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1. Introduction
These are lecture notes for one 90 minute lecture on
superconductivity and another 90 minute lecture on
superfluidity. These lectures are given as part of
Cryocourse 2019, 8. - 19. September, in Zempĺınska Š́ırava
and Košice, Slovakia. Largely the discussion is standard
that can be found in the references below, but some parts
present also new content. Especially, the presentation of
the pairing state as an avoided level crossing (Sec. 2.3)
and the discussion of the critical velocity (Sec. 3.7) may
not be found elsewhere.

Books on superconductivity

• M. Tinkham, Introduction to Superconductivity
(1975, 1996). Very widely used book. More
experimental view, and therefore not ideal for this
theory course.

• A.L. Fetter and J.D. Walecka, Quantum theory of
many-particle systems (1971). Superconductivity
studied in chapters 10 and 13. The problem is that
most of the microscopic theory is treated using
Green’s functions, which are not used in this course.

• J.B. Ketterson and S.N. Song, Superconductivity
(1999). Just another book.

• A.A. Abrikosov, Fundamentals of the Theory of
Metals (1988). Very extensive book. Half of the book
discusses normal state metals. Derivation of BCS
theory not good.

• P.G. de Gennes, Superconductivity of Metals and
Alloys (1961). Old but still useful.

• K. Fossheim and A. Sudbø, Superconductivity:
Physics and Applications (2004).

• A.J. Leggett, Quantum Liquids, Bose condensation
and Cooper pairing in cond.mat. physics

• Many books on solid state physics include an
introduction to superconductivity, for example N.
Ashcroft and D. Mermin, Solid state physics (AM).

• E. Thuneberg: Superconductivity. Lecture notes for a
course of 26 lecture hours. Available at
http://ltl.tkk.fi/˜ethuneb/courses/scengl.pdf

Books on superfluidity

• A.J. Leggett, Quantum Liquids, Bose condensation
and Cooper pairing in condensed matter physics
(2006).

• T. Guenáult, Basic Superfluids (2003).

• A.L. Fetter and J.D. Walecka, Quantum theory of
many-particle systems (1971). Superfluidity studied
in chapter 14. The problem is that most of the
microscopic theory is treated using Green’s functions,
which are not used in this course.

• I.M. Khalatnikov, An introduction to the theory of
superfluidity.

• References to various properties of superfluid 3He
can be found on the web page
http://ltl.tkk.fi/research/theory/heliumtheory.html

Short content of the course

• Superconductivity

– occurrence and basic phenomenology

– brief history

– microscopic (BCS) theory

– Ginzburg-Landau theory

– Type II superconductivity

– Josephson effect

• Superfluidity

– occurrence

– brief history

– basic phenomenology

– microscopic origin

– hydrodynamics

– rotating superfluid

– phase slips, Josephson effect and critical velocity

– special properties of superfluid 3He
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2. Superconductivity
By superconductivity we mean a phenomenon where the
electrical resistivity of a material disappears below some
temperature.

T0
0

Tc

electric resistance

Occurrence of superconductivity

• several metallic elements : Al, Nb, Sn, (but not in
magnetic metals and in noble metals: Cu, Au, Ag)

• many alloys, e.g. Nb-Ti

• some compounds: Nb3Ge, MgB2, Y-Ba-Cu-O etc.

The temperature below which superconductivity occurs is
called critical temperature, Tc. The list gives some critical
temperatures.

material Tc (K) µ0Hc(T = 0) (mT)
Al 1.196 9.9
Hg 4.15 41
In 3.40 29.3
Pb 7.19 80.3
Nb 9.25

Nb3Ge 23
MgB2 39

YBa2Cu3O6+x 98
Tl2Ca2Ba2Cu3O10 125

2.1 Basic properties

Infinte conductivity

In normal state metals the electric current j is
proportional to the electric field E:

j = σE. (1)

If σ →∞ then E → 0. Maxwell’s equation

∇×E = −∂B
∂t

(2)

then gives that the magnetic field B is constant. Let us
apply this to the case that a superconductor is cooled
below Tc while B = 0. When the field is switched on, it
will not penetrate into the superconductor.

cooling

in zero field

then the field

is switched on

Meissner effect

A more fundamental phenomenon than infinite
conductivity is seen when a normal state metal is first
placed in magnetic field, and is then cooled into the
superconducting state. It is observed that the magnetic
field is expelled from the sample. This is called Meissner
effect.

normal state

metal in field

then cooled 

below Tc

Thus the fundamental property is that the magnetic field
is zero inside a superconductor. (Not only constant, as
would follow from infinite conductivity.)

Critical field

The Meissner effect is observed only if the field is not too
large. Let us for simplicity consider a thin bar sample
that is parallel to the field. (In this case the magnetizing
field H is constant.) It is observed that a transition
between superconducting state and normal state takes
place in critical field Hc, whose dependence on
temperature is approximately

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]
. (3)

supercon-

ducting state

normal state

T

Tc

Hc(0)

H

Material showing this behavior are called type I
superconductors.
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Some superconducting materials have a mixed state
between Meissner and normal states. These are called
type II superconductors.

normal state

mixed state

Meissner state T

Tc

Hc2

Hc1

H

Hc

Persistent currents and flux quantization

Let us place a normal state ring in perpendicular
magnetic field. When it is cooled below Tc, the magnetic
field is expelled form the inside of the superconductor,
but a magnetic flux through the ring remains. When the
external field is removed, this flux remains unchanged.
Thus a persistent current I is induced in the
superconducting ring that generates the magnetic field B.
In addition, the magnetic flux Φ =

∫
da ·B through the

ring is quantized: it is an integer multiple of the flux
quantum

Φ0 =
h

2|e|
= 2.07× 10−15 Wb. (4)

Here h is Planck’s constant and e the charge of an
electron. [Because e < 0, the absolute value is taken in
(4).]

B

I

Specific heat

T

C
Cs

Cn

0 Tc

The transition between normal and superconducting
states is also seen in thermodynamic properties. The
specific heat has discontinuity but no latent heat (in zero

field). This kind of change of state is called second order
phase transition. In the normal state the specific heat is
linear at low temperatures. In superconducting state the
specific heat is exponential when T → 0:

Cs ∝ exp

(
− ∆0

kBT

)
. (5)

This can be understood so that there is an energy gap ∆0

between the ground state and the lowest excited states.
This gap is somewhat less than 2kBTc in most
superconductors.

Isotope effect

Different isotopes of the same element have difference in
Tc, which depends on the ion mass M approximately as

Tc ∝M−1/2. (6)

This can be used to deduce that the motion of the ions is
important for superconductivity.

2.2 History

• 1911 H. Kamerlingh Onnes finds superconductivity
in mercury

• 1933 Meissner effect

• 1935 London theory

• 1950 Ginzburg-Landau theory

• 1957 Bardeen-Cooper-Schrieffer theory

• 1957 theory of type II superconductivity

• 1962 Josephson effect

• 1986 Bednorz and Müller find “high temperature
superconductors”

• 1999 Superconducting qubit

2.3 Microscopic theory
The superconducting state results from interactions
between a large number of particles. The standard way to
represent this many-body state is to make so-called
anomalous Hartree-Fock approximation to the many-body
Hamiltonian and then diagonalize it with a Bogoliubov
transformation. Alternatively, a more general justification
could be achieved using Green’s functions and
Fermi-liquid theory (so-called quasiclassical theory).
Instead of reproducing these, we present here a simple
picture of the superconducting state, which (hopefully)
allows physical insight with less formalism.

