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Abstract. With Next Generation Sequencers, sequence based transcriptomic or epige-
nomic assays yield millions of short sequence reads that need to map back on a refer-
ence genome. The upcoming versions of these sequencers promise even higher sequencing
capacities; this may turn the read mapping task into a bottleneck for which alternative
pattern matching approaches must be experimented. We present an algorithm and its im-
plementation, called MPSCAN, which uses a sophisticated filtration scheme to match a set
patterns/reads exactly on a sequence. MPSCAN can search for millions of reads in a single
pass through the genome without indexing its sequence. Moreover, we show that MPSCAN

offers an optimal average time complexity, which is sublinear in the text length, meaning
that it does not need to examine all sequence positions. Comparisons with BLAT-like tools
and with six specialised read mapping programs (like BOWTIE or ZOOM) demonstrate
that MPSCAN also is the fastest algorithm in practice for exact matching. Our accuracy and
scalability comparisons reveal that some tool are inappropriate for read mapping. More-
over, we provide evidence suggesting that exact matching may be a valuable solution in
some read mapping applications. As most read mapping programs somehow rely on exact
matching procedures to perform approximate pattern mapping, the filtration scheme we
experimented may reveal useful in the design of future algorithms. The absence of genome
index gives MPSCAN its low memory requirement and flexibility that let it run on a desktop
computer and avoids a time-consuming genome preprocessing.

1 Introduction

Next-generation sequencers (NGS), able to yield millions of sequences in a single run, are
presently being applied in a variety of innovative ways to assess crucial biological questions:
to interrogate the transcriptome with high sensitivity [1], to assay protein-DNA interactions at
a genome wide scale [2], or to investigate the open chromatine structure of human cells [3,4].
Due to their wide applicability, cost effectiveness, and small demand in biological material,
these techniques become widespread and generate massive data sets [5]. These experiments
yield small sequence reads, also called tags, which need to be positioned on the genome. For in-
stance, one transcriptomics experiment delivered ' 8 millions different 27 bp tags, which were
then mapped back to the genome. Only the tags mapping to a unique genomic locations served
to predict novel transcribed regions and alternative transcripts [6]. Generally, further analyses
concentrate on those tags mapped to a unique genomic location [7].

The goal of tag mapping is to find for each tag the best matching genomic position. The
ELAND program, which belongs to the bioinformatic pipeline delivered with the Solexa/Illumina R©

1G sequencer, reports first an exact matching location if one is found, and otherwise seeks for
locations that differ by 1 or 2 mismatches.

In the vast pattern matching literature, numerous guaranteed algorithms have been described
to match exactly or approximately a pattern in a text (i.e. a read in a sequence), but only a few
have been implemented to process efficiently tens of thousands of patterns [8]. In the context of
read mapping, tools must be able to process millions of reads and thus, programs that exploit a



precomputed genome index often prove more efficient [9,10,11,12]. Read mapping tools offer
possibilities of approximate matching up to a limited number of differences (generally a few
mismatches). However, they usually trade off a guaranteed accuracy for efficiency [13,10,11,12].

Another specificity of read mapping applications is that further processing consider only
reads mapping at unique position in the genome [7]. From a statistical viewpoint, exact matching
of a 20 bp read is sufficient to identify a unique position in the human genome [14,15]. This
implies that, instead of approximately matching full length reads, it may be as adequate to match,
i.e. read prefixes, exactly. This would allow to keep the 100% accuracy, while still being efficient.
Thus, it is desirable to further investigate whether exact set pattern matching algorithms can be
adapted to meet the requirements of read mapping. For instance, it remains open whether an
efficient pattern matching algorithm able to process huge read sets without indexing the genome
exists.

