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Declarative and constraint programming
@ Imperative programming: how something is done

@ Declarative programming: declare what a program should accomplish, but not how

@ Declarative programming is an “umbrella term” covering many paradigms

@ We'll focus on constraint programming, where the problem at hand is described with
variables and constraints so that any assignment to the variables that respects the
constraint is a solution to the problem’

@ The figure below shows a typical flow in constraint programming:

» The problem instance is encoded to a constraint problem instance,
» which is then solved by some highly-optimised constraint solver, and
> a solution to the problem instance is decoded from the solver output
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"The course could (and perhaps should) be called “constraint programming” but this term historically
refers more strongly to one approach (CSPs, round 3) than to some others (SAT, SMT) that we alse cover
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https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Constraint_programming

@ Constraint programming is usually applied to intractable, NP-hard or harder, problems
@ Such problems could be solved with custom backtracking search, too...

@ but using highly-optimised constraint solvers makes the task easier as one only
declares the constraints and the solver then performs the actual search

@ Basically, a constraint solver is a tool that

> takes a constraint problem instance as input,

» finds whether the constraints have a solution, and
» outputs such a solution if one exists or “no solutions” if the constraints cannot be

satisfied
Constraint problem:
var int: x; 1
. constraint
var int: y; ﬁ ﬁ
constraint x < 2y+7; solver
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a concrete solution
or
“no solutions”
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This course

@ Constraint problem types covered in this course

> Propositional satisfiability (SAT)
> Constraint satisfaction problems (CSP)
> Satisfiability modulo theories (SMT)

@ Practice: solving problems with these

“6@%/

@ Theory: (a glimpse of) how the solvers for these
formalisms work

@ Applications: Where is all this applied
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Application 1: Integrated circuits correctness, testing, diagnosis
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@ T. Larrabee: Test pattern generation using Boolean
satisfiability, IEEE CADICS 11(1):4-15, 1992

@ A Biere et al.: Symbolic model checking without BDDs,
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Application 2: Product/Software Configuration

@ Configuration: Choose components based
on requirements and inter-component

O dependencies (A requires B; C and D are
incompatible)
@ Product configuration: cars, all kinds of
machinery, ...
| —— @ Software package configuration (operating
N CEEEEEE e e systems)

@ T. Soininen and I. Niemela: Developing a Declarative Rule Language for Applications in
Product Configuration, Proc. PADL 1999

@ F. Mancinelli et al, Managing the Complexity of Large Free and Open Source Package-Based
Software Distributions, Proc. ASE 2006

@ P. Trezentos, . Lynce, A. L. Oliveira, Apt-pbo: solving the software dependency problem using
pseudo-boolean optimization, Proc. ASE 2010
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Application 3: Planning, Scheduling, Timetabling

T S @ Scheduling of courses/classes for schools,

~

o universities

@ Project scheduling

@ Production scheduling (manufacturing)

@ Timetables/schedules for vehicles (trains,
buses, airplanes)

@ Staff/crew scheduling (airlines, trains, buses)
E.g. an Aalto CS teaching assistant scheduler

@ P Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling: applying
constraint programming to scheduling problems, 2001

@ Companies and products: Quintiqg, IBM ILOG CP Optimizer
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https://github.com/tjunttila/assistant-scheduler
https://doi.org/10.1007/978-1-4615-1479-4
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Application 4: solving mathematical problems

@ Boolean Pythagorean Triples problem

Is there an n such that in every partitioning of {1,2, ...,n} into two parts, either part
contains three numbers a, b, and ¢ such that a? + b? = ¢??

@ In 2017, Heule and Kullmann showed that such n exists: 7825
@ A 200TB machine checkable proof of this was also produced

@ Heule, Kullmann, and Marek: Solving and Verifying the Boolean Pythagorean Triples
Problem via Cube-and-Conquer, Proc. SAT 2016

@ Also see Heule and Kullmann: The science of brute force, CACM 60(8):70-79, 2017

@ Brakensiek, Heule, Mackey, and Narvaez: The Resolution of Keller's Conjecture, Proc.
IJCAI 2020
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Application 5: Software Model Checking
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@ R. Jhala, R. Majumdar, Software model checking, ACM Comp. Surv. 41(4):1-54, 2009.

@ L. Cordeiro, B. Fischer, and J. Marques-Silva, SMT-Based Bounded Model Checking
for Embedded ANSI-C Software, IEEE TASE 38(4):957-974, 2011

@ F. Merz, S. Falke, C. Sinz: LLBMC: Bounded Model Checking of C and C++ Programs
Using a Compiler IR, Proc. VSTTE 2021
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Application 6: Software Synthesis

@ Project at Aalto U since 2016 (AISS research group)

@ Synthesis of full-stack program code from declarative specifications of software
functionalities

@ Domain: web apps, information systems, and other Ul and DB intensive SW

@ Specification for a change in the state of an application

> Userinputs xq, X2, . .., X, (any data types)
» Condition ®(x1,X2,...,Xn,¥1,-..,Yn) ON the inputs and data y4,...,y, in DB
» Program code to change DB according to the inputs

@ Constraint satisfaction problem: x;, .. ., x, must satisfy ®(xq1, X2, ..., X0, ¥1,---,¥n)
@ Automated synthesis of full stack code (DB, app logic, Ul functionality) for whole
application
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https://www.aalto.fi/en/department-of-computer-science/artificial-intelligence-and-software-systems

