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1. Introduction
The principal problem of physics is to determine how

bodies behave when they interact. Most basic courses of
classical and quantum mechanics treat the problem of one
or two particles or bodies. (An external potential can be
considered as one very heavy body.) The problem gets mo-
re difficult when the number of bodies involved is larger.
In particular, in condensed matter we are dealing with a
macroscopic number N ∼ 1023 of particles, and typically
hundreds of them directly interact with each other. This
problem is commonly known as the many-body problem.

There is no general solution to the many-body problem.
Instead there is a great number of approximations that
successfully explain various limiting cases. Here we discuss
one of them, the Fermi-liquid theory. This type of approxi-
mation for a fermion many-body problem was invented by
Landau (1957). It was originally proposed for liquid 3He
at very low temperatures. Soon it was realized that a simi-
lar approach could be used to other fermion systems, most
notably to the conduction electrons of metals. The Fermi-
liquid theory allows to understand very many properties
of metals. A generalization of the Fermi-liquid theory al-
so allows to understand the superconducting state, which
occurs in many metals at low temperatures. Even when
Landau’s theory is not valid, it forms the standard against
which to compare more sophisticated theories. Thus Fermi-
liquid theory is a paradigm of many-body theories, and it
is presented in detail in many books and articles discussing
the many-body problem.

• L.D. Landau and E.M. Lifshitz, Statistical Physics,
Part 2 (Pergamon, Oxford, 1980).

• P. Nozieres, Theory of interacting Fermi systems (Be-
jamin, New York 1964) [N].

• D. Pines and P. Nozieres, The theory of quantum
liquids, Vol. 1 Normal Fermi liquids (Bejamin, New
York 1966).

• G. Baym and C. Pethick, Landau Fermi-liquid theory
(Wiley, Ney York 1991) [BP].

• A.A. Abrikosov and I.M. Khalatnikov, Rep. Progr.
Phys. 22, 329 (1959), an early review.

• A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975), and
Quantum liquids (Oxford, 2006).

In this lecture I present an introduction to the Landau
theory. I present the theory as if it could have logically
developed, but this does not necessarily reflect historical
facts. I will start with the calculation of specific heat in an
ideal gas, and compare the result with the measurement
in liquid 3He. This leads to the concept of quasiparticles
with an effective mass differing from the atomic mass. It
is then shown that in order to make a consistent theory,
one has to allow an interaction between the quasiparticles.
After having formulated the theory, we shortly mention the
main applications. Some more recent results are discussed

in more length. Various generalizations of the theory are
briefly mentioned.
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2. Preliminary topics

Many-body problem

The many-body problem for identical particles can be
formulated as follows. Consider particles of mass m labeled
by index i = 1, 2, . . . , N . Their locations and momenta are
written as rk and pk. The Hamiltonian is

H =

N∑
k=1

p2
k

2m
+ V (r1, r2, . . .). (1)

Here V describes interactions between any particles, and
it could in many cases be written as a sum of pairwise
interactions V = V12 + V13 + . . .+ V23 + . . .. The classical
many-body problem is to solve the Newton’s equations.

In quantum mechanics the locations and momenta beco-
me operators. In the Schrödinger picture pk → −ih̄∇k,
where

∇k = x̂
∂

∂xk
+ ŷ

∂

∂yk
+ ẑ

∂

∂zk
. (2)

An additional feature is that generally particles have spin.
This is described by an additional index σ that takes values
−s,−s + 1, . . . , s − 1, s for a particle of spin s. Thus the
Hamiltonian operator is

H = −
N∑
k=1

h̄2

2m
∇2
k + V (r1, σ1, r2, σ2, . . .). (3)

and the state of the system is described by a wave func-
tion Ψ(r1, σ1, r2, σ2, . . . ; t). Particles having integral spin
are called bosons. Their wave function has to be symmet-
ric in the exchange of any pairs of arguments. For example

Ψ(r1, σ1, r2, σ2, r3, σ3, r4, σ4, . . .)

= +Ψ(r3, σ3, r2, σ2, r1, σ1, r4, σ4, . . .), (4)

where coordinates 1 and 3 have been exchanged. Particles
having half-integral spin are called fermions. Their wave
function has to be anti-symmetric in the exchange of any
pairs of arguments. For example

Ψ(r1, σ1, r2, σ2, r3, σ3, r4, σ4, . . .)

= −Ψ(r3, σ3, r2, σ2, r1, σ1, r4, σ4, . . .). (5)

The quantum many body problem is to solve time-
dependent Schrödinger equation

ih̄
∂Ψ

∂t
(r1, σ1, . . . , rN , σN , t) = HΨ(r1, σ1, . . . , rN , σN , t)

(6)
or to solve energy eigenvalues and eigenstates.

Ideal Fermi gas

As stated in the introduction, there is no general solution
of the many-body problem. What one can do is to study
some limiting cases. One particularly simple case is ideal

gas, where we assume no interactions, V ≡ 0. Below we
concentrate on ideal spin-half (s = 1/2) Fermi gas.

In the absence of interactions we can assume a facto-
rizable form

Ψ0(r1, σ1, r2, σ2, . . . ; t) = φa(r1, σ1)φb(r2, σ2) . . . . (7)

consisting of a product of single-particle wave functions
φα(r, σ). This does not yet satisfy the antisymmetry requi-
rement (5) but permuting the arguments in Ψ0 and sum-
ming them all together multiplied by (−1)nP , where nP is
the number of pairwise permutations in a permutation P ,
one can generate a proper wave function

Ψ(r1, σ1, r2, σ2, . . .) =
1√
N

∑
P

(−1)nP

×φa(rP (1), σP (1))φb(rP (2), σP (2))) . . . . (8)

This is known as Slater determinant since it can also be
presented as a determinant

Ψ =
1√
N

∣∣∣∣∣∣∣
φa(r1, σ1) φb(r1, σ1) . . .
φa(r2, σ2) φb(r2, σ2) . . .

