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Abstract

This chapter gives an introduction to basic properties of superfluids. After defin-

ing the subject, we list systems where it occurs: liquid 4He, liquid 3He, dilute

atomic gases, neutron stars and superconducting metals. The microscopic basis

for the formation of the superfluid phase is considered in boson and fermion

systems. The two-fluid model is introduced and some consequences are dis-

cussed. The quantization of circulation is presented. Quantized vortex lines are

introduced and they are used to explain the structure of a rotating superfluid.

Phase slip, Josephson effect and critical velocity are discussed.
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Figure 1: Once generated, the circulation of a superfluid (with velocity vs) persists as long as

the experiment can be continued.

1. Introduction

Fluids (gases and liquids) are distinguished from solids by the property that

they can flow. In almost all cases there is viscosity associated with the flow. Due

to viscosity, the flow energy is gradually dissipated into heat. Contrary to this10

common situation, there is a special class of fluids, which can flow without vis-

cosity. These are called superfluids and the phenomenon is called superfluidity

(London, 1954; Tilley and Tilley, 1990; Guénault, 2003; Annett, 2004; Leggett,

2006; Bennemann and Ketterson, 2013; Barenghi and Parker, 2016). As a con-

crete example, consider a ring-shaped container filled with superfluid, see Fig.15

1. Once the fluid is put into circular motion, it will continue to circulate and no

energy is dissipated. The flow can continue as long as the external conditions

remain unchanged, in particular the temperature is kept low enough.

Superfluids show many spectacular phenomena, which are discussed in sec-

tions 4-7. Before going into these we discuss the systems where superfluidity20

occurs (Sec. 2) and the microscopic basis of superfluidity (Sec. 3). While Sec. 3

gives deeper insight, it is not absolutely necessary for discussing the phenomena

in Secs. 4-7.
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Figure 2: Phase diagram of 4He at low temperatures. 4He remains liquid at zero temperature

if the pressure is below 2.5 MPa (approximately 25 atmospheres). The liquid has a phase

transition to a superfluid phase, also known as He-II, at the temperature of 2.17 K (at vapor

pressure).

2. Occurrence

Superfluidity occurs only in certain substances under special conditions. Su-25

perfluidity occurs at temperatures T below a transition temperature Tc, which

strongly depends on the substance.

As a first case we discuss liquid helium. Under standard pressure and tem-

perature helium is a gas. It liquifies at temperatures around 4 kelvin. Cooling

further down, it enters the superfluid phase at temperatures around 2 kelvin,30

depending on pressure (Wilks, 1967). The phase diagram of natural helium at

low temperatures is shown in Fig. 2. Natural helium consists essentially of iso-

tope 4He. A 4He atom is a boson since both the electronic spin and the nuclear

spin vanish. Helium was first liquefied in 1908 and the superfluid phase was

discovered in 1938.35

Helium has another stable isotope, 3He. A 3He atom is a fermion because the

nuclear spin is 1/2. At temperatures below a few kelvin, its behavior is radically

different from the isotope 4He. It also becomes superfluid, but at temperatures

that are a factor of one thousand smaller than for 4He (Wheatley, 1975; Leggett,
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Figure 3: The phase diagram of 3He at low temperatures. Note that the temperature is in

units of millikelvin, in contrast to Fig. 2. Two superfluid phases, A and B, are shown. The

figure is based on data by Greywall (1986).

1975; Vollhardt and Wölfle, 1990; Dobbs, 2001). The phase diagram of 3He at40

low temperatures is shown in Fig. 3. 3He has three different superfluid phases,

A, A1, and B. The A1 phase only appears in magnetic field, and therefore is

not visible in Fig. 3. Recently, also the polar phase has been demonstrated by

adding dilute impurity, aerogel, into the liquid (Dmitriev et al., 2015). The

superfluid phases A and B of 3He were found in 1972.45

With laser cooling it is possible cool certain dilute atomic gases like 1H, 6Li,

7Li, 23Na, 40Ka, 87Rb to very low temperatures. These gases condense to super-

fluid state at temperatures on the order of 1 µK, depending on the density and

on atomic interactions (Pethick and Smith, 2002; Pitaevskii and Stringari, 2003;

