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Twisted vortex states in classical fluids

Figure: http://www.amc.edu.au/research/areas/cavitation/projects/

Stability of a polygon of helical vortices (Okulov 2004)

http://www.amc.edu.au/research/areas/cavitation/projects/
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Previous literature: Hall (1958), Andronikashvili et al (1961),

Glaberson et al (1974), Sonin (1987), Donnelly (1991). . .

→ no mention of twisted vortices!

Taylor-Proudman theorem: ”Any slow motion in rotating fluid is

columnar”



1) Does the twisted state exist?

Hydrodynamic equations

Superfluid velocity vs

∇× vs = 0 except at vortex lines

∇ · vs = 0

⇒ Vortex lines fully determine vs(r, t).

Line velocity vL

vL = vs

Add mutual friction

vL = vs + αl̂× (vn − vs)− α′l̂× [l̂× (vn − vs)] (1)



Continuum model of vorticity

(Hall and Vinen 1956)

vs = 〈vlocal
s 〉

∇× vs = ω

∇ · vs = 0

Line velocity vL

vL = ṽs + αl̂× (ṽn − vs)− α′l̂× [l̂× (vn − ṽs)] (2)

where ṽs = vs + ν∇× ω̂, ν = (κ/4π) ln(b/a).

Alternatively, one can use equation of motion for vs:

∂vs

∂t
= vs × ω + ν(ω ·∇)ω̂ + ∇φ



Uniformly twisted vortex state

Most symmetric state [cylindrical coordinates (r, φ, z)]

vs = vφ(r)φ̂ + vz(r)ẑ,

⇒ vorticity

ω =
1

2
∇× vs =

1

2

[
−v′zφ̂ +

(vφ

r
+ v′φ

)
ẑ
]

Calculate vortex line velocity from (2). For a stationary state the

radial velocity must vanish. This implies

(Ωr − vφ)

(
vφ

r
+

dvφ

dr

)
− vz

dvz

dr
+

ν

|ω|r

(
dvz

dr

)2
= 0.

This implies that the helical vortices rotate together with the normal

fluid, vL = vn = Ω× r.

⇒ There exists a family of stationary, uniformly twisted states.



In a finite cylinder the total axial current must vanish,∫ R

0
dr rvz = 0. (3)

vz

vφ

ε

r

Ωr

Rhelical vortices

The functions vz(r), vφ(r) and the radial

displacement of the vortices compared to

equilibrium state, ε(r), are sketched in the

figure.

The simplest case is helical vortices

with a wave vector Q(r) = constant. This

has

vφ(r) =
(Ω + Qv0)r

1 + Q2r2
,

vz(r) =
v0 −QΩr2

1 + Q2r2
. (4)



Linearized hydrodynamics

Assume general velocity with circular symmetry

vs = vr(r, z, t)r̂ + vφ(r, z, t)φ̂ + vz(r, z, t)ẑ

Assume small deviation from rotating equilibrium.

⇒ waves of the form

vr = ckJ1(βr) exp(ikz − iσt)

vz = icβJ0(βr) exp(ikz − iσt)

Dispersion relation [Glaberson, Johnson and Ostermeier (1974),

Henderson and Barenghi (2004)]

σ

Ω
=
−iα(β2 + 2k2η2)± i

√
α2β4 − 4(1− α′)2k2(β2 + k2)η1η2

β2 + k2

where η1 = 1 + νk2/2Ω and η2 = 1 + ν(β2 + k2)/2Ω.

In order to understand the dispersion, we study special cases.



1) β → 0, corresponds to a short cylinder

⇒ 2 Kelvin wave modes (Hall 1958)

k± = i

√
2Ω± σ

ν

and an inertial mode

ki = 0

At low frequency (σ � Ω) these give just the columnar motion

because Kelvin waves are evanescent. No twisted state.



2) k → 0, corresponds to a long cylinder

⇒ 2 modes
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The point k = σ = 0 corresponds to uniform twist!

At finite k the twist obeys diffusion equation

∂f

∂t
= D

∂2f

∂z2
, D =

1

d

(
2Ω

β2
+ ν

)
(5)

where f(z, t) = vr or vz.



Summary of two opposite limits

Parallel plates

- columnar vortices

Long cylinder

- twisted vortices



2) Generation of twisted vortex states

- superfluid in a cylinder

- cylinder rotating at Ω > Ωc,

but

no vortices in the initial state

- generate vortices at one place

rotating
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inject
a few

vortices 

no
vortices

Ω

- vortices propagate along the

cylinder and

- vortex ends rotate around the

cylinder axis

no
vortices

rotates
at Ω/2

twisted
vortex
state 

Ω

vortex
front



Why vortex ends rotate?

Normal component rotates at vn = Ω× r.

Superfluid component: vortex lines move with the average superfluid

velocity

1) vortex state: vs ≈ Ω× r

⇒ vortex lattice rotates at angular velocity Ω

2) no vortices: vs = 0

3) vortex front

average superfluid angular velocity Ω/2 ⇒ vortex ends rotate at

angular velocity Ω/2

⇒ propagating vortex ends lag behind



Numerical simulation

Vortex line velocity (2)

vL = vs + α′l̂× [(vn − vs)× l̂] + αl̂× (vn − vs).

vs is calculated from Biot-Savart integral. (Risto Hänninen)

The front and the twisted state is confirmed by numerical calculation

movie

http://ltl.tkk.fi/~rhannine/movies/twistT40omega100mradsN23half.gif
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http://ltl.tkk.fi/~rhannine/movies/frontR3mm500mradsT40.mpg


Main observations

- the twisted state has axial current.

- individual vortices become unstable to generate Kelvin waves at

large axial current

- the vortices glide at the bottom plate

⇒ relaxation of the twist

- the relaxation is determined by the diffusion equation.



3) Experiment in superfluid 3He-B

Vortex state was generated as discussed above.

The axial velocity vz affects the texture, which is seen by NMR.
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Conclusions

Twisted vortex state is a possible state in long rotating cylinders.

The twisted state can be generated by vortex injection.

The twisted state has been seen in superfluid 3He-B.

Eltsov et al, Phys. Rev. Lett. 96, 215302 (2006)