...
...

. . .

∣∣∣∣∣∣∣ . (9)

We can now see if any two of the single-particle wave
functions φa, φb, . . . are identical, the resulting wave func-
tion vanishes identically. (Verify this in the case of two fer-
mions.) This is the Pauli exclusion principle, which states
that a single state can be occupied by one fermion only.

The natural choice for wave functions of a single free
particle are plane wave states. In order to incorporate the
spin, we have “spin-up states”

φp↑(r, σ) =

{
1√
V
eip·r/h̄ if σ = 1

2

0 if σ = − 1
2

(10)

and “spin-down states”

φp↓(r, σ) =

{
0 if σ = 1

2
1√
V
eip·r/h̄ if σ = − 1

2

. (11)

Here the wave vector k or the momentum p = h̄k appears
as a parameter. In order to count the states, it is most
simple to require that the wave functions are periodic in a
cube of volume V = L3, which allows the momenta p (jx,
jy and jz are integers)

px =
2πh̄jx
L

, py =
2πh̄jy
L

, pz =
2πh̄jz
L

. (12)

We suppose that the volume V is very large. Then we can
take the limit V →∞ in quantities that do not essentially
depend on V .

The energy of a single-particle states is εp = p2/2m. The
total energy is this summed over all occupied states

E(npσ) =
∑
σ

∑
p

p2

2m
npσ, (13)
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where npσ = 1 for an occupied state and is zero otherwise.

The ground state of a system with N particles has N
lowest energy single-particle states occupied and others
empty. Here the maximal kinetic energy of an occupied
state is called Fermi energy εF . We also define the Fermi
wave vector kF and Fermi momentum pF = h̄kF so that

εF =
p2
F

2m
=
h̄2k2

F

2m
. (14)

In momentum space this defines the Fermi surface (p =
pF ). All states inside the Fermi surface (p < pF ) are occu-
pied, and the ones outside are empty.

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

px

-

pF

2πh
L

py

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×

× × × × × × × × × × × × × ×

The number of particles can be calculated as

N = 2
∑
p<pF

1 = 2
4
3πp

3
F

(2πh̄/L)3
, (15)

where the factor 2 comes from spin. From this we get a
relation between the Fermi wave vector and the particle
density,

N

V
=

p3
F

3π2h̄3 . (16)

The excited states of the system consist of states where
one or more fermions is excited to higher energy states. The
average occupations of the states at a given temperature
T is given by the Fermi-Dirac distribution

n(ε) =
1

eβ(ε−µ) + 1
. (17)

Here β = 1/kBT and kB = 1.38×10−23 J/K is Boltzmann’s
constant, which is needed to express the temperature T in
Kelvins, and µ is the chemical potential. At T = 0 the
system is in its ground state,

n(ε) =

{
1 for ε < µ
0 for ε > µ.

(18)

with µ = εF . When T > 0, the occupation n(ε) gets roun-
ded so that the change from n ≈ 1 to n ≈ 0 takes place in
the energy interval ≈ kBT .

ε

n T = 0

T > 0

0 εF

kBT

Next we calculate the specific heat of the ideal Fermi gas
at low temperatures. The average energy is given by

E =
∑
σ

∑
p

εpn(εp) =
2

(2πh̄/L)3

∫
εpn(εp)d

3p

=
8π

(2πh̄/L)3

∫ ∞
0

p2εpn(εp)dp. (19)

Changing ε = p2/2m as the integration variable we get

E

V
=

√
2m3

π2h̄3

∫ ∞
0

ε3/2n(ε)dε

=

∫ ∞
0

g(ε)ε n(ε)dε. (20)

In the second line we have expressed the same result by
defining a density of states g(ε) = m

√
2mε/π2h̄3.

The specific heat is now obtained as the derivative of
energy

C =
∂E(T, V,N)

∂T
. (21)

In order eliminate µ appearing in the distribution function
(17) one has to simultaneously satisfy

N

V
=

∫ ∞
0

g(ε)n(ε)dε. (22)

The result calculated with Mathematica is shown below.
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At high temperatures T � TF = εF /kB the Fermi gas
behaves like classical gas, where the average energy per
particle is 3kBT/2, known as the equipartition theorem,
and this gives the specific heat 3kB/2 per particle. We see
that at lower temperatures T < TF the specific heat is
reduced. This can be understood that only the particles
with energies close to the Fermi surface can be excited.
Those further than energy kBT from the Fermi surface
cannot be excited, and thus do not contribute to specific
heat. At temperatures T � TF the specific heat is linear
in T :

C =
π2

3
g(εF )k2

BT +O(T 2). (23)

We see that the linear term is determined by the density
of states at the Fermi surface

g(εF ) =
mpF

π2h̄3 . (24)
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(For detailed derivation see Ashcroft-Mermin, Solid state
physics.)

Liquid 3He

Helium has two stable isotopes, 4He and 3He. The former
is by far more common in naturally occurring helium. It is
a boson since in the ground state both the two electrons
have total spin zero, and also the nuclear spin is zero. It has
a lot of interesting properties that could be discussed, but
here we concentrate on the other isotope. 3He is a fermion
because the nuclear spin is one half, s = 1/2. Studies of 3He
were started as it became available in larger quantities in
the nuclear age after world war II as the decay product of
tritium. The two isotopes of helium are the only substances
that remain liquid even at the absolute zero of temperature.

Figure: the specific heat of liquid 3He at two different
densities [D.S. Greywall, Phys. Rev. B 27, 2747 (1983)].

We see that at low temperatures, the specific heat is li-
near in temperature. This resembles the ideal gas discussed
above, but is quite puzzling since the atoms in a liquid are
more like hard balls continuously touching each other!

Also, quantitative comparison of the slope with the ideal
Fermi gas gives that the measured slope is by factor 2.7
larger.