Leggett, 2006; Bloch et al., 2008). This state shows many properties that are50

similar to the helium superfluids, although it is not a thermodynamically stable

state, and therefore the flow cannot last for ever. Most of the discussion in this

article applies also to condensed gases. An important difference is that instead

of container walls for helium liquids, one has to consider the confining potential

of the gas, which can be generated either magnetically (by field gradients) or55
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optically (by laser beams). The gas atoms 1H, 7Li, 23Na, 87Rb are bosons while

6Li and 40Ka are fermions. Superfluid condensation in a gas was first found in

87Rb in 1995.

Superfluidity is expected to occur also in astrophysical objects. The neutron

liquid in a neutron star is believed to be in a superfluid state (Page et al., 2014;60

Gezerlis et al., 2014; Chamel, 2017). Also protons in a neutron star are expected

to condense to a superfluid state. Both neutrons and protons are fermions. The

superfluidity has been suggested as an explanation for the observed sudden

changes in the rotation velocity of pulsars.

Superfluidity is closely related to superconductivity (Tinkham, 1996; Ben-65

nemann and Ketterson, 2008). Superconductivity means that electric current

can flow without resistance. This phenomenon appears in several elemental

metals like Al, Sn, and Nb at temperatures on the order of 10 K or below. It

also appears in several alloys and compounds. Superconductivity arises from

resistanceless motion of the conduction electrons in a metal. Therefore, super-70

conductivity can be understood as superfluidity of the conduction electrons,

which are fermions. Part of the discussion in this article applies also to su-

perconductivity, but there are differences caused mainly by two reasons. (a)

Electrons have electric charge and therefore their motion is essentially coupled

with magnetic field. (b) The crystal lattice of the ions constitutes a preferred75

frame of reference, which does not exist for helium liquids. Superconductivity

was first found in Mercury in 1911.

3. Microscopic origin

In short, superfluidity can be explained as a quantum mechanical effect that

shows up on a macroscopic scale.80

Quantum mechanics is crucial in understanding the microscopic world. It

explains that electrons in atoms have only discrete energies. There is no friction

on the atomic scale, and the electrons can circulate the nucleus without losing

energy.
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We know that quantum mechanics rarely shows up on macroscopic scale.85

Instead of quantum mechanics, macroscopic objects obey the rules of classical

physics. The reason is that a macroscopic sample consists of large number of

particles and, instead of individual particles, one can only observe their average

behavior. Usually the particles are in different quantum states, and an average

over them obeys classical laws of physics. Examples of these laws are the Navier-90

Stokes equations for fluids and Ohm’s law for electrical conduction.

Superfluidity is an exception to this general rule. In superfluids a macro-

scopic number of particles is in the same quantum state. It follows that sum-

ming over particles does not lead to averaging, but produces a macroscopic wave

function.95

Consider a free particle with mass m and momentum p. Its kinetic energy

is E = p2/2m. Its state is represented by the single-particle wave function

ψ(r) =
1√
V

exp(
i

h̄
p · r), (1)

where V is the volume of the system and h = 2πh̄ the Planck constant. Below

we also use the wave vector k so that p = h̄k. The wave function of a many-

body system Ψ(r1, r2, . . .) is more general and depends on the coordinates ri of100

all particles, i = 1, 2, . . . , N , where N is the number of particles.

Further analysis depends essentially whether the particles are bosons or

fermions. We now assume the particles are bosons. This means that the total

wave function must be symmetric when exchanging any pair of particles. In the

case of two particles this means Ψ(r1, r2) = Ψ(r2, r1). Further we assume that105

there is no interaction between the bosons. It can be shown that the occupation

of the lowest energy state becomes macroscopic, if the temperature T is less

than

TBE =
h2

2πmkB

(
N

2.612V

)2/3

. (2)