To perform the mapping task, the user chooses either fast BLAST-like similarity search
programs (BLAT [16], MEGABLAST [17], or SSAHA [18]), or specialised mapping tools
(ELAND, TAGGER [19], RMAP [11], SEQMAP [13], SOAP [10], MAQ [9], BOWTIE [12], and
ZOOM [20]). ELAND is probably the most used one [6,3,2]. While mappers were designed to
process the huge tag sets output by NGS and allow only a few of substitutions and/or indels,
similarity search tools were intended to find local alignments for longer query sequences, but
can be twisted to map tags [3,21]. To speed up the search, both categories of tools follow a
filtration strategy that eliminates quickly non-matching regions. The filtration usually requires
to match exactly or approximately a short piece of the sequence (e.g., BLAT or SEQMAP). All
mappers but one [20] use variants of the PEX filter (as called in [8]), which consists in splitting
the tag in k +1 adjacent pieces, knowing that at least one will match exactly when a maximum
of k errors are allowed. Logically to accelerate the filtration step, several of these tools exploit
an index of the genome’s words of length q (or q-mers) [16,18,19,12]1, which is stored on disk,
loaded in memory once before all searches, and requires a computer intensive preprocessing of
the genome [12]. The computation of a human genome index lasts several hours even on power-
ful servers [12]. Among mapping tools, ZOOM distinguishes itself with a filtration relying on
spaced seeds, i.e. matching subsequences instead of pieces [20].

Here we present a computer program MPSCAN2, short for Multi-Pattern Scan, that is able to
locate multiple reads in a single pass through the searched sequence and study its average time
complexity (Section 2). In Section 3, we compare MPSCAN with the fastest of BLAST-like tools
and mapping programs in terms of speed and scalability on large tag sets, and also evaluate the
accuracy of similarity search tools for this task. We conclude by discussing the practical and
algorithmical implications of our findings.

2 MPSCAN algorithm

MPSCAN, short for Multi-Pattern Scan, is a program for set pattern matching: it searches si-
multaneously in a text for a set of words (i.e. tags) on a single computer (no parallelisation, no
special hardware). To enable fast matching of large tag sets, we combine a filtration/verification
approach with a search procedure based on bitwise comparisons, and a compact representation
of the tag set. The tags are loaded in memory at the start and indexed in a trie [8], while the text
is scanned on-the-fly by pieces.

The filtration strategy, which was explored for sets of up to 100,000 patterns in [22], is the
clue of MPSCAN efficiency. Filtration aims at eliminating most positions that cannot match any
tag with an easy criterion. Then, verification checks whether the remaining positions truly match

1 As well as the version 2.0 of SOAP
2 MPSCAN is freely available for academic users and can be downloaded at http://www.
atgc-montpellier.fr/mpscan.
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Fig. 1: Filtration scheme of MPSCAN. (a) A set of 3 tags of length l = 8. (b) The overlapping 5-mers starting
at position 1 to 4 (resp. in magenta, orange, red, blue) of each tag. (c) The generalised 5-mers pattern for
the set of tags.

a tag. MPSCAN can handle a tag set in which tags differ in length. However, the filtration strategy
works with tags of identical length; thus, it creates internally a set in which all tags are cut to the
size of the smallest one (call this size l). The verification tests whether a complete tag matches.
Filtration has been extensively applied to speed up similarity search algorithms, as in BLAST or
BLAT [16]. MPSCAN’s criterion relies on the fact that a matching window must share subwords
of length q with the tags. Subwords of length q are called q-mers.

2.1 Filtration strategy

Let us explain the filtration scheme with an example. Assume a set of 3 tags of length l = 8:
{P1,P2,P3} = {accttggc,gtcttggc,accttcca}, and set q to 5. The overlapping 5-mers of each
pattern are given in Figure 1. For a text window W of length 8 to match P1, we need that the
subword starting at position i in W matches the ith q-mer of P1 for all possible i, and conversely.
Now, we want to filter out windows that do not match any tag. If the subword starting at position
i in W does not match the ith q-mer of neither P1, P2, nor P3, then we are sure W cannot match
any of the tags. Thus, our filtration criterion to surely eliminate any non-matching window W is
to find if there exists a position i such that the previous condition is true.