Normal state metal
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The properties of metals are more thoroughly studied in
courses on condensed matter physics. Here we only
consider a very simplified model of a metal, which still is
sufficient as a starting point for understanding basic
properties of superconductivity.

We assume that there are conduction electrons, which can
move freely like ideal gas through the metal. We assume
that the rest of the electrons called valence electrons are
bound to the atomic nuclei so that they do not contribute
to the electric conductivity. The kinetic energy εk of a
conduction electron depends on the wave vector k. In the
simplest case this dependence has the same form as for a
free particle,

εk =
h̄2k2

2m
. (7)

Here m is the effective mass in the conduction band. The
momentum of an electron in this simple model is p = h̄k.
At T = 0 the levels with k smaller than the Fermi wave
vector kF are filled. In energy the levels are filled up to
the Fermi energy εF = h̄2k2

F /2m.

ħ2k2

2m
=

k

εF

kF

kε

The Fermi energy εF in a typical metal is on the order of
a few eV. In superconductivity the typical temperature is
T ∼ Tc a few kelvin. The corresponding thermal energy is
kBTc ≈ 10−4 eV. Thus there are two very different energy
scales, kBTc/εF ∼ 10−4. We will discuss below that
superconductivity concerns the electrons only in this tiny
shell around the Fermi surface.

kx

kF

ky

Since we are only interested in the neighborhood of the
Fermi surface, we can approximate the electron energy
(7) by

εk = εF + h̄vF (k − kF ), (8)

where vF = h̄kF /m is the Fermi velocity.

Ideas about superconductivity

Materials can be studied on two very different scales:

• atomic scale. Quantum mechanics is essential. There
is no friction.

• macroscopic scale. Material is described by laws of
classical physics (e.g. theory of elasticity). Friction is
essential.

The phenomena on atomic scale are not usually visible on
the macroscopic scale. The reason for this is that
macroscopic bodies consist of enormously large number of
particles (∼ 1023). The different particles are in general in
different quantum levels, and only the average of them is
visible. Friction is needed because it is not possible to
take into account the motion of individual particles.

Idea: Superconductivity is an exception to the rule above:
it is a quantum phenomenon that is still preserved on a
macroscopic scale.

How is this possible? As a simple example, let us consider
ideal Bose gas. At zero temperature its distribution
function reduces to the form

f(ε) =

{
N lowest level (εi = ε0)
0 other levels (εi > ε0).

(9)

Also at finite temperatures below so-called Bose
condensation temperature, the occupation of the lowest
level N0/N > 0, whereas for all other levels fi/N → 0
when N,V →∞. It is expressed by saying that the wave
function of the lowest level becomes macroscopic wave
function because a macroscopic number of particles is in
the same level.

It can be said that the superfluid phases of alkali atom
gases and 4He liquid are based on Bose condensation.
These superfluids will be discussed more in the second
part of these lectures.

Electrons are fermions. One can put only one fermion into
a single level. Thus the discussion above as such cannot
explain the superconductivity of metals.

Let us study the wave functions of spin- 1
2 fermions. The

wave function φ(rσ) of a single particle, which we call a
level, depends on the location r and on the spin index
σ = ± 1

2 . In general form the Pauli exclusion principle says
that the wave function has to be antisymmetric in any
exchange of two electron coordinates. For a two-electron
wave function Ψ(r1σ1, r2σ2) this requirement is

Ψ(r1σ1, r2σ2) = −Ψ(r2σ2, r1σ1). (10)

Starting from an arbitrary function ψ0(r1σ1, r2σ2), one
can always by antisymmetrizing construct a function that
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satisfies this condition:

Ψ(r1σ1, r2σ2) = ψ0(r1σ1, r2σ2)− ψ0(r2σ2, r1σ1). (11)

Thus the pair state formed from two levels φ1 and φ2 has
the wave function

Ψ(r1σ1, r2σ1) = φ1(r1σ1)φ2(r2σ2)− φ1(r2σ2)φ2(r1σ1),
(12)

so called Slater determinant. We see immediately that
this vanishes, Ψ ≡ 0, if the levels are the same: φ1 = φ2.
Thus two fermions cannot be placed into the same level.

In case of many particles, the antisymmetry is required in
any pairwise exchange of the coordinates of two particles

Ψ(. . . , riσi, ri+1σi+1, . . . , rkσk, . . .)

= −Ψ(. . . , rkσk, ri+1σi+1, . . . , riσi, . . .) (13)

Idea: fermions form pairs.

ψ0(r1σ1, r2σ2, r3σ3, . . .) = φ(r1σ1, r2σ2)×
φ(r3σ3, r4σ4)φ(r5σ5, r6σ6) . . . , (14)

All pair states are the same!. This function does not
vanish in antisymmetrization as long as the pair function
is antisymmetric,

φ(r1σ1, r2σ2) = −φ(r2σ2, r1σ1). (15)

In exchanging pairs one gets the factor (−1)2 = 1,
similarly to bosons.

Pair state

Consider a pair of particles. Assuming the pair is at rest,
the wave function can depend only on the relative
location r1 − r2, not on the center of mass coordinate
r = 1

2 (r1 + r2). We also assume the spin state is a singlet,
1√
2
(↑↓ − ↓↑), which is believed to be the case in most

superconductors. Thus

φ(r1σ1, r2σ2) = ψ(r1 − r2)
1√
2

(↑↓ − ↓↑). (16)

If we now look the orbital part ψ in k space, we see that
it is a superposition of states, where, if one particle is in
state k, the other is in the opposite state −k:

ψ(r1 − r2) =
∑

k

cke
k·r1e−k·r2 (17)

This is understandable because the pair is assumed to be
at rest, and therefore the total momentum should vanish.

A special case of the pair state (17) is that ck vanishes for
all wave vectors except one, say k = k0. Such a state,
which describes two fermions with wave vectors k0 and
−k0, is an energy eigenstate if there is no interaction
between the particles. In the presence of interaction, the

two particles will collide and scatter to some other wave
vectors k1 and −k1. These then scatter to wave vectors
k2 and −k2, and so on. Thus the energy eigenstate in the
presence of interactions is a coherent superposition of
opposite wave-vector states as in (17) with many
non-vanishing ck’s.

Let us look the pair state from the point of a fixed single
k = k0. The states included in (17) are |1, 1〉 and |0, 0〉.
Here the two numbers mean the occupation of levels with
wave vectors k0 and −k0, respectively. The presence of
|0, 0〉 state means that the particles are scattered into
some other wave-vector states leaving the levels k0 and
−k0 empty. In order to have complete basis states for
wave vectors k0 and −k0, we also need states |1, 0〉 and
|0, 1〉. These mean states where only the former or the
latter level is occupied, repectively.

Let us study the energies of the states |0, 0〉, |1, 0〉, |0, 1〉
and |1, 1〉. These contain different number of particles.
The standard method to deal with such a case is to
connect the system with a particle reservoir. An ideal
particle reservoir can store particles at a constant energy.
The energy µ is called chemical potential. In the free
electron model (7) µ is equal to εF at T = 0.

