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Practicalities

Write your name, department/group, year class, and
email address on the list.

The lectures are given in English if there is sufficient
demand for it, otherwise in Finnish.

The web page of the course is
https://www.oulu.fi/tf/sj/index.html

The web page contains the lecture material (these notes),
the exercises and later also the solutions to the exercises.
See the web page also for possible changes in lecture and
exercise times.

Time table 2015

Lectures: Wednesday 14-16, FY1103 (9.9.-2.12.)

Exercises: Thusdays 8-10, FY1103 (17.9-3.12.)

Examination: to be agreed on lecture on 18.11.

Teaching assistant: Sami Laine

Doing exercises is essential for learning. In addition,
showing completed exercised will affect your final
evaluation. (You can improve by one, for example, from 3
to 4.) Start calculating (at home) before the exercise
time, 2 hours is too short time to start from scratch.

1. Introduction
By superconductivity we mean a phenomenon where the
electrical resistivity of a material (e.g. metal) disappears
below some temperature.

T0
0

Tc

electric resistance

We are interested in superconductivity because of the
following reasons:

• The theory of superconductivity is very interesting.

• Superconductivity has several technical applications.

• Superconductivity is under active study around the
world (e.g. in connection with quantum computing).

• We do theoretical research related to
superconductivity in Oulu, and can suggest some
topics for master thesis.

Short content of the course

• short review/introduction to some fundamental
results of statistical and condensed matter physics

• Thermodynamics in magnetic field

• BCS theory

• Ginzburg-Landau theory

– Type II superconductivity

• Josephson effect

Books

• M. Tinkham, Introduction to Superconductivity
(1975, 1996). Very widely used book. More
experimental view, and therefore not ideal for this
theory course.

• A.L. Fetter and J.D. Walecka, Quantum theory of
many-particle systems (1971). Superconductivity
studied in chapters 10 and 13. The problem is that
most of the microscopic theory is treated using
Green’s functions, which are avoided in this course.

• J.B. Ketterson and S.N. Song, Superconductivity
(1999). Just another book.
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• A.A. Abrikosov, Fundamentals of the Theory of
Metals (1988). Very extensive book. Half of the book
discusses normal state metals. Derivation of BCS
theory not good.

• P.G. de Gennes, Superconductivity of Metals and
Alloys (1961). Old but still useful.

• K. Fossheim and A. Sudbø, Superconductivity:
Physics and Applications (2004).

• Many books on solid state physics include an
introduction to superconductivity, for example N.
Ashcroft and D. Mermin, Solid state physics (AM).
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1.1 Properties of superconductors

Occurrence of superconductivity

• several metallic elements : Al, Nb, Sn, (but not in
magnetic metals and in noble metals: Cu, Au, Ag)

• many alloys, e.g. Nb-Ti

• some compounds: Nb3Ge, MgB2, Y-Ba-Cu-O etc.

The temperature below which superconductivity occurs is
called critical temperature, Tc. The list gives some critical
temperatures.

material Tc (K) µ0Hc(T = 0) (mT)
Al 1.196 9.9
Hg 4.15 41
In 3.40 29.3
Pb 7.19 80.3
Nb 9.25

Nb3Ge 23
MgB2 39

YBa2Cu3O6+x 98
Tl2Ca2Ba2Cu3O10 125

Infinte conductivity

In normal state metals the electric current j is
proportional to the electric field E:

j = σE. (1)

If σ →∞ then E → 0. Maxwell’s equation

∇×E = −∂B
∂t

(2)

then gives that the magnetic field B is constant. Let us
apply this to the case that a superconductor is cooled

below Tc while B = 0. When the field is switched on, it
will not penetrate into the superconductor.

cooling

in zero field

then the field

is switched on

Meissner effect

A more fundamental phenomenon than infinite
conductivity is seen when a normal state metal is first
placed in magnetic field, and is then cooled into the
superconducting state. It is observed that the magnetic
field is expelled from the sample. This is called Meissner
effect.

normal state

metal in field

then cooled 

below Tc

Thus the fundamental property is that the magnetic field
is zero inside a superconductor. (Not only constant, as
would follow from infinite conductivity.)

Critical field

The Meissner effect is observed only if the field is not too
large. Let us for simplicity consider a thin bar sample
that is parallel to the field. (In this case the magnetizing
field H is constant.) It is observed that a transition
between superconducting state and normal state takes
place in critical field Hc, whose dependence on
temperature is approximately

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]
. (3)

supercon-

ducting state

normal state

T

Tc

Hc(0)

H
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Material showing this behavior are called type I
superconductors.

Some superconducting materials have a mixed state
between Meissner and normal states. These are called
type II superconductors.

normal state

mixed state

Meissner state T

Tc

Hc2

Hc1

H

Hc

Persistent currents and flux quantization

Let us place a normal state ring in perpendicular
magnetic field. When it is cooled below Tc, the magnetic
field is expelled form the inside of the superconductor,
but a magnetic flux through the ring remains. When the
external field is removed, this flux remains unchanged.
Thus a persistent current I is induced in the
superconducting ring that generates the magnetic field B.
In addition, the magnetic flux Φ =

∫
da ·B through the

ring is quantized: it is an integer multiple of the flux
quantum

Φ0 =
h

2|e| = 2.07× 10−15 Wb. (4)

Here h is Planck’s constant and e the charge of an
electron. [Because e < 0, the absolute value is taken in
(4).]

B

I

Specific heat

T

C
Cs

Cn

0 Tc

The transition between normal and superconducting
states is also seen in thermodynamic properties. The
specific heat has discontinuity but no latent heat (in zero
field). This kind of change of state is called second order
phase transition. In the normal state the specific heat is
linear at low temperatures. In superconducting state the
specific heat is exponential when T → 0:

Cs ∝ exp

(
− ∆0

kBT

)
. (5)

This can be understood so that there is an energy gap ∆0

between the ground state and the lowest excited states.
This gap is somewhat less than 2kBTc in most
superconductors.

Isotope effect

Different isotopes of the same element have difference in
Tc, which depends on the ion mass M approximately as

Tc ∝M−1/2. (6)

This can be used to deduce that the motion of the ions is
important for superconductivity.

1.2 Superfluidity
An analog phenomenon to superconductivity is
superfluidity. It means the a fluid can flow persistently
(without viscosity), for example, in a ring shaped tube.
There are two well know superfluids: 4He

6
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The superfluid state is achieved in some gases of alkali
metals 87Rb, 7Li, 23Na, 1H,. . .

1.3 History

• 1911 H. Kamerlingh Onnes finds superconductivity
in mercury
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• 1933 Meissner effect

• 1935 London theory

• 1950 Ginzburg-Landau theory

• 1957 Bardeen-Cooper-Schrieffer theory

• 1957 theory of type II superconductivity

• 1962 Josephson effect

• 1986 Bednorz and Müller find “high temperature
superconductors”

Superfluidity

• 1938 discovery of superfluid state of 4He

• 1972 discovery of superfluid states of 3He

• 1995 Bose-Einstein condensation in alkali atom gases

2. Fundamental results of
statistical physics
In order to understand superconductivity one has to know
quantum mechanics and statistical physics. This is a short
collection of some central results of statistical physics.

Let us consider a system consisting of a large number of
particles. It is described by a Hamiltonian operator Ĥ. It
has eigenstates Ψi:

ĤΨi = EiΨi. (7)

It should be emphasized that the system we study has on
the order of 1023 particles, so the function Ψi(r1, r2, ...)
has equally many arguments.

Equilibrium

An important basic result is Gibbs distribution: the
probability ρi that the state Ψi occurs is

ρi = eβ(F−Ei). (8)

Here the constant β can be interpreted as inverse
temperature: β = 1/(kBT ). Here is Boltzmann’s constant
kB = 1.38× 10−23 J/K, which is needed to express the
temperature T in Kelvins. The constant F is determined
by the condition

∑
i ρi = 1.

The Gibbs distribution can be derived under the following
assumptions: 1) the system we study interacts with a
much larger system called surroundings. 2) all states of
the whole system (system under study + surroundings)
occur with equal probability within some energy interval.
The most straightforward derivation of this I have seen in
the book R.P. Feynman, Statistical mechanics.

system

surroundings

energy

The expectation value 〈Â〉 of an arbitrary operator Â is
given by

〈Â〉 =
∑
i

ρi〈Ψi|Â|Ψi〉 =
∑
i

〈Ψi|Âeβ(F−Ĥ)|Ψi〉 = Tr(Âρ̂),

(9)
where we have defined a (probability) density operator

ρ̂ = eβ(F−Ĥ). (10)

This is the Gibbs distribution represented in operator
form. The normalization condition Trρ̂ = 1 gives

F = − 1

β
ln(Tre−βĤ) = − 1

β
ln(
∑
i

e−βEi). (11)

We additionally define the entropy

S = −kB〈ln ρ̂〉 (12)
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and internal energy E = 〈Ĥ〉. Show as an exercise that

F = E − ST. (13)

Let us suppose that the Hamiltonian depends on a
parameter λ: Ĥ(λ). Differentiating the normalization
condition Trρ̂ = 1 show as an exercise that

dF = −SdT + 〈dĤ
dλ
〉dλ. (14)

Supposing that λ is the volume V of the system and
defining the pressure

p = −〈dĤ
dV
〉, (15)

we get equation (14) into the form

dF = −SdT − pdV. (16)

We recognize that equations (13) and (16) are familiar
from thermodynamics, and they could be used to derive
the first law of thermodynamics

dE = TdS − pdV. (17)

Thus the quantities T , S etc. can be identified as the same
quantities as defined in thermodynamics. Especially we
identify TdS = dQ as the heat absorbed by the system,
and we can define the specific heat in constant volume

CV =

(
dQ

dT

)
V

= T

(
∂S

∂T

)
V

= −T
(
∂2F

∂T 2

)
V

. (18)

Next we show that the temperature T as defined above
has properties that we expect it to have.

We study a system consisting of two parts: Ĥ = Ĥ1 + Ĥ2.
According to Gibbs distribution the equilibrium has

ρ̂ = eβ(F−Ĥ) = eβ(F1−Ĥ1)eβ(F2−Ĥ2). (19)

So we see that the temperatures T = 1/(kBβ) of both
subsystems are the same. This is the crucial property that
we require the temperature to satisfy.

Usually there is no upper bound for the energy
eigenvalues Ei. In order to the Gibbs distribution (8) to
be reasonable, we must have β > 0, which implies T ≥ 0.

We see directly from the Gibbs distribution (8) that
higher temperature (smaller β) means that states with
high energy have larger probability. Thus the internal
energy E is a monotonically increasing function of T
(assuming V is constant). If T = 0, only the ground state
(which has the minimum Ei) is possible.

Nonequilibrium

The previous analysis can be extended to nonequilibrium
systems as follows. We suppose that the system consists

of two macroscopic parts. (The generalization to arbitrary
number of parts is trivial.) We suppose both parts are
internally in equilibrium, but the parts are not in
equilibrium with each other. For simplicity we assume
that the parts can only exchange heat with each other
(the volumes are constants). For both subsystems
(i = 1, 2) the first law (17) gives

dEi = TidSi. (20)

We define that total entropy as sum of the entropies of
the subsystems,

S = S1 + S2. (21)

The change of entropy is given by

dS = dS1 + dS2 =
dE1

T1
+
dE2

T2
=

(
1

T1
− 1

T2

)
dE1, (22)

because the total energy is conserved. We suppose that
T1 > T2. Because T is a monotonically increasing function
of energy, the time derivative of E1 has to be negative,
dE1/dt < 0, in order for the equilibrium state to be
stable. This case (and also the opposite case T1 < T2)
implies that dS/dt > 0. Thus the entropy always grows in
transition from nonequilibrium to the equilibrium state.

Let us return to study a system connected to a
surroundings. The surroundings can be interpreted as an
ideal heat bath, whose energy change satisfies
dEb = TdSb. Here T is constant because the surroundings
is much bigger than the system. Because the total system
is closed, we have dEtot = dE + dEb = 0, and

dStot

dt
=
dS

dt
+
dSb
dt
≥ 0. (23)

So we get dE − TdS ≤ 0. We define the nonequilibrium F
by the expression F = E − TS. It follows

dF

dt
≤ 0 (T and V constants). (24)

Thus in equilibrium the free energy F has its minimum
value.

Let us restate the previous result more precisely. In
nonequilibrium state F (T, V, λ1, λ2, . . .) depends on
several internal degrees of freedom λi. In equilibrium it is

F (T, V ) = minλ1,λ2,...F (T, V, λ1, λ2, . . .). (25)

The condition F = E − TS = minimum generalizes the
zero-temperature condition E = minimum to finite
temperature.

Example Phase equilibrium

Often the system can appear in two different phases, for
example liquid and gas. Suppose that we have calculated
the free energies Fa(T, V ) and Fb(T, V ) for the two
phases as shown in the figure.
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F

Fa

Fb

Tc

According to the previous result, the phase that is
realized in equilibrium is the one having lower free energy.
We conclude that there is a phase transition between the
phases at temperature where

Fa = Fb. (26)

Variable particle number

Often it is mathematically easier to study case, where the
particle number is not fixed. This can be achieved by
thinking the system as connected to a “particle bath”, an
ideal reservoir of particles at constant energy µ, which is
called the chemical potential. In Gibbs distribution (10)
we can generalize

Ĥ → Ĥ + µN̂b = Ĥ − µN̂ + constant (27)

(because Ntot = N +Nb = constant). (Here N̂ is the
particle-number operator of the system: N̂Ψi = NiΨi,
where Ni is the number of particles in state Ψi.) In
making the substitution (27) one also replaces the
constant F (Helmholtz free energy) with another constant
Ω (grand potential). Therefore

ρ̂ = eβ(Ω−Ĥ+µN̂). (28)

In the same way as for F , one can derive for Ω the
definition (also nonequilibrium, N = 〈N̂〉)

Ω = E − µN − ST, (29)

the equilibrium expression

Ω = − 1

β
ln
[
Tr e−β(Ĥ−µN̂)

]
= − 1

β
ln

[∑
i

e−β(Ei−µNi)

]
,

(30)
the differential for equilibrium states

dΩ = −SdT − pdV −Ndµ (31)

and the time development

dΩ

dt
≤ 0 (T , V and µ constants). (32)

In addition we deduce from equation (31)

S = −
(
∂Ω

∂T

)
V,µ

, p = −
(
∂Ω

∂V

)
T,µ

, N = −
(
∂Ω

∂µ

)
T,V

.

(33)

Ideal Fermi gas

Above we formally discussed the many-body wave
functions Ψi. The calculation of these is possible only in
very special cases. One case is an ideal gas, where we
assume that there are no interactions between the
particles.

The natural choice for wave functions of a single free
particle are plane wave states

φk(r) =
1√
V
eik·r, (34)

where the wave vector k appears as a parameter. The
energy of these states is εk = ~2k2/2m. In order to count
the states, it is most simple to require that the wave
functions are periodic in a cube of volume V = L3, which
allows the wave vectors k (nx, ny and nz integers)

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

. (35)

We suppose that the volume V is very large. Then we can
take the limit V →∞ in quantities that do not essentially
depend on V .

L

L

L

y
x

z

In addition to the location r, the wave function of a
fermion depends on spin index σ, which describes the
component of spin angular momentum on some chosen z
axis. For spin- 1

2 fermions this can have two values. These
can be denoted by σ = ± 1

2 , or alternatively by ↑ and ↓.
For free particles we can thus choose “spin-up levels”

φk↑(r, σ) =

{
1√
V
eik·r if σ = 1

2

0 if σ = − 1
2

. (36)

and “spin-down levels”

φk↓(r, σ) =

{
0 if σ = 1

2
1√
V
eik·r if σ = − 1

2
. (37)

Note that (following book AM) we call the single-particle
φk↑ and φk↓ “levels” in order to clearly distinguish them
from the “states” Ψi of the many body system.

