions
between humans and services in advance.

Opportunistic service composition is the
trade-off in loosely structured collaborations
(see Figure 1); you lose high reusability of com-
positions (processes) but gain flexibility in col-
laboration. Web-scale collaboration demands
the composition of complex systems, which
comprise not only interactions between soft-
ware services but also humans as parts of flex-
ible compositions.

Motivating Use Cases
Consider the following motivating scenarios de-
tailing the problems arising in collaborations
involving software services and humans.

Ad Hoc Contribution Requests
In Figure 2a, User A records a video and posts
it on the Web. However, current platforms don’t
let consumers (User B) actively find available
users who can contribute to collaborations by
producing the desired content on demand.

In particular, users should be able to find
any person who can deliver the desired content
using whichever platform (service) has been
chosen to host the Web content. This use case
depends on the activity to be performed and the
involved services but not on the platform being
used to share or host the content.

User-Defined Processes
Continuing the previous use case, the collabo-
ration might involve numerous services and
people. For example, a (software) service should
automatically check the input User A receives
(for example, for file format compatibility) and
convert it into a suitable format if needed. The
requester can then check whether the provided
contribution needs to be revised or re-recorded.

We observe the case in which interactions in-
terleave tasks that humans and software services
perform. However, current systems don’t address
reusability aspects of loosely structured process-
es in such collaboration scenarios, which would
let users (requesters) manage interactions involv-
ing people as well as software services. This sce-
nario targets opportunistic service composition
comprising human and software services.

Interactions with Formalized Processes
It becomes increasingly important to enable
interactions between business processes and
human actors, if human input is required in

Process centric

Flexibility Reusability
Opportunistic

service composition

Ad hoc

Low

High

Figure 1. Flexibility vs. reusability in collaboration.
Opportunistic service composition represents the
trade-off in loosely structured collaborations.

Web-Scale Workflow Track

64	 www.computer.org/internet/	 IEEE	INTERNET	COMPUTING

a process (Figure 2b). However, people are in-
creasingly on the move using different (mobile)
devices for collaboration. So, we must consider
mobility aspects, such as the location and lim-
ited processing power of a user’s mobile devices,
and we must adjust interactions according to the
user’s context. In particular, processes must be
able to find and select the right person available
for performing certain tasks, whereas humans
involved in interactions with business processes
must be able to define (interaction) rules to deal
with requests — for example, to automatically
pre-process certain requests.

However, current systems can’t cope with
human-process interactions that scale to the
Web. They can’t find humans participating in
Web-scale interactions with processes or man-
age interactions involving multiple people.

HPS in Web-Scale Collaborations
We introduce HPS because current systems don’t
sufficiently address the challenges and problems
presented in the motivating use cases (see the
“Related Work in Collaboration Systems” side-
bar). Here, we present the applicability of HPS
in Web-scale collaborations and introduce a
framework to embrace the integration of human
capabilities and interactions in service-oriented
collaborations and Web-scale workflows.

The HPS framework lets people supply servic-
es based on their skills and expertise. HPSs act as
interaction interfaces toward humans, letting us-
ers define various HPSs for different collaborative
activities indicating their ability (and willingness)
to participate in ad hoc as well as process-centric
collaborations. The users can manage their inter-
actions, which might span various platforms and
services. Human actors benefit from HPSs be-

cause they can reuse different services in various
collaborations (such as in different workflows),
thus fostering the reusability of human capa-
bilities. Moreover, HPSs can increase flexibility
in collaborations because they let human actors
provide services that can address problems that
software services alone can’t solve.

The Framework
However, this novel blend of service-oriented ar-
chitectures requires a new platform to let humans
effectively provide services and to efficiently deal
with interactions through HPSs. Current service-
oriented platforms can’t sustain HPSs because

conventional service registries don’t offer
suitable lookup interfaces for finding them,
current platforms can’t enhance service-
 related information by describing the human
characteristics of HPSs as needed, and
current platforms don’t address HPS inter-
action patterns, so they can’t introduce new
service (HPS) interaction patterns to let hu-
man actors efficiently deal with requests.