We can now calculate the energies four states in the
absence of interactions. It is convenient to choose µ as
zero of energy, and to express other energies relative to
that. We get

|0, 0〉 : E = 0

|1, 0〉 : E = ξk

|1, 0〉 : E = ξk

|1, 1〉 : E = 2ξk (18)

where ξk = h̄vF (k − kF ). The energies are illustrated in
the figure as function of k.

E

k
|0,0>

|1,0> and |0,1>

|1,1>

kF

It is obvious that the system ground state consist of
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states |1, 1〉 at k < kF and of states |0, 0〉 at k > kF . This
is the Fermi sphere of noninteracting particles.

Let us then consider what happens when the attractive
interaction is switched on. As discussed above the
formation of pair state leads to coupling between different
momentum states, and this leads to coupling of states
|1, 1〉 and |0, 0〉. It is a standard problem in quantum
mechanics that such a coupling leads strongest mixing of
the states when the unperturbed energies are close to
each other. In the present case this happens just at the
Fermi surface (k = kF ), where the states |1, 1〉 and |0, 0〉
are degenerate in the absence of interaction. This leads to
the avoided crossing, which is a common phenomenon in
quantum mechanics (or in any wave theory).

E

k
|0,0>

|1,0> and |0,1>

|1,1>

kF
|0,0>

|1,1>

a|1,1>+b|0,0>

b|1,1>-a|0,0>

The ground state (blue in the figure) is now a
superposition of states |1, 1〉 and |0, 0〉. However, deep
inside the Fermi sphere (k � kF ) it is to a good
approximation |1, 1〉, and far outside (k � kF ) it is to a
good approximation |0, 0〉, as in the normal state. Thus
pairing only changes the electron state near the Fermi
surface, k ≈ kF . But this is just the region that is
essential for transport properties at low temperatures.

In addition to the superconducting ground state, the
picture above gives also the elementary excited states.
Namely, the lowest energy exited state is to break the
pair a some k and replace it by state |1, 0〉 or |0, 1〉. The
excitation energy is just the energy difference between the
green and blue lines in the figure above. The excited pair
states (red in the figure) correspond to double excitation
at the same k. The excitation energy of the elementary
excitations is replotted in the figure below.

E

k
kF

particle-like
excitations

hole-like
excitations

Δ

We see that there is minimum of the excitation energy. It
is called the energy gap and denoted by ∆. This is in
contrast to excitations in the normal state which have no
gap (shown by dashed line).

The formation of the paired state requires attractive
interaction. In most superconductors, the attractive
interaction comes from coupling of electrons to lattice
vibrations (phonons). In order to a material to be
superconducting, this attractive interaction must be
stronger that the direct Coulomb repulsion between the
electrons. Whether this is the case or not, depends on the
detailed structure of the material, which is difficult to
predict theoretically.

Also repulsive interaction causes scattering between the
wave vector states. This, however, does not lead to
formation of a paired state. Instead, it turns the ideal gas
into a Fermi liquid, where, for example, the effective mass
is modified.

The formation of excitations limits the number of the
wave vectors k that contribute to the pair state (17).
With increasing number of excitations the pair state is
suppressed, leading to reduced ∆. With increasing
temperature, the energy gap vanishes at Tc, and the
system transits to the normal state. The temperature
dependence is shown in the figure, calculated in the limit
of weak pairing interaction (weak coupling
approximation).

T

Tc

∆

kBTc

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

The excitation spectrum with the energy gap and its
temperature dependence gives explanation of the specific
heat, as mentioned in the introduction. The energy gap
also explains the infinite conductivity. (We return to this
topic in section 3.7.)
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Let us look at the excitation in more detail. For wave
vectors far above the Fermi surface, k � kF , the
elementary excitation corresponds to one more particle to
the ground state (|1, 0〉 or |0, 1〉 compared to |0, 0〉). For
wave vectors deep inside the Fermi surface, k � kF , it is
the opposite: the excited state has one particle less than
the ground state (|1, 0〉 or |0, 1〉 compared to |1.1〉). For
this reason, the excitations at k > kF are called particle
like, and the excitations at k < kF are called hole like.
The figure illustrates the behavior of excitation |1, 0〉 as a
function of k.

k

kF

The propagation velocity of the excitations can be
computed by the group-velocity formula

v =
1

h̄

dE

dk
, (19)

(remembering that the angular velocity ω = E/h̄ in
quantum mechanics). We see that the velocity is in the
direction of the momentum for particle-type excitations
and in the opposite direction for a hole-type excitation
This holds for both |1, 0〉 and |0, 1〉 excitations. The only
difference is that the momentum of |1, 0〉 excitation is h̄k
and the momentum of |0, 1〉 excitation is the opposite,
−h̄k. Note that the momentum depends only weakly on
the magnitude k, because a particle moving in one
direction and a hole moving in the opposite direction
have nearly the same momentum at k ≈ kF .

Andreev Reflection

An interesting process taking place in inhomogeneous
superconductors is Andreev reflection. Consider the
interface between a normal state (N) and a
superconducting state (S) of a metal. Consider a particle
type excitation on the normal side approaching the
interface. Assume that the excitation energy is smaller
than the energy gap on the superconducting side, ξk < ∆.
In this case the excitation cannot continue to the
superconducting side since there are no states at the same
energy. What can happen is that the excitation forms a
Cooper pair in the superconductor. But a Cooper pair
needs two electrons. This means that a hole-type
excitation is created at the interface and its velocity v is
opposite to that of the initial particle excitation. The
extra Cooper pair is depicted by a circled pair of dots in
the figure.
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k

k

E

kkF

E

kkF

v

N S

Energy and momentum are conserved in the process. The
momentum change of the excitation is small, ∆p� pF , in
contrast to usual reflection (from a potential barrier or
impurities), where the momentum change is on the order
of pF . Note that the reflection direction differs from
specular (=mirror like) reflection, where only the normal
component of the velocity changes sign. To emphasize
this, Andreev reflection is called retroreflection. Andreev
reflection appears predominantly when the contact
between the metals is good. The opposite case of a weakly
transmitting contact is discussed later in Sec. 2.6.

2.4 Inhomogenous states
In the previous section we assumed the pairs to be at
rest. In many situations we also need to consider more
general cases, where the pair wave function depends on
the location of the pair. That is, instead of (16), we have

φ(r1σ1, r2σ2) = Ψ

(
r1 + r2

2

)
ψ(r1 − r2)

1√
2

(↑↓ − ↓↑).

(20)
The new quantity here is Ψ(r), which describes the center
of mass of the pair. Because its macroscopic character, it
is often called the order parameter. The simplest
approach in the case of nontrivial Ψ(r) is to use
phenomenological theories, such as the London theory, or
the Ginzburg-Landau (GL) theory.

The GL theory can be derived as a special case of the
more general Fermi-liquid theory of superconductivity. It is
valid at temperatures close to the transition temperature,
T ≈ Tc. In this region Ψ is assumed to be small. Thus the
free energy density f = F/V can be written as Taylor
series in Ψ and Ψ∗ (the complex conjugate),

f = f0 + α|Ψ|2 +
1

2
β|Ψ|4 + . . . . (21)

The terms appearing here are restricted by the fact that
Fs has to be real valued for arbitrary complex valued Ψ.
Therefore, the term cΨ cannot appear. Instead, Ψ has to
appear in product with Ψ∗: Ψ∗Ψ = |Ψ|2. Also the term
cRe Ψ is not accepted. The reason is that we require Fs
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to remain unchanged in the transformation Ψ→ eiφΨ,
where φ is a real-valued constant.

