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Babkin et al have found a small curvature in facets of 4He crystals. As a
possible explanation they consider a model where the curvature arises from
thermally activated defects previously studied by Andreev. We criticize this
model, and suggest that the curving arises from pinning of steps near the
facet edge.

1. INTRODUCTION

The interface between solid and liquid 4He has recently been studied by
Babkin et al.1 By measuring optically the neighborhood of the facet edge,
they made the surprising discovery that the facet appeared to be curved.
The authors also considered various models in order to understand the ob-
servations. In particular, they discussed that the curving may arise from
thermally activated dislocation half-loops terminating to the surface. Previ-
ously Andreev had argued that such defects destroy the equilibrium faceting
of crystals.2,3

The purpose of this letter is to show that the theory presented in Refs.
1-3 suffers from an improper definition of a facet. A more useful definition is
based on the long-range order of the underlying crystal. Because the long-
range order is unaffected by point defects such as dislocation loops, these
defects cannot give rise to any bending of the facet. In order to explain the
observed curving, I suggest that it arises from pinning of steps near the facet
edge.

2. FACETS AND LONG-RANGE ORDER

We study a surface of a crystal parallel to a crystallographic plane. In
equilibrium at zero temperature, such a surface is expected to be atomically
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Fig. 1. A step in the crystal surface associated with a dislocation half ring:
(a) a view on the surface and (b) cross section along the line AB.

smooth and flat. At any nonzero temperature T , there appear defects pro-
portional to the Boltzmann factor exp(−E/kT ), where E is the energy of
the defect. Let us consider a defect depicted in Fig. 1. It has a step of
finite length on the surface. The endpoints of the step are connected by a
dislocation inside of the crystal. It was argued in Ref. 2 that such defects
cause that all equilibrium surfaces are non-faceted at any T > 0. The argu-
ment goes as follows. Between two points A and B one chooses a straight
path on the surface of the crystal. Along this path one tries to identify the
unit cells which may be elastically distorted. One then defines a “growth
displacement” ζ by counting the number of upward steps minus the number
of downward steps. One finds that ∆ζ = ζ(A) − ζ(B) = −1 in the case of
Fig. 1. There will be many such defects on the line AB when the points
A and B are far from each other. Thus one finds a divergent correlation
< [ζ(r)−ζ(0)]2 >∝ r. This was interpreted as evidence that the crystal sur-
face is atomically rough.2 Using similar arguments it was deduced in Ref. 3
that also defects inside of the crystal destroy the facets in equilibrium.

The reason for the failure of the argument above is that ζ is not a proper
quantity to discriminate between a facet and a rough surface. Instead, the
definition of a facet should be based on the long-range order of the underlying
crystal. The long-range order defines crystallographic planes, which are
denoted by shading in Fig. 1b. If most of the atoms at the surface are
nearest to a single crystallographic plane, it is natural to define it as a facet.
In this view the dislocation half-loop is only a localized defect on the facet
because the surface atoms at A and B belong to the same crystallographic
plane in spite of ∆ζ = −1. The theory of the roughening transition considers
the surface only on a long range and all localized defects are already included
in it.4

The long-range order of a crystal is essential to the argument above.
It has been studied some time ago that localized defects do not disturb
the long-range order of a three dimensional crystal.5 More precisely, there
is a long-range order in the crystal for any fixed but statistically relevant
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Fig. 2. Illustration that point defects do not destroy long-range order.

distribution of defects. Although this seems to be common knowledge, we
demonstrate it here by a simple model because it clarifies the argument
presented above.

Let us consider a cubic piece of a crystal, see Fig. 2. In the z direc-
tion it consists of L/a two-dimensional atomic layers, where a is the lattice
constant. The positions of the layers can be defined according to the center
of mass of the atoms belonging to each layer. In thermal equilibrium there
is a density n of defects present. It is convenient to consider an interstitial
atom between two crystal planes, but any localized defect will lead to the
same conclusion. A uniform distribution of such defects leads to an expan-
sion of the crystal lattice relative to a lattice without defects. In order to
determine the fluctuations we consider one extra defect relative to the uni-
formly distributed defects. This obviously increases the distance between
the neighboring layers by a quantity that is inversely proportional to the
area of the layers, ∆u ∝ L−2. The fluctuation in the number of defects is
proportional to the square root of the average number: δN ∝

√
N =

√
nL3.

