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It is my great pleasure to give a talk in this symposium in honor of

Matti Krusius 80 years birthday. His experiments in superfluid 3He,

my collaboration with his group and his guidance has been essential

part of my scientific life since 1980’s.

Through collaboration with Matti I have learned many aspects of the

normal and superfluid 3He liquid. The topic of this talk is one more

example how 3He can be useful for something else. I learned the

topic through study of critical velocity in superfluid 3He. After

discussing the title topic, I will return to how this can be useful for

understanding some aspects of the critical velocity in superfluid

Fermi liquid.



The title of this talk is the difference between semiconductor and

superconductor. This is something we have learned already as physics

students, and we all can list a number of differences between

semiconducting and superconducting materials. They are so different

that it may even sound strange to compare them.

My question is what is the most decisive single difference between

semiconductors and superconductors?

Before going to what I believe is the answer, let us briefly recall

basics solid state physics (see books by Kittel, Ashcroft and Mermin,

Hook and Hall, Simon etc.)



An important quantity in electronic structure of materials is the
dependence of electron energy E on the wave vector k: E(k).

In free electron model E(k) takes the simple form

E =
~2k2

2m
. (1)

Taking into account the potential caused by the crystal lattice, the
dispersion relation becomes more complicated: energy gaps open at
k = πn/a, where a is the lattice constant and n is an integer.
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For simplicity we take k parallel to one crystal axis. In true crystal

the other directions have to be considered as well.

Notice that crystal wave vector k can be limited to the first Brillouin

zone (which is called reduced-zone scheme). Then the levels at the

boundary of the zone look like being discontinuous. This can be

avoided using the extended-zone scheme (as in the figure above).

There one has to remember that the energy levels shifted by

k → k + 2πn/a are not independent, but represent the same physical

electron level. That is, the occupation f(E, k) ≡ f(E, k + 2πn/a).

In a crystal it is natural to describe the electron states in a frame of

reference, where the crystal is at rest. We use that frame here, and

where important to stress it, we call it “crystal frame”



The energy levels are filled with electrons starting from the bottom

and following the Pauli principle. Solids can be divided in three

groups based on the filling of the energy bands.

• Metal: there is one partially filled band (or more).

• Insulator: all bands are either filled or empty. The highest filled

band is separated from the lowest empty band by an energy gap

of several electron volts.

• Semiconductor: like insulator, but the band gap is smaller.



This is as much as we need to know about semiconductors at the

moment. Let us turn to superconductivity.

As the staring point we consider a metal. The figure depicts the

band dispersion near the Fermi surface.
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Here black lines denote occupied levels and the blue lines unoccupied

levels at zero temperature (T = 0). It is also convenient to choose

the Fermi level as the zero of energy, E = 0.



In the superconducting state an energy gap opens at the Fermi

surface.
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This picture looks discontinuous at k = ±kF . Therefore it is useful to

introduce an extended scheme.
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The figure shows extended scheme in the superconducting state

(continuous lines) and in the normal state (dashed lines). The

extended scheme has double representation of each physical level.

The rule for the occupations is f(E, k) ≡ 1− f(−E,−k), as illustrated

by the arrow in the figure. This means that a hole (missing electron)

at a negative energy level is equivalent to an electron at the

corresponding positive energy level of opposite wave vector.



The extended scheme is useful because depending on the need, one

can select different “reduced schemes”. Selecting only positive

energies gives the standard BCS excitation spectrum. Selecting the

part shown in second last picture, one gets simple correspondence

with the free particle dispersion (1). This is also used in connection

of tunneling, where it is called semiconductor model (see Tinkham’s

book). More advantage is to come.



We have seen that both semiconductors and superconductors have an

energy gap that separates the filled states from the empty states at

T = 0. What is the difference that allows dissipationless current only

for the latter?



My answer is that in semiconductors the gap is fixed in the crystal
frame, but in superconductors it can be inclined.
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In semiconductors the gap arises from the crystal lattice and thus is
balanced in the crystal frame.

In superconductors, the gap arises from interaction of electrons.
Although the interaction is mediated by the lattice, the gap is not
necessarily horizontal in the crystal frame. The inclined gap is
equivalent that the rest frame of the electron cloud is moving relative
to the crystal frame: E(k) = E0(k) + ~k · v +O(v2), where v is the
velocity.



Such relative motion does not lead to dissipation. To see that, let us

recall the reason for resistance in normal-state metals. The electric

field drives the electron distribution to one side. The electrons are

scattered by impurities to the empty states of the same energy.
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The electrons between the horizontal dashed lines are scattered to all

directions having empty states. The 1D figure shows only the

opposite direction.



In superconductors the scattering is ineffective because there are no

levels of the same energy because of the energy gap.
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This leads us to interprete that the supercurrent arises from the fact

that there are more filled fermionic levels at k ≈ +kF than at

k ≈ −kF : the black line is longer on the right than on the left hand

side of the figure.



