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Recent measurements of dissipative currents in pressure-biased weak links of
superfluid 3He-B are discussed. It is pointed out that the theoretical under-
standing of their results is unsatisfactory. As one candidate model to ex-
plain them, we consider the process of multiple Andreev reflections (MAR).
Connection of MAR to bound quasiparticle states inside ballistic contacts is
discussed. As an explicit example we analyze the current in a short pressure-
biased ballistic 3He-B constriction. It is shown that the dissipative part of
the current does not depend on the spin-orbit rotation matrices.
PACS numbers: 67.57 De, 67.57 Hi

1. PRESSURE-BIASED 3HE-B WEAK LINKS

Flow of superfluid 3He through a weak link under a pressure bias was
recently studied by Simmonds et al.1 The experimentally observed current-
pressure (I − P ) characteristics have thus far been explained only by phe-
nomenological models.1 The problem is that these models lack proper justifi-
cation. For example, one model assumes the existence of A phase inside the
apertures, which would cause dissipation through precession of the l̂ vector
and the associated orbital viscosity. However, the apertures are so small
(with dimensions on the order of the zero-temperature coherence length ξ0)
that the order parameter is strongly suppressed inside them. Thus no iden-
tifiable phase whatsoever is likely to exist there, the A phase included. Pos-
sibly this assumption has its roots in the calculations which have found that
sometimes an A-phase-like state is favored close to surfaces, where it may,
for example, act as a seed for nucleating the A phase from the B phase.2

There also exist earlier measurements of pressure-biased weak links of
3He-B. The authors of Ref. 3 analyzed their results with a model based on
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an assumed analogy between their weak link and a tunneling junction with
a resistor in series. The comparison proved to be difficult. Thus for several
years the behavior of superfluid 3He weak links subjected to pressure biases
has remained somewhat of a mystery. This is rather disturbing, given that
superfluid 3He is generally well explained by theoretical models. While it
is possible that the experimental results involve new, undiscovered physics,
it appears that not all of the pre-existing ideas have been properly tested
either. In what follows we discuss the most obvious one, which by now is
well accepted in the theory of superconductors. Quite surprisingly, to our
knowledge, it has previously not been discussed in the 3He literature.

2. MULTIPLE ANDREEV REFLECTIONS

The equilibrium properties of a weak link in superfluid 3He-B may suc-
cessfully be described in terms of the free energy of the contact, which yields
the so-called current-phase relation (CPR).2 In the case of small “pinhole”
contacts close to the superfluid transition temperature Tc one may even re-
strict to a simple “tunneling model”,4,5 where the CPR is purely sinusoidal,
as though in a tunneling junction. However, for the description of dc currents
in a junction biased by a pressure head P , or chemical potential difference
U = (m3/ρ)P , models based on tunneling junctions are insufficient. This
is because there is a fundamental difference between ballistic contacts and
those with tunneling barriers. In a tunneling contact between two supercon-
ductors, direct currents are mostly due to thermally excited quasiparticles.
Consequently, at low temperatures the currents are very small for biases
below the “gap voltage” U = 2∆. On the other hand, the dc currents in a
ballistic superconducting weak link are determined by the process of multi-
ple Andreev reflections (MAR),6,7 and this may be expected to be the case
in weak links of superfluid 3He-B as well.

Even in an infinitely short constriction there are some localized quasi-
particle states available below the gap (see below). In the MAR process
quasiparticles trapped in these states inside the junction get accelerated
by the local gradient in chemical potential and undergo several reflections
where the quasiparticle is transformed from particle-like to hole-like and vice
versa, gaining an energy 2U on each round. This process continues until the
quasiparticle escapes above the gap or scatters inelastically, having trav-
eled a length comparable with the inelastic mean free path lin. The average
number of reflections is then roughly proportional to the smaller of ∆/U
or lin/(2λ + d), where λ ∼ ξ0 is an average penetration depth for sub-gap
quasiparticles and d is the length of the junction. Since each back-and-forth
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Fig. 1. The bound states ε(k̂, σ, φ) for ↑ and ↓ (σ = ±1) quasiparticles of each
k̂-channel are shifted by ∓χk̂ with respect to the average phase difference
φ. When ε ≈ ±∆, the states “thermalize”, i.e., their occupation returns to
the equilibrium value determined by the bulk superfluids.