3. Construction of the theory

Landau’s idea

The experiment above raises the following idea. Could it
be possible that low temperature liquid 3He would effec-
tively be like an ideal gas? This was the problem Landau
started thinking. He had to answer the following questions

• How could dense helium atoms behave like an ideal
gas?

• If there is explanation to the first question, how one
can understand the difference by 2.7 in the density of
states?

• If previous questions have positive answers, are any
other modifications needed compared to the ideal gas?

An obvious problem with the ideal gas wave function (8)
is that there is too little correlation between the locations
rk of the particles. The Pauli principle prohibits for two
particles with the same spin to occupy the same location,
but there is no such restriction for particles with opposite
spins. Thus it is equally likely to find two opposite-spin
particles just at the same place than at any other places in
the ideal gas wave function (8).

Weak interactions

As a first attempt to answer the questions, consider
point-like particles (instead of real 3He atoms). In an ideal
gas the particles fly straight trajectories without ever col-
liding. If we now allow some small size for the particles,
they will collide with each other.

r0
0

U(r)
ac

d
b

Figure: illustration of various particle-particle potentials
U(r): (a) the potential between two 3He atoms, (b) ideal
gas potential U ≡ 0, (c) potential used in scattering ap-
proach, (d) potential used in perturbation theory.

We have to consider two particles with momenta p1 and
p2 colliding and leaving with momenta p′1 and p′2. In such
a process the momentum and energy has to be conserved,

p1 + p2 = p′1 + p′2 (25)

ε1 + ε2 = ε′1 + ε′2. (26)

At least qualitatively the collision rate can be calculated
using the golden rule

Γ =
2π

h̄

∑
f

|〈f |Hint|i〉|2δ(Ef − Ei). (27)
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We see that the rate is proportional to the number of avai-
lable final states f . Consider specifically the case of filled
Fermi sphere plus one particle at energy ε1 > εF . We wish
to estimate the allowed final states when particle 1 collides
with any particle inside the Fermi sphere, ε2 < εF . The
final state has to have two particles outside the Fermi sp-
here (ε′1 > εF , ε′2 > εF ) since the Pauli principle forbids all
states inside. We see that the number final states gets very
small when the initial particle is close to the Fermi energy,
namely both ε2 and ε′1 have to be chosen in an energy shell
of thickness ∝ ε1− εF . This means that the final states are
limited by factor ∝ (ε1 − εF )2. Thus the scattering of low
energy particles is indeed suppressed and thus resembles
the one in an ideal gas.

But 3He atoms are not point particles, rather they touch
each other continuously. Thus for one particle to move,
the others must give the way. This is one of the hardest
problems in many body theory even today, but one can
get some idea of what happens with a model: instead of
true 3He-3He interaction potential, one assumes a weak
potential, whose effect can be calculated using quantum-
mechanical perturbation theory. We will skip this calcula-
tion here (see Landau-Lifshitz). The result is that the exci-
tation spectrum remains qualitatively similar as in free Fer-
mi gas but there is a shift in energies. Consider specifically
the case, already mentioned above, of a filled Fermi sphe-
re plus one particle at momentum p, with p > pF . This
excited state of the ideal gas corresponds to the excitation
energy

εp − εF =
p2

2m
− εF ≈

pF
m

(p− pF ), (28)

where the approximation is good if p is not far from the
Fermi surface (p− pF � pF ). The effect of the weak inte-
ractions is now that the excitation energy still is linear in
p−pF , but the coefficient is no more pF /m. It is customary
to write the new excitation energy in the form

εp − εF =
pF
m∗

(p− pF ), (29)

where we have defined the effective mass m∗. Note that
the Fermi momentum pF is not changed, equation (16)
still remains valid. With the new dispersion relation (29)
we get a new density of states

g(εF ) =
m∗pF

π2h̄3 . (30)

This is determined by the effective mass m∗, not the ba-
re particle mass m as for ideal gas (24). We now see that
weak interactions can explain that the specific heat coef-
ficient (23) differs from its ideal gas value. However, the
theory is valid for small perturbations, say 10%, and thus
is insufficient to explain the factor 2.7.

Quasiparticles

Landau now made the following assumptions. i) Even for
strong interactions, the excitation spectrum remains as in

(29). Such excitations are called quasiparticles: they deve-
lop continuously from single-particle excitations when the
interactions are ”turned on”, but they consist of correlated
motion of the whole liquid. ii) The quasiparticles have long
life time at low energy, like in the scattering approximation
above.

It should be noticed that Landau’s theory is phenome-
nological. At this stage it has one parameter, m∗, whose
value is unknown theoretically, but can be obtained from
experiments.

Although the detailed structure of the quasiparticle re-
mained undetermined, we can develop a qualitative pic-
ture with a model. Consider a spherical object moving in
otherwise stationary liquid. The details of this model are
discussed in the appendix. The main result is that associa-
ted with the moving object, there is momentum in the fluid
in the same direction. In the literature this is sometimes
called ”back flow”, but I find this name misleading. Rat-
her it should be called ”forward flow”or that the moving
object drags with itself part of the surrounding fluid. Thin-
king now that the total momentum of the quasiparticle is
fixed, this means that switching on the interactions slows
the original fermion down, since part of the momentum
goes into the surrounding fluid and less is left for the ori-
ginal fermion.

The same picture is obtained by quantum mechanical
analysis. In order to get the velocity of the quasiparticle,
we have to form a localized wave packet. This travels with
the group velocity. Based on the dispersion relation (29)
the group velocity is

vgroup =
dEp
dp

=
pF
m∗

. (31)

This means that the momentum of the original fermion in
the interacting system is mvgroupp̂ = (m/m∗)p, i.e. the
original fermion contributes fraction m/m∗ of the momen-
tum p and the fraction 1−m/m∗ is contributed by other
fermions surrounding the original one. The velocity of the
quasiparticle (31) is known as the Fermi velocity

vF =
pF
m∗

. (32)

Quasiparticle interactions

Thus far we have arrived at the picture that the low
energy properties of a Fermi liquid can be understood as
an ideal gas with the difference that the effective mass m∗
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appears instead of the particle mass m. In the following
we show that this cannot be the whole story, and one more
ingredient has to be added in order to arrive at a consistent
theory.

