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Vortex structure:
      - core split into two half cores
      - asymptotic form far from vortex axis

Effect of precessing magnetization:

- dipole-dipole torque on the asymptotic form

⇒ dissipation by radiation of spin waves

⇒ slow rotation of the vortex

⇒ twisted vortex

- spin wave radiation from a twisted vortex

Supercritial motion
- can we understand low dissipation theoretically?
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Weak coupling p-wave pairing superfluid
p-wave pairing (L = 1) -> triplet pairing (S = 1)
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Weak coupling approximation
The ground state is Balian-Werthamer state
A = unit matrix, or arbitrary rotation matrix 



Vortex

Consider the x axis

A simple solution r
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Two half cores

Double-core vortex

 Asymptotic form far from vortex axis
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Short history of the 
double-core vortex

- identification of the vortex structures based on calculation in the Ginzburg-Landau 
region (T 1986, Salomaa & Volovik 1986, T 1987): V2 = double-core vortex

- quantitative model as two half-quantum vortices bound by a domain wall (Volovik 
1990) 

- Broken axisymmetry was used to explain strange behavior seen in HPD mode of 
NMR (Kondo et al 1991)

- weak coupling calculation of the order parameter at all temperatures by self-
consistent solution of Eilenberger equations (Fogelström & Kurkijärvi 1995)

- calculation of bound quasiparticle states, Lifshitz transition, rotational friction and 
stiffness  parameters (Silaev, T & Fogelström 2015)
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- Experimental observation of vortex core 
transition in superfluid 3He-B (Ikkala, Volovik, 
Hakonen, Bun'kov, Islander, Kharadze, 1982) etc



Dipole-dipole interaction
Dipole-dipole energy

minimized with total rotation angle 

- ok in the B phase equilibrium

- ok  in the B phase with precessing magnetization M at 
tipping angles β < 104˚: both M and n rotate uniformly 
around H.

- not minimized at vortices
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Spin wave radiation

✓(r, t) = ✓1(r) + ✓2(r, t)

⇒ inhomogeneous wave equation
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Radiated power

energy flux ⌃i = ��v2
h
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Results for small tipping, small T/Tc

Relaxation rate vs. magnetic field

Experiment: Rota group (Aalto)
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Weak coupling calculation of the vortex 
structure: C1 ≈ 5

(Silaev, T, Fogelström 2015)
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Other relaxation mechanisms

- calculation of the bound states (Silaev, T & Fogelström): the friction coefficient  f  
is so large that the dissipation is negligible
- softness of θ ⇒ d.c. force ⇒ slow rotation of the vortex

1) nonequilibrium between normal and superfluid components (Leggett & Takagi 
1977)
- weak at low temperatures, contributes at high temperatures (Laine & T 2016)

2) dissipation by bound quasiparticle states in the half cores (Kondo et al 1991).
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Twisted double-core vortex

Twisting of the double-core vortex was suggested by
Kondo, Korhonen, Krusius, Dmitriev, Mukharsky, 
Sonin, and Volovik (1991)

We can now understand the time scale: the diffusion 
equation

and the calculation of K and f give the time scale
of a few minutes

Suppose the vortex is pinned at the top and bottom 
walls (cell height L)
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Spin-wave radiation from a twisted vortex

Twisting reduces the coherence of the emitted waves
One of the two modes becomes nonpropagating at a critical twisting
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Experimental data on twisted vortices
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~F of the fast mutual-friction-resisted motion.
The slow signal is thus obtained while the vortex densi-

ty is already close to its final equilibrium value, but the
positions of individual vortices still deviate from those in
the final equilibrium state. The time dependence of the
exponentially relaxing signal, which is here observed in
the absence of any external perturbations, we associate
with the slowest collective mode of the vortex array, i.e.,
the mode which is responsible for the asymptotic ex-
ponentially slow approach to the equilibrium
configuration. We call it the slow vortex mode. In con-
trast, the first transient part of the response in Fig. 9 fol-
lowing the switch on of the Q modulation is a sum of
both the fast and slow modes and will not be analyzed
here in detail. The steady-state motion during the har-
monic rotation drive, which corresponds to the stable
maximum signal level in Fig. 9, is analyzed in Appendix
B.
Figure 9 shows that the resonance amplitude EP, (t) is

associated with hydrodynamic motion: It appears when
the vortices are forced into translational motion and it
disappears exponentially when the vortices settle down to
their pinned equilibrium sites. Another example of the
coupling of b,P, (t) at constant vortex number to the hy-
drodynamics is the interaction of the peripheral vortices
with the cylindrical container wall and its dependence on
the distance from the wall, which is discussed in Appen-
dix B.
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FIG. 9. Measurement of the slow vortex mode. P, is moni-
tored as a function of time while a sinusoidal component is ei-
ther subtracted from [trace Q, (t)] or added to [trace Q2{t)] the
constant rotation Go=1.5 rad/s. The measurement is per-
formed on a vortex cluster, whose equilibrium state is at
Q„=1.0 rad/s (i.e., at 0, the cluster fills the whole NMR cell).
The responses P„(t) and P,2(t) to the two drives Q&(t) and Q2(t)
are identical; the absorption increase hP, does not depend on
whether the cluster starts to contract or expand and is thus a
function of only the modulus of vortex displacement. The har-
monic component in the drive enforces a relative change in vor-
tex density, which is ~ hQ/DO=7% peak to peak. When the
harmonic component in the drive is switched off, the signal de-
cay to the final state at 00 is, for the most part, controlled by
the slow vortex mode, since w, &)~F. This exponential relaxa-
tion of EP, (t) is fitted with a time constant ~, =106 s, equal for
both responses; the quality of the fit depends primarily on the
stability of the base line for the absorption increase AP„(dashed
horizontal lines). Here the base lines have a finite slope due to a
slow drift in the electronics.