round effectively transports two particle-like excitations in the same direc-
tion, this leads to strong dissipative currents even for U � 2∆. In fact, were
it not for the cutoff due to inelastic scattering, the differential conductance
(the slope of the I −P curve) would diverge for small U . In the case of 3He,
the inelastic scattering is due to inter-quasiparticle collisions.

In the “adiabatic limit” U � 2∆, where the phase difference changes
slowly, one may describe the above process in terms of the occupation of
slowly moving bound states as follows.6 Assume a short (d = 0) point contact
between two (l and r) volumes of 3He-B. Counting energies from the chemical
potential of the l side, there is a shift in the r-side chemical potential by
δµr = −U , where U = (m3/ρ)P . This corresponds to a Josephson frequency
ωJ = 2U/~. Neglecting the gap suppression close to surfaces, gap vectors for
momentum direction k̂ are given by ∆l,r(k̂) = ∆eiϕl,r

d̂l,r(k̂), where d̂l,r(k̂) =
Rl,rk̂ and Rl,r are rotation matrices. If, for each k̂, we choose the spin
quantization axis parallel to d̂l × d̂r, the condensates may be divided into
↑↑ and ↓↓ parts, which behave much like two independent s-wave systems.9

Their phase differences over the contact are given by φk̂.σ = φ− σχk̂, where
σ = ±1, φ = ϕr − ϕl = ωJ t, and χk̂ = arccos(d̂l · d̂r). The energies of the
bound states are then given by (cf. Fig. 1)

ε(k̂, σ, φ) = −Sign(k̂z sin(φk̂,σ/2))∆ cos(φk̂,σ/2), σ = ±1 (1)

where the z axis points from l to r. Since φ(t) is growing (φ̇ > 0), these levels
move up or down between the two gap edges and “pump” quasiparticles from
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Fig. 2. Schematic illustration of the formation of a dissipative current of the
↑-quasiparticles in one ±k̂ channel, with k̂z > 0 and χk̂ = 0. We assume
d = 0, although a finite d is drawn for clarity. Panels 1 through 3a describe
the transport between two thermalizations of the bound states of Eq. (1).
Panel 3b shows one alternative outcome, where particles are returned to
thermal equilibrium by intermediate inelastic processes involving other k̂
directions. (This is important at low biases.) The level of gray shading of
the “particles” describes the thermal weight of the process (cf. the particles
“in queue” outside the gap). A difference in average occupation of the ±k̂
states is associated with a net current. At higher temperatures, opposite
processes begin to cancel each other and the current is reduced. The zigzag
trajectory refers to the MAR interpretation of Eq. (6) below.

one side to the other – see Figs. 1 and 2. The signs in Eq. (1) and the figures
are such that (with our conventions) a state moving upward is transporting
a particle with k̂z > 0, since this is the one being accelerated by the gradient
of chemical potential. A particle with k̂z < 0 is being decelerated and hence
moving downward in energy.

3. CALCULATION OF CURRENT

Our mathematical treatment of the MAR current is based on the para-
metrization of the quasiclassical Green functions with the so-called coher-
ence functions γ.8 As shown in Ref. 6, these may be interpreted as Andreev
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reflection amplitudes which have been generalized to account for inelastic
scattering. For homogeneous unitary states the retarded (R) and advanced
(A) amplitudes are given by

γR,A = −∆R,A/

[
εR,A ± i

√
−∆R,A∆̃

R,A − (εR,A)2
]

. (2)

