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Content

Vortex structure:
- core split into two half cores
- asymptotic form far from vortex axis

Effect of precessing magnetization:

- dipole-dipole torque on the asymptotic form
= dissipation by radiation of spin waves

= slow rotation of the vortex

= twisted vortex

- spin wave radiation from a twisted vortex

Supercritial motion
- can we understand low dissipation theoretically?
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Weak coupling p-wave pairing superfluid

p-wave pairing (L=1) —> triplet pairing (S =1)
Orbital wave functions (L=1)

Spin wave functions (S=1) 1 : jg/\
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order parameter

Weak coupling approximation
The ground state is Balian-Werthamer state
A = unit matrix, or arbitrary rotation matrix



A simple solution A.;(r, @, 2) = C(r)

Consider the x axis

far at negative x: smooth change
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0(x) changes fromxto 0

Smooth change on the x axis

pair density most suppressed at two points on the y axis:

the core is split into two half cores
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Double-core vortex
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Asymptotic form far from vortex axis
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[axially symmetric vortex: C1=C2 (Hasegawa 1985)]



Short history of the Y
double-core vortex

- Experimental observation of vortex core
transition in superfluid 3He-B (Ikkala, Volovik, ol . . ]
Hakonen, Bun'kov, Islander, Kharadze, 1982) etc Temperature (mK)
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- identification of the vortex structures based on calculation in the Ginzburg-Landau
region (T 1986, Salomaa & Volovik 1986, T 1987): V2 = double-core vortex

- quantitative model as two half-quantum vortices bound by a domain wall (Volovik
1990)

- Broken axisymmetry was used to explain strange behavior seen in HPD mode of
NMR (Kondo et al 1991)

- weak coupling calculation of the order parameter at all temperatures by self-
consistent solution of Eilenberger equations (Fogelstrom & Kurkijarvi 1995)

- calculation of bound quasiparticle states, Lifshitz transition, rotational friction and
stiffness parameters (Silaev, T & Fogelstrom 2015)



Dipole-dipole interaction

Dipole-dipole energy fD = AD (RZZR]j + RZJRJZ) — %)\D (4 cos v + 1)2
minimized with total rotation angle V=Yg = arccos(—%) = 104°
- ok in the B phase equilibrium H
- ok in the B phase with precessing magnetization M at &
tipping angles 5 < 104°: both M and n rotate uniformly
around H.
M
~ not minimized at vortices V=9 +n-06
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simplifies calculations
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Spin wave radiation
0 —wr x0+0n(n-0)—v?[(1+c)V?0—cV(V-0) =0
O(r,t) = 01(r) + O(r,t)
= inhomogeneous wave equation
0y — wr x 0y + Vnn -0y —v? [(1 +)V?0y — cV (V- 05)] = —Q*nn - 6,

=> eigenvalue equation for three polarizations: one decaying, two propagating modes




energy flux

radiated power
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Results for small tipping, small 7/7¢
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Other relaxation mechanisms

1) nonequilibrium between normal and superfluid components (Leggett & Takagi
1977)
- weak at low temperatures, contributes at high temperatures (Laine & T 2016)

2) dissipation by bound quasiparticle states in the half cores (Kondo et al 1991).
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- calculation of the bound states (Silaev, T & Fogelstrom): the friction coefficient f

Is so large that the dissipation is negligible
- softness of @ = d.c. force = slow rotation of the vortex
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Twisted double-core vortex
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Suppose the vortex is pinned at the top and bottom
walls (cell height L)

Twisting of the double-core vortex was suggested by
Kondo, Korhonen, Krusius, Dmitriev, Mukharsky,
Sonin, and Volovik (1991)

We can now understand the time scale: the diffusion
equation
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and the calculation of K and f give the time scale 370
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of a few minutes




Spin-wave radiation from a twisted vortex

S

0 —wr x0+Pnn-0)—v? (14 V20 —-cV(V-6)] =0

Twisting reduces the coherence of the emitted waves
One of the two modes becomes nonpropagating at a critical twisting
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Experimental data on twisted vortices
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Krusius, Kondo, Korhonen,

Sonin, Phys. Rev. B 47, 15113
(1993)

theory explains

- changes of absorption

- time scales (including the
factor of 2 difference in
increasing and decreasing
absorption)



Summary of spin wave radiation in vortices of
SHe-B

Spin wave radiation is the dominant dissipation mechanism of NMR in vortices at
temperatures 7/Tc< 0.5

Theory and experiment agree essentially without fitting parameters

Poster 780 by Sami Laine on Monday



Moving objects in a Fermi superfuid:
three regions
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Quasiparticle dispersion

stationary superfluid moving superfluid
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bound excitations in the surface
layer for diffuse scattering

How can Lambert mechanism
work?



Bound state energies for a point object
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The same seems to hold
for a wall



Superfluid low frequency dynamics

Serene & Rainer 1983

the shift of quasiparticle energies is determined selfconsistently by the excitations
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Two limiting cases

1) short time scale: ignore collisions between quasiparticles

= It seems that a supercritical state can be stabilized in the near region

- it seems unlikely that such a low dissipation can be reached as reported by Bradley
et al (2016)

What happens between these limits?

2) long time scale: equilibrium is achieved in the near region through collisions
between quasiparticles

= vortex formation