There are several ways to present many-body states Ψi,
as will be discussed later. One useful way to think of
these states is first to list all levels (36)-(37) in some
arbitrary order, for example

φ0↑, φ0↓, φk1↑, φk1↓, φk2↑, φk2↓, . . . (38)

Then the basis states of the many-body space can be
expressed by telling how many particles is in any of the
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levels,
|Ψi〉 = |n1, n2, n3, . . . , n∞〉. (39)

Here nα is the number of particles in the α’th level (38).
[In practice the writing of the state (39) is difficult
because there is an infinite number of levels and thus the
great majority of the numbers nα are zeros.] The energy
of the many-body state (39) is E =

∑
α nαεα. Fermions

obey the Pauli exclusion principle and thus all
occupations nα are either 0 or 1.

In order to determine the thermal equilibrium state, it is
easiest to use the formulas for variable particle number.
Starting from equation (30) we get

e−βΩ = Tr e−β(Ĥ−µN̂)

=
∑
n1

∑
n2

. . . 〈n1, n2, . . . |e−β(Ĥ−µN̂)|n1, n2, . . .〉

=
∑
n1

∑
n2

. . . e−β(ε1−µ)n1e−β(ε2−µ)n2 . . .

=
∑
n1

e−β(ε1−µ)n1

∑
n2

e−β(ε2−µ)n2 . . .

=
∏
α

∑
nα

e−β(εα−µ)nα

=
∏
α

[
1 + e−β(εα−µ)

]
. (40)

Thus

Ω = − 1

β
ln
∏
α

[
1 + e−β(εα−µ)

]
= − 1

β

∑
α

ln
[
1 + e−β(εα−µ)

]
.

(41)
From this we can calculate all thermodynamic quantities.
Especially the particle number (31) is

N = −
(
∂Ω

∂µ

)
T,V

=
1

β

∑
α

e−β(εα−µ)β

1 + e−β(εα−µ)

=
∑
α

1

eβ(εα−µ) + 1
. (42)

Here we see that the average occupation probability of
each level depends on its energy ε and is

f(ε) =
1

eβ(ε−µ) + 1
. (43)

This is the familiar Fermi-Dirac distribution.

In a similar fashion we can derive for an ideal Bose gas
(possible occupation numbers nα = 0, 1, 2, . . . ,∞) the
Bose-Einstein distribution

f(ε) =
1

eβ(ε−µ) − 1
. (44)

The purpose above was to show that ideal Bose and
Fermi distributions can be derived from the more general
Gibbs distribution, which can be applied to arbitrary
interacting systems as well.

Let us remind about the main features of Fermi
distribution. When the temperature T → 0, the
occupation becomes a step function

f(ε) =

{
1 for ε < µ
0 for ε > µ,

(45)

where all levels below the chemical potential µ are filled.
The kinetic energy at highest filled level is called Fermi
energy εF , and expressed in temperature units it is called
Fermi temperature TF : µ(T = 0) = εF = kBTF . We also
define the Fermi wave vector kF and the Fermi
momentum pF = ~kF corresponding to the Fermi energy,
~2k2

F /2m = εF . In momentum space all levels inside
(k < kF ) of the Fermi surface (k = kF ) are occupied, and
the ones outside are empty.

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

× × × × × × × × × × × × × ×

kx

kF

2π

L

ky

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× × × × × × × × × × × × × ×

Equation (42) gives at zero temperature

N = 2
∑
k<kF

1 = 2
4
3πk

3
F

(2π/L)3
,

where the factor 2 comes from spin. From this we get a
relation between the Fermi wave vector and the particle
density,

N

V
=

k3
F

3π2
. (46)

When T > 0, the occupation f(ε) gets rounded so that
the change from f ≈ 1 to f ≈ 0 takes place in the energy
interval ≈ kBT .

ε

f T = 0

T > 0

0 εF

kBT
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3. Thermodynamics of
superconductors
When we study the thermodynamics of a magnetic
material, we should consider the field as an additional
variable. The equation (14) can be written (supposing the
volume V constant)

dF = −SdT + VH · dB. (47)

In the normal way one gets from this

S = −
(
∂F

∂T

)
B

, H =
1

V

(
∂F

∂B

)
T

, (48)

where the vector relation should be understood as
Hx = ∂F/V ∂Bx etc.

Here is more detailed justification of equation (47). The
Maxwell equations in the presence of material are
(Appendix A)

∇ ·D = ρf , (49)

∇×E = −∂B
∂t

, (50)

∇ ·B = 0, (51)

∇×H =
∂D

∂t
+ jf . (52)

Together with material relations, e.g.

D(E) ja H(B), (53)

they form a complete set of equations. From these one
can derive the conservation law∫

dV (E · dD + H · dB + E · jfdt)

= −dt
∮
da · (E ×H). (54)

The left hand side is energy differential integrated over
the system and the right hand side is the flux of
electromagnetic energy through the surface of the system.
When D = 0 and jf = 0, we get the magnetic energy
change of a homogeneous system as given by equation
(47).

In order to study the sample in a given external field H,
we have to add to F an energy term (“bath”) that gives
rise to this field. The needed term can be justified as
Legendre transformation from variable B to H. So we
get as the quantity to be minimized

G = F − VH ·B. (55)

and its differential in equilibrium state

dG = −SdT − VB · dH. (56)

More physically, the additional term in equation (55) can
be understood as the energy of a current source. The

current source drives current to a coil that generates the
magnetizing field H. (Both the coil and the current
source are idealized as dissipationless.) When B in the
sample changes, it induces a voltage in the coil and
changes the energy of the current source just by the
change of the additional term. (more details as an
exercise)

Let us apply this to a long cylindrical superconducting
sample in parallel magnetic field When H increases from
zero, equation (56) gives

G(T,H)−G(T, 0) = −V
∫ H

0

dH ′B(H ′). (57)

In the normal state of a superconductor, the
magnetization is very weak. Thus to a good
approximation B = µ0H (Appendix A). We get

Gn(T,H)−Gn(T, 0) = − 1
2V µ0H

2. (58)

In the superconducting state B = 0, so we get

Gs(T,H) = Gs(T, 0). (59)

Because these two states are in equilibrium at the critical
field Hc, their potentials must be the same (26):

Gn(T,Hc) = Gs(T,Hc). (60)

From above we deduce

Gs(T, 0) = Gn(T, 0)− 1
2V µ0H

2
c . (61)

So the energy of the superconducting state is lower than
that of the normal state by the condensation energy
1
2V µ0H

2
c .

Rearranging we get from formulas (58), (59) and (61)

Gs(T,H)−Gn(T,H) = 1
2V µ0(H2 −H2

c ). (62)

According to equation (56) we see that the corresponding
difference in entropy is obtained by taking the derivative

Ss(T,H)− Sn(T,H) = V µ0Hc(T )
dHc(T )

dT
. (63)

Because Hc(T ) decreases as the temperature increases
(equation 3), we see that the entropy in the
superconducting state is lower than in the normal state.
Note that the entropy difference (63) is independent of
the field H. From equations (63) we can also deduce that
the latent heat in the transition between normal and
superconducting states T (Ss − Sn) vanishes at T = 0 and
at T = Tc, but not at intermediate temperatures.

The specific heat in constant field can be calculated using

CH = T

(
∂S

∂T

)
H

(64)
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From this we get the discontinuity of the specific heat

Cs(T,H)− Cn(T,H)

= TV µ0

[(
dHc

dT

)2

+Hc
d2Hc

dT 2

]
. (65)

In the special case T = Tc this reduces to

Cs(T,H)− Cn(T,H) = µ0V Tc

(
dHc

dT

)2

Tc

. (66)

In summary, the thermodynamics sets some conditions
between different measurable quantities.

3.1 Intermediate state
The discussion above is valid for a thin sample that in
parallel field, where the magnetizing field H ≈ constant.
[Show this starting from equation ∇×H = 0 (52).] In
other cases H(r) 6= constant. For example, for a sphere
we get that the field at polar angle θ = π/2 is
H = 3

2H(r =∞).

H = constant = H
∞ H = (3/2)H

∞ 

If H(r =∞) > 2
3Hc, the critical field is exceeded on the

equator. On the other hand, the whole sphere cannot go
into the normal state below H(r =∞) = Hc. Between
these fields one gets so called intermediate state (of type I
superconductor).

Let us consider superconducting slab in perpendicular
magnetic field. We estimate orders of magnitude
assuming the intermediate state consists of alternating
layers of normal and superconducting states (thicknesses
Ds and Dn).

B∞ 

Ds d

Dn

D = Dn+Ds

≈DsDn/D

B = µ0Hc
B = 0

It follows from Maxwell equations (51) that the average
flux through the slab is the same as the field B∞ far from
the slab. This goes through the normal state part only. In

order the normal and superconducting states to be in
equilibrium, the normal state must have B = µ0Hc. This
gives

B∞(Ds +Dn) = µ0HcDn. (67)

It is obvious that there is some extra energy associated
with the interface between normal and superconducting
states, which is proportional to the area A of the
interface. We write this energy in the form

Fsurface = σA, σ =
µ0

2
H2
c δ, (68)

where δ is some microscopic quantity of dimension length.
The surface energy per unit area of the slab is

fsurface =
2dσ

D
=
µ0

2
H2
c

2dδ

D
, (69)

where D = Dn +Ds. The minimization of this would lead
to minimizing the interface by D →∞. This tendency is
opposed by the fact that then the field outside the slab
would be very inhomogeneous. In vacuum H = B/µ0 and
the energy density is 1

2µ0
B2. We estimate the order of

magnitude of the additional energy caused by the
inhomogeneity of the field by

finhomog =

(
µ0

2
H2
c

Dn

D
− 1

2µ0
B2
∞

)
2DsDn

D
(70)

The expression in parenthesis gives the field energy near
the slab (weighted by the area factor Dn/D), from which
the energy of homogeneous field is subtracted. The factor
2DsDn/D ≈ 2 min(Ds, Dn) estimated the thickness where
the inhomogeneity is important. The total energy is

f = µ0H
2
c

[
dδ

D
+D

(
B∞
µ0Hc

)2(
1− B∞

µ0Hc

)2
]

(71)

Minimizing with respect to D we get

D =

√
dδ(

B∞
µ0Hc

)(
1− B∞

µ0Hc

) (72)

The essential thing is the numerator, which gives the
geometric mean of a microscopic and macroscopic length,
δ and d.

Experiments show alternating normal and
superconducting layers that can form quite complicated
structures.

9



Intermediate state of indium. The superconducting
regions are made visible with niobium powder (black) as
the superconducting powder particles tend to concentrate
in regions of low magnetic field. The applied field is close
to the critical field (H/Hc = 0.931). F. Haenssler and L.
Rinderer, Helv. Phys. Acta 40, 659 (1967).

The intermediate state described above occurs in type I
superconductors. Type II superconductors show
essentially different behavior in magnetic field, as will be
seen later.

4. Microscopic theory

4.1 Normal state metal
The properties of metals are more thoroughly studied in
the course on condensed matter physics. Here we only
consider a very simplified model of a metal, which still is
sufficient as a starting point for understanding basic
properties of superconductivity.

We assume that there are conduction electrons, which can
move freely like ideal gas through the metal. We assume
that the rest of the electrons called valence electrons are
bound to the atomic nuclei so that they do not contribute
to the electric conductivity. The kinetic energy εk of the
conduction electrons depends on the wave vector k. In
the simplest case this dependence is of the form

εk =
~2k2

2m
. (73)

Here m is the effective mass, which can be different from
the free electron mass. We can estimate that the Fermi
energy εF is on the order of a few eV corresponding to
TF ≈ 105 K. This should be compared with the typical
temperatures T ∼ Tc ∼ 10 K that occur in
superconductivity. The theory thus has two very different
energy scales, Tc/TF ∼ 10−4. We will often make use of
the relation T � TF .

kx

kF

ky

g ≠ 0

The figure illustrates the neighborhood of the Fermi
surface. (A cut kz = 0 of the momentum space is shown.)

Example. One often encounters integration over k space
of a function g(k). Show as an exercise that

1

L3

∑
k

g(k) =

∫
d2Ω

4π

∫
dεN(ε)g(k). (74)

This contains integration over the solid angle∫
d2Ω =

∫ 2π

0

dφ

∫ π

0

dθ sin θ, (75)

where θ and φ are the polar and azimuthal angles of k.
The second integration is over energy,

∫
dε. The factor

N(ε) is the density of levels per unit energy (and per
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volume). If g(k) is different from zero only near the Fermi
surface (figure), we can further approximate

1

L3

∑
k

g(k) = N(0)

∫
d2Ω

4π

∫
dε g(k), (76)

where

N(0) =
mkF
2π2~2

(77)

is the density of levels at the Fermi surface. [The notation
N(0) instead of N(εF ) comes from the fact that often it is
most convenient to count the energy starting from the
Fermi level. In condensed matter physics the zero value of
the energy can usually be chosen freely, and the Fermi
level is often a better choice than the bottom of the
conduction band.]

In the free electron model it is easy to calculate the
specific heat. The result is that C is linearly proportional
to the temperature when T � TF . This explains the
specific heat of the normal metal mentioned in the
introduction. This will be calculated in detail later on in
this course.

How can we understand the electrical resistivity of a
normal metal? The reason for electrical resistance is that
the conduction electrons collide with lattice vibrations
and impurities that occur in the metal. If the ideal gas
has net momentum in the beginning, it will decay
gradually as individual electrons collide and are scattered
in random directions.

Excitation picture

Previously we discussed that the ground state (= lowest
energy state) of a Fermi gas is such that all energy levels
inside the Fermi surface are filled and the levels outside
are empty. The simplest excited states are of two different
types.

• one extra electron is in a level with k whose εk > µ.
This excitation has energy ξk ≡ εk − µ and
momentum p = ~k.

• one electron is missing from a level with k whose
εk < µ. This is called a hole. Its excitation energy is
µ− εk > 0 and momentum p = −~k.

In both cases the excitation energies are positive. The
figure illustrates the same hole type excitation seen both

as a missing particle and as an excitation. (The
momentum space is simplified as one-dimensional in the
figure.)

εk

µ

p

particle view

|εk-µ|

0
p

excitation view

If the particle number is fixed, the particle and hole type
excitations must always appear as pairs. That is, the
number of particle type excitations has to be equal to the
number of hole type excitations.

We note that also the spin of the hole type excitation has
to be opposite to the spin of the missing electron. If an
electron at k (εk < µ) and spin up (↑) is missing, it
corresponds to an excitation of momentum p = −~k and
spin down (↓).

4.2 Ideas about superconductivity
Materials can be studied on two very different scales:

• atomic scale. Quantum mechanics is essential. There
is no friction.

• macroscopic scale. Material is described by laws of
classical physics (e.g. theory of elasticity). Friction is
essential.

The phenomena on atomic scale are not usually visible on
the macroscopic scale. The reason for this is that
macroscopic bodies consist of enormously large number of
particles (∼ 1023). The different particles are in general in
different quantum levels, and only the average of them is
visible. Friction is needed because it is not possible to
take into account the motion of individual particles.

Idea: Superconductivity is an exception to the rule above:
it is a quantum phenomenon that is still preserved on a
macroscopic scale.