The expansion (21) is incomplete because nothing in it
prevents a spatial dependence Ψ(r). Such a spatial
dependence can be limited by adding a term |∇Ψ|2 that
increases the energy of inhomogeneous states. However,
also this is unsatisfactory in the case of a nonzero
magnetic field. The magnetic field B can be described
with a vector potential A:

B = ∇×A. (22)

The real momentum mv = p− qA. Here p is a canonical
momentum, which in quantum mechanics is replaced by
the operator h̄

i∇. Analogously to this, GL chose the
additional energy term to be

γ

∣∣∣∣
(
h̄

i
∇− qA

)
Ψ

∣∣∣∣
2

, (23)

where q turns out to be the charge of an electron pair,
q = 2e. Let us take into account also the energy density of
the magnetic field in the sample

1

2µ0
B2. (24)

In this way we obtain the total energy in
Ginzburg-Landau theory as

F = F0 +

∫
d3r f,

f = α|Ψ|2 +
1

2
β|Ψ|4 + γ

∣∣∣∣
(
h̄

i
∇− qA

)
Ψ

∣∣∣∣
2

+
1

2µ0
B2. (25)

Often one wants to study a system in a given external
magnetic field. Then, instead of F , on should minimize G,
in this case

G = F −
∫
d3rH ·B. (26)

Let us still write the G in GL theory in its full form

G = F0 +

∫
d3r g,

g = α|Ψ|2 +
1

2
β|Ψ|4 + γ

∣∣∣∣
(
h̄

i
∇− qA

)
Ψ

∣∣∣∣
2

+
1

2µ0
B2 −B ·H. (27)

GL differential equations

In equilibrium the free energy must be minimized. In a
given external field one must thus minimize G (27) both
with respect to Ψ and to A. {In minimizing with respect
to Ψ the independent variables [e.g. (Re Ψ, Im Ψ) or

(|Ψ|, arg Ψ)] can be chosen arbitrarily. The shortest
calculation follows by treating Ψ and Ψ∗ as independent
variables.} Let us leave the minimization as an exercise.
As a result we obtain the GL differential equations

γ

(
h̄

i
∇− qA

)2

Ψ + αΨ + β|Ψ|2Ψ = 0, (28)

1

µ0
∇×B =

qh̄γ

i
(Ψ∗∇Ψ−Ψ∇Ψ∗)

−2q2γ|Ψ|2A. (29)

The surface terms arising from integration by parts must
also vanish. From this we get the boundary conditions at
the surface of a superconductor

n̂ ·
(
h̄

i
∇− qA

)
Ψ = 0, (30)

n̂× (B− µ0H) = 0. (31)

[It is noted in passing that the transformation (26) is
essential only for the surface terms.]

It is noted that based on the Maxwell equation

∇×B = ε0µ0
∂E

∂t
+ µ0j (32)

we identify the quantity appearing in (29) as an electric
current density

j =
qh̄γ

i
(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2q2γ|Ψ|2A. (33)

Exercise: show that the equations guarantee current
conservation

∇ · j = 0, n̂ · j = 0. (34)

Special cases

The GL equations (28) and (29) constitute a coupled set
of differential equations, whose solution gives Ψ(r) and
A(r). In the general case this is very complicated. Let us
start by considering simple special cases.

1) Homogeneous superconductor, H = A = 0. Equation
(28) gives as possible solutions

Ψ = 0, (35)

|Ψ|2 = −α
β
. (36)

The former solution describes normal state. The latter,
superconducting state, is possible only if α/β < 0. In
order for F (25) to be sensible (minimum energy must be
achieved with a finite Ψ) we must always have β > 0. The
condition for the latter state is therefore α < 0. The
energies corresponding to the states (35) and (36) are
found by inserting into the functional (25):

F = F0, (37)

F = F0 − V
α2

2β
. (38)
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We thus see that if α > 0, only the normal state is
possible, while in the case α < 0 the superconducting
state has the lowest energy. The transition temperature
Tc thus corresponds to the point where α = 0. In GL
theory it is assumed that the temperature dependence of
the coefficient α is linear

α(T ) = α′
(
T

Tc
− 1

)
, (39)

and the other coefficients (β, γ, q) are
temperature-independent.

The dependence of the free energy on the order
parameter can be illustrated with the following pictures.

Re Ψ

F

Im ΨRe Ψ

F

Im Ψ

T<Tc T>Tc

It is observed that in the normal state Ψ = 0 is
completely determined, but in the superconducting state
only the absolute value |Ψ| of the order parameter is fixed
while the phase arg Ψ is arbitrary.

2) Changing |Ψ|, A = 0. From the boundary condition
(30) it follows that n̂ ·∇Ψ = 0. Thus a
position-independent |Ψ| (36) is a valid solution
everywhere in the superconductor, also close to
boundaries. Despite this we consider a case where Ψ
deviates from its equilibrium value. From equation (28)
we find

h̄2γ∇2Ψ− αΨ− β|Ψ|2Ψ = 0. (40)

Assuming Ψ to be real and writing Ψ =
√
|α|/βf we put

this in the form

ξ2
GL∇2f + f − f3 = 0, (41)

where we have defined the GL coherence length

ξGL =

√
h̄2γ

|α|
. (42)

We see that ξGL determines that length scale on which Ψ
can vary essentially. As an example we give the solution
of equation (41) in the case of a one-dimensional
dependence:

f(x) = tanh
x√

2ξGL
. (43)

3) Let us investigate the case

Ψ(r) = eiφ(r)|Ψ| (44)

where |Ψ|2 ≈ |α|/β is constant. By inserting into the
expression of current (33) we find

j = 2qγ|Ψ|2 (h̄∇φ− qA) . (45)

By taking the rotor of this we have the London equation

∇× j = −2q2γ|Ψ|2B. (46)

By using the Maxwell equations (32) and ∇ ·B = 0 this
yields

B = − ∇× j
2q2γ|Ψ|2

= −∇× (∇×B)

2µ0q2γ|Ψ|2

=
∇2B

2µ0q2γ|Ψ|2
. (47)

Thus we have

B = λ2∇2B, (48)

where

λ =

√
β

2µ0q2γ|α|
. (49)

x0

Bz

B0

λ

Now we study a superconducting half-space x > 0. Let us
assume that outside the superconductor (x < 0) there is a
field B0 = B0ẑ parallel to the surface of the
superconductor. The solution of equation (48) inside the
superconductor is

Bz(x) = B0e
−x/λ. (50)

Thus we explain the Meissner effect: the magnetic field
does not penetrate into the superconductor, apart from a
layer with thickness on the order of λ. In this layer a
current is flowing (calculate it), which cancels the
external field inside the superconductor. The result thus
also implies the existence of a dissipationless current.
Below some experimental values for the penetration
depth are given.