Here kB the Boltzmann constant. This is known as Bose-Einstein condensation

(BEC). The wave function (1) of the lowest energy state (p = 0) becomes110

macroscopic. At zero temperature, all particles are in this state.
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While the ideal gas model explains Bose-Einstein condensation, it is quite

insufficient in other respects. The interactions between particles are essential

for the system to show superfluidity (see Sec. 7). In interacting system the

macroscopically occupied state ψ(r) need not be the lowest energy state, and115

thus the macroscopic wave function can be nontrivial. In Bose gases (87Rb etc.)

the interactions are weak, and a quantitative description can be achieved by

the relatively simple Gross-Pitaevskii equation. In liquid 4He the interactions

are much stronger, and a quantitative theory is not easily achieved. But even

in that case, formula (2) gives 3.1 K, which is not too far from the measured120

value. A simple phenomenological description of 4He superfluid is obtained by

considering its elementary excitations, see Fig. 4(a). The excitation spectrum

is liner, E(p) = cp at small momenta, where c is the velocity of sound. These

excitations are known as phonons. At larger momenta E(p) starts to decrease

and it attains a minimum. The excitations near this minimum are known as125

rotons. In Bose gases only phonon excitations are visible because of weaker

interactions.

Let us now turn to fermions. The fermions have spin, which has to be

described by an additional index σ. Here we consider only spin-half particles,

where the spin projection σ takes two values, σ = ± 1
2 . The wave function of130

a fermion system is Ψ(r1, σ1, r2, σ2, . . .), and it has to be antisymmetric in the

exchange of any pair of particles. For a two-particle state this means

Ψ(r1, σ1, r2, σ2) = −Ψ(r2, σ2, r1, σ1). (3)

This implies that the occupation of any single-particle state only can be zero

or one. This is known as the Pauli exclusion principle. Thus macroscopic

occupation of a single-particle state (1) is not possible.135

Superfluidity in a fermion system can appear as a result of an attractive

interaction between particles. Such an interaction can cause formation of pairs.

Each pair has to satisfy the antisymmetry condition (3). However, a pair is a

unit that behaves like a boson. In particular, it is not excluded that several pairs

are in the same pair state. Superfluidity in fermion systems can be understood140
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Figure 4: The energy of elementary excitations as a function of the wave number, E(k). (a)

Elementary excitations in liquid 4He at vapor pressure (black solid line). The free atom kinetic

energy is given by dashed line. The figure is based on neutron-scattering data by Henshaw

and Woods (1961). (b) Sketch of elementary excitations of a degenerate fermion system. The

excitation energy in the normal state (dashed lines) vanishes at the Fermi surface, k = kF .

The excitations are particle type at k > kF and hole type at k < kF . In the superfluid state

(black solid line) an energy gap ∆ opens up. For visibility of the figure, the scales are far off

from those ones in superconducting metals and liquid 3He. In both panels the sloped straight

lines (red) correspond the critical velocity according to Landau criterion (17).

as a macroscopic occupation of a single pair state. Thus superfluidity can be

understood as Bose condensation of pairs.

The spin part of the pair wave function has four different possibilities. These

can be classified as a singlet state

↑↓ − ↓↑ (4)

(which is a compact notation for δσ1,1/2δσ2,−1/2 − δσ1,−1/2δσ2,1/2) and three145

triplet states, which can be chosen as

− ↑↑ + ↓↓, i(↑↑ + ↓↓), ↑↓ + ↓↑ . (5)

Let us first study the case of spin singlet (4). The pair wave function in this

case is assumed to be of the form

Ψ(r1, σ1, r2, σ2) = ψ(
r1 + r2

2
)χ(r1 − r2)(↑↓ − ↓↑) (6)

where we have separated the orbital wave function to a center of mass part ψ

and a relative part χ. The singlet spin state (4) is antisymmetric in the exchange150
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of the two spins. In order to satisfy pair antisymmetry (3), the corresponding

orbital part χ(r1 − r2) has to be symmetric, χ(r) = χ(−r). In most supercon-

ductors the pair wave function is of the form (6). In majority of them (Al, Sn,

Nb, . . . ) χ is approximately independent of the direction of r1 − r2. This is

called s-wave pairing in analogy with s, p, d, etc. atomic orbitals. In high-Tc155

superconductors there is strong evidence of d-wave symmetry of χ. In Fermi

gases s-wave pairing has been observed with the spin being pseudo spin formed

by two atomic hyperfine states. (Zwierlein, 2014).