Here εR,A = ε±iΓ1, where the imaginary part Γ1(ε) = Γ1(−ε) is due to inelas-
tic scattering. Using this we may define a lifetime τin = ~/Γ1 and the scatter-
ing length lin = vFτin. These are often assumed to be energy-independent,6,7

but that is not necessary. However, for simplicity we shall neglect strong-
coupling effects on the gap matrix with the assumption ∆R,A(k̂, ε) = ∆(k̂)
= ∆(k̂) ·σiσ2 and continue to ignore its suppression close to surfaces, which
makes (2) valid everywhere. Choosing the spin quantization axes as ex-
plained in the previous section, the ∆l,r and γ

l,r
matrices are diagonal in

spin space (ϕl,r = 0),

∆l,r = ∆

[
−e

−iφl,r

k̂ 0

0 e
iφl,r

k̂

]
, γR,A

l,r
= γR,A

[
−e

−iφl,r

k̂ 0

0 e
iφl,r

k̂

]
. (3)

Here γR,A = −∆/(εR,A ±i
√

∆2 − (εR,A)2) and φl,r

k̂
are the azimuthal angles

of d̂l,r in the plane perpendicular to d̂l × d̂r, which satisfy φi
−k̂

= φi
k̂

+ π.
Using these simplifications we calculate inside the contact the current

IC(t) = π~qCvFN(0)S〈k̂zIC(k̂, t)〉k̂z>0 (4)

where 〈· · · 〉k̂z>0 =
∫
k̂z>0 dΩk̂/4π, S is the area of the contact, and qC = m3

(mass current) or qC = ~/2 (spin current). Assuming IC(t) to be periodic
with the Josephson period TJ = 2π/ωJ , we expand

IC(k̂, t) =
∞∑

k=−∞
Ik(k̂)eikωJ t (5)

such that Ik(k̂) = I∗−k(k̂). For k > 0 we then find

Ik(k̂) =TrC

{
U

π~
δk0 + 2

[
eikχk̂ 0

0 e−ikχk̂

]
P

∫
dε

2π~
tanh(βε/2)

× (1− |γR(ε)|2)
∞∑
l=0

l∏
q=1

|γR(ε− qU)|2
l+2k∏

p=l+1

γR(ε− pU)
}

,

(6)

where C = 1 (mass current) or C = σ (spin current), and we noticed that
χk̂ = φr

k̂
− φl

k̂
. The summation index l runs over the number of Andreev

reflections. We note that while the interpretation related to Eq. (1) was
restricted to the adiabatic limit, Eq. (6) is in principle valid for arbitrary P .
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4. CONCLUSION

For the case of mass current, Eq. (6) is the p-wave equivalent of the s-
wave result presented in Ref. 6. For χk̂ = 0 the results coincide exactly. Thus
we again reproduce the result that the B phase junction with equal spin-orbit
rotations is essentially equivalent with the s-wave system. In addition we
note that the k = 0 term which is responsible for the dc current component
does not depend on χk̂, i.e., the rotation matrices at all. Therefore, at least
within the approximation where gap suppression at surfaces is neglected,
the dc current should be independent of textural configurations, and all the
s-wave results of Refs. 6 and 7 should be applicable. In particular, when τin

is energy-independent, the I − P curve is linear for U � (λ/lin)∆.
Although the above details are not exactly supported by experiments,

the observed magnitudes and temperature-dependences of the currents seem
to be well accounted for. However, space does not permit us a more detailed
analysis here, and a fuller comparison to experiments is postponed until
a more complete calculation has been carried out. Most importantly, one
should take into account the gap suppression, which is always present in a
p-wave superfluid close to surfaces.5 In addition, apertures of finite length d
could be considered. One should also notice that the lifetime of quasiparticles
is in general energy-dependent. Finally, there could be corrections due to
the anisotextural effect,4,5 which is essential for explaining the equilibrium
properties of the aperture arrays used in measurements of Ref. 1. All these
considered, it seems premature to invoke any new dissipation mechanisms
for 3He in a weak link before the MAR process is properly investigated.
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