λ(T � Tc) (nm)
Al 49
Sn 51
Pb 39
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>>λ

Γ

Φ

4) We look at the superconducting state in a ring (loop,
torus), whose cross-section is considerably larger than the
penetration depth. Then inside the ring j = 0. From (45)
we find that for a path Γ going around inside the ring we
have

0 =

∮
dl · (h̄∇φ− qA) = h̄2πN − q

∫
da ·∇×A. (51)

Here N is an integer, which follows from that the fact
that a unique single-valued Ψ (44) only allows for φ to
change by a multiple of 2π when going around Γ. Thus
for the magnetic flux threading the loop we find

Φ =

∫
da ·B = N

2πh̄

q
. (52)

It has been experimentally observed that the flux is
quantized according to this formula. From the magnitude
from the observed flux quantum, Φ0 = h

2|e| (4), we deduce

that q is twice the charge e of an electron (the sign of the
charge cannot be deduced from this).

5) Above we have defined two lengths: the GL coherence
length ξGL (42) and the penetration length λ (49). Both
have the temperature dependence

λ(T ), ξGL(T ) ∝ 1√
|α|
∝ 1√

1− T/Tc
, (53)

so that they diverge when T → Tc. The ratio of the
lengths is called the GL parameter

κ =
λ(T )

ξGL(T )
=

√
β

2µ0q2h̄2γ2
. (54)

It is a temperature-independent constant. By writing the
GL equations in a dimensionless form we observe that
this is the only dimensionless parameter in the theory.

6) The equilibrium between normal and superconducting
states in an external field was studied already in the
beginning of the course, but it is instructive to see the
same by starting from the GL functional (27). In the
superconducting state we obtain from the terms
α|Ψ|2 + 1

2β|Ψ|
4 a negative contribution that was

calculated above (38). This is independent of the field H,
because B ≡ 0. In the normal state only the terms

1
2µ0

B2 −B ·H are nonzero. By minimizing G with
respect to B we find

G = F0 −
1

2
V µ0H

2, B = µ0H. (55)

In order for the energies to be equal when H = Hc we
have

1

2
µ0H

2
c =

α2

2β
. (56)

From this and the linearity (39) of α(T ) it is concluded
that Hc(T ) is linear close to Tc. This is consistent with
the experimental observation (3).

7) Next we investigate the interface between normal and
superconducting states. This requires the field H to be of
the critical magnitude Hc, because the interface can only
be stable if the two phases are in equilibrium. The
structure of the interface can be solved exactly from the
GL equations, be here we are satisfied by a qualitative
analysis. In the previous point we identified the essential
terms of normal and superconducting states in the
functional (27). Let us see how these are involved in the
interface.

x

B
Ψ

λ

ξGL

x

B
Ψ

λ

ξGL

In the figure a light shading roughly describes the regions
where the energy is lowered from F0 by the amount (56).

The situation in an S-N interface depends essentially on
the ratio of the penetration depth and the GL coherence
length. If λ� ξGL a region of thickness ≈ ξGL is formed,
where neither of the negative contributions is reached.
This means an interface energy σ ≈ 1

2ξGLµ0H
2
c . In the

opposite case λ� ξGL, both negative contributions are
present within a thickness ≈ λ and we find a negative
interface energy σ ≈ − 1

2λµ0H
2
c . This latter case leads to

completely new types of properties. The description of
the intermediate state given in the beginning if the course
is clearly not valid in this case.

A superconductor where the interface energy in negative
is called a type II superconductor, as opposed to the type
I superconductor that has a positive interface energy. By
solving the GL equations we find that the limit between
the two cases goes at the value κ = 1/

√
2 of the GL

parameter. Thus for a type I superconductor κ < 1/
√

2
and for a type II superconductor κ > 1/

√
2.

2.5 Type II superconductivity
In type II superconductor the interface energy is negative.
It follows that the magnetic field penetrates into the
sample in as small units as possible in order to maximize
the amount of the interface. Because of flux quantization
(52) we deduce that the smallest unit is one flux quantum
Φ0. We sketch the corresponding solution of the GL
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equations. In cylindrical coordinates

Ψ(r, ϕ, z) = C(r)eiϕ. (57)

r

ϕ

r

C(r)

ξGL

Here the phase φ of the order parameter is the same as
the azimuthal angle ϕ of the cylindrical coordinates.
Because the order parameter is independent of z, we
consider it in the x-y plane. Ψ has to be continuous
everywhere. It has a zero at r = 0, where it is analytic in
spite of the singularity of the coordinate system,
Ψ(x, y, z) = a(x+ iy) +O(r2).

The dependence eiϕ (57) on the phase causes a current
(45) that circulates around the z axis. We suppose that
also the vector potential A is in the direction of the
azimuthal angle, A = A(r)ϕ̂. The current

j = 2qγC2(r)

[
h̄

r
− qA(r)

]
ϕ̂. (58)

At large r the order parameter approaches its equilibrium
value (36). There the current (58) must vanish
(exponentially). Thus

A(r) =
h̄

q

ϕ̂

r
(r � λ). (59)

Requiring that A(r) is regular at origin, we can guess its
shape. Finally we calculate

B = ∇×A =
ẑ

r

d(rA)

dr
. (60)

r

A(r)

λ r

B(r)

λ

The accurate forms of the functions are obtained by
solving the GL equations, which generally is possible only
numerically.

The solution of the type (57) is called a quantized vortex
or vortex or flux line. We see from equation (59) that the
magnetic flux associated to a vortex is precisely one flux
quantum Φ0 (4).

For a type II superconductor one gets the following phase
diagram.

normal state

mixed state

Meissner state T

Tc

Hc2

Hc1

H

Hc

H

B/µ0

Hc1 Hc2

Between the critical fields Hc1 and Hc2 the magnetic field
partly penetrates to the sample. The density of vortices is
n = B/Φ0. The solution for one vortex describes the
situation at fields near Hc1, where the vortices are far
apart from each other. In increasing field also the density
of vortices increases until at Hc2 they are so dense that
there is no space for superconductivity in between.
Because the vortex core size is approximately ξGL, we
estimate from this that Bc2 ∼ Φ0/ξ

2
GL. An accurate

calculation with GL theory gives

Bc2 = µ0Hc2 =
h̄

2|e|ξ2
GL

=
Φ0

2πξ2
GL

. (61)

Near Hc2 the order parameter goes continuously to zero.
In this case the third order term Ψ|Ψ|2 in the GL equation
(28) can be dropped, and the remaining equation is the
same as the Schrödinger equation for a charged particle in
constant magnetic field B. We leave the mathematics of
this problem to the condensed matter course.

In the equilibrium state the vortices fill the sample as
uniformly as possible. This leads to a lattice that is
hexagonal.

Spectroscopic image of the vortex lattice in NbS2 at 4.2
Kelvin and 1 Tesla. Dark corresponds to the normal
vortex cores, and bright to the superconducting regions.
The vortex lattice imaging by scanning tunneling
spectroscopy relies on spatial variations of the density of
levels in the mixed state. Indeed, the local density of
levels is different at the center of vortex cores compared
to the surrounding superconducting regions. Plotting
these differences as a function of position yields a
spectroscopic real space image of the Abrikosov vortex
lattice. (figure from http://dpmc.unige.ch/gr fischer/)
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Check as an exercise that the dimensions of the figure
and the given field are consistent.

Force on a flux line

A Lorentz force

F = q(E+ v×B). (62)

acts on a charged particle. This can be generalized to
continuously distributed matter as

F =

∫
d3r(ρE+ j×B), (63)

where ρ is the charge density and j the electric current
density. We apply this to a single flux line in an applied
flow field jext(r). Because of charge neutrality ρ = 0.
Supposing that jext(r) is approximately constant in the
cross section of the vortex (area ≈ λ2), we can calculate
the integral in transverse plane and get the force acting
on the flux line

F = Φ0

∫
jext × dl, (64)

where dl is the line element of the flux line. This force
drives the vortex in direction that is perpendicular to the
applied current.