From a set of tags, MPSCAN builds a single q-mer generalised pattern (Fig. 1). A generalised
pattern allows several symbols to match at a position (like a position [DENQ] in a PROSITE
pattern). However, here each q-mer is processed as a single symbol. Then, MPSCAN searches
for this generalised pattern in the text with the Backward Nondeterministic DAWG Matching
(BNDM) algorithm [8], which efficiently uses bit-parallelism. I.e. the pattern is encoded in bi-
nary and the matching performed using logical operations instead of testing character equalities.
Each window is scanned from right to left. After a match or a mismatch, BNDM can shift the
window, not one, but several positions to the right. The shift is the minimum shift such that the
end of the previous window matches the beginning of the generalised pattern after the shift. If
such an overlap does not exist, the length of the shift is l−q+1.

2.2 Optimal average complexity of MPSCAN

For a single pattern, BNDM has a sublinear average complexity with respect to the text length
n; in other words, it does not examine all characters of the text. The combination of the BNDM
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Fig. 2: Dividing the search phase into subphases when q = 2. The windows, whose type influences the
division, are shown in boldface.

algorithm with q-mers was first studied in [22], where it was shown sublinear. Here we prove
that, if one sets the value of q relatively to the total number of tags r, MPSCAN average time
complexity is not only sublinear with respect to n, but optimal. Indeed, the average complexity
of the set pattern matching problem is Ω(n logc(rl)/l) (cf. [23]) and we prove:

Theorem 1 The average time complexity of MPSCAN for searching r patterns of size l in a text
of length n over an alphabet of size c is O(n logc(rl)/l) if q = Θ(logc(rl)).

Proof. We want to prove that the average time complexity of MPSCAN for searching r patterns
of size l in a text of length n over an alphabet of size c is O(n logc(rl)/l) if q = Θ(logc(rl)).
Practically, c equals 4 for DNA sequences.

Remember that MPSCAN processes the text in windows and it always reads the windows
from right to left. We will call a window good if the last q-mer of the window does not match
any pattern in any position. All other windows are called bad. In a good window, MPSCAN reads
only the last q-mer and then shifts the window by l−q+1 characters. In a bad window MPSCAN
reads up to l characters and then shifts the window by at least one position (but often more than
that).

For the purposes of the proof, the filtering phase of MPSCAN is divided into subphases that
we define as follows. Let Wi, i = 1,2, . . . be the windows scanned by MPSCAN. The first sub-
phase starts with W1. Let Ws be the first window of a subphase. Only a good window can end
a subphase, but not all of them do. Indeed, the first good window in the series of windows in-
dexed with i := s+qk, i.e. Ws+qk, with k = 0,1, . . . is the last window of that subphase. The next
window starts a new subphase. It follows that each subphase consists of X groups of q windows
and one good window, with X ≥ 0 being a random variable. Each of the X groups of q windows
starts with a bad window and the rest q− 1 windows may be of any type. Figure 2 shows an
example of dividing the windows into subphases.

The type of a window following a group of q windows is independent of the first window
of the group, because the pattern has been shifted by at least q positions between them and the
type of a window is determined solely by the last q-mer of the window. If q ≤ l− q + 1, the
type of a window after a good window is also independent of the good window, i.e. the q-mer
determining the type of the next window contains only characters that have not been previously
read. Because each subphase contains at least one good window, the text of length n will surely
be covered after O(n/(l−q+1)) subphases.

The probability that a random q-mer matches any of the patterns in any position is at most
rl/cq, because there are cq different q-mers and at most rl of these can occur in the patterns (r
patterns each of length l). This is also the probability that a window is bad. In a bad window
MPSCAN reads the q-mers from right to left. It surely stops when it encounters a q-mer that does
not match any q-mer in any of the patterns. In the worst case, MPSCAN reads the whole window
and compares it against all the patterns taking O(rl) time. Note that this a very pessimistic
estimate. In practise, verification is not triggered in all bad windows and even then MPSCAN
compares the window against only a few patterns.