A general requirement of any physical theory is that the
predictions of the theory should be independent of the coor-
dinate system chosen. In the present case, one has to pay
attention to Galilean invariance. That means that the phy-
sics should be the same in two coordinate frames that mo-
ve at constant velocity with respect to each other. To be
specific consider a coordinate system O, and a second coor-
dinate system O′ that moves with velocity u as seen in the
frame O. We assume to study a system of N particles (in-
teracting or not) of mass m. If the total momentum of this
system in O′ is P ′, then the momentum seen in frame O
has to be P = P ′ + Nmu. Now the Galilean invariance
requires that if one determines the state of the system in
O′ at fixed total momentum P ′, it is the same as one would
do in O with momentum P .

The ideal gas obviously satisfies Galilean invariance.
However, when we replace the particle mass m by m∗ in
(29), the Galilean invariance is broken. The cure for this
problem is that we have to allow interactions between the
quasiparticles. Thus we rewrite (29) into the form

εp − εF =
pF
m∗

(p− pF ) + δεp, (33)

δεp =
1

V

∑
σ

∑
p′

f(p,p′)(np′ − n(0)
p′ ). (34)

Here np is the distribution of the quasiparticles, n
(0)
p =

Θ(pF − p) is the distribution function in the ground sta-
te, where Θ(x) is the step function (Θ(x) = 0 for x < 0
and Θ(x) = 1 for x > 0). The function f(p,p′) describes
the interaction energy between two quasiparticles having
momenta p and p′.

The first thing to notice is that when only one or a few
quasiparticles are excited, the interaction term in (34) is

negligible since np − n(0)
p ≈ 0. In this case the excitation

energy εp (34) reduces to its the previous expression (29).

Consider next an uniformly displaced Fermi sphere, np =

n
(0)
p−mu = Θ(pF − |p−mu|). This is the stationary ground

state in the O′ frame. In order to the theory to be Galilean
invariant, the excitation energy must be changed from (29)
to the ideal gas value (28) at the displaced Fermi surface.
As a formula

pF
m
mp̂ ·u =

pF
m∗

mp̂ ·u+
1

V

∑
σ

∑
p′

f(p,p′)(n
(0)
p′−mu−n

(0)
p′ ).

(35)
We see that this could not be satisfied without the interac-
tion term. In order to work (35) further, we need to study
f(p,p′). Because of spherical symmetry, it can depend on-
ly on the relative directions of p and p′, i.e. f(p̂ · p̂′, p, p′).
Futher since we are interested only in quasiparticles clo-
se to the Fermi surface, we approximate f(p̂ · p̂′, p, p′) ≈
f(p̂ · p̂′, pF , pF ). This means that f depends only on the
angle between p and p′, i.e. f(p̂ · p̂′). In addition, it is

conventional to define F (p̂ · p̂′) = g(εF )f(p̂ · p̂′). Such a
function can be expanded in Legendre polynomials

F (p̂ · p̂′) =

∞∑
l=0

F sl Pl(p̂ · p̂′), (36)

where P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, etc.
Using these we can now reduce the requirement (35) to

m∗

m
= 1 +

F s1
3
. (37)

We have arrived at the result that in order to have
m∗ 6= m, we also should include an interaction between
the quasiparticles of the form of the F s1 term in (36). The
other interaction terms with coefficients F sl are not requi-
red for internal consistency of the theory but some of them
appear as a result of perturbation theory. In order to make
general phenomenology, they all should be retained.

Until now we have not considered the fermion spin except
that they produced factors of two. In magnetic field the sys-
tem becomes spin polarized, and this is no more sufficient.
In the general case we have to consider the spin as a fully
quantum object. This means that we have to replace np
by a 2 × 2 density matrix in spin space. All the previous
analysis can be generalized to include the spin dependence.
This means that also the quasiparticle energy εp becomes
a 2× 2 matrix. Equation (33) has to be generalized to

εην(p)− εF δην =
pF
m∗

(p− pF )δην

+
1

V

∑
p′

∑
α,β

fηα,νβ(p,p′)[nαβ(p′)− n(0)(p′)δαβ ], (38)

where

fηα,νβ(p,p′)

g(εF )
=

∞∑
l=0

(F sl δηαδνβ + F al σηα · σνβ)Pl(p̂ · p̂′).

(39)
We see that including the spin dependence the theory has
two sets of parameters, F sl and F al with l = 0, 1, . . .. (Here
s denotes symmetric and a antisymmetric.) One of these
parameters F s1 is related to m∗ by (37).

The expression for εp − εF (33) can be seen as the cons-
tant and the first order term in the expansion of εp in
terms of distribution np. In applications these two terms
generally are of the same order of magnitude even though
the deviation from ground state distribution is assumed
small. The reason that they are of equal magnitude is that
the first term in (33) vanishes at the Fermi surface p = pF
whereas the latter term remains finite. The situation re-
sembles the one in another theory developed by Landau:
the Ginzburg-Landau theory. There the free energy is ex-
panded in the order parameter as F = α|ψ|2 + β|ψ|4. Alt-
hough the latter term is small because of the higher power
in the small |ψ|, the two terms are comparable because the
coefficient α vanishes at the critical temperature whereas
β remains finite.
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4. Equation of motion
The central quantity in the theory is the quasiparticle

distribution function np(r, t). Its equation of motion is de-
rived similarly as the Boltzmann equation, by calculating
the total time derivative

dnp
dt

=
∂np
∂t

+ ṙ ·∇np + ṗ · ∂np
∂p

=
∂np
∂t

+
∂εp
∂p
·∇np −∇εp ·

∂np
∂p

, (40)

where ṙ ≡ dr/dt = ∂εp/∂p and ṗ ≡ dp/dt = −∇εp.
Equating this with the rate of change caused by collisions
Ip gives the Landau-Boltzmann equation