F

jext
j int

Notice that the direction of the force is such that it tends
to decrease the region where the total flow velocity is
largest (compare to the Magnus force).

One application of superconductivity is to build strong
magnets. Because Hc is relatively small (see the table on
page 2), superconductors of type II are used. A large part
of applications use Nb-Ti alloy, where 45 weight per cent
is titanium. Because the alloy is disordered, the mean free
path is very short and therefore Hc2 is high, Bc2 ≈ 10 T
at T = 4 K. Notice that if the alloy would be ordered, the
mean free path could in principle be as long as in a pure
element (see condensed matter course for justification).

2.6 Josephson effect
We consider two superconductors that are weakly coupled
to each other. We assume that B = A = 0.

Ψ1 Ψ2

Analogously to the phenomenological derivation of the
GL theory, we form an expression for the energy
associated with such a junction. Let Ψ1 and Ψ2 denote
the order parameters on the left and right hand sides. We
require 1) reality, 2) independence of a constant phase
factor exp(iφ). 3) independence on exchange of the two
sides, and 4) take only the leading order terms. This way
we get the Josephson energy

FJ = −a(Ψ∗1Ψ2 + Ψ1Ψ∗2) = −2aRe(Ψ∗1Ψ2). (65)

We substitute

Ψ1 = Ceiφ1 , Ψ2 = Ceiφ2 , (66)

and get
FJ = −EJ cos ∆φ. (67)

We have defined the phase difference

∆φ = φ2 − φ1 (68)

and EJ = 2aC2.

From the Josephson energy (67) we get the electric
current through the junction

J = Jc sin ∆φ, (69)

where Jc = (q/h̄)EJ = (2e/h̄)EJ .

Justification of (69): We substitute (44) in to the GL
energy (25). We make variation of it with respect φ on
both sides (1-dimensional model is sufficient). The
variation gives surface terms, and these counted together
with the Josephson energy (67) should vanish, which
gives relation (69).

Another important relation is the following, which gives
the time derivative of the phase,

dφ

dt
= −2µ

h̄
. (70)

Justification of (70): the order parameter Ψ of the GL
theory was interpreted as the wave function describing a
Cooper pair. In equilibrium the Cooper pairs are in
equilibrium with electrons so that the energy of a Cooper
pair is 2µ, twice the electron chemical potential. The time
dependence of an energy eigenstate in quantum
mechanics comes from the factor exp(−iEt/h̄), which for
the order parameter Ψ = eiφ|Ψ| is exp(−i2µt/h̄), and
thus one gets (70).

We apply (70) to a Josephson junction. For the phase
difference (68) we get

d∆φ

dt
=

2eV

h̄
, (71)
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since the difference in the chemical potentials is related to
the voltage V by ∆µ = µ2 − µ1 = −V e.
The equations (69) and (71) are known as Josephson
equations. The first gives that in equilibrium (V = 0) a
constant current flows trough that depends sinusoidally
on the phase difference ∆φ ≡ φ2 − φ1. This is known as
dc Josephson effect.

If the voltage V is constant, one gets from equation (71)
that the phase grows linearly in time,

∆φ =
2eV

h̄
t. (72)

Substituting this into equation (69) one gets alternating
current at angular frequency

ω =
2e

h̄
V. (73)

This is known as ac Josephson effect.

At voltage 0.1 mV the equation (73) gives the frequency
ν = ω/2π = 48 GHz.

Using Josephson junctions it is possible to make sensitive
measuring devices. For example, equation (73) makes
possible a voltage standard, as the frequency can
accurately be measured.

The current source driving the junction makes in time dt
the work V Jdt. According to energy conservation we
must have

dFJ
dt

= V J. (74)

We see that using this relation we can derive the third
relation based on any pair of the relations (67), (69) and
(71).

3. Superfluidity
By superfluidity we mean a phenomenon where a fluid
can flow without friction.

3.1 Occurrence of superflidity

• Liquid 4He (4He atom is a boson)

• Liquid 3He (the rare isotope of helium, 3He atom is a
fermion)

• dilute gases of alkali metal atoms. These are mainly
bosons like 87Rb, 7Li, 23Na, 1H, but also some
fermions like 6Li, 40K under special conditions. These
gases are metastable (not thermodynamically stable)
but they persists sufficiently long that experiments
can be made. The gases are generated in magnetic or
optical traps and are cooled by evaporation and laser
cooling.

• possibly: neutron fluid inside a neutron star
(fermion), . . .

• superconductivity of metals can be understood as
superfluidity of the conduction electrons (fermion)

There are two essential differences between
superconductors and other superfluids.

• Electrons have electric charge and therefore their
motion is essentially coupled with electromagnetic
field. Other superfluids are charge neutral, and
therefore their coupling to electromagnetic field is
weaker.

• The electrons move in the background of the crystal
lattice. Other superfluids do not have such a
preferred frame of reference.

As superconductivity was considered in the previous
chapter, we limit here to lattice-free charge-neutral
superfluids.

The temperature below which superfluidty occurs is
called critical temperature, Tc.

• Liquid 4He: Tc ≈ 2 K
6
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• Liquid 3He: Tc ≈ 2 mK
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Normal liquid
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A phase
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Solid (bcc)

3He has three different superfluid phases, A, A1, and
B. The A1 phase only appears in magnetic field, and
therefore is not visible here.

• dilute gases of alkali metals Tc ∼ 1 µK depending on
density.

3.2 History

• 1908 liquefaction of helium

• 1938 discovery of superfluid state of 4He

• 1972 discovery of superfluid states of 3He

• 1995 Bose-Einstein condensation in alkali atom gases

3.3 Basic properties
Once put into motion, the flow in a closed tube does not
decay.

v
s

Similarly, superfluid can flow through narrow pores or as
a thin film.

Viscous behavior is observed, e.g., for oscillating disks
immersed in superfluid.

Critical velocity: the superfluid state persists only up to
some velocity, beyond which dissipation occurs. The
critical velocity depends essentially on the experimental
conditions.

Two sound modes: the usual (first) sound and a second
sound

Anomalous heat conduction and thermomechanical
effects.

3.4 Microscopic origin

In short, superfluidity can be explained as a quantum
mechanical effect that shows up on a macroscopic scale.

Further analysis depends essentially whether the particles
are bosons or fermions. The defining property of bosons is
that their many-body wave function is symmetric in the
exchange of coordinates of two particles. This means that
there is no restriction on many bosons to be in the same
level. Consider an ideal boson gas. At T = 0 all the
particles condense into the lowest energy level, see Eq.
(9). This is known as Bose-Einstein condensation. It can
be shown that the occupation of the lowest level stays
macroscopic up to the temperature

TBE =
h2

2πmkB

(
N

2.612V

)2/3

. (75)

Here N is the number of particles, V the volume, and m
the particle mass. We claim that superfluidity in boson
systems is based on macroscopic occupation of a single
level.