In fact, this interpretation has firm theoretical justification. The
following formula can be derived based on so-called “quasiclassical
theory”. (A better name would be “Fermi-liquid theory of
superconductivity”, Serene&Rainer 1983)

j = evFN(0)
∫
dΩk

4π
k̂
∫ Ec

−Ec
dε

|ε̃|√
ε̃2 − |∆|2

θ(ε̃2 − |∆|2)(φB1 + φB2), (2)

Here e is the electron charge, vF the Fermi velocity,
2N(0) = m∗kF/π

2~2 is the quasiparticle density of states at the Fermi
surface in the normal state.

∫
dΩk denotes integration over the

directions k̂, Ec is a high energy cutoff and θ(x) is the Heaviside step
function. φB1 and φB2 are quasiparticle distributions for particle and
hole type excitations, respectively. They are symmetrized with
respect to energy and in equilibrium they are
φB1 = φB2 = −1

2 tanh (ε/2T ) = f(ε)− 1/2.

Most importantly, ε̃ = ε− a. Here a(k) ≈ α · k̂ gives the inclination of
the gap. For α = 0, the gap is horizontal and with equilibrium
distributions the integrations in (2) give vanishing current. For α 6= 0
a nonvanishing supercurrent is found. The figure above is just the
graphical representation of the formula (2).



A summary thus far:

• The principal difference of superconductor to semiconductor is

that the gap can be inclined in the crystal frame.

• The supercurrent can be interpreted to arise from filled fermion

levels at energies below the inclined gap.



I showed that these results are implicit in the literature from the last
century. I have no doubt that some reserchers have known this for
long. However, I have some indications that this is not widely known:

• In spite of 40 years of research work on
superfluidity/superconductivity I realized this only in recent years

• Edouard Sonin wrote paper on SNS junction [Phys. Rev. B 104,
094517 (2021)] which is in disagreement with well established
results from 1970’s. I wrote a comment (arXiv:2112.07378) but
using concepts presented above. That was a disaster: one referee
partly accepted my view but the other did not understand it at
all. The manuscript is now in appeal stage.

• I have not encountered material presenting the concepts explicitly.
Especially I could imagine that the results could be used in
teaching condensed matter physics, but I have not seen any
teaching material using them. Maybe you know?



The picture above we can used to illustrate several effects. Consider

the case that the inclination of the dispersion is so large that some

states below the gap are lifted to positive energies. At T = 0 the

equilibrium occupations are given by the black lines in the figure.
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We see that the filled states are not balanced, so there can be

supercurrent. This applies, in particular, to anisotropic

superconductors which have nodes in the gap. Although the gap

vanishes in particular k̂ directions , there can supercurrent as long as

the gap persists in some directions.



Drag on an object in superfluid Fermi liquid in T → 0
limit

This problem is related to the one above, but there are important

differences. Instead of the crystal we now have a compact object and

the fermion fluid is not inside but outside.

We study the problem in the rest frame of the object (object frame),

and the fluid is moving past the object at velocity v (to the left).

The quasiparticle dispersion in the fluid is illustrated on both sides of

the object in the figure.

-1.0 -0.5 0.5 1.0

k

-Δ

-2Δ

Δ

2Δ

E

kF
-1.0 -0.5 0.5 1.0

k

-Δ

-2Δ

Δ

2Δ

E

kF

Object



The fermions hit the object more from the right (denoted by arrow).

In the case of the figure above, all empty states are at higher energy

than the filled ones. Thus the object cannot induce scattering and

the drag force vanishes. This is the case at velocities below the

Landau velocity, v < vL,

vL =
∆

pF
(3)



The quasiparticle dispersion in the fluid at supercritical velocity

(v > vL) is illustrated below.

Object
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The quasiparticles in the indicated range (between dashed lines)

hitting the object from the left are scattered to the empty states,

which leads to drag force.



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2

F
/F

n

v/vL

surface layer

far region

near region

flow lines

a quasiparticle tr
ajectory

P

Q

Left: the theoretical drag force on a small object (upper curves) and

for a macroscopic object (lower curves). [Kuorelahti, Laine and T,

Phys. Rev. B 98, 144512 (2018)]

Right: for a macroscopic object one has to take into account the

effect of the flow field in the near region of the object



Object
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The figure illustrates that the modified fluid velocity in the near

region can prevent quasiparticles from colliding with a macroscopic

object and thus lead to reduced drag. We have studied a few models

for the flow field and found the drag indeed is reduced. In spite of

lower drag for macroscopic object, the models we have used are not

able to explain such a low drag as observed in Lancaster [D. I.

Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, C. R. Lawson, G.

R. Pickett, R. Schanen, M. Skyba, V. Tsepelin, and D. E. Zmeev,

Breaking the Superfluid Speed Limit in a Fermionic Condensate, Nat.

Phys. 12, 1017 (2016).]



Summary

• The principal difference of superconductor to semiconductor is

that the gap can be inclined in the crystal frame.

• The supercurrent can be interpreted to arise from filled fermion

levels at energies below the inclined gap.

• These concepts are useful in understanding critical supercurrents

and the drag on moving objects in Fermi superfluids.