How is this possible? As a simple example, let us consider
ideal Bose gas. At zero temperature its distribution
function (44) reduces to the form

f(ε) =

{
N lowest level (εi = ε0)
0 other levels (εi > ε0).

(78)

Also at finite temperatures below so-called Bose
condensation temperature, the occupation of the lowest
level N0/N > 0, whereas for all other levels fi/N → 0
when N,V →∞. It is expressed by saying that the wave
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function of the lowest level becomes macroscopic wave
function because a macroscopic number of particles is in
the same level.

It can be said that the superfluid phases of alkali atom
gases and 4He liquid are based on Bose condensation.
However, the ideal Bose gas is a too simplified model for
them because more detailed study shows that the
interactions between particles have an essential role in the
superfluid state. In this course we will not study this
interesting problem more.

Electrons are fermions. One can put only one fermion into
a single level. Thus the discussion above as such cannot
explain the superconductivity of metals.

Let us study the wave functions of spin- 1
2 fermions. The

wave function φ(rσ) of a level [e.q. (36) or (37)] depends
on the location r and on the spin index σ = ± 1

2 . In
general form the Pauli exclusion principle says that the
wave function has to be antisymmetric in any exchange of
two electron coordinates. For a two-electron wave
function Ψ(r1σ1, r2σ2) this requirement is

Ψ(r1σ1, r2σ2) = −Ψ(r2σ2, r1σ1). (79)

Starting from an arbitrary function ψ0(r1σ1, r2σ2), one
can always by antisymmetrizing construct a function that
satisfies this condition:

Ψ(r1σ1, r2σ2) = ψ0(r1σ1, r2σ2)− ψ0(r2σ2, r1σ1). (80)

Thus the pair state formed from two levels φ1 and φ2 has
the wave function

Ψ(r1σ1, r2σ1) = φ1(r1σ1)φ2(r2σ2)− φ1(r2σ2)φ2(r1σ1),
(81)

so called Slater determinant. We see immediately that
this vanishes, Ψ ≡ 0, if the levels are the same: φ1 = φ2.
Thus two fermions cannot be placed into the same level.

In case of many particles, the antisymmetry is required in
any pairwise exchange of the coordinates of two particles

Ψ(. . . , riσi, ri+1σi+1, . . . , rkσk, . . .)

= −Ψ(. . . , rkσk, ri+1σi+1, . . . , riσi, . . .) (82)

Idea: fermions form pairs.

ψ0(r1σ1, r2σ2, r3σ3, . . .) = φ(r1σ1, r2σ2)×
φ(r3σ3, r4σ4)φ(r5σ5, r6σ6) . . . , (83)

All pair states are the same!. This function does not
vanish in antisymmetrization as long as the pair function
is antisymmetric,

φ(r1σ1, r2σ2) = −φ(r2σ2, r1σ1). (84)

In exchanging pairs one gets the factor (−1)2 = 1,
similarly to bosons.

We see that superconductivity could arise from
macroscopic occupation of a pair state. Before we can
accept this claim, we must be able to answer the following
questions.

• Is there a force that binds the pairs?

• Is it sufficiently strong?

• Does the pair state have a lower energy than the
normal state?

4.3 Cooper problem
Let us study two fermions that interact with each other
but not with other fermions at temperature T = 0. We
ignore the spin for a while. The Schrödinger equation is[
− ~2

2m
∇2

1 −
~2

2m
∇2

2 + V (r1, r2)

]
φ(r1, r2) = Eφ(r1, r2).

(85)
It is likely that in the lowest energy state, the center of
the mass of the pair is at rest. Therefore we write the
wave function as dependent only on the difference r1− r2,

φ(r1, r2) =
1

L3

∑
k

χ(k)eik·(r1−r2). (86)

We substitute this into the Schrödinger equation (85). We
multiply by e−ik

′·(r1−r2), integrate over r1:n ja r2 and get

(2εk′ − E)χ(k′) = −
∑
k

〈k′,−k′|V |k,−k〉χ(k). (87)

Here we have used the notation

〈k′1,k′2|V |k1,k2〉 =
1

L6

∫
d3r1

∫
d3r2

×e−ik′
1·r1e−ik

′
2·r2V (r1, r2)eik1·r1eik2·r2 , (88)

which looks slightly clumsy here but is useful later.

The presence of other electrons is taken into account only
through the Pauli exclusion principle. They restrict the
pair function so that

χ(k) = 0 for k < kF . (89)

We proceed from equation (87) by assuming that V is a
constant in a thin layer on both sides of the Fermi
surface, and zero elsewhere,

〈k′,−k′|V |k,−k〉 (90)

=

{
−g/L3 for |εk′ − εF | < εc and |εk − εF | < εc,
0 otherwise,

where we assume that g > 0 and εc � εF . [The cutting of
the interaction (90) is slightly problematic since according
to (88) the interaction 〈k′,−k′|V |k,−k〉 depends only on
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k′ − k. Later we will see that indeed the interaction has a
more complicated form. The cutting also will not have a
serious effect since χ(k) will be small when εk ≈ εF + εc.]
We see that inside of the layer the right hand side of the
equation (87) is independent of k′, and we mark it by I.
From the left hand side we get easily

χ(k) =
I

2εk − E
for k > kF . (91)

ε
F
+ε

c

ε

χ

ε
FE/2

Substituting back on the right hand side and cancelling
the common factor I, we get

1

g
=

1

L3

∑
εF<εk<εF+εc

1

2εk − E
. (92)

Applying the integration formula (76) we get

1

N(0)g
=

∫ εF+εc

εF

dε
1

2ε− E =
1

2
ln

2εF − E + 2εc
2εF − E

. (93)

We solve

E = 2εF +
2εc

1− e2/gN(0)

= 2εF − 2εce
−2/gN(0), (94)

where we have made weak coupling approximation
gN(0)� 1 and used g > 0 on the second line. We see
that the energy is lower than the energy 2εF of a
noninteracting pair when g > 0 (90).

In is interesting to note that this bound state is formed
even for arbitrarily weak attractive interaction. [When
there are no other particles, the attractive interaction for
forming a bound state must exceed some threshold value.
This corresponds to the case kF = N(0) = 0 (77).]

The wave function (91) of the pair is independent of the
direction k of the wave vector. [Then, according to
equation (86), the wave function in the r space is
independent of the direction of r − r′.] Thus the pair is
formed in s-wave state (not p, d, f . . . ). The s state is
symmetric in the exchange of coordinates r and r′. In
order the total wave function to be antisymmetric, the
spin state must be antisymmetric, and thus singlet:

φtot(rσ, r′σ′) = φ(r − r′)
1√
2

[δσ, 12 δσ′,− 1
2
− δσ,− 1

2
δσ′, 12

].

(95)

As a function of the magnitude of the wave vector k, the
wave function has its maximum at the Fermi surface, and
decreases when k moves away from it. It is thus likely
that the cut off of the interaction (90) is not essential.

We see that an attractive interaction makes a Fermi gas
unstable against formation of pairs at T = 0.

4.4 Attractive interaction
Between electrons there is the repulsive Coulomb
interaction

V (r) =
1

4πε0

e2

r
. (96)

What could cause an attraction so that pairs could be
formed?

Warning: in the following we only attempt to make it
plausible that an attractive interaction might exist.

The first observation is that a metal has a great number
of conduction electrons and ions. (By an ion we mean the
nucleus and the valence electrons of the atom.) The whole
system is charge neutral because of the ions. When we
look at the interaction between electrons, we also should
take into account also other electrons. These tend to go
away from a negative charge, and thus the electron is
surrounded by a net positive charge from the ions. This is
called screening of the electron charge. In the simplest
case this leads to a potential (λ is constant)

V (r) =
1

4πε0

e2 exp(−λr)
r

, (97)

where the potential decays exponentially at large
distances. A more accurate calculation gives also an
oscillating component to the potential. However, the
attraction caused by this overscreening is too weak to
cause formation of pairs in usual superconductors.

It is found experimentally that the superfluid state
depends on the mass of the ion (isotope effect). The ion
mass can appear because the ion lattice is not at rest but
oscillates. In the following we study what effect the ion
motion has on the interaction between electrons.

Lattice vibrations are studied in more detail in the course
of condensed matter physics. Here we only state that the
eigenstates of the lattice are vibrations that have a well
defined wave vector k and a frequency ω(k), which
depends on the wave vector. According to quantum
mechanics, the vibrations are quantized, i.e. they consists
of phonons that have energy ~ω(k) and momentum ~k.
This is analogous to the photos, which are oscillation
quanta of the electromagnetic field.

The coupling of lattice vibrations with the electrons is
described as follows. An electron with momentum ~k
emits a phonon with momentum ~q, and the momentum
remaining for the electron is ~k′. This process has the
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matrix element

〈ψ(0)
m |H1|ψ(0)

n 〉 ∝
∫
dV eik·re−iq·re−ik

′·r. (98)

It follows that the momentum is conserved, k′ = k − q.
The process is often depicted by the graphs (a) in the
figure.

k

q k-q final state

initial state

(a)

k q

k+q

(b)

Correspondingly, there must exist a process (b), where
the electron absorbs a phonon.

We study the effect of lattice vibrations on electrons
using perturbation theory. We recall time independent
perturbation theory (Quantum mechanics I,
nondegenerate case), which gives

En = E(0)
n + 〈ψ(0)

n |H1|ψ(0)
n 〉

+
∑
α6=n

|〈ψ(0)
α |H1|ψ(0)

n 〉|2

E
(0)
n − E(0)

α

+O(H3
1 ). (99)

In a similar way but with slightly more work
(Landau-Lifshitz, Quantum mechanics) one can show that
the effective interaction between two degenerate states

ψm and ψn (E
(0)
n = E

(0)
m ) is

〈ψm|V eff |ψn〉 = 〈ψ(0)
m |H1|ψ(0)

n 〉

+
∑
α

〈ψ(0)
m |H1|ψ(0)

α 〉〈ψ(0)
α |H1|ψ(0)

n 〉
E

(0)
m − E(0)

α

+O(H3
1 ), (100)

where α goes through all nondegenerate states.

We estimate the effect of lattice vibrations on the
interaction between two electrons by calculating the
effective matrix element (100) in the case where the
initial state ψn has two electrons at wave vectors k1 and
k2 and the final state ψm at wave vectors k′1 and k′2. The
first order term vanishes. The intermediate state in
second order ψ

(0)
α has two alternatives

k2'=k2+q k2'=k2+q

intermediate state

k1k1 k2
k2

-qq

k1'=k1-q k1'=k1-q

Assuming the matrix elements are constants, we get the
corresponding terms

〈k1 − q,k2 + q|V eff |k1,k2〉

=
∑
q

|Vq|2
ε(k1)− ε(k1 − q)− ~ω(q)

+
∑
q

|Vq|2
ε(k2)− ε(k2 + q)− ~ω(−q)

+O(H3
1 ).

Now we use energy conservation
ε(k1) + ε(k2) = ε(k′1) + ε(k′2) and because ω(−q) = ω(q),
we get

〈k1 − q,k2 + q|V eff |k1,k2〉

= −
∑
q

2~ω(q)|Vq|2
[~ω(q)]2 − [ε(k1)− ε(k′1)]2

+O(H3
1 ) (101)

In the Cooper problem the total momentum of the pair
was assumed zero and therefore the used potential
〈k′,−k′|V |k,−k〉 is obtained as the special case
k2 = −k1.

We see that the interaction (101) is attractive when
~ω(q) > |ε(k1)− ε(k′1)|. The former quantity is typically
on the order of the Debye temperature ∼ 100 K, which
means that this inequality possibly is satisfied. Ultimately,
the formation of pairs depends if this attractive force is
sufficiently strong that it wins the repulsive Coulomb
force. With some more work one could show that these
two forces have the same order of magnitude. Therefore,
the formation of Cooper pairs and thus superconductivity
depends on the detailed structure of each metal.

4.5 Creation and annihilation operators
This part is well presented in FW pages 3-19.

Above we already studied many-body states a bit. Before
we continue, it is good to introduce a new notation, which
is commonly used to describe many-body systems. This
involves the introduction of the so-called creation and
annihilation operators. These are also referred to as the
operators of second quantization (we talk about the
names later).

The basic idea, which appears also more generally, is the
following. Originally we have some notation, where there
are extra (unphysical) degrees of freedom. Then it makes
sense to take into use a notation which automatically
excludes the unphysical degrees of freedom.

Examples:

• moving from coordinates x, y and z to a vector r,
which is not dependent on the choice of the
coordinate system

• going over from time t and position r to the
four-space xα in relativity theory

The case under study here is a many-body system. As a
starting point we have a complete set of levels φi(r, σ)
[e.g. (34)], i = 1, . . . ,∞. From these we form simple
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n-particle states as a the product

Ψ(r1σ1, . . . , rnσn) = φi1(r1σ1)φi2(r2σ2) . . . φin(rnσn)
(102)

Based on experimental evidence it has been judged that
all such states are not found in nature, but that physical
states must additionally satisfy a symmetry with regard
to exchange of indistinguishable particles:

Ψ(. . . , riσi, ri+1σi+1, . . . , rkσk, . . .)

= ±Ψ(. . . , rkσk, ri+1σi+1, . . . , riσi, . . .), (103)

where + is for bosons and − is for fermions. We can make
states of the type (102) physical by symmetrizing
(bosons) of antisymmetrizing (fermions) them. A general
many-body state is a linear combination of
(anti)symmetrized states.

Writing the wave function in terms of coordinates is
unsatisfying because it does not directly forbid writing
down un-(anti)symmetrized functions. We can deal with
this as already discussed earlier (39). Let us write all
levels (34) in some arbitrary order φ1, φ2, . . . , φ∞. Then
we express the (noninteracting) many-body state by
writing how many particles there are in each level:

|n1, n2, . . . , n∞〉, (104)

(ni = 0 or 1 for fermions; ni = 0, 1, . . . ,∞ for bosons).
The basis states obtained in this way can be used to
express an arbitrary (interacting) many-body state in the
form

|Ψ(t)〉 =
∑

n1,n2,...,n∞

cn1,n2,...,n∞(t)|n1, n2, . . . , n∞〉. (105)

Bosons

Although the (anti)symmetrization requirement (103) was
automatically satisfied with the notation (104), dealing
with these states is still difficult due to the long list of
numbers. To get rid of this, let us first study purely
mathematically the operators b̌k and b̌†k, where the latter
is the Hermitian conjugate of the former with respect to
some inner-product space. Let us require these operators
to satisfy the following commutators ([Ǎ, B̌] ≡ ǍB̌ − B̌Ǎ)[

b̌k, b̌
†
k′

]
= δk,k′ ,

[b̌k, b̌k′ ] = [b̌†k, b̌
†
k′ ] = 0 (106)

We claim that these conditions (alone) are yield the
following relations

b̌†k b̌k| . . . , nk, . . .〉 = nk| . . . , nk, . . .〉, nk = 0, 1, 2, . . . ,∞
b̌k| . . . , nk, . . .〉 =

√
nk | . . . , nk − 1, . . .〉

b̌†k| . . . , nk, . . .〉 =
√
nk + 1 | . . . , nk + 1, . . .〉, (107)

where the states are of the form (104). Interpretation:

b̌†k b̌k is a particle-number operator, b̌k is an annihilation

operator, and b̌†k a creation operator for bosons.

In the literature no hat seems to be written on the b̌k
operators. Here it has been added so that all operators of
second quantization would be denoted uniformly.