Another alternative is that the spin state of a pair is triplet (5). This case is

realized in 3He and possibly in some superconductors. In 3He the orbital wave160

function is of p type. There are three degenerate p-wave states px, py and pz.

The pair wave function can be written as

Ψ(r1, σ1, r2, σ2) =

3∑
j=1

3∑
µ=1

ψµj(
r1 + r2

2
)pj(r1 − r2)iσ̂µσ̂2. (7)

Here iσ̂µσ̂2 denotes the same three spin states as in Eq. (5), but expressed using

Pauli spin matrices σ̂i.

The macroscopic wave function of bosons is called order parameter, since it165

describes ordering of the particles and it vanishes in the normal fluid phase. For

fermions the same role is played by the center of mass part of the pair function.

This is the soft degree of freedom, which can change as a function of time and

location, whereas the other parts in the pair wave function (6)-(7) are fixed. We

see that the order parameter in 4He and in most superconductors is a complex-170

valued scalar ψ, but in 3He it is a 3 × 3 matrix ψµj . The order parameter in

condensed boson gases is a scalar in the simplest case, but including atoms in

different hyperfine states allows more complicated forms. In neutron stars both

spin singlet and triplet pairing has been predicted to occur.

An important energy scale in a Fermi system is Fermi energy. It is the175

energy up to which all noninteracting single particle states would be filled at

zero temperature. It is EF = p2F /2m, where the Fermi momentum pF is related

to the particle density by N/V = p3F /3π
2h̄3. Compared with thermal energy

kBT , it corresponds to Fermi temperature TF = EF /kB . For 3He TF ∼ 1
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K and for elemental superconductors TF ∼ 104 K. We see that for both 3He180

and superconductors, the transition temperature is small compared to the Fermi

temperature, Tc/TF ∼ 10−3 or less. This implies that only excitations that have

low energy (� EF ) close to the Fermi surface p = pF play role in superfluidity.

Such excitations are described by Landau’s Fermi liquid theory. The normal

state excitations are quasiparticles which are free-particle like and weakly inter-185

acting, see Fig. 4(b). In the superfluid state pairs are formed. They are weakly

bound and called Cooper pairs. The pair condensation opens an energy gap

in the excitation spectrum. Quantitative theory of fermion superfluids is based

on the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity (Bardeen

et al., 1957). The extension to cover superfluid 3He is discussed by Serene and190

Rainer (1983).

Above we have discussed the boson and fermion cases separately. But in

fact, one can think to go continuously from one case to the other. By increasing

the attractive interaction of the fermions in a Cooper pair, one could transform

it to a strongly bound pair, which could be considered as a single Bose particle.195

This BCS-BEC crossover has been experimentally studied in fermion gases.

4. Hydrodynamics

Many properties of superfluids can be understood in terms of the two-fluid

model. The basic assumption is that the liquid consists of two parts. These

are called the superfluid and normal components. The current density j can be200

represented as a sum

j = ρsvs + ρnvn. (8)

Here ρs and vs are the density and velocity of the superfluid component and ρn

and vn are the corresponding quantities for the normal component. The liquid

density is the sum of the two densities, ρ = ρs + ρn. The superfluid component

can flow without viscosity and it carries no heat or entropy. Moreover it is curl205

free,

∇× vs = 0. (9)
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Figure 5: The normal fluid fraction ρn/ρ as a function of temperature relative to Tc. The

lowest curve is for superfluid 4He at vapor pressure and is based on data in Peshkov (1946).

The other curves are for superfluid 3He-B at melting pressure (upper curve) and vapor pressure

(middle curve) according to weak coupling theory (BCS theory generalized to triplet p-pairing

and including Fermi-liquid interactions). The superfluid fraction ρs/ρ = 1 − ρn/ρ.

(This is valid only in uncharged superfluids.) The normal component behaves

more like a usual viscous fluid.