Figure 3 shows the steps that the HPS framework
takes to address these challenges, illustrating
the scenario for ad hoc contribution requests.

Step 1. Register the profile and service. Human
actors define high-level collaboration activi-
ties (for example, createReport) using an HPS
interface editor that the framework hosts. The
HPS framework automatically translates these
activities into low-level service interfaces de-
scribed in WSDL. User profile information in-
cludes name, skills, and competency, which the
HPS framework uses to enhance the discovery,

•

•

•

Services and
applications Formal process model Web services

Web content

Distributed repositories

Web content

User B: Consumes
shared content

Accepts, �nishes,
and rejects tasks

(a) (b)

User A:
De�nes and

publishes content

Human activity in process
executed using a supporting application

Figure 2. Web-scale collaboration. We can see both (a) ad hoc and (b) process-centric collaboration models.

MAY/JUNE	2008	 65

Human and Software Services

selection, and recommendation process to find
the most suitable HPS. The user specifies ba-
sic personal profile information or uploads this
information as a vCard file. Humans provide a
service by registering it as a personal service.

The HPS scenario in Figure 3 shows an ex-
ample in which humans provide reporter services
to contribute Web content such as news reports.
The middleware hosts a set of XML documents in
the service registry that’s managing the interface
description and personal service information. So,

it’s easier to achieve cross-organizational col-
laboration because companies can share infor-
mation stored in the service registry — the very
foundation of Web-scale workflows. Other people
who want to provide the same type of service
can then reuse the service interfaces.

Figure 3 shows a snippet of the XML de-
scription of a personal service. The description
contains user-related information, a reference
to the service interface description, and infor-
mation regarding the user’s expertise rooted in

HPS middleware

User pro�les

Reporter
HPS interfaces

Repository

Request

Interaction
rules

Request input form:
<category term="/services/reporterservice#WSDL"/>
<content type="application/xml">
<form method="#" action="submitRequest()">
<meta name="service" content=".../reporterservice">
<input type="submit" value="Submit" />
…

Personal services:
<entry>
<author>
 <name>Daniel Schall</name>
</author>
<geo:lat>48.19766</geo:lat>
<geo:long>16.37146</geo:long>
</entry>

News-reporter service:
<entry>
<title>News Reporters</title>
<link rel="alternate"
 type="application/atom+xml"
 href="/atom/newsreporter.xml" />
<summary>News-reporter services.</summary>
</entry>

Generate user interfaces 2.1

Visualize
HPS
information

2.2

Process
request

3.2

3
Client-side scripts
for interaction

3.1
Dispatch
requests

2
Lookup of
human-provided services (HPS)

1
Register
pro�le/service

Requests
can be saved
in XML
repository

Service interface:
<category term="WSDL"
 scheme="http://schemas.xmlsoap.org/wsdl"/>
<link id="wsdl" href="/services/reporterservice/wsdl"
 rel="alternate"
 type="application/wsdl+xml"/>
<content type="application/xml" xml:lang="en">
<mex:Metadata>
<mex:MetadataSection Dialect="...">
<wsdl:definitions xmlns:xs="..." xmlns:wsdl="...">
<wsdl:import namespace=".../reporterservice"
 location="#wsdl"/>
...

HPS interaction:
<entry>
<category term="MetaEPR" scheme="…“/>
<Resource>
 <ResourceElement Namespace=
 ".../reporterservice" />
 <ResourceRef><Reference>
<MetaEPR><ParameterMap>…</ParameterMap>
 <Address>http://{hal}/{uri}/
 reporterservice</Address>...
<mex:Metadata>
 <mex:MetadataSection Dialect="..."/>
</mex:Metadata>...

Personal service:
<entry>
<title>My Reporter Service</title>
<author><name>Daniel Schall</name></author>
<updated>2008-02-24T18:30:02Z</updated>
<link rel="alternate" title="EndpointReference"
 href="http://.../ReporterService"/>
<category term="/services/reporterservice#WSDL"
 schema="..."/>
<content type="xhtml">
<div xmlns=".../acmccs98-1.2.3.xml"> <!--Expertise --></div>
...