In a good window, MPSCAN reads q characters. Therefore in one subphase of filtering, the
number of characters read by MPSCAN is less than

O(q) ·P(X = 0)+
∞

∑
i=1

(O(q)+ i ·q ·O (rl)) ·P(X = i)
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This sum will converge if rl/cq < 1 or equally if q > logc(rl) and then
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If we choose q≥ a logc(rl), where a > 1 is a constant, then cq ≥ rala. Because a > 1, cq− rl =
Ω(cq) and therefore

1
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(

1
cq

)
.

Now, the work done by the algorithm in one subphase takes less than

O(q)+q ·O (rl)
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= O(q)
(
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= O(q)

if a≥ 2.
There are O(n/(l−q+1)) = O(n/l) subphases and the average complexity of one subphase

is O(q). Overall the average case complexity of filtering in MPSCAN is thus

O
(n

l
·q

)
= O(n logc(rl)/m)

if q = a logc(rl) ≤ l− q + 1 for a constant a ≥ 2. The condition q ≤ l− q + 1 is equivalent to
q≤ (l +1)/2. Such a q can be found if 2 logc(rl) < (l +1)/2 or equally if r < c

1
4 (l+1)/l.

The above proof predicts that a good choice for q would be 2logc(rl), but in practice a good
choice for q seems to be roughly logc(rl). If we analysed the complexity of bad windows and
verification more carefully, we could bring the theoretical result closer to the practical one.

3 Comparison

The MPSCAN algorithm offers a good theoretical average complexity, but how does it behave
in practice and compare to other solutions? We perform search tests to investigate MPSCAN
behavior and to compare it to either ultra-fast similarity search tools used for this task (BLAT,
MEGABLAST, and SSAHA) or to mapping tools. For each tool, we set its parameters to let it
search only for exact matches (which is for instance impossible with MAQ). ELAND could not
be included in the comparison for we do not have a copy of the program.

Let us first recall some distinguishing features of those similarity search programs. They
were designed to search for highly similar sequences faster than BLAST and exploit this high
level of similarity to speed up the search. All are heuristic, but are by design better and faster
than BLAST for searching exact occurrences of reads in a genome. MEGABLAST proceeds like
BLAST: it scans the genome with the query read, which takes time proportional to the genome
size. BLAT and SSAHA both use an index of the genome that records the occurrence positions
of q-mers in the genome for some length q. Then, they search for all q-mers of the query in the
index to determine which regions of the genome likely contain occurrences. This requires a time
proportional to the read size. Note that q is the key parameter to balance between sensitivity and
speed. Hence, BLAT and SSAHA avoid scanning repeatedly the whole genome, but require to
precompute an index.



3.1 Speed and memory with respect to text length

First, we compared the running times of MPSCAN and of all similarity search programs with a
set of 200 K patterns and texts of increasing length (Fig. 5, time in log scale). For all programs
except BLAT, the running time increases less than linearly with the text length (but BLAT
follows the same trend above 50 Mbps). For instance, MPSCAN takes 1.1 sec to search in 10
Mbps of Human chromosome 1, but only 5.6 sec in 247 Mbps: a 5-fold increase of the running
time for a 25-fold increase in length. This illustrates well the sublinear time complexity of MP-
SCAN (Th. 1), which proves to be faster than the reference methods. The behavior is logical:
MEGABLAST and MPSCAN first build their search engine, and then scan the text by pieces. The
time spent for initialisation of the engine is better amortised with longer texts. This also explains
why the memory used by MPSCAN is independent of the text length.

Second, we measured the time and memory footprint needed by MPSCAN and mapping tools
to search the complete human genome with one million 27 bp tags. ZOOM requires 17 minutes
and 0.9 Megabytes, RMAP takes 30 min. and 0.6 Mb, SEQMAP performs the task in 14 min.
with 9 Mb, BOWTIE runs in > 6 min. with 1.4 Gb and MPSCAN needs < 5 min. using 0.3 Mb.
MPSCAN runs faster than BOWTIE although the latter uses a precomputed index, and it is three
times faster than SEQMAP, the third most efficient tool.