The two-fluid model can be justified from the microscopic theory discussed

in Sec. 3. The superfluid component corresponds to particles in the macroscopic210

wave function, and the normal component to particles in the excited states. The

densities of the two components depend on temperature. At zero temperature all

particles are in the condensate, ρn = 0 and ρs = ρ. With increasing temperature

more particles are excited out of the condensate to the excited states. Thus

ρn(T ) grows and ρs(T ) drops, see Fig. 5. The superfluid transition Tc is the215

temperature at which the condensate ceases to exist, and corresponds to ρs = 0

and ρn = ρ.

In application of the two-fluid model we can distinguish two cases. Consider

first the case that only the superfluid component moves, vn = 0. This can be

realized in the ring-shaped container (Fig. 1). Once the superfluid component220

is set into motion, it can persists because flow is ideal with no viscosity. This
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Figure 6: A difference in temperature ∆T generates flow of normal and superfluid components

in opposite directions, and a pressure difference ∆p appears. The viscosity of the normal

component causes vn to vanish at walls. The superfluid velocity vs(z) has to be constant in

order to be curl free (9). In a channel with closed ends the total mass flow J has to vanish.

explains that superfluid can flow through narrow pores or as a thin film in

response to small or vanishing pressure difference.

The other type of motion is that also the normal component participates in

it. This takes place, for example, when an object moves in the liquid. Because225

of motion of the normal component, viscous forces and dissipation appear. This

explains that nonvanishing viscosity is measured with a viscometer, where the

superfluid is placed between two plates or coaxial cylinders that move at different

velocities. The measured viscosity can still be small at low temperatures, where

the normal component density is vanishingly small.230

Superfluids show peculiar mixing of thermal and mechanical properties.

Consider superfluid in a channel which is heated at one end, see Fig. 6. The

superfluid component is attracted to the hot region because the chemical po-

tential is lower there. As a consequence a pressure difference appears. This

drives the normal component in the direction of decreasing temperature and235

convects the heat away from the source. Assuming the geometry does not allow

net mass transfer, the mass transported by the normal and superfluid compo-

12



nents in opposite directions are equal in magnitude. Such counterflow can lead

to exceptionally large heat conductance.

In addition to usual sound wave, superfluids have another propagating mode.240

This second sound is an oscillation where normal and superfluid components

move in opposite directions. This leads to oscillation of temperature whereas

the density remains nearly constant. Second sound can be generated by heat-

ing the superfluid periodically, and standing waves of temperature have been

demonstrated experimentally.245

In addition to the mass current j, there can be persistent spin currents. This

is possible in superfluids whose order parameter is more complicated than scalar

(3He). Spin current is described by a tensor jspinµj . The index µ = x, y, z indicates

the direction of spin angular momentum that is flowing, and j = x, y, z indicates

the direction of the flow. Even in equilibrium the order parameter of 3He has250

nontrivial spatial variation called texture. This is associated with persistent spin

currents and, in case of 3He-A, also with persistent mass currents.

5. Quantization of circulation

Consider a superfluid with order parameter ψ. (Assume an uncharged su-

perfluid, ψ can be either scalar or matrix.) The superfluid velocity vs can be255

expressed as a function of the order parameter as

vs =
h̄

M
∇φ. (10)

Here φ(r) is the phase of the order parameter, ψ(r) = Aeiφ(r), and the ampli-

tude A is assumed constant. M is the boson mass, i.e. the mass of a particle in

a boson superfluid and the mass of a pair in a fermion superfluid. Eq. (10) can

be justified starting from the expression of current in quantum mechanics.260

An alternative form of Eq. (10) is obtained by taking line integral along a

closed path, ∮
vs · dl = N

h

M
. (11)
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Here we have used the property that φ is defined modulo 2π, and N is an integer.

Eq. (11) is known as quantization of circulation. The curl-free condition (9) is

a direct consequence of Eq. (10) or (11).265

Consider again superfluid in a ring-shaped container (Fig. 1). We can apply

Eq. (11) to a path in the ring. We see that, in addition to being persistent,

the superfluid velocity can only have discrete values. A similar phenomenon

in superconductors is flux quantization. It says that magnetic flux through a

ring shaped superconductor is an integral multiple of flux quantum Φ0 = h/2e,270

where e is the elementary charge.