Information and interaction �ows
Annotations showing details

Figure 3. HPSs in Web-scale collaborations. This scenario illustrates ad hoc interactions between requesters and HPSs.

Web-Scale Workflow Track

66	 www.computer.org/internet/	 IEEE	INTERNET	COMPUTING

taxonomies. This information is embedded in
Atom feed entries. The Atom Syndication For-
mat is an XML language describing frequently
updated content such as news. Atom feeds con-
tain, for example, author information, links to
content, and summaries. The HPS framework
uses Atom feeds as a container format for WSDL
documents and various content including tax-
onomies describing users’ expertise; additional
context information, such as location (<geo>
tags); and category information to tag services.

The HPS framework supplies the personal ser-
vice hosting environment, which users can down-
load to their desktop computer or mobile devices
using mobile Java technology (JavaME). This
environment lets the computer or device deploy
software for personal services as gadgets. It com-
prises a micro-OSGi environment (www.osgi.org/
osgi_technology/), a set of tools to manage the
gadgets (services), a common lightweight SOAP
library, and a user-interface rendering engine
displaying user interfaces described in XML.

Step 2. Look up a service. HPSs can be discov-
ered through an interface implementing the
Atom protocol model or a Web service inter-
face. Figure 3 shows an example in which loca-
tion and availability information enhance the
discovery process given that requesters might
want to find reporter services located in some
areas of interest. The Atom lookup interface re-
turns a feed containing a ranked list of entries
comprising personal HPS information. It ranks
the services based on various HPS metrics, such
as skill level and user response time.

The lookup returns additional user interface
rendering information — for example, XForms,
which are automatically generated based on
WSDL interfaces (step 2.1 in Figure 3) if human
requesters attempt to interact with HPSs. XForms
are a forms technology expressed in XML that
describe user interfaces in a device-independent
way. For example, the lookup returns interface
rendering information, which can be embedded
in markers of a geographical map (step 2.2).

Step 3. Interact with HPS. Ajax scripts can issue
requests asynchronously toward the middleware
platform. The middleware implements an HPS
Access Layer interface (HAL) to dispatch HPS re-
quests. HAL provides a security module to pre-
vent unauthorized access, policy management to
protect the users’ privacy, and request filtering to

shield HPSs from denial-of-service attacks.
HAL dispatches and routes service requests

to the appropriate HPS and device. The HAL in-
terface description is denoted in Figure 3 as HPS
interaction using Web Services Resource Cata-
log (WS-RC) Meta-Endpoint definitions that are
parameterized by HPS addressing information,
such as user identifiers. (For more on the WS-
RC, see www.ibm.com/developerworks/library/
specification/ws-rc/index.html.) HPSs aren’t
always online, given that the personal ser-
vice hosting environment might be deployed
on mobile devices, which rely on wireless net-
work availability and coverage. If the HPS isn’t
available at the time of interaction, an XML-
based repository can store service requests (see
HPS Middleware in Figure 3) and process them
whenever the HPS is back online (step 3.2).
Pending requests can be received via push- and
pull-based mechanisms depending on the host-
ing environment’s configuration. At this stage,
HAL comprises request processing and routing
capabilities and request filtering. Implementing
security and policy management features is our
current work in progress; we hope to address
such implementation in the next steps.

Ad Hoc Collaboration Example
The example in Figure 3 shows an ad hoc in-
teraction without any means for control or
coordination. We can create tasks to control in-
teractions and to share status information with
the requester. Specifically, we need tasks for in-
teractions between HPSs and processes to deter-
mine whether the HPS will process the requests.
Task states include inprogress, rejected, or fin-
ished. Additionally, actions can be triggered
automatically based on task-state changes such
as sending notifications upon state changes.