∂np
∂t

+
∂εp
∂p
·∇np −∇εp ·

∂np
∂p

= Ip. (41)

This differs from the ordinary Boltzmann equation that
the energy εp(r, t) contains, in addition to external poten-
tials, the interaction energy δεp (34). The collisions have
to conserve the fermion number, momentum and energy.
This implies on the collision term the conditions∑

p

Ip = 0,
∑
p

pIp = 0,
∑
p

εpIp = 0. (42)

The kinetic equation equation (41) is a nonlinear equa-
tion. For most, if not all, applications a linearized form of
it is sufficient. In equilibrium both ∇np and ∇εp vanish,
and thus in a linearized theory their multipliers in (41) can
be evaluated in the equilibrium state. Thus linearization of
the left hand side gives

∂np
∂t

+ vFp̂ ·∇
(
np −

dn
(0)
p

dεp
δεp̂

)
= Ip, (43)

where dn
(0)
p /dεp denotes the derivative of the equilibrium

distribution function (17) evaluated at the unperturbed
energy (29).

Once we have solved for the distribution function
np(r, t), we can calculate measurable quantities. For
example, the mass density and momentum density of the
fluid are given by

ρ = ρ0 +m
2

V

∑
p

(np − n(0)
p ), (44)

J =
2

V

∑
p

p (np − n(0)
p ). (45)

Here the factors of 2 come from spin. The momentum den-
sity is the same as the mass current density. Because of
conservation of mass and momentum, these have to obey
conservation laws

∂ρ

∂t
+ ∇ · J = 0, (46)

∂J

∂t
+ ∇ ·Π = 0, (47)

where Π is the momentum flux tensor. The expressions for
such fluxes can be obtained as follows. One takes the ti-
me derivative of the corresponding density, for example ρ
(44), one applies the kinetic equation (43) to the partial ti-
me derivative. Because of conservation (42), the contribu-
tion from collision integral vanishes. Thus one is left with
the divergence term in (43), which allows to identify the
expression for the flux, J in case of ρ. In the case of ρ, we
can verify the consistency of equations (44)-(46).

Above we have considered the case of no spin-
dependence. The general case is more complicated since
one has to use quantum equation of motion (von Neumann
equation) for the spin density matrix. This allows to obtain
a kinetic equation and spin dependent observables. We give
as examples the spin density and the spin current density
tensor and the conservation law for spin,

S =
h̄

2

1

V

∑
p

Tr[σ(np − n(0)
p )], (48)

J spin =
h̄

2m∗

(
1 +

1

3
F a1

)
1

V

∑
p

pTr[σ(np − n(0)
p )], (49)

∂S

∂t
+ ∇ · J spin = 0. (50)

Here Tr(. . .) denotes the trace of the 2 × 2 matrix and
σ = x̂σx+ ŷσy+ ẑσz is the vector of Pauli matrices. In the
spin-dependent case we have to generalize (44) and (45) to

ρ = ρ0 +m
1

V

∑
p

Tr(np − n(0)
p ), (51)

J =
1

V

∑
p

pTr(np − n(0)
p ). (52)

Properties of a quasiparticle

In order to develop intuition into the formulas above,
let us consider a single localized quasiparticle. It could be
defined by distribution np(r, t) that differs from the ground

state distribution n
(0)
p only for momentum values p around

some p0, where p0 ≈ pF . We normalize the distribution by∫
d3r

1

V

∑
p

Tr(np − n(0)
p ) = 1, (53)∫

d3r
1

V

∑
p

Tr[σ(np − n(0)
p )] = ẑ, (54)

where we have chosen the spin polarization in the z di-
rection. Applying these to equations (51) and (48) gives
that the quasiparticle has mass m and spin 1

2 h̄ẑ. This is
the same as for an additional particle in a noninteracting
system. The quasiparticle propagates at the Fermi veloci-
ty (32), v = vF p̂0. From (52) we get that the momentum
of the excitation is p0. As discussed above, the additional
fermion now contributes only mvF to the momentum and
the rest of the momentum (m∗ −m)vF = 1

3F
s
1mvF comes

from forward flow of other fermions. Now we can state also
the spin-content of this cloud. Namely, equations (52) and

7



(49) together imply that the effective number of spin up
and spin down particles in the quasiparticle are

n↑ = 1 +
1

6
(F s1 + F a1 ), n↓ =

1

6
(F s1 − F a1 ). (55)

That is, the total mass current in the quasiparticle carried
by spin-up particles is n↑mvF and correspondingly n↓mvF
is carried by spin-down particles.

5. Applications
The Fermi-liquid theory can be applied to calculate se-

veral measurable properties of a Fermi liquid. Below we list
some of them. The standard applications are only briefly
mentioned as they can be found in most reviews of the
Fermi-liquid theory [see references mentioned in the intro-
duction].

Specific heat. For a Fermi gas this was calculated in Eq.
(23):

C =
π2

3
g(εF )k2

BT +O(T 2). (56)

The effect of interactions is that the density of states is
given by the effective mass m∗ in (30).

Magnetic susceptibility. In magnetic field the Fermi
liquid is spin-polarized. The magnetic susceptibility is

χ = µ0µ
2
m

g(εF )

1 + F a0
, (57)

where µm is the magnetic moment of a particle. This result
differs from a Fermi gas by the presence of F a0 .

Sound velocity. An ordinary (longitudinal) sound wave
can propagate in a Fermi liquid. The velocity of the wave
is

c = vF

√
1

3
(1 + F s0 )(1 +

1

3
F s1 ). (58)

Once F s1 is extracted from measurement of the specific
heat, measuring the sound velocity can give the value of
F s0 . In 3He F s0 ranges from 9 to 90 depending on pressure.
The large value reflects the strong repulsion of the atoms
upon compression.