3.2 Scalability with respect to number of patterns

The central issue is the scalability in terms of number of tags. To investigate this issue, we plot
their running times when searching for increasing tag sets (Fig 3). The comparison with simi-
larity search tools is shown in Figure 3a. BLAT is by far the slowest tool, while MEGABLAST’s
time increases sharply due an internal limitation on the maximal number of tags searched at
once, which forces it to perform several scans. SSAHA takes full advantage of its index with
large pattern sets, and becomes 10 times faster than MEGABLAST. However, MPSCAN runs al-
ways faster than BLAT, MEGABLAST, and SSAHA. Especially for more than 400K tags, it
outperforms other programs by almost an order of magnitude (9.8 s for 700K tags instead of 78
for SSAHA, 670 for MEGABLAST and 4,234 s for BLAT). Importantly, the times needed by
other programs increase more sharply with the number of tags than that of MPSCAN, especially
after 100K, auguring ill for their scalability beyond a million tags.

Beyond that, we consider specialised mapping tools whose behavior is illustrated in Fig-
ure 3b. For this, we used 6.5M 27 bp RNA Polymerase II ChIP-seq tags sequenced in an ery-
throleukemia cell line (HK652, GEO GSM325934) and took increasing subsets every million
tags. All tools exhibit a running time that increases linearly with the number of tags: a much
better scalability than similarity search tools. Compared to similarity search tools, all mappers
behave similarly, probably due to the resemblance of their filtration algorithm.

Both BOWTIE and SOAP-V2 use a Burrows-Wheeler-Transform index and probably the
same exact matching algorithm, but it benefits more BOWTIE than SOAP-V2, making BOWTIE
the faster of mapping tools. This emphasises how much implementation issues influence effi-
ciency. Among non-index based programs, ZOOM exhibits a behavior close to that of BOWTIE
above 3M tags, showing that ultrafast running times are not bound to an index. For moderate tag
sets (< 4M tags) MPSCAN is two to four time faster than ZOOM, its fastest competitor in this
category. Even if MPSCAN’s running time increases from 4 to 5M tags due to a multiplication
by 5 of the number of matches, it remains the fastest of all tools for exact matching. This shows
that exact set pattern matching can be highly efficient even without a genome index and answers
the question asked in the introduction. MPSCAN’s filtration strategy is logically sensitive to the
ratio #reads/4q, which suggests that using longer computer-words (on 64-bits processors) will
improve its efficiency and scalability.



3.3 Accuracy

The MPSCAN algorithm is guaranteed 100% accurate (and extensive tests have shown that the
MPSCAN program also is): it reports all patterns’ occurrences (100% sensitive) and only these
(100% selective) [22,8].

Despite the availability of specialised mapping tools, popular heuristic similarity search pro-
gram like BLAT are still used for read mapping [21], for they can find distant alignments. How-
ever to our knowledge, their accuracy has never been assessed in this context. We performed a
thorough comparison of their exact matching capacity, since it should be the easiest part of the
task. Our results show it is a complex matter: especially their sensitivity is influenced by the
numbers of occurrences, the relative length of seeds compared to matches, the parameters set
for both building the index and searching (see Figure 4, and Figure 6, Table 1 in Appendix).

While all tools (SSAHA, BLAT, and MEGABLAST) achieve their best accuracy for long
patterns (for ≥ 60 bp, i.e. when the seed is guaranteed to fall in each occurrence), all encounter
problems finding short patterns (≤ 30 bp). Index and parameters must be adapted to gain sensi-
tivity at the expense of time and flexibility (one cannot exploit the same index for different tag
lengths), which is an issue for digital transcriptomic and ChIP-seq data (≤ 25 bp in [1,3,2]). For
instance, with 30 bp patterns, all are less than 50% sensitive with pattern sets ≥ 10,000 (Fig. 4).
For both parameter sets used with BLAT, its sensitivity remains below 0.6 whatever the tag
length. The number of tags also has a negative influence on the sensitivity of similarity search
tools, as illustrated in Figure 6. However, it is logical that similarity search tools have limited
accuracy, since they were not designed for exact pattern matching.