6. Rotating superfluid and vortex lines

Let us consider superfluid in a container that is rotated with angular velocity

Ω. The normal component will follow this motion because of its viscosity. In

equilibrium it rotates uniformly with the container, vn = Ω × r. This is not275

possible for the superfluid component because it has to be curl free (9). [Eq.

(9) should be compared to ∇× vn = 2Ω.]

The rotating state of a superfluid is most commonly realized by vortex lines

(Andronikashvili and Mamaladze, 1966; Donnelly, 1991). On a path around the

vortex line, the phase φ changes by 2π (or an integral multiple of it). This is280

illustrated in Fig. 7. Equivalently, the circulation of superfluid velocity (11)

around the vortex line is h/M . Assuming cylindrical symmetry, the phase φ is

the same as the azimuthal angle in the cylindrical coordinate system (r, φ, z).

The velocity field can be calculated from Eq. (10):

vs =
h̄

Mr
φ̂, (12)

where φ̂ is a unit vector in the azimuthal direction.285

The structure of the rotating state is determined by minimum of free energy.

The rotation of the container is taken into account by minimizing F = F0−L·Ω,

where F0 is the free energy functional in the stationary case and L the angular

14
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Figure 7: (a) Schema of a vortex line, where the phase of the order parameter changes by 2π

when encircling the line. (b) Dependence of the azimuthal velocity field (12) on the distance

r from the vortex line.

momentum. In the two-fluid model this reduces to

F =

∫
d3r

1

2
ρs(vs − vn)2 + constant. (13)

Thus the optimal solution corresponds to vs as equal as possible to vn = Ω×r,290

but subject to condition (10). This is achieved by a regular array of vortex

lines, see Fig. 8. The number of vortex lines n per unit area is determined by

the condition that the circulations of normal and superfluid velocities are the

same over an area containing many vortex lines. This yields

n =
2MΩ

h
. (14)

There are approximately 1000 vortex lines in a circular container of radius 1 cm295

that is rotating 1 round per minute.

Vortex lines in an uncharged superfluid are analogous to flux lines, which

occur in type II superconductors. Flux lines of superconductors appear in mag-

netic field, which is analogous to rotation of an uncharged superfluid.

The velocity field (12) of a vortex diverges at the vortex line. Thus there300

must be a vortex core, where the two-fluid description is insufficient. A finite

energy in the vortex core is achieved if the amplitude of the order parameter

vanishes at the vortex line. This is the case for a scalar order parameter. For

a matrix order parameter it is not necessary that all components of the matrix

vanish at the line. Such vortex lines are realized in superfluid 3He-B.305
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Figure 8: In a rotating container the vortex lines form a regular array so that the superfluid

and normal fluid velocities, vs and vn, are equal on the average. In equilibrium the vortex

array rotates rigidly with the container.

The quantization of the superfluid velocity (11) is not always true for un-

charged superfluids. This happens when there is an additional contribution

to the superfluid velocity (10) coming from the matrix form of the order pa-

rameter. Such a case is realized in superfluid 3He-A, and careful reanalysis of

the rotating state is needed. It turns out that, in addition to one-dimensional310

vortex lines, the vorticity may be arranged as two-dimensional vortex sheets

and three-dimensional textures. All these have been confirmed experimentally

(Lounasmaa and Thuneberg, 1999). In any case, a homogeneous rotation of

the superfluid is excluded. Many more topological objects in quantum liquids

and their parallels in particle physics and cosmology are discussed by Volovik315

(2003).

Besides rotating superfluid, vortex lines appear also in other circumstances.

Vortices are important in limiting the maximal flow velocity, as will be discussed

in the following section. By strong mechanical driving or by large thermal coun-

terflow (Fig. 6) one can generate a large number of vortices. This is the quantum320
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version of turbulence (Skrbek et al., 2021). In three dimensions the energy of

vortex lines is high relative to the quasiparticle excitations, and therefore they

are not important for thermodynamics. This changes in a thin liquid film, which

forms essentially a 2 dimensional system. The transition from superfluid to nor-

mal state can be seen as formation of free vortices that destroy the superfluid325

coherence, which is known as Kosterlitz-Thouless transition.