Proof. (read at home) We study the operator

ň = b̌†b̌. (108)

It is Hermitian (verify). The eigenvalues of a Hermitian
operator are real valued. Let us label the eigenstates of
the operator ň by using the eigenvalue n (a real number)

ň|n〉 = n|n〉. (109)

We assume the eigenstates are normalized, 〈n|n〉 = 1. We
see that the eigenvalue n cannot be negative,

n = 〈n|ň|n〉 = 〈n|b̌†b̌|n〉 =
∑
m

〈n|b̌†|m〉〈m|b̌|n〉

=
∑
m

|〈m|b̌|n〉|2 ≥ 0. (110)

We easily calculate

[ň, b̌] = −b̌. (111)

This implies

ň(b̌|n〉) = b̌ň|n〉 − b̌|n〉 = (n− 1)(b̌|n〉), (112)

and we see that b̌|n〉 either is a state corresponding to the
eigenvalue n− 1, i.e. b̌|n〉 = c|n− 1〉, or else b̌|n〉 = 0. The
latter alternative implies ň|n〉 = 0, so it is possible only if
n = 0. In the former case normalization gives

|c|2 = 〈n|b̌†b̌|n〉 = n, (113)

and therefore we fix

b̌|n〉 =
√
n |n− 1〉. (114)

If one operates sufficiently many times with b̌, one should
arrive at negative eigenvalues, which is in contradiction
with equation (110). The way out of this is that n is an
integer, so that b̌|0〉 = 0, and the process (114) ends.
(Note the essential difference between the n = 0
eigenstate |0〉 and the zero of the linear space 0.)
Correspondingly one can deduce results for b̌†. Inserting
the indices k we get all formulas (107).

The many-body Schrödinger equation in coordinate
representation is (we forget spin)

i~
∂Ψ

∂t
(r1, . . . , rn, t) = HΨ(r1, . . . , rn, t), (115)

where

H =
∑
i

T (ri) +
1

2

∑
i

∑
j
j 6=i

V (ri, rj)

= −
∑
i

~2

2m
∇2
i +

1

2

∑
i

∑
j
j 6=i

V (ri, rj). (116)
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How to write this for states (105)? That is, when

i~
∂

∂t
|Ψ(t)〉 = Ȟ|Ψ(t)〉, (117)

what is Ȟ?

The answer:

Ȟ =
∑
i,j

b̌†i 〈i|T |j〉b̌j +
1

2

∑
ijkl

b̌†i b̌
†
j〈i, j|V |k, l〉b̌lb̌k. (118)

Here 〈i|T |j〉 and 〈i, j|U |k, l〉 are familiar matrix elements
calculated for levels

〈i|T |j〉 =

∫
d3rφ∗i (r)

(
− ~2

2m
∇2

)
φj(r) (119)

〈i, j|V |k, l〉 (120)

=

∫
d3r1

∫
d3r2φ

∗
i (r1)φ∗j (r2)V (r1, r2)φk(r1)φl(r2).

Note in particular that 〈i, j|V |k, l〉 is calculated so that
one electron scatters from level k to level i and the other
from level l to level j. Also note that (88) used above is a
special case of the formula (120), where plane waves
φk(r) = (1/L3/2)eik·r (34) have been used. Using these
levels the kinetic energy matrix element is

〈k′|T |k〉 =
1

L3

∫
d3r e−ik

′·r
(
− ~2

2m
∇2

)
eik·r

= δk′,k
~2k2

2m
. (121)

Instead of deriving (118) generally (see e.g. FW) we only
note that is sensible in certain cases. 1) Normally 〈i|T |j〉
diagonal ⇒ Ȟkin =

∑
i ňi〈i|T |i〉. 2) Interaction term V̌

does not count interaction of a particle with itself. 3) In a
two-particle state 〈V̌ 〉 gives both the direct interaction,
and a term where the particles have been exchanged with
each other. More in the exercises.

Fermions

The development in the case of fermions differs in that we
require the anticommutators {Ǎ, B̌} ≡ ǍB̌ + B̌Ǎ and
change the letter just to be sure{

ǎk, ǎ
†
k′

}
= δk,k′ ,

{ǎk, ǎk′} = {ǎ†k, ǎ
†
k′} = 0. (122)

It is now claimed that these conditions alone yield the
following relations (exercise)

ǎ†kǎk| . . . , nk, . . .〉 = nk| . . . , nk, . . .〉, nk = 0, 1

ǎk| . . . , 0k, . . .〉 = 0

ǎk| . . . , 1k, . . .〉 = | . . . , 0k, . . .〉
ǎ†k| . . . , 0k, . . .〉 = | . . . , 1k, . . .〉
ǎ†k| . . . , 1k, . . .〉 = 0, (123)

where 0k and 1k mean numbers 0 and 1 in the argument
k of state (104). Interpretation: ǎ†kǎk is a particle-number

operator, ǎk an annihilation operator, and ǎ†k a creation
operator for fermions.

The Hamilton operator in second quantization

Ȟ =
∑
i,j

ǎ†i 〈i|T |j〉ǎj +
1

2

∑
ijkl

ǎ†i ǎ
†
j〈i, j|V |k, l〉ǎlǎk. (124)

is exactly of the same form as for bosons. Now in
particular the order of the operators ǎlǎk is essential,
because an opposite order would change the sign.
Exercises.

The interaction potential is assumed to depend only on
the distances between particles: V (r, r′) = V (r − r′). In
general the interaction potential could also depend on the
spins of the particles. However, let us study only
spin-independent interactions, i.e. the interaction cannot
change the spins of the particles, and the value of the
potential does not depend on the spins.

Exercise: calculate the matrix elements (119) and (120)
using the plane wave levels (36)-(37) and then derive the
second-quantized Hamilton operator

Ȟ =
∑
k,σ

εkǎ
†
kσǎkσ +

1

2L3

∑
k1,σ

∑
k2,λ

∑
k3

∑
k4

V (k3 − k1)

×δk1+k2,k3+k4 ǎ
†
k3σ

ǎ†k4λ
ǎk2λǎk1σ , (125)

where spin indices σ and λ can have the values ↑ and ↓.
Note that due to the Kronecker delta the momentum is
conserved also in interactions. Let us also remind that the
Fourier transformation is defined as

V (k) =

∫
d3rV (r)e−ik·r, (126)

so that its inverse transformation is

V (r) =
1

L3

∑
k

V (k)eik·r. (127)

As a special case let us inspect an interaction that can be
described with a delta function

V (r, r′) = −gδ(r − r′). (128)

For this we get (125) in the form

Ȟ =
∑
k,σ

εkǎ
†
kσǎkσ −

g

2L3

∑
k1,σ

∑
k2,λ

∑
k3

∑
k4

×δk1+k2,k3+k4
ǎ†k3σ

ǎ†k4λ
ǎk2λǎk1σ . (129)

With a change of variables k1 ↔ k2 and using (122), we
can see that a nonzero interaction is obtained only in the
case that the spins are opposite:

Ȟ =
∑
k,σ

εkǎ
†
kσǎkσ −

g

L3

∑
k1

∑
k2

∑
k3

∑
k4

×δk1+k2,k3+k4 ǎ
†
k3↑ǎ

†
k4↓ǎk2↓ǎk1↑ . (130)
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This can be understood so that two fermions whose spins
are the same cannot coexist in the same place, so they
cannot feel a delta-function interaction.

This concludes the introduction to second quantization.
Here we still give a short account of the terminology.
When we take as a starting point the many-body wave
equation (103), (115), and (116), then the second
quantization is just new way of denoting it. An
alternative approach, used in quantum field theory and
from which the name second quantization comes from, is
that one makes the switch from single-particle quantum
mechanics to many-body theory by postulating the
commutators (106) [or for fermions the anticommutators
(122)] and only after that deduces (if needed) the
formulas (103), (115), and (116).

4.6 Noninteracting system
We study fermions that do not interact with each other.
It is easiest to use grand canonical ensemble. The effective
Hamiltonian operator (27) is

Ǩ ≡ Ȟ − µŇ =
∑
k,σ

ξkǎ
†
kσǎkσ , (131)

where ξk = εk − µ. Its ground state (45) and the
elementary excitations are described above. We see that
in the notation of second quantization the ground state
|0〉 can be written in the form

|0〉 =
∏
|k|<kF

ǎ†k↑ǎ
†
k↓|vac〉, (132)

where
∏
|k|<kF is a product over all wave vectors having

k < kF and |vac〉 is the vacuum state |0, 0, 0, . . .〉.
In order to get clear connection to the excitation picture,
we define new operators

ǎkσ =

{
γ̌†−k,−σ when ξk < 0
γ̌kσ when ξk > 0.

. (133)

Here −k denotes the opposite momentum to k and
correspondingly −σ the opposite spin to σ. The operators
γ̌kσ ja γ̌†kσ satisfy the same commutation relations (122)

as ǎkσ ja ǎ†kσ. Therefore the transformation (133) is

called canonical. The operators γ̌kσ ja γ̌†kσ can be
interpreted as annihilation and creation operators of an
excitation. Inside the Fermi sphere we use

ǎ†kσǎkσ = 1− ǎkσǎ†kσ (134)

and using the notation (133) we get

Ǩ =
∑
k,σ

|ξk|γ̌†kσγ̌kσ + Ω0, (135)

where the last term is a constant (the grand potential of
the ground state). The ground state |0〉 satisfies

γ̌kσ|0〉 = 0 ∀k, σ. (136)

The number operator of the excitation kσ is γ̌†kσγ̌kσ, and
all excitation energies are positive.

4.7 Many body problem
We study an interacting system. We write the
Hamiltonian presented above (124) using a shorter
notation

Ǩ ≡ Ȟ − µŇ =
∑
i,j

ξij ǎ
†
i ǎj +

1

2

∑
ijkl

Vijklǎ
†
i ǎ
†
j ǎlǎk. (137)

where ξij = 〈i|T |j〉 − µδij and Vijkl = 〈i, j|V |k, l〉.
The essential problem is the interaction term in (137),
which is fourth order in ǎ. This is the many body problem.
The noninteracting case (=ideal gas) can be calculated
exactly, but there is no general method to solve exactly
the problem of many interacting particles. Instead, there
exists numerous approximation methods that can be
applied in different cases.

It turns out that in case of superconductivity, there exist
a quite good approximation method (known as
quasiclassical theory of Fermi liquids). There the many
body problem is solved using the fact that the ratio Tc/TF
is small. In general form this theory is very complicated,
and therefore it is not presented in this course. Although
we have to refrain from firm justification, we attempt to
make the main results understandable in the following.

A quite general approximation method in many-body
systems is Hartree-Fock approximation. The main idea is
the following. Because the difficulties in the Hamiltonian
(137) arise in the fourth order term, one approximates it
with a second order term

V̌ =
1

2

∑
ijkl

Vijklǎ
†
i ǎ
†
j ǎlǎk ≈

∑
ij

Aij ǎ
†
i ǎj (138)

Because this term has the same form as the
noninteracting system, its solution is easy (at least
relatively). Now one must determine the coefficients Aij .
In Hartree-Fock approximation this is done by replacing
the removed operators by their expectation values. Thus

V̌ ≈ V̌HF =
1

2

∑
ijkl

Vijkl(〈ǎ†i ǎk〉ǎ†j ǎl + ǎ†i ǎk〈ǎ†j ǎl〉

−〈ǎ†i ǎl〉ǎ†j ǎk − ǎ†i ǎl〈ǎ†j ǎk〉) + constant. (139)

The first term can be understood so that a particle that
scatters from level l to level j feels an interaction that is
averaged over all states of other particles. The second
term is of the same type but has different indices. The
third and fourth terms are caused by the fact that it is
impossible to distinguish the particles, but one must
allow them to interchange (so called exchange
interaction). [We have neglected in equation (139)
correction terms that arise from the fact that a particle
cannot interact with itself.]
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The expectation value is calculated as above
〈. . .〉 = Tr(. . . ρ̌) (9), but in order to get a closed theory,
one must use the same approximation for Ǩ in the
density matrix:

〈. . .〉 =
Tr(. . . e−βǨHF)

Tre−βǨHF
. (140)

This is known as the self-consistency equation. It must be
solved together with (139) because they depend on each
other.

The Hartree-Fock approximation is widely used in
calculation of the electronic states of atoms and
molecules. For conduction electrons it is clearly
insufficient already in the normal state (because it does
not take into account the screening of the Coulomb
potential). Also, it does not lead to superconductivity.

4.8 Superconducting state
We make so called anomalous Hartree-Fock
approximation, where we also take terms of the type
ǎ†i ǎ
†
j〈ǎlǎk〉. This is not included in the standard

Hartree-Fock approximation because the expectation
values of the operators, which change the particle
number, vanish. It turns out, however, that just these
terms are essential for superconductivity.

The anomalous HF approximation can also be justified by
first writing exactly

ǎiǎj = 〈ǎiǎj〉+ (ǎiǎj − 〈ǎiǎj〉) (141)

and correspondingly for the Hermitian conjugate
operator. Now we assume that the expectation value is a
good approximation, i.e. the term in the parenthesis on
the right hand side is small. Its order of magnitude is
denoted by ε. We substitute in the Hamiltonian (137) and
drop terms that are proportional to ε2, and get

V̌anom =
1

2

∑
ijkl

Vijkl(〈ǎ†i ǎ†j〉ǎlǎk+ǎ†i ǎ
†
j〈ǎlǎk〉−〈ǎ†i ǎ†j〉〈ǎlǎk〉).

(142)

This was the most essential approximation. In addition,
we make the following simplifying approximations.

• the interaction is approximated by a contact
interaction (128).

• the normal Hartree-Fock terms (139) are dropped
assuming that they shift equally the energies of the
normal and superconducting states.

• we assume that momentum is conserved in
expectation values (although the particle number is
not). One can show that this limits the study to the
case of stationary (not flowing) state of the
superconductor.

With these assumptions we get the Hamiltonian

Ǩeff =
∑
k,σ

ξkǎ
†
kσǎkσ −

g

L3

∑
k

∑
k′

×(ǎ†k↑ǎ
†
−k↓〈ǎ−k′↓ǎk′↑〉 + 〈ǎ†k↑ǎ

†
−k↓〉ǎ−k′↓ǎk′↑

− 〈ǎ†k↑ǎ
†
−k↓〉〈ǎ−k′↓ǎk′↑〉). (143)

We write this into the form

Ǩeff =
∑
k,σ

ξkǎ
†
kσǎkσ −

∑
k

(∆ǎ†k↑ǎ
†
−k↓

+ ∆∗ǎ−k↓ǎk↑) + C. (144)

Here we have defined

∆ =
g

L3

∑
k

〈ǎ−k↓ǎk↑〉. (145)

For its complex conjugate we get

∆∗ =
g

L3

∑
k

〈ǎ†k↑ǎ
†
−k↓〉. (146)

The Hamiltonian (144) can also be written in the form

Ǩeff =
∑
k

(
ǎ†k↑ ǎ−k↓

)(
ξk −∆
−∆∗ −ξk

)(
ǎk↑
ǎ†−k↓

)
+C2. (147)

The Hamiltonian (144) is second order in ǎ, as was
desired. However, it is not yet of the same form as for
ideal gas (131) because in addition to diagonal terms

∝ ǎ†kσǎkσ it contains nondiagonal terms. In order to
achieve a diagonal form we make Bogoliubov
transformation. We introduce the operators γ̌k↑ ja γ̌k↓ by
defining

ǎk↑ = u∗kγ̌k↑ + vkγ̌
†
−k↓

ǎk↓ = u∗kγ̌k↓ − vkγ̌†−k↑. (148)

Here uk and vk are generally complex valued coefficients.
For the Hermitian conjugates we get

ǎ†k↑ = ukγ̌
†
k↑ + v∗kγ̌−k↓

ǎ†k↓ = ukγ̌
†
k↓ − v∗kγ̌−k↑. (149)

We wish to make the transformation canonical, which
means that the new operators should satisfy the same
anticommutation relations as the original operators (122).
We calculate

{ǎk↑, ǎ†k↑} =

|uk|2{γ̌k↑, γ̌†k↑}+ |vk|2{γ̌†−k↓, γ̌−k↓}
+ u∗kv

∗
k{γ̌k↑, γ̌−k↓}+ ukvk{γ̌†−k↓, γ̌

†
k↑} = 1.
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This succeeds if
|uk|2 + |vk|2 = 1. (150)

Exercise: Show that the inverse of the transformation
(148) is

γ̌k↑ = ukǎk↑ − vkǎ†−k↓
γ̌k↓ = ukǎk↓ + vkǎ

†
−k↑. (151)

Show that the γ̌ operators satisfy all the same
anticommutation rules (122) as the ǎ operators.