Zero sound. Ordinary sound depends on collisions that
keep the fluid elements in their local equilibrium state. In
a Fermi liquid the collisions get rare at low temperatures,
which leads to strong damping of the ordinary sound. A
new type of propagating wave, called zero sound, can ap-
pear at low temperatures. Depending on the interaction
parameters, it can propagate in total absence of collisions.
The velocity of the wave depends in a complicated way
on the interaction parameters. In 3He its velocity is rather
close to the velocity of the ordinary sound because of the
large value of F s0 .

8
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Also important is the temperature Tmax*
at which one finds maximum attenuation or max-
imum rate of change with temperature of the
velocity. Under the simplest assumptions this
temperature corresponds to wT = 1, where v
is the relaxation time for velocity, which is
assumed to have a T ' temperature dependence.
However, mare generally one would expect
~'"/Tmax* to be a. constant at the maximum.
Table II shows the results of an analysis of
this point, both for the present experiments
and for those of Ref. 3. Inspection of the table

I86 I I iI I I IIII I I I I I IIII I

FIG. 2. Amplitude attenuation coefficient and sound
propagation velocity as a function of magnetic tempera-
ture in pure liquid He3 at 0.32 atm and for frequencies
of 15.4 and 45.5 MHz. Each point shown on the graph
is the average of several raw data points. The straight
line drawn through the low-temperature attenuation da-
ta represents Eq. (1), while the straight lines drawn
through the high-temperature data represent Eq. (2),
with u/27r equal to 15.4 and 45.5 MHz. With the present
gap it was not possible to measure the 45.5-MHz atten-
uation coefficient above e =200 cm . The smooth
curve just above the attenuation data for 15.5 MHz is a
plot of Eq. (6) with cd/27I =15.4 MHz and eo and 0.

& given
by Eqs. (1) and (2).

15.4
15.4
45.5
15.4

1.44
1.57
l.58
1.62

2.74
2.65
2.66
2.65

shows that, in the case of attenuation measure-
ments, in which Tmax* is well determined,
the frequency dependence is quantitatively veri-
fied. It is difficult to estimate Tm~ from
the velocity measurements, so the scatter is
greater. However, it seems clear from these
data that the transition observed in Ref. 3 is
indeed to be attributed to a transition from first
to zero sound.
Our results can also be compared with the

theory of Khalatnikov and Abrikosov' in which
the velocity of zero sound is found to be given
by the implicit equation

1 + ,'E, —
Eo(l +—,'E, ) + so'E, '

(4)

For the values given above for the parameters
in Eq. (4), one finds T,T'=1.5xlp "secK".

where zo(s, ) =1(s,/2) ln[(s, +1)/(s, -l)]f-l, sp
=cp/vF, and vF is the Fermi velocity. Recent-
ly determined' values of the Fermi-liquid param-
eters are Eo:10 77 +,:6 25 and vF:53 8
m/sec for a pressure of 0.28 atm (close to the
present one). At this pressure c, =187.2 m/sec.
Solving Eq. (3) for s, one finds s, = 3.597 [and
M (s,) = 0.027 033]. This leads to [(cp-cl )/
cl]p 28 atm

——0.034, in remarkable agreement
with the measured value at 0.32 atm of 0.035
+ 0.003. Using a theory for energy transfer
from a solid to liquid He', Keen, Matthews,
and Wilks' found (c,-c,)/c, =0.10+0.03, a larger
effect than observed here. Assuming the es-
sential correctness both of the experirgents
of Ref. 3 and of the present ones, the discrep-
ancy in the value of (co—c,)/c, must be attributed
to an inadequacy of the theory explaining ener-
gy transfer into the liquid.
In regard to attenuation, at high temperatures

one expects'

[W.R. Abel, A.C. Anderson and J.C. Wheatley, Phys.
Rev. Lett. 17, 74 (1966).]

Spin waves. Consider a local deviation of spin density
from its equilibrium value. In a Fermi gas this relaxes by
diffusion of the particles, called spin diffusion. In a Fermi
liquid the interactions intervene so that instead of diffusion,
propagating waves of spin density can be generated. One
particularly interesting case is the following. Consider sta-
tic magnetic field H = Hẑ and the magnetization vector
M . For M+ = Mx + iMy we can write the equation

iD∇2M+ + ΩM+ = i
∂M+

∂t
. (59)

At high temperature D is real and this is a simple dif-
fusion equation with an additional term −iΩM+ coming
from precession at the Larmor frequency Ω = γH. At low
temperature D is imaginary, and Eq. (59) becomes the
Schrödinger equation, where Ω is the potential. Thus as
a function of temperature one changes continuously from a
dissipative diffusion equation to a conservative wave equa-
tion. The standing waves in a potential well caused by in-
homogeneous H(r) nicely show up in the experiment by
Candela et al [J. Low Temp. Phys. 63, 369 (1986)].

3 8 2  D .  C a n d e l a ,  N .  M a s u h a r a ,  D. S. Sherrili, and D. O. E d w a r d s  

12.3 bar. (Some data at 3 bar can be found in ref. 21.) The data for p = 0 
best satisfy the condition ]Im(D)] >> Re(D). This is because the superfluid 
transition temperature Tc increases rapidly with pressure. The maximum 
achievable ~ro in the normal phase is roughly proportional t o  T c  2, while in 
the superfluid there are additional contributions increasing Re(D) and 
decreasing Jim(D) I. For our geometry and static field distribution the most 
useful Larmor frequency proved to be 2 MHz. Although the spin-wave 
peaks were sharper at 4 MHz, they were more crowded together. 

