
Introduction

Tommi Junttila and Jussi Rintanen

Aalto University
School of Science

Department of Computer Science

CS-E3220 Declarative Programming
Autumn 2021

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 1 / 10



Declarative and constraint programming
Imperative programming: how something is done
Declarative programming: declare what a program should accomplish, but not how
Declarative programming is an “umbrella term” covering many paradigms
We’ll focus on constraint programming, where the problem at hand is described with
variables and constraints so that any assignment to the variables that respects the
constraint is a solution to the problem1

The figure below shows a typical flow in constraint programming:
I The problem instance is encoded to a constraint problem instance,
I which is then solved by some highly-optimised constraint solver, and
I a solution to the problem instance is decoded from the solver output

problem
instance

encode
constraint
problem
instance

constraint
solver

constraint
problem
solution

decode solution

1The course could (and perhaps should) be called “constraint programming” but this term historically
refers more strongly to one approach (CSPs, round 3) than to some others (SAT, SMT) that we also cover

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 2 / 10

https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Constraint_programming


Constraint programming is usually applied to intractable, NP-hard or harder, problems
Such problems could be solved with custom backtracking search, too...
but using highly-optimised constraint solvers makes the task easier as one only
declares the constraints and the solver then performs the actual search
Basically, a constraint solver is a tool that
I takes a constraint problem instance as input,
I finds whether the constraints have a solution, and
I outputs such a solution if one exists or “no solutions” if the constraints cannot be

satisfied

Constraint problem:
var int: x;
var int: y;
constraint x < 2y+7;
...

constraint
solver

a concrete solution
or

“no solutions”

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 3 / 10



This course

Constraint problem types covered in this course
I Propositional satisfiability (SAT)
I Constraint satisfaction problems (CSP)
I Satisfiability modulo theories (SMT)

Practice: solving problems with these
Theory: (a glimpse of) how the solvers for these
formalisms work
Applications: Where is all this applied

theory
practice

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 4 / 10



Application 1: Integrated circuits correctness, testing, diagnosis
T. Larrabee: Test pattern generation using Boolean
satisfiability, IEEE CADICS 11(1):4–15, 1992
A. Biere et al.: Symbolic model checking without BDDs,
Proc. TACAS 1999
E. I. Goldberg, M. R. Prasad and R. K. Brayton, Using
SAT for combinational equivalence checking, Proc.
IEEE DATE 2001
J. R. Burch, E. H. Clarke, K. L. McMillan and D. L. Dill,
Sequential circuit verification using symbolic model
checking, Proc. DAC 1990
A. Smith, A. Veneris, M. F. Ali, and A. Viglas, Fault
diagnosis and logic debugging using Boolean
satisfiability, IEEE CADICS 24(10):1606–1621, 2005

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 5 / 10

https://doi.org/10.1109/43.108614
https://doi.org/10.1109/43.108614
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1109/DATE.2001.915010
https://doi.org/10.1109/DATE.2001.915010
https://doi.org/10.1145/123186.123223
https://doi.org/10.1145/123186.123223
https://doi.org/10.1109/TCAD.2005.852031
https://doi.org/10.1109/TCAD.2005.852031
https://doi.org/10.1109/TCAD.2005.852031


Application 2: Product/Software Configuration
Configuration: Choose components based
on requirements and inter-component
dependencies (A requires B; C and D are
incompatible)
Product configuration: cars, all kinds of
machinery, ...
Software package configuration (operating
systems)

T. Soininen and I. Niemelä: Developing a Declarative Rule Language for Applications in
Product Configuration, Proc. PADL 1999
F. Mancinelli et al, Managing the Complexity of Large Free and Open Source Package-Based
Software Distributions, Proc. ASE 2006
P. Trezentos, I. Lynce, A. L. Oliveira, Apt-pbo: solving the software dependency problem using
pseudo-boolean optimization, Proc. ASE 2010

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 6 / 10

https://doi.org/10.1007/3-540-49201-1_21
https://doi.org/10.1007/3-540-49201-1_21
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1145/1858996.1859087
https://doi.org/10.1145/1858996.1859087


Application 3: Planning, Scheduling, Timetabling
Scheduling of courses/classes for schools,
universities
Project scheduling
Production scheduling (manufacturing)
Timetables/schedules for vehicles (trains,
buses, airplanes)
Staff/crew scheduling (airlines, trains, buses)
E.g. an Aalto CS teaching assistant scheduler

P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling: applying
constraint programming to scheduling problems, 2001
Companies and products: Quintiq, IBM ILOG CP Optimizer

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 7 / 10

https://github.com/tjunttila/assistant-scheduler
https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/978-1-4615-1479-4


Application 4: solving mathematical problems

Boolean Pythagorean Triples problem
Is there an n such that in every partitioning of {1,2, ..., n} into two parts, either part
contains three numbers a, b, and c such that a2 + b2 = c2?

In 2017, Heule and Kullmann showed that such n exists: 7825
A 200TB machine checkable proof of this was also produced
Heule, Kullmann, and Marek: Solving and Verifying the Boolean Pythagorean Triples
Problem via Cube-and-Conquer, Proc. SAT 2016
Also see Heule and Kullmann: The science of brute force, CACM 60(8):70–79, 2017
Brakensiek, Heule, Mackey, and Narváez: The Resolution of Keller’s Conjecture, Proc.
IJCAI 2020

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 8 / 10

https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/3107239
https://doi.org/10.1007/978-3-030-51074-9_4


Application 5: Software Model Checking
Test if program satisfies a given property
Safety-critical applications
Concurrency problems in multi-threaded
programs

R. Jhala, R. Majumdar, Software model checking, ACM Comp. Surv. 41(4):1–54, 2009.
L. Cordeiro, B. Fischer, and J. Marques-Silva, SMT-Based Bounded Model Checking
for Embedded ANSI-C Software, IEEE TASE 38(4):957–974, 2011
F. Merz, S. Falke, C. Sinz: LLBMC: Bounded Model Checking of C and C++ Programs
Using a Compiler IR, Proc. VSTTE 2021

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 9 / 10

https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-27705-4_12


Application 6: Software Synthesis

Project at Aalto U since 2016 (AISS research group)
Synthesis of full-stack program code from declarative specifications of software
functionalities
Domain: web apps, information systems, and other UI and DB intensive SW
Specification for a change in the state of an application
I User inputs x1, x2, . . . , xn (any data types)
I Condition Φ(x1, x2, . . . , xn, y1, . . . , yn) on the inputs and data y1, . . . , yn in DB
I Program code to change DB according to the inputs

Constraint satisfaction problem: x1, . . . , xn must satisfy Φ(x1, x2, . . . , xn, y1, . . . , yn)

Automated synthesis of full stack code (DB, app logic, UI functionality) for whole
application

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction CS-E3220 DP / Autumn 2021 10 / 10

https://www.aalto.fi/en/department-of-computer-science/artificial-intelligence-and-software-systems