While the ideal gas model explains Bose-Einstein
condensation, it is quite insufficient in other respects. The
interactions between particles are essential for the system
to show superfluidity (see later). In interacting system the
macroscopically occupied state ψ(r) need not be the
lowest energy state, and thus the macroscopic wave
function can be nontrivial. In dilute bose gases (87Rb
etc.) the interactions are weak, and a quantitative
description can be achieved by a relatively simple
Gross-Pitaevskii equation. In 4He the interactions are
much stronger, and a quantitative theory is not easily
achieved. But even in that case, formula (75) gives 3.1 K,
which is not too far from the measure value.

Let us now turn to fermions. This case was already
discussed above in connection of superconductivity. Pauli
exclusion principle prohibits more that one fermion to be
in a level. But this does not exclude all fermions to be in
a single pair state. Thus we can propose, that
superfluidity in fermion systems is caused by macroscopic
occupation of a pair state.

Let us consider liquid 3He. This system has Fermi
temperature (the Fermi energy expressed in temperature
units) TF = εF /kB ≈ 1 K. The superfluid transition
temperature is much lower, Tc ∼ 10−3TF . In this respect
the behavior of 3He atoms is very similar to conduction
electrons in superconducting metals.

Above we have discussed the boson and fermion cases
separately. But in fact, one can think to go continuously
from one case to the other. First note that TBE and TF
are of the same order of magnitude for gases of the same
density and particle mass. In superconductors and in
liquid 3He Tc is much smaller. This is because the pairs
(often called Cooper pairs) are very weakly bound.
Increasing the attractive interaction would increase Tc
towards TBE ∼ TF and there would be a continuous
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cross-over to Bose condensation, when the binding of the
pair becomes stronger. In fact, all bose particles are
composite particles made of fermions. Part of this
cross-over has been been tested experimentally in dilute
alkali gases.

3.5 Hydrodynamics
Many properties of superfluids can be understood in
terms of the two-fluid model. The basic assumption is
that the liquid consists of two parts. These are called the
superfluid and normal components. The current density j
can be represented as a sum

j = ρsvs + ρnvn. (76)

Here ρs and vs are the density and velocity of the
superfluid component and ρn and vn are the
corresponding quantities for the normal part. The liquid
density is the sum of the two densities, ρ = ρs + ρn. The
superfluid component can flow without viscosity and it
carries no heat or entropy. Moreover it is curl free,

∇× vs = 0. (77)

This holds for 4He and 3He-B but 3He-A is a more tricky
case. The normal component behaves more like a usual
viscous fluid.

The two-fluid model can be justified from the microscopic
considerations above. The superfluid component
corresponds to particles in the macroscopic wave
function, and the normal component to particles in
excited levles. The densities of the two components
depend on temperature. With increasing temperature
ρs(T ) drops continuously from ρs(0) = ρ and vanishes at
the superfluid transition temperature Tc.

ρn/ρ of superfluid 4He measured by Peshkov (1946)

0.2 0.4 0.6 0.8 1.0

T

Tc

0.2

0.4

0.6

0.8

1.0

Ρn

Ρ

ρn/ρ of superfluid 3He-B at melting pressure (upper) and
vapor pressure (lower) according to weak coupling theory

The two-fluid model can explain many properties of
superfluids. In particular, the existence of frictional forces
depends on the type of experiment. On one hand, the
flow in a ring-shaped container persists because it is only
the superfluid component that flows. On the other hand,
nonvanishing viscosity is measured with a rotational
viscometer, where the superfluid is placed between two
coaxial cylinders that rotate at different angular
velocities. Here the normal component is driven into
motion and causes dissipation.

Superfluids show peculiar mixing of thermal and
mechanical properties. Consider superfluid in a channel
which is heated at one end.

vs vn

T+∆T

p+∆p p

T 

J =
∫ 

(ρsvs+ρnvn)dz = 0

z

The superfluid component is attracted to the hot region
because the chemical potential is lower there. As a
consequence a pressure difference appears. This drives the
normal component in the direction of decreasing
temperature and convects the heat away from the source.
The viscosity of the normal component causes vn to
vanish at walls. The superfluid velocity vs(z) has to be
constant in order to be curl free (77). Assuming the
geometry does not allow net mass transfer, the mass
transported by the normal and superfluid components in
opposite directions are equal in magnitude.

In addition to usual sound wave, superfluids have another
propagating mode. This second sound is an oscillation
where normal and superfluid components move in
opposite directions. This leads to oscillation of
temperature whereas the density remains nearly constant.
Second sound can be generated by heating the superfluid
periodically, and standing waves of temperature have
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been demonstrated experimentally.

In addition to the mass current j, there can be persistent
spin currents. This is possible in superfluids whose order
parameter is more complicated than scalar (3He). Spin

current is described by a tensor jspin
µj . The index

µ = x, y, z indicates the direction of spin angular
momentum that is flowing, and j = x, y, z indicates the
direction of the flow. Even in equilibrium the order
parameter of 3He has nontrivial spatial variation called
texture. This is associated with persistent spin currents
and, in case of 3He-A, also with persistent mass currents.

Quantization of circulation

Consider a superfluid with order parameter Ψ. The
superfluid velocity vs can be expressed as a function of
the order parameter as

vs =
h̄

M
∇φ. (78)

Here φ(r) is the phase of the order parameter,
Ψ(r) = Aeiφ(r), and the amplitude A is assumed
constant. M is the boson mass, i.e. the mass of a particle
in a boson superfluid and the mass of a pair in a fermion
superfluid. Eq. (78) can be justified starting from the
expression of current in quantum mechanics.

An alternative form of Eq. (78) is obtained by taking line
integral along a closed path,

∮
vs · dl = N

h

M
. (79)

Here we have used the property that φ is defined modulo
2π, and N is an integer. Eq. (79) is known as quantization
of circulation. The curl-free condition (77) is a direct
consequence of Eq. (78) or (79).

Consider again superfluid in a ring-shaped container. We
can apply Eq. (79) to a path in the ring. We see that, in
addition to being persistent, the superfluid velocity can
only have discrete values. (Compare with flux
quantization in superconductors).

3.6 Rotating superfluid
Let us consider superfluid in a container that is rotated
with angular velocity Ω. The normal component will
follow this motion because of its viscosity. In equilibrium
it rotates uniformly with the container, vn = Ω× r. This
is not possible for the superfluid component because it
has to be curl free (77). [Eq. (77) should be compared to
∇× vn = 2Ω.]

The rotating state of a superfluid is most commonly
realized by vortex lines. On a path around the vortex line,
the phase φ changes by 2π (or an integral multiple of it).
This is illustrated in the figure.

φ→φ+2π

v
s

r

Equivalently, the circulation of superfluid velocity (79)
around the vortex line is h/M . Assuming cylindrical
symmetry, the phase φ is the same as the azimuthal angle
in the cylindrical coordinate system (r, φ, z). The velocity
field can be calculated from Eq. (78):

vs =
h̄

Mr
φ̂, (80)

where φ̂ is a unit vector in the azimuthal direction.

The structure of the rotating state is determined by
minimum of free energy. The rotation of the container is
taken into account by minimizing F = F0 −L ·Ω, where
F0 is the free energy functional in the stationary case and
L the angular momentum. In the two-fluid model this
reduces to

F =

∫
d3r

1

2
ρs(vs − vn)2 + constant. (81)

Thus the optimal solution corresponds to vs as equal as
possible to vn = Ω× r, but subject to condition (78).
This is achieved by a regular array of vortex lines. The
number of vortex lines n per unit area is determined by
the condition that the circulations of normal and
superfluid velocities are the same over an area containing
many vortex lines. This yields

n =
2MΩ

h
. (82)

There are approximately 1000 vortex lines in a circular
container of radius 1 cm that is rotating 1 round per
minute.

velocity

r

R

Vortex lines in an uncharged superfluid are analogous to
flux lines, which occur in type II superconductors. Flux
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lines of superconductors appear in magnetic field, which
is analogous to rotation of an uncharged superfluid.