Now we substitute the Bogoliubov transformation to the
Hamiltonian (144). We see that the inconvenient terms
drop out if one chooses

2ξkukvk −∆uk
2 + ∆∗v2

k = 0, (152)

and the Hamiltonian gets the form

Ǩeff =
∑
k

{ξk[|uk|2(γ̌†k↑γ̌k↑ + γ̌†k↓γ̌k↓)

+ |vk|2(γ̌k↑γ̌
†
k↑ + γ̌k↓γ̌

†
k↓)] + (∆∗u∗kvk + ∆ukv

∗
k)

× (γ̌†k↑γ̌k↑ − γ̌k↓γ̌
†
k↓)}+ C. (153)

Now we suppose, for simplicity, that ∆ is real valued. (We
shall return to the general case later.) The solution of
equations (150) and (152) is

uk =

√
1

2

(
1 +

ξk
Ek

)
, vk =

√
1

2

(
1− ξk

Ek

)
, (154)

where

Ek =
√
ξ2
k + ∆2. (155)

Substituting these into (153) gives the Hamiltonian in the
desired form

Ǩeff =
∑
k,σ

Ekγ̌
†
kσγ̌kσ + Ω0. (156)

(We return to the constant Ω0 later.) Because Ek > 0, it
can be interpreted, similarly as in the normal state
(135-136), as the excitation energy and γ̌†kσγ̌kσ as the
number operator of excitations. The excitation energy
(155) in the neighborhood of the Fermi surface is depicted
in the figure. In the superconducting state the particle
and hole type excitations change to each other smoothly
as k changes. The excitations have a minimum energy ∆,
which is known as energy gap. The excitation spectrum
reduces to the one in normal state when ∆ = 0.

E
k

k
F

k
0

∆

Gap equation

In order to fix the theory, we should determine ∆ (145).
Similarly as in the Hartree-Fock approximation we have
to calculate the expectation value using the effective
Hamiltonian (156). We get

∆ =
g

L3

∑
k

〈ǎ−k↓ǎk↑〉 =
g

L3

∑
k

Tr(ǎ−k↓ǎk↑e
−βǨeff )

Tre−βǨeff
.

(157)
Using the transformation formulas (148) and expressing
the trace (Tr) in eigenstates of the excitation number
operators we get

∆ =
g

L3

∑
k

ukvk[1− 2n(Ek)], (158)

where the Fermi distribution

n(ε) =
1

eβε + 1
. (159)

Using still the expressions for uk and vk (154) and
rearranging one gets the consistency equation in the form

∆ =
g

2L3

∑
k

∆

Ek
tanh

Ek
2kBT

. (160)

This has at least the trivial solution ∆ = 0, which
corresponds to the normal state. Any other solutions
should satisfy

1 =
g

2L3

∑
k

1

Ek
tanh

Ek
2kBT

. (161)

We see that because of the factor 1/Ek the summand is
largest at the Fermi surface. Indeed the contact
interaction (128), whose Fourier transform is a constant,
is too idealized, and at large momenta the Fourier
transform should drop to zero. Similarly as in the Cooper
problem, we cut off the summation at energy εc. Using
the summation formula (76) we get

1 =
gN(0)

2

∫ εc

−εc
dξ

1√
ξ2 + ∆2

tanh

√
ξ2 + ∆2

2kBT
. (162)

Noticing the symmetry of the integrand we get it to the
form

1

gN(0)
=

∫ εc

0

dξ
1√

ξ2 + ∆2
tanh

√
ξ2 + ∆2

2kBT
. (163)

This gap equation determines the energy gap as a
function of temperature, ∆(T ). Generally it should be
solved numerically. We study two limiting cases.

1) T = 0. One gets

1

gN(0)
=

∫ εc

0

dξ
1√

ξ2 + ∆2

= ln
2εc
∆
, (164)
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where the integral can be calculated with Mathematica,
and the result is valid in the limit εc � ∆. We get

∆(T = 0) = 2εce
− 1
gN(0) . (165)

2) T = Tc. Here the superconducting state vanishes,
∆→ 0. When εc � kBTc we get

1

gN(0)
=

∫ εc

0

dξ
1

ξ
tanh

ξ

2kBTc

= ln
2εce

γ

πkBTc
, (166)

where the Euler constant γ = 0.5772, eγ = 1.781. We get

kBTc =
2eγ

π
εce
− 1
gN(0) . (167)

The result (167) in principle predicts the transition
temperature of the superconductor. It contains the
parameters N(0), εc and g. Out of these N(0) (77) can be
measured independently and εc is estimated to be on
same order of magnitude as the Debye temperature
(∼ 100 K). The greatest uncertainty appears in the
constant g. Because Tc depends exponentially on g, it
makes the calculation of Tc very uncertain. Therefore the
equation (167) as such is not as remarkable as one could
initially think.

Considerably more reliable result is obtained if we
eliminate εce

−1/gN(0) from equations (165) and (167):

∆(T = 0) = πe−γkBTc = 1.764 kBTc. (168)

We see that the energy gap and the transition
temperature are of the same order of magnitude, and also
get a precise factor of proportionality between the two.

More generally, g and εc can be eliminated from the gap
equation in the weak coupling limit εc � kBTc. This can
be accomplished by subtracting from the gap equation
(163) its Tc condition (166). Utilizing the limit εc � kBTc
the resulting equation can be written in the form
(exercise)

∫ ∞
0

[
tanh(ξ/2kBT )

ξ
− tanh(

√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

]
dξ

= ln
Tc
T
. (169)

We see that ∆(T )/kBTc is a universal (= independent of
the material) function of T/Tc. The only material
dependent parameter is thus Tc.
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In the neighborhood of Tc one can derive (ζ(3) = 1.202)

∆(T ) ≈ kBTcπ
√

8

7ζ(3)

√
1− T

Tc
. (170)

Let us study how well the previous assumptions are
satisfied. The table shows experimental values except that
gN(0) is calculated from equation (167). We see that for
elemental metals εc � kBTc holds reasonably. Equation
(168) is rather well satisfied. The greatest deviation
appears in Lead. The deviations can be more or less
understood using strong coupling theory, which takes
more accurately into account e.g. the energy dependence
of the phonon mediated interaction.

Tc (K) TD (K) gN(0) ∆(0)
kBTc

BCS 1.764
Cd 0.56 164 0.18 1.6
Al 1.2 375 0.18 1.3-2.1
Sn 3.75 195 0.25 1.6
Pb 7.22 96 0.39 2.2

The quasiclassical theory of Fermi liquids is based on the
following idea. There are a few microscopic parameters
like Tc, effective mass etc., whose values cannot be
calculated in this theory, but their values can be
determined experimentally. Once the parameters are
known, the quasiclassical theory can be used to calculate
several properties of the superconducting state, e.g. the
gap function.

BCS ground state

In their original work Bardeen, Cooper and Schrieffer
presented the ground state of the superconductor

|ψ0〉 =
∏
k

(uk + vkǎ
†
k↑ǎ
†
−k↓)|vac〉, (171)

where
∏

k is the product over all wave vectors and |vac〉 is
the vacuum state. As the first step show that expression
(171) does not depend on the order in which the elements
of the product are written. This follows from the
commutator

[uk + vkǎ
†
k↑ǎ
†
−k↓, uq + vqǎ

†
q↑ǎ
†
−q↓] = 0. (172)
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Next show as an exercise that the BCS state (171) is
consistent with the theory above (156) by showing that
γkσ (151) annihilates this state,

γ̌kσ|ψ0〉 = 0. (173)

The functions uk and vk (154) near the Fermi surface are
shown in the figure.
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The state (171) shows that the occupations of the levels
k ↑ and −k ↓ are correlated. If a particle is present in
level k ↑, it is also present in level −k ↓, and if not, also
not in the other level. For ideal gas ground state (132)
this is satisfied trivially because the occupation number is
always either 0 or 1, depending on k. The BCS state
differs from the normal state at those k for which
ukvk 6= 0. This takes place around the Fermi surface in
the energy range of a few ∆, or, equivalently, of a few
kBTc.

One can also show that the state (171) is the one
consisting of pairs, as was expected above using the wave
function presentation (83) (see de Gennes).

The size of a pair

In order to see the general picture, it is important to
study the size of one pair. This can be justified in more
detail, for example by studying the wave function
obtained from the Cooper problem (see Ketterson-Song),
but the following gives the same result more directly. The
superconducting state differs from the normal one in the
energy range δξ ∼ kBTc. By calculating

δξ = δε = δ

(
p2

2m

)
=
( p
m

)
δp ≈ vF δp (174)

we get that in momentum this corresponds to a shell of
thickness δp = ~δk ∼ kBTc/vF around the Fermi surface.
It is a general property of wave motion that the minimum
size δx for a localized wave packet satisfies δx δk ∼ 1
when the available wave vectors are in range δk. Applying
this to the superconducting state we get that the
minimum size of a Cooper pair has the magnitude

ξ0 =
~vF

2πkBTc
, (175)

which is called coherence length. (Because it is an order of
magnitude estimate, the factor 2π can be added without

justification.) The table shows calculated values for a few
metals.

ξ0 (nm)
Al 1500
Sn 480
Pb 160
Nb 14

The essential result is that ξ0 is much larger than the
atomic scale ∼ 0.1 nm. The pairs are so huge that within
each pair there are ∼ 1010 conduction electrons! The
situation is quite opposite, for example, to O atoms
forming O2 molecules in oxygen gas.

Because the pairs are strongly overlapping, the identity of
electrons and the Pauli exclusion principle are quite
essential in the theory of superconductivity. For example,
one cannot answer the question which two electrons form
the pair. Therefore the BCS ground state (171), which
only indicates pair correlations, is much more useful way
of presenting than the wave function presentation (83)
where the effect of antisymmetrization is essential.

The size of a pair compared to the atomic scale a ∼ k−1
F

is equivalent with the previously mentioned fact that
kBTc � εF :

ξ0
a
∼ εF
kBTc

� 1. (176)

Superconductivity is a relatively low energy phenomenon
and therefore the associated length scale is large.

Particle number and phase

We attempt to understand that the number of particles in
the BCS state is not fixed.

Exercise: suppose that ∆ defined in equation (145) is not
real valued but

∆ = eiφ|∆|, (177)

where φ is a real phase. Show that all the preceding
results are valid also in this case when equations (154)
and (155) are replaced by

u2
k =

1

2

(
1 +

ξk
Ek

)
, v2

k =
1

2
e2iφ

(
1− ξk

Ek

)
, (178)

Ek =
√
ξ2
k + |∆|2. (179)

and in equations (162)-(170) one replaces ∆→ |∆|.
We conclude that the BCS state (171) is degenerate, i.e.
corresponding to each value of φ there is a state with the
same energy, where the original vk (154) is multiplied by
a phase factor exp(iφ):

|ψφ〉 =
∏
k

(uk + vke
iφǎ†k↑ǎ

†
−k↓)|vac〉. (180)

Let us consider more generally the relationship between
phase and pair number. We define the pair number
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operator ň. Its eigenstates are |n〉,

ň|n〉 = n|n〉. (181)

[For mathematical completeness we consider the integer n
in the range (−∞,+∞) but in practice a much smaller
range is sufficient.] In addition we define the operator

Ť =
∑
n

|n− 1〉〈n|. (182)

Operated on an arbitrary pair state it removes one pair
out of it. We look for the eigenstates of Ť :

Ť |t〉 = t|t〉. (183)

In order to achieve this we write

|t〉 =
∑
n

fn|n〉. (184)

Now the condition (183) gives fn+1 = tfn, whose solution
is fn = C exp(inφ) and the eigenvalue t = exp(iφ). Thus
corresponding to each eigenstate of the operator Ť there
is a corresponding value of φ. We use this value to label
the eigenstates and therefore write instead of (183)

Ť |φ〉 = eiφ|φ〉. (185)

This eigenstate of the phase can be presented using pair
number eigenstates

|φ〉 =
1√
2π

∑
n

einφ|n〉. (186)

A calculation gives the inverse relation

|n〉 =
1√
2π

∫ π

−π
dφ e−inφ|φ〉. (187)

We see that the BCS state (180) has the form

|ψφ〉 =
∑
n

einφfn|n〉. (188)

Here fn is real and it differs from zero in a range of n’s of
width ∆n� 1. Here the phase is rather well defined but
the pair number is uncertain. If one wants a state with
fixed number of pairs, it can be formed as linear
combination of phase eigenstates, as in equation (187).
Then the phase is fully uncertain. More generally one can
construct an uncertainty relation

∆n∆φ & 1. (189)

Justification: We consider an arbitrary state |ψ〉. Its
representation in the pair number eigenbasis is
ψn = 〈n|ψ〉 and in phase eigenbasis ψ(φ) = 〈φ|ψ〉. From
equation (187) we get

ψn =
1√
2π

∫ π

−π
dφ einφψ(φ). (190)

This shows that these representations are constructed
from each other by Fourier transformation.

The relation (190) is similar as between the momentum
and coordinate representations

ψp =
1√
L

∫ L/2

−L/2
dx e−ipx/~ψ(x) (191)

for a particle in a one-dimensional box of width L. Based
on this one can derive the Heisenberg uncertainty relation
∆p∆x ≥ ~/2 in the limit L→∞. The case of (190) is
slightly different because φ is a periodic variable and thus
n is discrete. Anyway, (189) can be derived principally in
the same way. Here we do it only approximately. Let ψ(φ)
be different from zero when |φ| < ∆φ/2. In order for ψn
to change from its maximum value, n has to change so
that the exponent in equation (190) changes essentially,
and thus ∆n∆φ ∼ 1.

As a conclusion we realize that the anomalous
Hartree-Fock approximation leads to BCS states where
the phase is well defined but the pair number is
uncertain. As a linear combination of such states it is
possible to form states of fixed number of pairs.

4.9 Thermodynamics
We follow the principle discussed in the beginning of the
course that we first calculate the thermodynamic
potential, and from it we get all thermodynamic
quantities as derivatives.

To simplify the notation, we assume ∆ real. We first
calculate the constant appearing in the diagonalized Ǩ
(156) (exercise), and get

Ω0 = 2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2. (192)

Because Ǩ (156) is diagonal, the grand potential (30) can
be calculated in the same way as for ideal Fermi gas and
we get

Ω = Ω0 −
2

β

∑
k

ln
(
1 + e−βEk

)
. (193)

We see that at zero temperature Ω(T = 0) = Ω0.