7. Phase slip, Josephson effect and critical velocity

Let us study superflow in a channel under thermal equilibrium (vn = 0). The

maximum supercurrent is determined by a process called phase slip. Consider

that a short piece of vortex line is nucleated at a surface on one side of the330

channel. This vortex expands, goes through the whole cross section of the

channel, and finally disappears on the other side. As a result of this process,

the phase difference ∆φ between the ends of the channel has changed by 2π.

Part of the superfluid kinetic energy is dissipated in the motion of the vortex.

This means that the flow ceases to be dissipationless above a critical velocity335

for phase slips. Phase slips preferentially take place in constrictions of the flow

channel, where the superfluid velocity has its maximum value.

A special type of phase slip takes place in very short constrictions, where

Eq. (10) ceases to be valid. An ideally short constriction shows the Josephson

effect, where the supercurrent Js depends on the phase difference ∆φ as340

Js = Jc sin(∆φ), (15)

and Jc is a constant. Moreover, the time derivative of ∆φ is proportional to the

difference of the chemical potential ∆µ on the two sides of the constriction,

d∆φ

dt
= −2∆µ

h̄
. (16)

Combining the two equations, one sees that a constant ∆µ generates an oscil-

lating current at the frequency 2∆µ/h.

The Josephson effect takes place in all superfluids. It has extensively been345

studied in superconductors, where it is straightforward to fabricate barriers
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through which electrons can tunnel. For helium one has to use sufficiently small

constrictions. Josephson effect in 3He has been discussed by Davis and Packard

(2002).

Let us consider a macroscopic moving object in a stationary superfluid. As350

discussed above, there generally is viscous drag from the normal component,

but restricting to low temperatures, say below 0.2Tc, the normal fraction is

vanishingly small. In this case the motion is nearly dissipationless as long as

the object does not generate new excitations. The creation of excitations is

limited by energy and momentum conservation. A simple calculations shows355

that no excitations are generated below the velocity

vc = min
E(p)

p
, (17)

which means the minimum of E(p)/p over all excitations. In connection of su-

perfluidity, the velocity (17) is known as Landau velocity. It is more general,

however, because the condition v < vc = minω(k)/k means relatively low dis-

sipation in any system, where the medium has waves with angular frequency360

ω and wave number k. The critical velocity (17) can also be derived from the

condition that the waves generated by the object are stationary in the frame

where the object is at rest. This is familiar to us, for example, from waves

generated by a ship on the surface of water.

When the object velocity exceeds the Landau velocity vc, a steep increase365

of the drag force is expected. Let us examine this in special cases. For 4He the

critical velocity is determined by the roton minimum [sloped line in Fig. 4(a)].

This gives vc ≈ 60 m/s. Landau critical velocity has been observed for ions

moving in superfluid 4He under pressure. In most experiments, the measured

critical velocity is much lower. This is commonly interpreted to be caused by370

vortices, which are hard to avoid in a macroscopic set up.

For 3He-B the Landau velocity vc = ∆/pF , which corresponds to 27 mm/s

at vapor pressure. Again, critical velocity of this magnitude has been seen with

moving ions. For macroscopic objects the measured critical velocity is smaller

than this. However, a recent experiment observes very little dissipation up375
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to velocity ∼ 2vc (Bradley et al., 2016). At the time of writing, this is not

understood theoretically (Kuorelahti et al., 2018).

Landau velocity has also been applied to cases where only the superfluid

component is in motion. For example, in ideal boson gas and in normal state

fermions (dashed lines in Fig. 4) it gives vanishing critical velocity, vc = 0.380

This is consistent with other arguments that these systems are not superfluids.

However, for non-s-wave pairing of fermions, it is possible that the energy gap

∆ depends on the point on the Fermi surface, and can have nodes, leading to

vc = 0. Such a case appears 3He-A. In this case the vanishing of the Landau

velocity does not imply absence of superfluidity.385

8. Conclusion

We have given introduction to the basic properties of superfluids. Several

more advanced topics are mentioned, but all details of them are left to be read

from the given references and other literature.
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