The accuracy of mapping tools that allow both exact and approximate matching should be
evaluated globally and its dependence to several parameters (tag length, error types, tag num-
ber, genome length) should be investigated. Indeed, the underlying definitions of a read best
match, the strategies for finding it, as well as the notion of approximation differ among tools,
hampering this comparison. This is beyond the scope of this paper. Nevertheless, we have anal-
ysed the accuracy of ELAND. Although, we do not have access to the program, some ELAND’s
raw results can be downloaded from public repositories like GEO. ELAND searches for exact
and approximate matches with ≤ 2 mismatches. We analysed the subset of mapped tags in the
ELAND output of the NRSF ChIP-seq data set [2]. ELAND finds only approximate matches for
442,766 tags, while MPSCAN locates an exact match for 59,571 of these tags (13% of them).

Such an inaccuracy may impact the final positioning of protein binding or DNA modification
sites. This comparison illustrates the difficulty of searching for large tag sets in sequences and
the benefit of using a guaranteed pattern matching algorithm for this task.

3.4 Relevance of exact vs approximate mapping

Currently, new sequencers yield short tags (i.e. < 30 bp) in Digital Gene Expression, RNA-Seq,
and ChIP-seq experiments (14, 20, and 27 bp in [1,3,6] respectively). Technological develop-
ments aim at increasing the tag length to improve the probability of a read to match a unique
genomic location. However, the error probability also increases with tag length [21,15]. Alto-
gether, the tag length has an opposite influence on the probabilities of a tag to be mapped and to
be mapped at a unique location.

To evaluate the relevance of exact versus approximate matching, we did the following expe-
rience with a Pol-II ChIP-seq set of 34 bp tags (GEO GSM325934). If one maps with MPSCAN
the full length tags, 86% remain unmapped and 11% are uniquely mapped. With at most two
mismatches, ELAND finds 14% of additional uniquely mapped tags (categories U1 and U2),
while mapping the 20 bp prefix of each tag with MPSCAN allows to map 25% of all tags at
unique positions (14% more sites than with full length tags).

This result suggests that optimising the final output of a sequence census assay in terms
of number of uniquely mapped locations is a complex issue. Approximate mapping is seen as



a solution to detect more genomic sites, but it often maps tags at multiple locations [24]. In
fine, exact matching may turn out to be a relevant alternative strategy compared to approximate
matching. Thus, the proposed filtration algorithm may be useful in read mapping applications,
especially if one considered mapping a substring of the original reads. A more in-depth investi-
gation of this issue is exposed in [15].

4 Discussion

Key biological questions can be investigated at genome scale with new sequencing technologies.
Whether in genomic, transcriptomic or epigenomic assays, millions of short sequence reads
need first to be mapped on a reference genome. This is a compulsory step in the bioinformatic
analysis. We presented an efficient program, MPSCAN, for mapping tags exactly on a genome,
evaluated its relevance for read mapping, and compared it to two classes of alternative solutions:
i) ultrafast similarity search tools and ii) specifically designed mapping tools. We summarise
below some valuable evidence and take-home messages brought by this study.

Similarity search tools are inappropriate for mapping exactly short patterns ≤ 40 bp, since
their sensitivity remains too low (< .5 for 30 bp long tags). Whatever the number of seeds
required to examine a hit, BLAT is the least sensitive among the tested similarity search tools.
Its sensitivity never reaches 0.6, even with patterns up to 100 bp. In other words, similarity
search tools miss many exact matching locations, which are considered to be the most secure
locations in many applications [3,2]. In general, the scalability of similarity search tools is not
satisfactory for tag mapping: both the speed of processing and the sensitivity suffer when the
number of tags becomes large.

Mapping tools are adequate for this task. They enable the user to map up to millions of
tags fast on the human genome, and scale up well. Nevertheless, differences in speed can be
important: e.g., an order of magnitude for mapping 2M tags between MPSCAN and SOAP-V2.
If most algorithms are similar, from the user viewpoint the programs are not equivalent: neither
in flexibility, ease of use, speed, options, nor in accuracy.