Figure 3 shows the experimental temperature dependence of the absorp- 
tion line in the normal phase at p = 0 and 2 MHz. The line is temperature 
independent for T>~6Tc, with departures from the expected rectangular 
shape due to imperfections in the static field distribution and sample shape. 
(Although the measurements were made by sweeping the field at constant 
frequency, we have chosen to show the equivalent frequency-dependent 
absorption at fixed field in the figures.) As the temperature is lowered toward 
Tc, a series of  sharp peaks appears at the high-frequency side of the line. 
The line shape resembles the results of the one-dimensional calculation 
shown in Fig. 1. 

Figures 4-6 show the dependence of the line shape on field gradient 
and Larmor frequency at T --- 1.01 Tc and p = 0. The figures show a fit to the 
three-dimensional version of the theory, which is described in Section 3.3. 

In the temperature range immediately above To, the spin-wave peak 
frequencies are nearly constant, while the peak heights continue to grow 

i i i i 

T/Tc = 

I I I 

Frequency (1 kHz/div) 

Fig. 3. Temperature dependence of  the absorption line in 
the normal phase at zero pressure and a Larmor frequency 
of 2 MHz. Temperatures are normalized to the superfluid 
transition temperature T c ~ 1.08 inK. 

Kinetic coefficients: viscosity, thermal conductivity, spin
diffusion. The general method to calculate the thermal con-
ductivity, for example, is to solve the Landau-Boltzmann
equation (41). For that one has to take a closer look at the
collision term Ip. A general form for it is

Ip = −
∑

p1,p′,p′
1

w(p,p1;p′,p′1)

×[npnp1(1− np′)(1− np′
1
)

−(1− np)(1− np1)np′np′
1
]. (60)

Here w(p,p1;p′,p′1) is the transition rate between the dif-
ferent quasiparticle states, and it has to conserve energy
and momentum. The latter factor in Eq. (60) takes in-
to account the effect of the occupation of the quasipar-
ticle states. The problem is that w(p,p1;p′,p′1) is not well
known. In some simple cases one can still find an analy-
tic solution of Landau-Boltzmann equation (41) with the
collision term (60). This happens when calculating the ki-
netic coefficients, viscosity, thermal conductivity and spin
diffusion coefficient. In the results, some averages over
w(p,p1;p′,p′1) appear [BP]. However, in most cases this
is too complicated. A more practical but approximate
approach is to use a relaxation time approximation. Its
simplest form is

I(np) = −np − n
l.e.
p

τ
, (61)

where τ is the relaxation time. Here nl.e.
p is the local equili-

brium distribution, which equals the equilibrium distribu-
tion (17) in local rest frame of the fluid and corresponds to
the same density and energy as the local np(r, t). In this
model the calculation of the kinetic coefficients is simple.
For example, viscosity is given by

η =
1

5
nF vF pF τ (62)

9



where nF = ρ/m is the number density of fermions.

Acoustic impedance. The analytical methods to solve the
Landau-Boltzmann equation were developed to high sop-
histication in 1960’s. Besides the exact calculation of the
kinetic coefficients, another such problem was the acoustic
impedance first solved by I. L. Bekarevich and I. M. Kha-
latnikov [Sov. Phys. JETP 12, 1187 (1961)] and further
developed by E. G. Flowers and R. W. Richardson [Phys.
Rev. B 17, 1238 (1978)]. Consider a semi-infinite Fermi
liquid bounded by a planar wall. Suppose small oscilla-
tions of the wall (either transverse or perpendicular to the
wall). The acoustic impedance Z is defined as the ratio of
the force on the liquid F divided by the velocity of the wall
u,

F = Zu, (63)

With harmonic time dependence ∝ exp(−iωt), the impe-
dance is complex valued, Z = Z ′ + iZ ′′. Here Z ′ gives the
dissipation and Z ′′ the mass of the fluid coupled to oscil-
lation.

Experimental data from P.R. Roach and J.B. Ketterson
[Phys. Rev. Lett. 36, 736 (1976)]. Figure: E. G. Flowers,
R. W. Richardson and S.J. Willamson [Phys. Rev. Lett 37,
309 (1976)].

5.1 Mechanical forces
Besides the planar semi-infinite geometry, we can consi-

der other oscillating bodies in a Fermi liquid. Special cases
are vibrating wires, and two parallel plates at a finite dis-
tance. Let us consider generally how the forces arise in a
Fermi liquid.

Let us first consider the case of liquid in a ground sta-
te except that there is a directed beam of quasiparticles
at momentum p0 Let us study the effect of the beam on
a quasiparticle trajectory that crosses the beam. We con-
sider such a low intensity beam that the collisions can be
neglected.

quasiparticle trajectory

quasiparticle            beam

pb

p
s

In a Fermi gas, a quasiparticle on the trajectory would
not react to the beam. In a Fermi liquid it experiences the
potential change δε (34) caused by the beam. In the simple
case that F s0 is the only relevant Fermi-liquid parameter,
the potential δε = [F0/2N(0)]δn is determined by the par-
ticle density in the beam.

sp

ε

p

ε

εF

µ

p

ε

δε

pF

A basic assumption of the Fermi-liquid theory is that the
potential is small compared to the Fermi energy εF , i.e.
δε � εF . This means that a quasiparticle is slightly dece-
lerated when it enters the beam and it is accelerated back
when it leaves the crossing region. In the energy point of
view (figure above), the quasiparticle flies at constant ener-
gy ε ≈ µ and the potential is effectively compensated by
depletion of fermions with the same momentum direction
in the crossing region.

Let us now consider the case that the intensity of the
quasiparticle beam is varying in time. This means that
the potential seen on the crossing trajectory changes. This
changes the number of particles stored in the crossing re-
gion, and thus leads to emission of particle or hole like qua-
siparticles from the crossing region. This takes place on all
crossing trajectories.