Thus the total fluctuation in the distance between the top and bottom layers
δL = δN∆u ∝ 1/

√
L. Thus the larger the crystal, the more precisely are

the distances between the crystal planes defined.
A very similar model can demonstrate that thermal fluctuations do not

destroy the long-range order of a crystal. It is also instructive to generalize
these models to 1 and 2 dimensional solids.

3. PINNING OF STEPS

Very accurate studies on the liquid-solid interface of 4He was recently
made by Babkin et al.1 The crystal shape was studied interferometrically in
the center part of the round container shown in Fig. 3. The c facet of the
hexagonal crystal was tilted by a small angle τ with respect to the horizontal
direction. In the slope of the surface they found a clear change, which we
call here the facet edge. The curved surface on the right hand side can
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Fig. 3. Schematic representation of the experiment by Babkin et al:1 (a)
cross sectional side view, and (b) top view. The steps in the facet are shown
by solid lines in (b) and dots denote possible pinning centers.

rather accurately be understood by a surface stiffness that vanishes linearly
with the angle φ = dζ/dx measured relative to the facet plane.6 However,
they found that the surface was slightly convex also on the facet side. The
deviation ζ from a straight facet (not visible on the scale of Fig. 3) was fitted
by an exponential ζ(x) = ζ0 exp(x/x0).

As a possible explanation for the curving of the facet, Babkin et al
suggested a model based on Ref. 2. As I argued in Section 2, this does
not provide a viable explanation. Below I describe an explanation based on
pinning of steps.

Let us consider an elementary step in the facet.7 The force on a free
step is given by f = (ρs − ρl)ga�h, where ρs and ρl are the solid and liquid
densities, g the gravity constant, a the step height, � the length of the step,
and h the depth measured from the horizon (Fig. 3). This gravity force is
very weak near the facet edge. The pinning energy ∆U that is needed to
stop one whole step is on the order of 0.3 K (w/a), where w is the range of
the pinning potential. Thus a few vacancies in the surface might be sufficient
to stop one step.

Suppose the steps jump from one pinned configuration to another by
thermal fluctuations, similar to flux creep in superconductors.8 The proba-
bility to pin a step in a given energy minimum is proportional to exp[(∆U −
wf)/kT ]. This implies that the slope φ = dζ/dx ∝ exp[(∆U − wf)/kT ].
From this we can extract the healing length

x0 =
kT

(ρs − ρl)gτa�w
, (1)

where � is the length of the jumping part of the step.
The main uncertainty in comparing this model with experiments is that

both � and w are poorly known. Anyway, we can estimate x0 ∼ 1 mm in
agreement with experiment. Also, the dependence on temperature is roughly
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right. A difficulty in the comparison arises because the data was originally
analyzed in order to get the surface stiffness, and the raw data on x0 was
no more easily available. Thus only part of the data measured in Ref. 1 is
used here. This consisted only of two values of tilting angle: τ = 0.0121 and
τ = 0.0045 rad, and there was only one data point for the latter value. This
one point is in disagreement with the τ dependence in Eq. (1). For a proper
comparison a reanalysis of the data is needed.

The pinning of steps is also consistent with the observation that the
angle φ on both sides of the discontinuity at the facet edge varies in an
irreproducible fashion.

4. CONCLUSION

A simple model for the curving of facets was presented. It can account
for most of the experimental observations. The major unsolved problem is
the source of the pinning. Vacancies might be too mobile to act as pinning
centers. Some alternatives are other point defects, edge or screw dislocations,
3He impurities and surfaces of the experimental container.
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