The energy functional (193) has a couple of interesting
properties.
1) If one minimizes Ω0 with respect to vk [taking into
account (150), ∆ = constant] one gets the same condition
(152) that was derived above in another way.
2) In the reminder of statistical physics we stated that Ω
has a minimum with respect to internal degrees of
freedom. In particular, this should apply to ∆. Verify as
an exercise that the condition

∂Ω(T, V, µ,∆)

∂∆
= 0 (194)

is equivalent with the gap equation (158).
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Based on the energy functional (193) one can calculate all
thermodynamic quantities. Here we calculate the
difference in energy between the superconducting and the
normal state at zero temperature:

Ω0 − Ω0(∆ = 0) = 2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2

−2
∑
k

ξk
1

2
(1− ξk

|ξk|
). (195)

In calculating the integrals one can proceed as follows.
Because of the gap equation (158) the term L3∆2/g
cancels half of the term −2

∑
k ∆ukvk. Using expressions

(154) and (155) we get the summation in the form

Ω0 − Ω0(∆ = 0) = −1

2

∑
k

∆4

Ek(Ek + |ξk|)2
. (196)

We see that this converges well for large ξk. Therefore we
can use formula (76). We get

Ω0 − Ω0(∆ = 0) = −1

2
L3N(0)∆2. (197)

This is the condensation energy of the superconducting
state, whose existence we deduced above by studying
thermodynamics in magnetic field (61). We see that the
energy of the superconducting state is lower than that of
the normal state. The energy difference (197) can be
roughly understood that the energy of those levels, which
are around the Fermi surface in a shell of energy ∆, is
reduced by ∆.

The entropy can be calculated from the formula (33) and
the specific hear from formula (18). In calculating the
entropy one should in principle differentiate with respect
to all temperature dependent parameters, but because of
relation (194) the temperature dependence of ∆ does not
contribute to the final result. Show as exercise that the
specific heat is given by

C =
L3N(0)

2kBT 2

∫ ∞
−∞

dξ
1

cosh2
√
ξ2+∆2

2kBT

(
ξ2 + ∆2 − T∆

d∆

dT

)
.

(198)
Using numerical calculation one could show that this
gives similar curve a plotted on page 3.

Exercise. Show from formula (198) that the specific heat
of the normal state is given by

C =
2π2

3
L3N(0)k2

BT, (199)

which is linear in T . From this one can determine N(0)
experimentally.

Note. Because we used grand canonical ensemble (28) the
specific hear (198) is calculated at constant µ. In the
courses of condensed matter physics and statistical

physics it is shown that in the case studied (T � TF ) the
specific heat at constant volume is the same.

4.10 Inhomogeneous superconductor
Previously in equation (144) we assumed that only those
expectation values conserving the momentum were
nonzero. We start to generalize the calculation to the case
that this assumption is not made. The effective
Hamiltonian can be written in the form

Ǩeff =
∑
k,σ

ξkǎ
†
kσǎkσ −

1

L3

∑
k′

∑
q

×(ǎ†1
2q+k′↑ǎ

†
1
2q−k′↓∆(q) + ∆∗(q)ǎ 1

2q−k′↓ǎ 1
2q+k′↑)

+ C, (200)

where

∆(q) = g
∑
k

〈ǎ 1
2q−k↓

ǎ 1
2q+k↑〉. (201)

We define the inverse Fourier transform of ∆(q) in the
usual way

∆(r) =
1

L3

∑
q

eiq·r∆(q)

=
g

L3

∑
k

∑
q

eiq·r〈ǎ 1
2q−k↓

ǎ 1
2q+k↑〉. (202)

We realize that ~q the total momentum of a pair. Thus
we can deduce that ∆(r) can be interpreted as the wave
function describing the center of mass of the pair. The
function ∆(r) is called order parameter. If the momentum
in the expectation value (202) is conserved, ∆(r) reduces
to the same constant as above (145).

We realize that this generalization is needed in the case
where the superfluid is in motion or in other
inhomogeneous state. We will not continue the analysis in
general form any further, but we will later use another
approach to study this very important case.

An interesting process taking place in inhomogeneous
superconductors is Andreev reflection. Consider the
interface of a normal state (N) and a superconducting
state (S) of a metal. Consider a particle type excitation
on the normal side approaching the interface. Assume
that the excitation energy is smaller than the energy gap
on the superconducting side, εk − µ < ∆. In this case the
excitation cannot continue to the superconducting side
since there are no states at the same energy. What can
happen is that the excitation forms a Cooper pair in the
superconductor. But a Cooper pair needs two electrons.
This means that a hole-type excitation is created at the
interface and its velocity v is opposite to that of the
initial particle excitation. The extra Cooper pair is
depicted by a circled pair of dots in the figure.
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Energy and momentum are conserved in the process. The
momentum change of the excitation is small, ∆p� pF , in
contrast to usual reflection (from a potential barrier or
impurities), where the momentum change is on the order
of pF . Note that the reflection direction differs from
specular (=mirror like) reflection, where only the normal
component of the velocity changes sign. To emphasize
this, Andreev reflection is called retroreflection. Andreev
reflection appears predominantly when the contact
between the metals is good. The opposite case of a weakly
transmitting contact is discussed later in Sec. 6.

4.11 Superfluid 3He
As an exercise we found out that 3He atom is a fermion
and its Fermi temperature TF ∼ 1 K. It is found
experimentally that liquid 3He has a transition to
superfluid state at temperatures Tc = 1 . . . 2.5 mK. This
superfluid state can to a large extent be understood
similarly as superconductivity above.

An essential difference is that in 3He the pairs form in a p
wave state instead of the s wave state found in most
superconductors. This means that vk has to be replaced
by vk, which also depends on the direction of k according
to a combination of spherical harmonic functions
Y m1 (θ, φ) [thus ` = 1 ja m = 0,±1]. Simultaneously the
spin state has to be written more generally. The BCS
state (171) thus has the form

|ψ0〉 =
∏
k

uk +
∑
σ,σ′

vkσσ′ ǎ†kσǎ
†
−kσ′

 |vac〉. (203)

Because v−kσσ′ = −vkσσ′ we see that only the spin
symmetric part vkσσ′ + vkσ′σ gives something nonzero
(exercise). Thus the spin state is triplet [↑↑, ↓↓ or
(↑↓ + ↓↑)/

√
2] instead of the singlet in superconductors

(95). It follows that the order parameter of 3He is a 3× 3
matrix, where the indices refer to three p wave states and
to three spin triplet states. j

Also some superconductors show properties from which
one can infer an order parameter consisting or more than
one component (e.g. UPt3). In high temperature

superconductors the pairs are found to form in the d wave
state vk ∝ k2

x − k2
y. The superfluid states of 3He are

studied a lot because there one can avoid such
complications occurring in metals such as the ion lattice
(which causes non spherically symmetric Fermi surface)
and impurities.
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5. Ginzburg-Landau theory

5.1 Introduction
This part is well presented in FW pages 430-439

Similarly as Ginzburg and Landau (GL), we derive the
GL theory phenomenologically. We will discuss later, how
it can be derived from microscopic theory.

Ginzburg and Landau presumed that the superconducting
state is described by a complex-valued order parameter Ψ.
This parameter is assumed to be different from zero only
in the superconducting state. Further it is assumed that Ψ
is small near the transition temperature. We suppose that
near the transition temperature the free energy density
f = F/L3 can be written as Taylor series in Ψ and Ψ∗,

f = f0 + α|Ψ|2 +
1

2
β|Ψ|4 + . . . . (204)

The terms appearing here are restricted by the fact that
Fs has to be real valued for arbitrary complex valued Ψ.
Therefore, the term cΨ cannot appear. Instead, Ψ has to
appear in product with Ψ∗: Ψ∗Ψ = |Ψ|2. Also the term
cRe Ψ is not accepted. The reason is that we require Fs
to remain unchanged in the transformation Ψ→ eiφΨ,
where φ is a real-valued constant.

The expansion (204) is incomplete because nothing in it
prevents a spatial dependence Ψ(r). Such a spatial
dependence can be limited by adding a term |∇Ψ|2 that
increases the energy of inhomogeneous states. However,
also this is unsatisfactory in the case of a nonzero
magnetic field. The magnetic field B can be described
with a vector potential A:

B = ∇×A. (205)

From the course of analytical mechanics we know that the
real momentum mv = p− qA. Here p is a canonical
momentum, which in quantum mechanics is replaced by
the operator ~

i∇. Analogously to this, GL chose the
additional energy term to be

γ

∣∣∣∣(~
i
∇− qA

)
Ψ

∣∣∣∣2 , (206)

where q is some charge. Let us take into account also the
energy density of the magnetic field in the sample

1

2µ0
B2. (207)

In this way we obtain the total energy in
Ginzburg-Landau theory as

F = F0 +

∫
d3r f,

f = α|Ψ|2 +
1

2
β|Ψ|4 + γ

∣∣∣∣(~
i
∇− qA

)
Ψ

∣∣∣∣2
+

1

2µ0
B2. (208)

Often one wants to study a system in a given external
magnetic field. Then, instead of F , on should minimize G
(55), in this case

G = F −
∫
d3rH ·B. (209)

Let us still write the G in GL theory in its full form

G = F0 +

∫
d3r g,

g = α|Ψ|2 +
1

2
β|Ψ|4 + γ

∣∣∣∣(~
i
∇− qA

)
Ψ

∣∣∣∣2
+

1

2µ0
B2 −B ·H. (210)

GL differential equations

Earlier we derived the result that in equilibrium the free
energy must be minimized. In a given external field one
must thus minimize G (210) both with respect to Ψ and
to A. {In minimizing with respect to Ψ the independent
variables [e.g. (Re Ψ, Im Ψ) or (|Ψ|, arg Ψ)] can be chosen
arbitrarily. The shortest calculation follows by treating Ψ
and Ψ∗ as independent variables.} Let us leave the
minimization as an exercise. As a result we obtain the GL
differential equations

γ

(
~
i
∇− qA

)2

Ψ + αΨ + β|Ψ|2Ψ = 0, (211)

1

µ0
∇×B =

q~γ
i

(Ψ∗∇Ψ−Ψ∇Ψ∗)

−2q2γ|Ψ|2A. (212)

The surface terms arising from integration by parts must
also vanish. From this we get the boundary conditions at
the surface of a superconductor

n̂ ·
(
~
i
∇− qA

)
Ψ = 0, (213)

n̂× (B− µ0H) = 0. (214)

[It is noted in passing that the transformation (209) is
essential only for the surface terms.]

It is noted that based on the Maxwell equation

∇×B = ε0µ0
∂E

∂t
+ µ0j (215)

we identify the quantity appearing in (212) as an electric
current density

j =
q~γ
i

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2q2γ|Ψ|2A. (216)

Exercise: show that the equations guarantee current
conservation

∇ · j = 0, n̂ · j = 0. (217)
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5.2 Special cases
The GL equations (211) and (212) constitute a coupled
set of differential equations, whose solution gives Ψ(r)
and A(r). In the general case this is very complicated.
Let us start by considering simple special cases.

1) Homogeneous superconductor, H = A = 0. Equation
(211) gives as possible solutions

Ψ = 0, (218)

|Ψ|2 = −α
β
. (219)

The former solution describes normal state. The latter,
superconducting state, is possible only if α/β < 0. In
order for F (208) to be sensible (minimum energy must
be achieved with a finite Ψ) we must always have β > 0.
The condition for the latter state is therefore α < 0. The
energies corresponding to the states (218) and (219) are
found by inserting into the functional (208):

F = F0, (220)

F = F0 − V
α2

2β
. (221)

We thus see that if α > 0, only the normal state is
possible, while in the case α < 0 the superconducting
state has the lowest energy. The transition temperature
Tc thus corresponds to the point where α = 0. In GL
theory it is assumed that the temperature dependence of
the coefficient α is linear

α(T ) = α′
(
T

Tc
− 1

)
, (222)

and the other coefficients (β, γ, q) are
temperature-independent.

The dependence of the free energy on the order
parameter can be illustrated with the following pictures.

Re Ψ

F

Im ΨRe Ψ

F

Im Ψ

T<Tc T>Tc

It is observed that in the normal state Ψ = 0 is
completely determined, but in the superconducting state
only the absolute value |Ψ| of the order parameter is fixed
while the phase arg Ψ is arbitrary.

2) Changing |Ψ|, A = 0. From the boundary condition
(213) it follows that n̂ ·∇Ψ = 0. Thus a
position-independent |Ψ| (219) is a valid solution
everywhere in the superconductor, also close to
boundaries. Despite this we consider a case where Ψ

deviates from its equilibrium value. From equation (211)
we find

~2γ∇2Ψ− αΨ− β|Ψ|2Ψ = 0. (223)

Assuming Ψ to be real and writing Ψ =
√
|α|/βf we put

this in the form

ξ2
GL∇2f + f − f3 = 0, (224)

where we have defined the GL coherence length

ξGL =

√
~2γ

|α| . (225)

We see that ξGL determines that length scale on which Ψ
can vary essentially. As an example we give the solution
of equation (224) in the case of a one-dimensional
dependence:

f(x) = tanh
x√

2ξGL
. (226)

3) Let us investigate the case

Ψ(r) = eiφ(r)|Ψ| (227)

where |Ψ|2 ≈ |α|/β is constant. By inserting into the
expression of current (216) we find

j = 2qγ|Ψ|2 (~∇φ− qA) . (228)

By taking the rotor of this we have the London equation

∇× j = −2q2γ|Ψ|2B. (229)

By using the Maxwell equations (215) and (51) this yields

B = − ∇× j

2q2γ|Ψ|2 = −∇× (∇×B)

2µ0q2γ|Ψ|2

=
∇2B

2µ0q2γ|Ψ|2 . (230)

Thus we have
B = λ2∇2B, (231)

where

λ =

√
β

2µ0q2γ|α| . (232)

x0

Bz

B
0

λ

Now we study a superconducting half-space x > 0. Let us
assume that outside the superconductor (x < 0) there is a
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field B0 = B0ẑ parallel to the surface of the
superconductor. The solution of equation (231) inside the
superconductor is

Bz(x) = B0e
−x/λ. (233)

Thus we explain the Meissner effect: the magnetic field
does not penetrate into the superconductor, apart from a
layer with thickness on the order of λ. In this layer a
current is flowing (calculate it), which cancels the
external field inside the superconductor. The result thus
also implies the existence of a dissipationless current.
Below some experimental values for the penetration dept
are given.

λ(T � Tc) (nm)
Al 49
Sn 51
Pb 39

>>λ

Γ

Φ

4) We look at the superconducting state in a ring (loop,
torus), whose cross-section is considerably larger than the
penetration depth. Then inside the ring j = 0. From (228)
we find that for a path Γ going around inside the ring we
have

0 =

∮
dl · (~∇φ− qA) = ~2πN − q

∫
da ·∇×A. (234)

Here N is an integer, which follows from that the fact
that a unique single-valued Ψ (227) only allows for φ to
change by a multiple of 2π when going around Γ. Thus
for the magnetic flux threading the loop we find

Φ =

∫
da ·B = N

2π~
q
. (235)

It has been experimentally observed that the flux is
quantized according to this formula. From the magnitude
from the observed flux quantum, Φ0 = h

2|e| (4), we deduce

that q is twice the charge e of an electron (the sign of the
charge cannot be deduced from this).

5) Above we have defined two length: the GL coherence
length ξGL (225) and the penetration length λ (232).
Both have the temperature dependence

λ(T ), ξGL(T ) ∝ 1√
|α|
∝ 1√

1− T/Tc
, (236)

so that they diverge when T → Tc. The ratio of the

lengths is called the GL parameter

κ =
λ(T )

ξGL(T )
=

√
β

2µ0q2~2γ2
. (237)

It is a temperature-independent constant. By writing the
GL equations in a dimensionless form we observe that
this is the only dimensionless parameter in the theory.