The effect is similar as sailing in an ocean. Usually one
is not interested how deep the water is, as long as it is
sufficiently deep. The situation is different if the ocean floor
is changing in time: one creates a tsunami.

particle beam

hole beam incoming

trajectoryu

In the case of a vibrating wire, the motion of the wire
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generates a beam of quasiparticles. This beam interacts
with the quasiparticles that are coming to the wire. In case
of negative F0, which is the case in 3He-4He mixture, this
increases the restoring force. Thus the oscillation frequency
is increased by the effect of Fermi-liquid interactions. In
order to determine this quantitatively, one has to solve the
Landau-Boltzmann equation (43).

Z'

anF pF

Z''-Z''ideal

anF pF-0.3 -0.2 -0.1 0 0.1 0.2
0

1

2

3
1

2

3

4

frequency shift

dissipation

1 decoupling of fermions

2 decoupling of bosons 

      bound to quasiparticles

3 effect of interactions, 

      "Landau force"

4 reflected quasiparticles

      from cell walls
liq

ui
d 

in
 a
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el

l

exp
erim

ent

de
cr

ea
si
ng

 te
m
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ra

tu
re

infinte liquid

wire radius

hydrodynamic limit

Experimental data: J. Martikainen, J. Tuoriniemi, T.
Knuuttila, and G. Pickett, J. Low Temp. Phys. 126, 139
(2002), theory: T. Virtanen and E.T., Phys. Rev. Lett. 106,
055301 (2011).

Effect of Fermi-liquid interactions in semi-infinite fluid:
see acoustic impedance (above). In Fermi liquid film: J.
Kuorelahti and E.T., poster in QFS2015.

6. Generalizations
Landau’s theory was originally proposed of a pure, non-

superfluid Fermi liquid. Various generalizations are pos-
sible.

The theory can be generalized to the presence of conden-
sed bosons [I. M. Khalatnikov, Sov. Phys. JETP 28, 1014
(1969); E.V. Thuneberg and T.H. Virtanen, Phys. Rev. B
83, 245137 (2011)]. The main application of this theory is
to liquid mixtures of 4He and 3He. However, it can also
clarify some conceptual points of Landau’s theory. In par-
ticular, the relation (37) between m∗ and F s1 makes some
formulas of the theory to appear as trivial. In fermion-
boson mixtures (37) has to be generalized and thus may
lead to better appreciation of the theory.

The Fermi-liquid theory can be generalized to the su-
perfluid phase by taking into account the pairing of fer-
mions to form Cooper pairs. The theoretical basis of the re-
sulting Fermi-liquid theory of superfluidity has been discus-
sed by J.W. Serene and D. Rainer [Phys. Rep. 101, 221
(1983)]. This applies in particular to the superfluid pha-
ses of liquid 3He. The theory and its results form a vast
field, too large to be discussed here. We simply state that
essentially all quantities of the superfluid state are affected
by the Fermi-liquid interaction parameters. Let us mention
here our recent work, where the Fermi-liquid interactions
lead to a qualitative change of quasiparticle states in a vor-
tex core [M. A. Silaev, E. V. Thuneberg and M. Fogelström,
arXiv:1505.02136].

The Fermi-liquid theory can also be generalized other
fermion systems than 3He. The most notable case is the
conduction electrons of metals. It applies to both the nor-
mal conducting and the superconducting phases. In metals
the presence of the crystal lattice leads to complications
and additional features compared to a translationally in-
variant Fermi system. Another important difference to unc-
harged system is the electric charge of the electron.

All the above considered three-dimensional Fermi liquid.
Landau’s theory can also be applied to interacting fermions
limited to move in two dimensions. I one dimensions a dif-
ferent behavior is expected.
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7. Derivation and limitations
Landau developed the Fermi-liquid theory intuitively as

the low energy expansion of a Fermi system. What it means
that the Fermi-liquid state will appear if nothing else hap-
pens. The possible alternative is that if the interactions are
strong enough, the particles will be localized and the sys-
tem becomes solid instead of a liquid state. An interesting
approach to this is presented by R. Shankar [Rev. Mod.
Phys. 66, 129 (1994)]. He uses the renormalization-group
method and finds that zooming into the neighborhood of
the Fermi surface, the Fermi-liquid model appears as one
alternative possibility.

The Fermi-liquid theory should appear as the low energy
limit of a microscopic many-body theory. This means that
one should be able to calculate the Fermi-liquid parame-
ters starting from a microscopic theory. At the moment it
seems that the quantum-fluids community is using experi-
mental values of the parameters. My hope is that some day
the many-body community would calculate more accurate
values of the parameters.

8. Conclusion
In this introduction to the Landau’s Fermi-liquid theory

we have concentrated on its starting point. Especially we
have tried to clarify the nature of the quasiparticle. Out
of the many applications of the theory to 3He and elsew-
here we have only briefly mentioned a few. We hope that
understanding the elements of the theory gives good star-
ting point to study the known applications, or finding new
ones.
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Appendix: hydrodynamic model of a quasipar-
ticle

The starting point is Euler’s equation and the equation
of continuity

∂v

∂t
+ v ·∇v = −1

ρ
∇p

∂ρ

∂t
+ ∇ · (ρv) = 0, (64)

where p is now the pressure. We assume a small veloci-
ty so that the nonlinear term can be dropped and assume
incompressible fluid, ρ = constant. The boundary condi-
tion on the surface of a sphere of radius a is n · v = n · u,
where u is the velocity of the sphere and n the surface
normal. We assume that far from the sphere v → 0. The
velocity can be represented using the potential v = ∇χ
where χ = −a3u · r/2r3. By the Euler equation the pres-
sure p = −ρχ̇, and the force exerted by the sphere on the
fluid

F =

∫
da p =

2πa3ρ

3
u̇ (65)

is proportional to the acceleration u̇. Therefore, associated
with a moving sphere, there is momentum in the fluid

p =
2πa3ρ

3
u (66)

corresponding to half of the fluid displaced by the sphere
and moving in the same direction and at the same velocity
as the sphere. Note that this may differ from the total
momentum of the fluid, which is not essential here, and is
undetermined in the present limit of unlimited fluid.
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