Interactions with HPS might be long-
 running conversations comprising a multitude
of messages, possibly in different formats (such
as SOAP/XML, instant messaging, or email),
notifications, tasks, people, and documents. The
HPS middleware implements an XML-based file
system, which provides access to the XML re-
pository and querying and filtering capabilities
through XQuery. To manage complex interac-
tions, users can specify Interaction Rules (see
Figure 3) to create loosely structured (user-de-
fined) processes, which users can then apply
and reuse in various interactions (such as inter-
actions through services).

MAY/JUNE	2008	 67

Human and Software Services

Process-Centric Collaboration Example
Figure 4 employs HPS as part of a formalized
process comprising interleaved human and ser-
vice interactions. It shows a workflow that inte-
grates HPS and software services to respond to
emergency situations by gathering information
and input from various human and software
services. First, the system receives video foot-

age from a monitoring service — a surveillance
system that has cameras deployed to monitor
certain areas of interest. A detection service
processes the image data, detects incidents, and
generates events accordingly. The policy service
receives a stream of events and classifies the
nature of certain events (for example, classify-
ing events as suspicious activities). Events that

Related Work in Collaboration Systems

The first column in Table 1 shows features, or capabilities,
which collaboration systems must support to address the

needs in large-scale collaborations and workflows involving hu-
man and software services.

Human computation aims to leverage human capital in com-
putational processes.1,2 For example, human actors perform
certain tasks in a program. Related to human computation,
shown as human-reviewed data in Table 1, are systems such as
Yahoo! Answers3 (http://answers.yahoo.com) and Amazon Me-
chanical Turk (www.mturk.com), letting people claim and pro-
cess tasks, which human or software requesters can issue.

BPEL4People and the WS-HumanTask specification4 pro-
vide a design for enabling human and process interactions in
Business Process Execution Language processes. Expert finder
systems5 aim to define ontologies that describe the skills and
expertise of people to help others find the right person (ex-
pert) on the Web.

The main differences between the systems shown in Table
1 and Human-Provided Services are that the latter are user-
defined interaction interfaces that people supply and compose
for various collaborations. Compared to concepts in the BPEL-
4People specification, people using the HPS framework decide
which service to provide — for example, for a specific collabo-
ration context — and manage their interactions using HPS in-

terfaces. These interfaces let human and process requesters
interact with HPSs, whereas BPEL4People specifies how the
process architect can involve people in designed processes but
doesn’t specify how and which services people can offer. Thus,
the BPEL4People specification doesn’t let people specify their
contributions as services in Web-scale collaborations; however,
BPEL4People-based processes can interact with HPSs. HPS fol-
lows the Web 2.0 paradigm, in which services are user-driven
contributions rather than tasks tailored to specific processes.

References
L. Ahn, “Games with a Purpose,” Computer, vol. 39, no. 6, 2006, pp. 92–94.

C. Gentry, Z. Ramzan, and S. Stubblebine, “Secure Distributed Human

Computation,” Proc. 6th ACM Conf. Electronic Commerce (EC 05), ACM Press,

2005, pp. 155–164.

Q. Su et al., “Internet-Scale Collection of Human-Reviewed Data,” Proc.

16th Int’l Conf. World Wide Web (WWW 07), 2007, pp. 231–240; http://

www2007.org/papers/paper461.pdf.

M. Amend et al., “Web Services Human Task (WS-HumanTask), Version

1.0.,” Jun. 2007; http://download.boulder.ibm.com/ibmdl/pub/software/dw/

specs/ws-bpel4people/WS-HumanTask_v1.pdf.

I. Becerra-Fernandez, “Searching for Experts on the Web: A Review of

Contemporary Expertise Locator Systems,” ACM Trans. Internet Technology,

vol. 6, no. 4, 2006, pp. 333–355.

1.

2.

3.

4.

5.

Table 1. Related collaborations systems and the features they support.