6) The equilibrium between normal and superconducting
states in an external field was studied already in the
beginning of the course, but it is instructive to see the
same by starting from the GL functional (210). In the
superconducting state we obtain from the terms
α|Ψ|2 + 1

2β|Ψ|4 a negative contribution that was
calculated above (221). This is independent of the field
H, because B ≡ 0. In the normal state only the terms

1
2µ0

B2 −B ·H are nonzero. By minimizing G with
respect to B we find

G = F0 −
1

2
V µ0H

2, B = µ0H. (238)

In order for the energies to be equal when H = Hc we
have

1

2
µ0H

2
c =

α2

2β
. (239)

From this and the linearity (222) of α(T ) it is concluded
that Hc(T ) is linear close to Tc. This is consistent with
the experimental observation (3).

7) Next we investigate the interface between normal and
superconducting states. This requires the field H to be of
the critical magnitude Hc, because the interface can only
be stable if the two phases are in equilibrium. The
structure of the interface can be solved exactly from the
GL equations, be here we are satisfied by a qualitative
analysis. In the previous point we identified the essential
terms of normal and superconducting states in the
functional (210). Let us see how these are involved in the
interface.

x

B
Ψ

λ

ξGL

x

B
Ψ

λ

ξGL

In the figure a light shading roughly describes the regions
where the energy is lowered from F0 by the amount (239).

The situation in an S-N interface depends essentially on
the ratio of the penetration depth and the GL coherence
length. If λ� ξGL a region of thickness ≈ ξGL is formed,
where neither of the negative contributions is reached.
This means an interface energy σ ≈ 1

2ξGLµ0H
2
c [compare

to equation (68)]. In the opposite case λ� ξGL, both
negative contributions are present within a thickness ≈ λ
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and we find a negative interface energy σ ≈ − 1
2λµ0H

2
c .

This latter case leads to completely new types of
properties. The description of the intermediate state
given in the beginning if the course is clearly not valid in
this case.

A superconductor where the interface energy in negative
is called a type II superconductor, as opposed to the type
I superconductor that has a positive interface energy. By
solving the GL equations we find that the limit between
the two cases goes at the value κ = 1/

√
2 of the GL

parameter. Thus for a type I superconductor κ < 1/
√

2
and for a type II superconductor κ > 1/

√
2.

5.3 Derivation from microscopic theory
The Ginzburg-Landau theory can be derived starting
from microscopic theory. The correspondence to
microscopic theory is achieved when one identifies

Ψ(r) = ∆(r), (240)

where ∆ is defined by equation (202). [Note that relation
(240) can contain an arbitrary constant factor of
proportionality, and it is often also used.]

We state the conditions under which the general theory
reduces to the GL theory:

1) The temperature is near the transition temperature,
Tc − T � Tc ⇔ ∆� kBTc.
2) The order parameter is not changing too steeply,
|∇∆| � ∆/ξ0.

The Ginzburg-Landau theory can be understood as
Taylor expansion in both ∆ and ∇∆ where one keeps
only the lowest order terms.

From microscopic theory one can derive the following
expressions for the parameters of the GL theory

α = N(0)
T − Tc
Tc

(241)

β =
7ζ(3)N(0)

8(πkBTc)2
(242)

γ =
7ζ(3)N(0)

12~2
ξ2
0 (243)

q = 2e, (244)

where ζ(3) = 1.202, ξ0 is defined in equation (175) and e
is the electron charge (e < 0). The last relation can be
easily understood: because Ψ the wave function of a pair,
its kinetic energy contains the pair charge q = 2e.

The two first equations [(241) and (242)] can be derived
directly from the energy functional (193). The calculation
is somewhat complicated though and therefore is not
done here. The two other equations [(243) and (244)] can
be derived from the inhomogeneous state theory
mentioned above (200) when also the vector potential is

included in the kinetic energy (119):

− ~2

2m
∇2 → 1

2m

(
~
i
∇− eA

)2

. (245)

From coefficients (241) and (243) we get for the GL
coherence length (225)

ξGL(T ) =

√
~2γ

|α| = ξ0

√
7ζ(3)

12

1√
1− T/Tc

= 0.837ξ0
1√

1− T/Tc
. (246)

The coherence lengths are thus of same order of
magnitude except the case T → Tc, where ξGL(T )→∞.

It turns out that when one goes very near Tc, the GL
theory is not valid any more. This is caused by critical
fluctuations, that are common to all second order phase
transitions. These are discussed more in the course of
statistical physics. In ordinary superconductors the
temperature region where critical fluctuations are
important is vanishingly small.

Effect of impurities

Metals always have impurities. It was discussed above
that these scatter the conduction electrons and thus cause
the electrical resistance in the normal state. What
happens to the superconducting state when impurities are
present? Are the pairs broken?

The effect of impurities can be studied theoretically by
adding an external potential U(r) besides the kinetic
energy (119),

− ~2

2m
∇2 → − ~2

2m
∇2 + U(r). (247)

In the simplest case one can study a delta-function
potential U(r) = uδ(r− r0), where r0 is the location of
the impurity. [This scatters electrons from one plane wave
level (34) to another but takes up no volume.] The
interesting result of this calculation is that out of the GL
coefficients (241)-(244) only γ (243) changes. The fact
that Tc is unchanged could be understood by saying that
although electrons scatter from one level to another, they
always can find a new partner to form a pair.

The previous does not hold in “unusual” superfluid states
where vk depends on direction, i.e. in high temperature
superconductors or in 3He, and pairs are broken there.

What happens to γ? Let us study the case where the
density of impurities is so large that the mean free path `
of a particle between scattering events is much smaller
than ξ0. This case `� ξ0 is called the “dirty limit”. The
electron propagates randomly as its direction changes
after an average flight by `. A simple calculation gives
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that if the total distance travelled by the the particle is
ξ0, it is at the distance R ≈ √`ξ0 from its starting point:

R2 =

(∑
i

∆xi

)2

=
∑
i

(∆xi)
2 +

∑
i

∑
j
j 6=i

∆xi ·∆xj

≈
∑
i

(∆xi)
2 ≈ ξ0

`
`2 = ξ0`. (248)

This is because on the average ∆xi ·∆xj = 0 when j 6= i,
and ξ0/` is the number of terms in the last summation

Supposing now that the estimate about the pair size
(175) concerns the total path length, we arrive at the
result that in the dirty limit the pair size is reduced to
∼ √`ξ0 � ξ0. This could be described by saying that in
dirty case the members of the pair lose each other slower
than in the pure case.

For the GL parameter γ instead of (243) we get

γ ∼ N(0)

~2
`ξ0, (249)

i.e. a gradient of the order parameter does not increase
the energy as much as in the case of a pure
superconductor. It follows from equation (237) that κ
increases with increasing impurity. Pure elemental metals
are almost exclusively of type I, but they change to type
II with increasing impurity.

5.4 Type II superconductivity
Previously we studied the intermediate state of a type I
superconductor. In type II superconductor the interface
energy is negative. It follows that the magnetic field
penetrates into the sample in as small units as possible in
order to maximize the amount of the interface. Because of
flux quantization (235) we deduce that the smallest unit
is one flux quantum Φ0. We sketch the corresponding
solution of the GL equations. In cylindrical coordinates

Ψ(r, ϕ, z) = C(r)eiϕ. (250)

r

ϕ

r

C(r)

ξGL

Here the phase φ of the order parameter is the same as
the azimuthal angle ϕ of the cylindrical coordinates.
Because the order parameter is independent of z, we
consider it in the x-y plane. Ψ has to be continuous
everywhere. It has a zero at r = 0, where it is analytic in
spite of the singularity of the coordinate system,
Ψ(x, y, z) = a(x+ iy) +O(r2).

The dependence eiϕ (250) on the phase causes a current
(228) that circulates around the z axis. We suppose that

also the vector potential A is in the direction of the
azimuthal angle, A = A(r)ϕ̂. The current

j = 2qγC2(r)

[
~
r
− qA(r)

]
ϕ̂. (251)

At large r the order parameter approaches its equilibrium
value (219). There the current (251) must vanish
(exponentially). Thus

A(r) =
~
q

ϕ̂

r
(r � λ). (252)

Requiring that A(r) is regular at origin, we can guess its
shape. Finally we calculate

B = ∇×A =
ẑ

r

d(rA)

dr
. (253)

r

A(r)

λ r

B(r)

λ

The accurate forms of the functions are obtained by
solving the GL equations, which generally is possible only
numerically.

The solution of the type (250) is called a quantized vortex
or vortex or flux line. We see from equation (252) that the
magnetic flux associated to a vortex is precisely one flux
quantum Φ0 (4).

For a type II superconductor one gets the following phase
diagram.

normal state

mixed state

Meissner state T

Tc

Hc2

Hc1

H

Hc

H

B/µ0

Hc1 Hc2

Between the critical fields Hc1 and Hc2 the magnetic field
partly penetrates to the sample. The density of vortices is
n = B/Φ0. The solution for one vortex describes the
situation at fields near Hc1, where the vortices are far
apart from each other. In increasing field also the density
of vortices increases until at Hc2 they are so dense that
there is no space for superconductivity in between.
Because the vortex core size is approximately ξGL, we
estimate from this that Bc2 ∼ Φ0/ξ

2
GL. An accurate

calculation with GL theory gives

Bc2 = µ0Hc2 =
~

2|e|ξ2
GL

=
Φ0

2πξ2
GL

. (254)
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Near Hc2 the order parameter goes continuously to zero.
In this case the third order term Ψ|Ψ|2 in the GL equation
(211) can be dropped, and the remaining equation is the
same as the Schrödinger equation for a charged particle in
constant magnetic field B. We leave the mathematics of
this problem to the condensed matter course.

In the equilibrium state the vortices fill the sample as
uniformly as possible. This leads to a lattice that is
hexagonal.

Spectroscopic image of the vortex lattice in NbS2 at 4.2
Kelvin and 1 Tesla. Dark corresponds to the normal
vortex cores, and bright to the superconducting regions.
The vortex lattice imaging by scanning tunneling
spectroscopy relies on spatial variations of the density of
levels in the mixed state. Indeed, the local density of
levels is different at the center of vortex cores compared
to the surrounding superconducting regions. Plotting
these differences as a function of position yields a
spectroscopic real space image of the Abrikosov vortex
lattice. (figure from http://dpmc.unige.ch/gr fischer/)

Check as an exercise that the dimensions of the figure
and the given field are consistent.

Force on a flux line

A Lorentz force

F = q(E + v×B). (255)

acts on a charged particle. This can be generalized to
continuously distributed matter as

F =

∫
d3r(ρE + j×B), (256)

where ρ is the charge density and j the electric current
density. We apply this to a single flux line in an applied
flow field jext(r). Because of charge neutrality ρ = 0.
Supposing that jext(r) is approximately constant in the
cross section of the vortex (area ≈ λ2), we can calculate
the integral in transverse plane and get the force acting
on the flux line

F = Φ0

∫
jext × dl, (257)

where dl is the line element of the flux line. This force
drives the vortex in direction that is perpendicular to the
applied current.

F

jext
j int

Notice that the direction of the force is such that it tends
to decrease the region where the total flow velocity is
largest (compare to the Magnus force).

One application of superconductivity is to build strong
magnets. Because Hc is relatively small (see the table on
page 2), superconductors of type II are used. A large part
of applications use Nb-Ti alloy, where 45 weight per cent
is titanium. Because the alloy is disordered, the mean free
path is very short and therefore Hc2 is high, Bc2 ≈ 10 T
at T = 4 K. Notice that if the alloy would be ordered, the
mean free path could in principle be as long as in a pure
element (see condensed matter course for justification).

The motion of flux lines leads to dissipation, which means
that the “superconductor” is not conducting without
resistance. This can be prevented by grain boundaries,
precipitates or other impurities that trap flux lines.
Especially Nb-Ti has titanium precipitates which are not
superconducting. In these regions the flux lines have lower
energy and thus are trapped there.

Rotation of a superfluid

Many of the results described above are also valid in 4He
and 3He superfluids. An essential difference is that they
are uncharged (effectively q = 0) so that instead of
electric current (228) one gets mass current

jmass = 2mγ|Ψ|2~∇φ. (258)

Here m = m4 for 4He and m = 2m3 for 3He, where m4

and m3 are the corresponding masses of the atoms (why
so?). When |Ψ|2 is constant one can define superfluid
velocity vs: because ~∇φ is momentum,

vs =
~
m
∇φ. (259)

It follows that
∇× vs = 0. (260)

We compare this to uniform rotation where

v = Ω× r ⇒∇× v = 2Ω. (261)

We thus get the interesting result that superfluid cannot
rotate in such a way that |Ψ|2 is constant. This is called
the rotation paradox.

The solution of the rotation paradox is that quantized
vortices are formed. Because q = 0, we get for a single
vortex in the simplest case

Ψ(r, ϕ, z) = C(r)eiϕ, (262)
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jmass = 2mγC2(r)
~
r
ϕ̂. (263)

r

ϕ

r

C(r)

ξGL

The circulation of the superfluid velocity around a single
vortex is ∮

dl · vs = ~
m

∮
dl ·∇φ =

h

m
.

Vortices are formed in a superfluid when the container is
rotated.

6. Josephson effect

6.1 Tunneling
Let us consider two metals that separated from each
other by a thin insulating layer. Although the potential in
the insulator is higher than the energy of electrons,
according to quantum mechanics the electrons can tunnel
through the potential barrier. In equilibrium, the
chemical potentials of the metal are equal (why?) We
study the case when a current source is connected
between the metals, and it causes a voltage V across the
junction: µ1 − µ2 = eV .

Metal 1 Metal 2

µ
1

µ
2

eV

E
U(x)

(Note. The figures are often drawn as if eV > 0. If one
wants to take into account that e < 0, it is easiest to
think that also V < 0.)

For the tunneling current we get the expression

J = c

∫
dE τ(E)

×{N1(E)f(E)N2(E + eV )[1− f(E + eV )]

−N1(E)[1− f(E)]N2(E + eV )f(E + eV )}.
(264)

Here c is a constant, τ(E) is the tunneling probability
and N1 and N2 are the densities of level in the metals.
The first term in equation (264) describes tunneling from
left to right and the second from right to left. The Fermi
functions f (43) in both terms take into account that
only those cases are counted where the state on the
starting side is initially occupied, and that the electron
arrives on the other side to a state that initially was
empty. From equation (264) we get by direct calculation

J = c

∫
dE τ(E)N1(E)N2(E + eV )

×[f(E)− f(E + eV )]. (265)

Notice that the factor containing the Fermi functions is
different from zero only in an energy interval of
∼ eV + kBT .

We study tunneling between two normal state metals.
There the density of states is approximately constant and
we get

J ≈ cN1(0)N2(0)τ(0)

∫
dE
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×[f(E)− f(E + eV )]

= cN1(0)N2(0)τ(0)eV, (266)

where we also assumed that τ depends only weakly on
energy. The result is linear in voltage V . Thus the factor
multiplying it can be identified as conductance (inverse of
resistance) G = 1/R, and

J = V/R. (267)

A more complicated result for the current is obtained
between a superconducting and normal state metal. The
density of levels in the superconducting state is

Ns(E) =

{
N(0)E√
E2−∆2

when |E| > ∆

0 when |E| < ∆,
(268)

which is easily obtained from the dispersion relation (155)
taking into account that the levels are uniformly
distributed in ξk (exercise).