In addition to the hydrodynamic drive, the slow mode
can be excited by any means which disturb momentarily
the equilibrium state. A short transient perturbation is,
e.g., a thermal pulse, which is introduced by overheating
the Pt NMR coil with a number of large transmitter
pulses. The thermal pulse is accompanied by a hydro-
dynamic disturbance since it involves some redistribution
of the angular momentum. A temperature transient
changes the ratio of the normal and superAuid com-
ponents and, as a result, an exchange of angular momen-
tum takes place between them. Similarly, a magnetic dis-
turbance can be used to excite the slow mode. This can
be effected by simply switching on the HPD, i.e., by
sweeping the steady field 0 down, such that the HPD is
formed. On the other hand, if this operation is per-
formed by starting from an existing HPD, i.e., by sweep-
ing the field first up, such that the HPD is removed, and
then after a time interval At back down again, the signal
amplitude is a function of At: if the time At is small com-
pared to the time ~„the interruption of the HPD has no
effect on the signal, it returns back to the former level be-
fore the interruption (two operations in rapid succession
cancel each other). When b, t »r„ the signal becomes in-
dependent of when the former HPD was switched off.
When H is tilted beyond a critical inclination angle g,

with respect to the rotation axis 0 (at II=14.2 mT,
r), =17'), neither hydrodynamic, thermal, nor magnetic
drives are observed to excite any changes in the HPD ab-
sorption level. This excludes a thermal process as a pos-
sible explanation of the slow relaxation. On the other
hand, the tilted magnetic field suppresses the absorption
mechanism, suggested by us for the exponentially relax-
ing signal AP„(t) (see Ref. 16 and Appendix A).
From the measurements of the exponential relaxation

we have found that v; does not depend on the perturba-
tion, which is used to initiate the slow mode, but instead
it is controlled by the hydrodynamic conditions. Nor
does w, appear to depend on the tilting angle g in the
range 0~ g &q, where the relevant absorption mecha-
nism is present or on the fact whether the vortex cluster
is in contact with the cylindrical cell wall or not. Also, as
seen from Fig. 9, the slow response is insensitive to
whether the change in 0 corresponds to acceleration or
deceleration: In fact, a stepwise increase or decrease in
0, acting on a vortex cluster isolated by macroscopic
counter Aow from the cell wall, produces identical
responses.
The chain of mechanisms, which connects the slow

vortex mode to the HPD absorption, is not yet clear in all
details (see Appendix A). However, this is not of primary
concern to us here since we study the time dependences,
which are governed by hydrodynamics. Among the
several reasons, which dictate a close connection between
the measured exponential relaxation of EP„(t) and the
hydrodynamic slow mode, the most compelling argument
is the long time scale of ~, -100 s: no other process at
constant temperature has a time scale relevant to the ob-
served time variations. Magnetic relaxation phenomena
are all at least 4 orders of magnitude faster, i.e., a few ms
or faster. Also, the readjustment of the vortex array to a
new equilibrium vortex density is 2 orders of magnitude

Krusius, Kondo, Korhonen, 
Sonin, Phys. Rev. B 47, 15113 
(1993)

theory explains
- changes of absorption
- time scales (including the 
factor of 2 difference in 
increasing and decreasing 
absorption)



Summary of spin wave radiation in vortices of 
3He-B

Spin wave radiation is the dominant dissipation mechanism of NMR in vortices at 
temperatures T/Tc < 0.5

Theory and experiment agree essentially without fitting parameters

Poster 780 by Sami Laine on Monday



Moving objects in a Fermi superfuid: 
three regions
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Quasiparticle dispersion
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Bound state energies for a point object

Ashauer, Rainer 1988

Branch imbalance in supefluid 3He-B 5137 

with a supercritical velocity produces imbalanced beams of particle-type and hole-type 
excitations. This opens up the possibility of spin-polarised beams. Details of the spin 
polarisation depend sensitively on the scattering potential. 

Figure 4 shows the dependence of the bound-state energy of an s-wave scattering ion 
on the ion velocity. For comparison the continuum of delocalised states is plotted in the 
same figure. The bound state merges into the continuum before the critical velocity is 
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Figure 4. The velocity dependence of the energy of the bound state in the s-wave model for 
different scattering strengths N(EF)uO. In the unitary limit (N(EF)u0+ m), the bound state 
has zero energy for all velocities. The shaded area represents the continuum of delocalised 
quasi-particle states. 

reached. Therefore-at least in the simple s-wave model-the critical velocity of an ion 
cannot be lowered by intermediate scattering processes into the bound state. 
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Appendix 

This appendix lists the matrices gil and gi2  (i = 0, 1,2 ,3)  in equation (18). They are 
the solutions of 

- A, gK] = 0 

for unitary states (A@) X A*@) = 0). The reader is referred to [2] for further details. 
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No crossing of the Fermi 
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The same seems to hold 
for a wall



Superfluid low frequency dynamics
Serene & Rainer 1983

the shift of quasiparticle energies is determined selfconsistently by the excitations
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Two limiting cases

What happens between these limits?

1) short time scale: ignore collisions between quasiparticles

⇒ It seems that a supercritical state can be stabilized in the near region

- it seems unlikely that such a low dissipation can be reached as reported by Bradley 
et al (2016)

2) long time scale: equilibrium is achieved in the near region through collisions 
between quasiparticles

⇒ vortex formation