[One can ask what happens when a superconductor is
rotated. The answer is that effect of rotation is cancelled
by generating a uniform magnetic field (known as London
moment), so that no flux lines need to be generated.]

The velocity field (80) of a vortex diverges at the vortex
line. Thus there must be a vortex core, where the two-fluid
description is insufficient. A finite energy in the vortex
core is achieved if the amplitude of the order parameter
vanishes at the vortex line. This is the case for a scalar
order parameter. For a matrix order parameter it is not
necessary that all components of the matrix vanish at the
line. Such vortex lines are realized in superfluid 3He.

The quantization of the superfluid velocity (79) is not
always true for uncharged superfluids. This happens when
there is an additional contribution to the superfluid
velocity (78) coming from the matrix form of the order
parameter. Such a case is realized in superfluid 3He-A,
and careful reanalysis of the rotating state is needed. It
turns out that, in addition to one-dimensional vortex
lines, the vorticity may be arranged as two-dimensional
vortex sheets and three-dimensional textures. All these
have been confirmed experimentally. In any case, a
homogeneous rotation of the superfluid is excluded.

3.7 Phase slip, Josehpson effect and
critical velocity
Let us study superflow in a channel under thermal
equilibrium (vn = 0). The maximum supercurrent is
determined by a process called phase slip. Consider that a
short piece of vortex line is nucleated at a surface on one
side of the channel. This vortex expands, goes through
the whole cross section of the channel, and finally
disappears on the other side. As a result of this process,
the phase difference ∆φ between the ends of the channel
has changed by 2π. Part of the superfluid kinetic energy
is dissipated in the motion of the vortex. This means that
the flow ceases to be dissipationless above a critical
velocity for phase slips. Phase slips take first place in
constrictions of the flow channel, where the superfluid
velocity has its maximum value.

A special type of phase slip takes place in very short
constrictions, where Eq. (78) ceases to be valid. An ideally
short constriction shows the Josephson effect, where the
supercurrent Js depends on the phase difference ∆φ as

J = Jc sin(∆φ), (83)

and Jc is a constant. Moreover, the time derivative of ∆φ
is proportional to the difference of the chemical potential
∆µ on the two sides of the constriction,

d∆φ

dt
= −2∆µ

h̄
. (84)

Combining the two equations, one sees that a constant
∆µ generates an oscillating current at the frequency
2∆µ/h.

The Josephson effect has been extensively studied in
superconductors. In helium superfluids it is more difficult
to fabricate constrictions that are small enough, but the
Josephson effect has been seen there as well.

Let us now consider a moving object in a stationary
superfluid. In this case there will be a drag force on the
object caused by the normal fluid component. However, if
the temperature is low, say below 0.2Tc, the normal
fraction is vanishingly small. In this case the motion
should be nearly dissipationless at low velocities. To how
large velocities this can be the case?

Before going to superfluids, we can ask what is the
maximum dissipationless velocity in an ideal fluid. Ideal
fluid obeys Euler’s equation and the equation of
continuity. The answer is sound velocity. At a velocity v
exceeding the sound velocity c, there will be a conical
wave front at angle α satisfying sinα = c/v. The wave
carry energy away from the object and lead to drag.

Ideal fluid is a bit too trivial case, since it has linear
dispersion of waves. That is, the angular frequency
ω = ck with a constant c. In the case of nonlinear
dispersion the condition should be stated as follows: there
are waves having the component of the phase velocity in
the direction of the object, which is equal the object
velocity. Such waves are stationary in the frame of the
object. You probably have noted that this is the case for
the main waves generated by a ship. Thus the critical
velocity equals the lowest phase velocity of waves:

vc = min
ω

k
= min

E

p
. (85)

The second equality applies because in quantum
mechanics E = h̄ω and p = h̄k. In connection of
superfluidity (85) is known as Landau criterion. This
sounds to me as one more example of Stigler’s law.

(Stigler’s law states that no scientific discovery is named
after its original discoverer. This likely is an
overstatement, but at least wikipedia lists several
examples.)

Let us apply Landau criterion to a few cases.

17



The figure shows the dispersion relation of elementary
excitations in 4He based on neutron scattering by
Henshaw and Woods (1961). The excitations are divided
to phonons (linear part at small k) and rotons (around
the minimum). The critical velocity is determined by the
roton minimum, which gives vc ≈ 60 m/s.

For ideal bose gas the dispersion is as for free particle (7).
This gives vc = 0. Thus ideal bose gas is not superfluid in
this sense.

3He-B has similar dispersion as shown for
superconductors above. This gives vc ≈ ∆/pF ≈ 27 mm/s.

Critical velocities close to Landau velocity has been
measured for negative ions in both 4He and 3He-B. In
other cases the dissipation sets in earlier. In many cases
this believed to be caused by vortices.
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The figure show theoretical curves for drag force on a
small (radius r � ξ) but not too light object in 3He-B at
T = 0. The solid lines correspond to two different models
of quasiparticle scattering on the object surface (Bowley
1977, Kuorelahti et al 2018). The drag in the normal
state is shown by dashed line.

There is one experiment that is contrary to the discussion
above. Bradley et al (2016) do not see much dissipation
with a uniformly moving wire up to twice the Landau
velocity. The reason for this is unknown.

3.8 Special properties of superfluid 3He
Here we briefly discuss superfluid phenomena that do not
take place in liquid 4He. The examples are for 3He, but
related phenomena can appear in some dilute gases and
superconductors.
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order parameter

In superfluid 3He the spin part of the pair wave function
is spin triplet. Standard choices for the three triplet states
are shown in the figure. In addition, the angular part of
the wave function corresponds to angular momentum
states L = 1. The standard choice is to use the three
p-wave functions. Thus the order parameter is a matrix
with 3× 3 = 9 complex functions that give the pair
amplitude projected on all the spin and orbital basis
states.

The B phase correspond to unit matrix, or an arbitrary
rotation matrix, that can be parametrized by rotation
angle and axis n̂.
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Because of the matrix order parameter, the vortex core
can have different structures. Experimentally a transition
in the core structure was found (lower part of the figure).
GL calculations of the core structure allowed to identify
the two structures. In the low temperature structure the
core is split into two half cores (illustrated by

∑
ij |Ψij |2

in the upper part of the figure).
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The figure illustrates the pairing state in 3He-A. It has
angular momentum in the direction of vector l̂ and the
orientation of the spin part is given by vector d̂

velocity

 v
n
 = Ω × r

 v
s
 

radius
b

The A phase has several vortex structures. One of them
has sheet structure instead of the usual line structure.
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Theoretical phase diagram of different vortex structures
in the A phase. It is partly confirmed experimentally.
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The figure illustrates Josehpson coupling between two
volumes of 3He-B. Depending on the phase difference φ,
the B-phase rotation matrix axis n̂ may flip, which leads
to unusual π-state in the Josephson current-phase
relation.
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