Metal 1 Metal 2

µ
1

µ
2

eV

E

N2(E)N1(E)

∆
∆

At zero temperature the current is different from zero
only if |eV | > ∆. One can deduce that the current-voltage
relationship is qualitatively of the type shown in the
figure. (More accurately one should take into account
that the tunneling objects (electrons) are not the same as
the excitations on the superconductor side, but this does
not change the the result, see Tinkham).

eV

J

∆

J
=
V
/R

T=0

T>0

This kind of dependence of the current on the energy gap
is applied, among other things, in measuring the figure on
page 30.

Between two superconductors one gets even more
complicated current-voltage relationships depending on
the magnitudes of the energy gaps.

eV

J

Jc

|∆1-∆2| ∆1+∆2

J
=
V
/R

T=0

T>0

The most interesting feature is the current that is
obtained at precisely zero voltage.

6.2 Josephson effect
We consider two superconductors that are weakly coupled
to each other. We assume in the beginning that
B = A = 0.

Ψ1 Ψ2

Analogously to the phenomenological derivation of the
GL theory, we form an expression for the energy
associated with such a junction. Let Ψ1 and Ψ2 denote
the order parameters on the left and right hand sides. We
require 1) reality, 2) independence of a constant phase
factor exp(iφ). 3) independence on exchange of the two
sides, and 4) take only the leading order terms. This way
we get the Josephson energy

FJ = −a(Ψ∗1Ψ2 + Ψ1Ψ∗2) = −2aRe(Ψ∗1Ψ2). (269)

We substitute

Ψ1 = Ceiφ1 , Ψ2 = Ceiφ2 , (270)

and get
FJ = −EJ cos ∆φ. (271)

We have defined the phase difference

∆φ = φ2 − φ1 (272)

and EJ = 2aC2.

From the Josephson energy (271) we get the electric
current through the junction

J = Jc sin ∆φ, (273)

where Jc = (q/~)EJ = (2e/~)EJ .

Justification of (273): We substitute (227) in to the GL
energy (208). We make variation of it with respect φ on
both sides (1-dimensional model is sufficient). The
variation gives surface terms, and these counted together
with the Josephson energy (271) should vanish, which
gives relation (273).
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Another important relation is the following, which gives
the time derivative of the phase,

dφ

dt
= −2µ

~
. (274)

Justification of (274): the order parameter Ψ of the GL
theory was interpreted as the wave function describing a
Cooper pair. In equilibrium the Cooper pairs are in
equilibrium with electrons so that the energy of a Cooper
pair is 2µ, twice the electron chemical potential. The time
dependence of an energy eigenstate in quantum
mechanics comes from the factor exp(−iEt/~), which for
the order parameter Ψ = eiφ|Ψ| is exp(−i2µt/~), and
thus one gets (274).

We apply (274) to a Josephson junction. For the phase
difference (272) we get

d∆φ

dt
=

2eV

~
, (275)

since the difference in the chemical potentials is related to
the voltage V by ∆µ = µ2 − µ1 = −eV .

The equations (273) and (275) are known as Josephson
equations. The first gives that in equilibrium (V = 0) a
constant current flows trough that depends sinusoidally
on the phase difference ∆φ ≡ φ2 − φ1. This is known as
dc Josephson effect.

If the voltage V is constant, one gets from equation (275)
that the phase grows linearly in time,

∆φ =
2eV

~
t. (276)

Substituting this in to equation (273) one gets alternating
current at angular frequency

ω =
2e

~
V. (277)

This is known as ac Josephson effect.

At voltage 0.1 mV (which is typical in the figure on page
32) the equation (277) gives the frequency ν = ω/2π = 48
GHz.

Using Josephson junctions it is possible to make sensitive
measuring devices. For example, equation (277) makes
possible a voltage standard, as the frequency can
accurately be measured.

The current source driving the junction makes in time dt
the work V Jdt. According to energy conservation we
must have

dFJ
dt

= V J. (278)

We see that using this relation we can derive the third
relation based on any pair of the relations (271), (273)
and (275).

If the vector potential A is different from zero, the phase
difference (272) used above should be redefined as follows.

Analogously to equation (228) one defines a gauge
invariant phase difference

∆φ = φ2 − φ1 −
2e

~

∫ 2

1

dl ·A. (279)

Γ

Φ

φ
2

φ
1

Let us consider a ring that contains one Josephson
junction. The total flux is

Φ =

∫
da ·B =

∮
dl ·A =

∫ 2

1

dl ·A +

∫ 1

2

dl ·A (280)

where the last form has two terms, the former across the
junction and the latter over the rest of the ring. Using
(228) and j = 0 the latter contribution is∫ 1

2

dl ·A =
~
2e

∫ 1

2

dl ·∇φ =
~
2e

(φ1 − φ2 + 2πN). (281)

Substituting in (280) we get the phase difference across
the junction

∆φ =
2πΦ

Φ0
+ 2πN. (282)

If there are more junctions, this generalizes to∑
j

∆φj =
2πΦ

Φ0
+ 2πN. (283)

Φ ∆φ
1

∆φ
2

J

J1J2

Consider the circuit that has thick (� λ)
superconducting wires and two Josephson junctions. This
is described by equations

∆φ1 + ∆φ2 =
2πΦ

Φ0
+ 2πN

J = Jc1 sin(∆φ1)− Jc2 sin(∆φ2). (284)

For simplicity assume Jc1 = Jc2. By calculation one sees
that the two junctions behave as if a single junction
(273), whose critical current Jc depends on the flux

Jc = 2Jc1

∣∣∣∣cos
πΦ

Φ0

∣∣∣∣ . (285)
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Changing the field thus changes the critical current. This
is used in very sensitive measuring devices of magnetic
field. The device based on the circuit is called dc SQUID
(Superconducting quantum interference device).

∆φ
1

∆φ
3

Φ

∆φ
2

We can study a ring with three Josephson junctions. At
certain fields Φ ≈ 1

2Φ0 this has two possible energy states
that correspond to currents flowing in opposite directions.
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6.3 Alternative treatment of the
Josephson effect
We showed above that the BCS state (171) can be
represented as a superposition of states |n〉, where the
pair number n is fixed,

|ψ〉 =
∑
n

einφfn|n〉. (286)

Here we have written the phase φ (177) explicitly and
therefore fn is real valued.

We consider two superconductors L and R, which are
weakly coupled to each other. The coupling can simplest
be described by adding to the Hamiltonian the term

ȞT = −EJ
2

∑
m

∑
n

(
|m− 1, n+ 1〉〈m,n|

+|m+ 1, n− 1〉〈m,n|
)
. (287)

Here |m,n〉 is a state where the superconductor L has m
pairs and superconductor R has n pairs. The first term
describes process where one pair jumps from L to R, and
the second term describes the opposite process. EJ is a
constant describing the strength of the coupling.

The states of uncoupled superconductors are described by
the product of two states of the type (286):

|ψ〉 =
∑
k

∑
l

eikφLeilφRfkfl|k, l〉. (288)

It the coupling is weak, it can be treated as a small
perturbation. The first order correction to the energy is
obtained from the expectation value

E1 = 〈ψ|ȞT |ψ〉. (289)

Substituting the expressions (287) and (288) we get

E1 = −EJ
2

∑
m

∑
n

(ei(φL−φR)fm−1fn+1

+e−i(φL−φR)fm+1fn−1)fmfn

≈ −EJ cos(φR − φL) (290)

supposing
∑
m fm−1fm ≈

∑
m f

2
m = 1. The result is the

same as obtained above (271) in a different way.

Based on the same assumptions, we can also calculate the
current

J = 2e
d

dt
〈ψ|ňR|ψ〉, (291)

where
ňR =

∑
m

∑
n

n|m,n〉〈m,n| (292)

is the pair number operator on the side R.

The time derivative in equation (291) can easily be
calculated using time dependent Schrödinger equation.
More directly the same result is obtained in the
Heisenberg picture, where the states are time independent
but the operators obey the equation of motion

dňR
dt

=
i

~
[
Ȟ, ňR

]
=
i

~
[
ȞT , ňR

]
. (293)

Here the latter equality follows because the only term in
the Hamiltonian that does not commute with ňR is the
tunneling term (287). Substituting (287) we get

dňR
dt

= − iEJ
2~

∑
m

∑
n

(
− |m− 1, n+ 1〉〈m,n|

+|m+ 1, n− 1〉〈m,n|
)
. (294)

The expectation value of this can be calculated similarly
as above, and we get

J =
2e

~
EJ sin(φR − φL). (295)

Also this result is the same as above (273).

We apply the time dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = Ȟ|ψ〉 (296)

to the state (186). By definition of the chemical potential
µ, the energies of states with different number of particles
differ by µ, i.e., Ȟ = 2µŇ + constant. We get

dφ

dt
= −2µ

~
, (297)
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which also was derived above in (274).

6.4 Macroscopic quantum mechanics
Previously we considered the order parameter and its
phase as classical quantities, which have definite values.
The precision of the phase, however, is limited by the
uncertainty relation (189). Let us study when this
restriction becomes essential.

Q=2en+Q
0

φ
1
=0

S
1

C

2e

φ

S

We consider a small superconducting body S, which we
call island. It is connected via a Josephson junction to
another larger superconductor S1. (Without losing
generality we can choose the phase of S1 to vanish, and
the phase of S is marked by φ.) The tunneling of one pair
changes the electric charge Q of the island by 2e. This
leads to a change of the electrostatic potential Q2/2C,
where C is the capacitance of the island. The capacitance
can be estimated using the plate-capacitor formula
C = εA/d, where A is the area of the Josephson junction,
ε the permeability of the insulator and d the thickness of
the insulating layer. The order of magnitude of the
charging energy is given by Ec ≡ e2/2C.

The phase is well defined if the charging energy is small
compared to the Josephson energy, Ec � EJ . In the
opposite case, when Ec has same order of magnitude as
EJ (or is larger), the phase is a quantum mechanical
variable in a sense that it should be described by a wave
function ψ(φ). This is known as macroscopic quantum
mechanics, as φ describes a large number of electrons but
still behaves according to quantum laws.

Other conditions for the observation of quantum behavior
of phase is low temperature, and that the charge cannot
escape too fast by other means. In practice this means
very small junctions of area A < 10−12 m2.

In order to get a quantitative theory, we construct a
Hamiltonian. The charging energy is 4Ec(n+Q0/2e)

2.
This is the capacitive energy Q2/2C caused by charge
Q = 2en+Q0, where 2en describes the charge dependent
on the number of Cooper pairs and Q0 is an independent
contribution that is called the background charge.
Although n gets only integer values, Q0 can be an
arbitrary real number, since it is changed, for example, by
the motion of an impurity ion in the insulator between
the capacitor plates. The charging energy is diagonal
when using the pair number eigenstates |n〉. The
tunneling part was postulated above in (287), but here we
concentrate only on the island. (We suppose the other
superconductor so large that the changes in its particle

number are unimportant.) Thus we get the Hamiltonian

Ȟ =
∑
n

[
4Ec|n〉

(
n+

Q0

2e

)2

〈n|

−EJ
2

(|n+ 1〉〈n|+ |n− 1〉〈n|)
]
. (298)

It is interesting to express this Hamiltonian using the
phase eigenstates. Using the transformation formulas
(186) and (187) we get the form

Ȟ =

∫ π

−π
dφ|φ〉

[
4Ec

(
i
∂

∂φ
+
Q0

2e

)2

−EJ cosφ

]
〈φ|. (299)

Verify this as an exercise. We see that in φ representation
the operator giving n is

nop = i
∂

∂φ
. (300)

This and the phase have commutation relation
[φ, nop] = −i, as generally applies to quantities that are
obtained by Fourier transform from each other.
[Depending on definitions the sign of the commutator is
±i. Here the sign of the exponent in equation (186) is
chosen such that it leads to the same definition of φ as
usually used in the literature of superconductivity.]

Because the Hamiltonian (299) is diagonal in the phase
eigenstates, it is simpler to write it as

H = 4Ec

(
i
∂

∂φ
+
Q0

2e

)2

− EJ cosφ. (301)

This Hamiltonian determines the form of the phase wave
function ψ(φ). If Ec � EJ , can ψ(φ) be almost a delta
function, and the phase is well defined. In the opposite
case ψ(φ) is distributed and the phase uncertain.

Finally we mention that the macroscopic quantum
mechanics is actively studied at present. One of the
motivations is to make a qubit, the bit of a quantum
computer. For example, the quantum tunneling between
two macroscopic states has been observed experimentally
in the ring with three Josephson junctions described
above [van der Wal et al, Science 290, 773 (2000).].

Alternative derivation

Here we give alternative derivation for the quantum
properties of phase. If you are satisfied with the above,
you can skip this.

Tunnel junctions always have also electric capacitance C.
Its energy is

EQ =
1

2
CV 2 =

1

2
C

(
~
2e

)2

φ̇2 (302)
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where we have used formula (276). This can be thought
as some kinetic energy and the corresponding potential
energy is then the Josephson energy (271). Out of these
we can form the Lagrange function

L =
1

2
C

(
~
2e

)2

φ̇2 + EJ cosφ. (303)

We calculate the canonical momentum

p =
∂L

∂φ̇
= C

(
~
2e

)2

φ̇ =
~
2e
CV =

~
2e
Q. (304)

The Hamiltonian is

H =
Q2

2C
− EJ cosφ. (305)

The commutation rule for canonical variables x ja p gives

[p̌, x̌] = −i~, (306)

and based on analogy we have

[Q̌, φ̌] = −2ei. (307)

Using Q̌ = 2eň+Q0 we see that we get the same
formulas as before (300) and (301) except a sign
difference in (300) and the Q0 contribution in (301). (The
sign difference could be avoided by reversing the
definition of the phase difference over the junction, and
therefore should not be a fundamental problem. The Q0

contribution can be added as discussed in the course
Quantum optics in electric circuits.)

We note that the classical problem considered here (303)
is the same as for a simple pendulum, and the quantum
mechanical problem (301) is the same as for an electron in
a 1-dimensional crystal with sinusoidal periodic potential.

7. Conclusion
The course had two main topics: the microscopic theory
(BCS) and the macroscopic theories (thermodynamics,
GL, Josephson effect). The purpose was to give basic
understanding of both. In addition we considered several
more detailed questions. In conclusion one should read
again the introduction to see if the topics mentioned
there were sufficiently understood.
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Appendix

A. Maxwell’s equations
Maxwell’s equations are

∇ ·E =
ρ

ε0
, (308)

∇×E = −∂B
∂t

, (309)

∇ ·B = 0, (310)

∇×B = ε0µ0
∂E

∂t
+ µ0j. (311)

Here E is the electric field and B the magnetic field. In
many cases it is convenient to represent them using
potentials

E = −∇ϕ− ∂A

∂t
, (312)

B = ∇×A, (313)

where ϕ is the scalar potential and A the vector potential.

The Maxwell’s equations contain the charge density ρ and
electric current density j. In studying electromagnetic
phenomena in materials, it is useful to separate the
charges arising from the polarization and other charges.
Correspondingly, the electric current can be divided to
the current arising from magnetization and polarization
of the medium, and to other currents. Without proper
justification we claim that this can be written as the
following equations

ρ = ρf −∇ · P, (314)

j = jf + ∇×M +
∂P

∂t
. (315)

Here P is the electric polarization and M the
magnetization of the medium. Other charges and currents
are denoted by index f meaning free. We substitute these
relations to Maxwell’s equations (308)-(311) and define
two new fields

D ≡ ε0E + P, (316)

H ≡ 1

µ0
B−M. (317)

We get Maxwell’s equations in a medium

∇ ·D = ρf ,

∇×E = −∂B
∂t

,

∇ ·B = 0,

∇×H =
∂D

∂t
+ jf . (318)
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