Feature Human
computation

Human-
reviewed data

Human/process
interactions

Expert finder
systems

Human requesters X X

Process (software) requesters X X X

Interaction-based collaboration No explicit
collaboration link

X

Applicability in Web-scale collaborations X X Enterprise level
collaboration

Ontologies
describing skills

User-defined interactions Defined by
process designer

Context-dependent discovery of humans

Ranking and recommendation of user/service X X

Compositions humans and services

Web-Scale Workflow Track

68	 www.computer.org/internet/	 IEEE	INTERNET	COMPUTING

the policy service can’t classify require human
intervention. Classifying an emergency event
constitutes an additional activity in the process,
which the emergency expert service (that is, an
HPS) performs. The process requires a human to
evaluate the situation. The process accomplishes
this by dynamically discovering a nearby HPS
(user) who can review the situation and provide
desired input for the process.

Although not explicitly shown in Figure 4,
it’s possible to consult multiple HPSs. The process
continues and invokes a notification service to in-
form local authorities (that is, the human opera-
tor) about the incident. The authorities invoke the
emergency response service, which automatically
deploys an emergency response team to the emer-
gency area. The HPS framework’s contributions
in this scenario are that software services and
processes can discover HPSs using information
available in a service registry, including users’
profiles, service-specific information, and context
information. In addition, humans might use mo-
bile devices to interact with processes, which is
increasingly important in today’s collaborations.

T he most promising direction for further HPS
development is the automatic generation of

service interfaces based on user skill and profile
information. At this stage, the users design ser-
vices, specifying collaborative activities, which
the HPS framework translates into XML inter-
face descriptions.

Furthermore, we’re working on methods and
algorithms for analyzing interactions to better
understand complex behaviors in a mixed sys-

tem of human and software services. Based on
a set of HPS-related metrics, including social
aspects and reputation, we rank the services to
help requesters find and interact with the most
suitable HPS. Because HPSs are user-driven
services, we consider unexpected behavior by
modeling the quality of an HPS and rewarding
models, taking into account performance and
reliability aspects in processing tasks and re-
quests. HPS ranking is essential in large-scale
collaborations and workflows because HPSs can
be dynamically discovered, and because poten-
tially a large number of users might provide a
particular service, thus the recommendations
must guide the service selection.

Additionally, we’re working on improving
tools for executing user-defined processes and
for integrating a BPEL4People engine3 to use HPS
in BPEL processes. For more information, see
www.vitalab.tuwien.ac.at/autocompwiki/index.
php/Human-provided_Services.

Acknowledgments
This work has been partially supported by inContext

(FP6-034718).

References
M.P. Papazoglou et al., “Service-Oriented Computing:

State of the Art and Research Challenges” Computer,

Nov. 2007, pp 64–71.

S. Dustdar, “Caramba — A Process-Aware Collaboration

System Supporting Ad Hoc and Collaborative Processes

in Virtual Teams,” Distributed and Parallel Databases,

vol. 15, no. 1, 2004, pp. 45–66.

T. Holmes, M. Vasko, and S. Dustdar, “VieBOP: Extend-

ing BPEL Engines with BPEL4People,” Proc. 16th Euro-

micro Int’l Conf. Parallel, Distributed and Network-Based

Processing (PDP 08), IEEE CS Press, 2008, pp. 547–555.

Daniel Schall is a research assistant and PhD student in the

Distributed Systems Group at the Vienna University of

Technology’s Institute of Information Systems. Contact

him at schall@infosys.tuwien.ac.at.

Hong-Linh Truong is a research scientist in the Distributed

Systems Group at the Vienna University of Technolo-

gy’s Institute of Information Systems. Contact him at

truong@infosys.tuwien.ac.at.

Schahram Dustdar is a full professor of computer science

and head of the Distributed Systems Group at the Vien-

na University of Technology’s Institute of Information

Systems. Contact him at dustdar@infosys.tuwien.ac.at.

1.

2.

3.

Detection
service

Operator

Emergency
expert service

Monitoring
service

Noti�cation service

Emergency response service

Policy
service

Human activity
in process

Figure 4. The workflow for an emergency scenario using HPSs. In
this case, the process involves both humans and software services.