From the algorithmic viewpoint, our results suggest that indexing is not required to perform
exact mapping of tags on long sequences. In the class of similarity search tools, the superiority
in speed of SSAHA compared to BLAT and MEGABLAST is due to its index, but also to its
lack of verification, which induces a poor specificity. In our comparison of seven programs (the
largest we are aware of), BOWTIE seems the fastest among mapping tools, but never beats the
performance of MPSCAN for exact mapping.

ZOOM, which exploits spaced seeds in its filtration scheme, compares favorably in speed
to tools using the splitting strategy or PEX filter, such as SEQMAP, RMAP, SOAP. This suggests
the superiority of spaced seeds. However, this superiority has a price in terms of flexibility:
sets of spaced seeds are specifically designed for a certain tag length and maximum number
of mismatches, and different sets corresponding to different parameter combinations are hard
coded in ZOOM. For instance, a set of 4 spaced seeds of weight 13 was manually designed to
search for 33 bp tags [20]. Hence, adaptation of ZOOM to a new setup requires the design of
specific seeds, which is a theoretically hard and practically difficult problem [25,26,27]. The
present limitation of ZOOM to patterns up to 64 bp is certainly due to this bottleneck.

In conclusion, we presented an exact set pattern matching program, MPSCAN, which is based
on a filtration scheme that had never been applied to read mapping. Our current implementation
has pushed the limit on the number of tags by two orders of magnitude compared to previous
pattern matching algorithms [8,22]. We conducted thorough comparisons with similarity search
algorithms and mapping tools in term of speed and scalability. Our experiments revealed that
BLAT-like tools are inadequate for short read mapping both in terms of scalability and of sensi-
tivity, which, to our knowledge, has never been reported before. From the algorithmic viewpoint,



we demonstrated the average running time optimality of MPSCAN, which turns out to be prac-
tically very efficient. Compared to mapping tools for exact mapping, MPSCAN runs faster and
scales well: it can even compete in efficiency with programs using a sophisticated genome index,
like BOWTIE. Since it uses no index, MPSCAN combines flexibility, low memory footprint, and
high efficiency, while avoiding a time consuming index precomputation (cf. building times in
[12]). Finally, we provide evidence that exact matching approaches can be relevant for read map-
ping applications, especially in the perspective of longer reads. It remains open to find filtration
strategies that achieve efficient “near exact” mapping.

With future generation of sequencers, which promise further increases in sequencing capac-
ity, read mapping may become a bottleneck. Further research in theoretical and practical pattern
matching will be needed to tackle this challenging question.

Acknowledgments: This work was supported by Université Montpellier II [grant BIO-MIPS],
Academy of Finland [grant 111060]. We gratefully thanks L. Duret, A. Boureux, T. Commes,
L. Bréhèlin for helpful comments.

References

1. Kim, J., Porreca, G., Song, L., Greenway, S., Gorham, J., Church, G., Seidman, C., Seidman, J.: Polony
Multiplex Analysis of Gene Expression (PMAGE) in Mouse Hypertrophic Cardiomyopathy. Science
316(5830) (2007) 1481–1484

2. Johnson, D., Mortazavi, A., Myers, R., Wold, B.: Genome-Wide Mapping of in Vivo Protein-DNA
Interactions. Science 316(5830) (2007) 1497–1502

3. Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z., Furey, T.S., Crawford,
G.E.: High-Resolution Mapping and Characterization of Open Chromatin across the Genome. Cell
132 (2008) 311–322

4. Schones, D., Zhao, K.: Genome-wide approaches to studying chromatin modifications. Nat Rev Genet
9(3) (2008) 179–91

5. Mardis, E.R.: ChIP-seq : welcome to the new frontier. Nat Methods 4(8) (2007) 613–614
6. Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina,

T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O’Keeffe, S., Haas, S., Vingron, M., Lehrach, H.,
Yaspo, M.L.: A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the
Human Transcriptome. Science 321(5891) (2008) 956–960

7. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao,
K.: High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 129(4) (2007)
823–837

8. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings - Practical on-line search algorithms
for texts and biological sequences. Cambridge Univ. Press (2002)

9. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 18 (2008) 1851–1858 in press.

10. Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment program. Bioinfor-
matics 24(5) (2008) 713–714

11. Smith, A., Xuan, Z., Zhang, M.: Using quality scores and longer reads improves accuracy of solexa
read mapping. BMC Bioinformatics 9(1) (2008) 128

12. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short
dna sequences to the human genome. Genome Biology 10(3) (2009) R25

13. Jiang, H., Wong, W.H.: Seqmap : mapping massive amount of oligonucleotides to the genome. Bioin-
formatics 24(20) (2008) 2395–6

14. Saha, S., Sparks, A., Rago, C., Akmaev, V., Wang, C., Vogelstein, B., Kinzler, K., Velculescu, V.:
Using the transcriptome to annotate the genome. Nat Biotech 20(5) (2002) 508–12

15. Philippe, N., Boureux, A., Tarhio, J., Bréhélin, L., Commes, T., Rivals, E.: Using tags to annotate
the genome: influence of length, background distribution, and sequence errors on prediction capacity.
Nucleic Acids Research (under revision)

16. Kent, J.W.: BLAT—The BLAST-Like Alignment Tool. Genome Res. 12(4) (2002) 656–664



 1

 10

 100

 1000

 10000

 10000  100000  1e+06

Ti
m

e 
in

 s
ec

 (l
og

 s
ca

le
)

Number of searched patterns (log scale)

 BLAT
 MegaBLAST

 SSAHA
 mpscan

(a)

 10

 100

 1000

 1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06

Ti
m

e 
in

 s
ec

 (l
og

 s
ca

le
)

Number of searched patterns

 rmap
 seqmap

 soap
 soap-v2

 ZOOM
 Bowtie

 mpscan

(b)

Fig. 3: Evaluation of scalability. Search times on chromosome 1 (247 Mbp) for increasing tag sets. (a)
Comparison with similarity search tools. Search times of BLAT, MEGABLAST, SSAHA, MPSCAN in
seconds for 21 bp LongSAGE tags, for sets of 10, 50, 100, 200, 300, 400, and up to 700 Kilo-tags. Both axes
have logarithmic scales. The curve of MPSCAN running time is almost flat: for instance doubling the tag
set from 200 to 400 Ktags yields a small increase from 5.6 to 6.4s. Its time increases in a sublinear fashion
with the number of tags. For all other tools, the increase of the tag set gives rise to a proportional growth
of the running time. E.g., SSAHA needs 23 s. for 200 K tags and 54 s. for 400 Ktags. (b) Comparison
with mapping tools: Search times of RMAP, SEQMAP, SOAP (v1 & v2), ZOOM, BOWTIE and MPSCAN

in seconds (logscale) for increasing subsets of 27 bp ChIP-seq tags. All tools behave similarly and offer
acceptable scalability. MPSCAN remains the most efficient of all and can be 10 times faster than tools like
SEQMAP or RMAP. Times do not include the index computation time.
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Appendix: Running times and accuracy comparison with similarity search tools

Figure 5 shows the evolution of the running times of similarity search tools in comparison
with MPSCAN for texts of increasing length. Figure 6 shows how the sensitivity of MEGABLAST,
BLAT, and SSAHA compared to MPSCAN depends on the number of tags.
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Fig. 5: Search times of BLAT, MEGABLAST, SSAHA, MPSCAN in seconds for 200 Kilo-patterns
(LongSAGE tags of 21 bp), on increasing pieces of length 5, 10, 50, 100, and 247 Mbp of Human chro-
mosome 1. Both axes have logarithmic scales. These curves illustrate the sublinear increase of time with
respect to text length for all tools except BLAT, and the superiority of MPSCAN in running time.

Supplementary tables 1a and 1b give the number of matches output by the algorithms: the
exact value with MPSCAN, numbers for SSAHA before and after elimination of false positives
(SSAHA-B, SSAHA-A respectively), those for BLAT with a single seed match (BLAT-m1)
and double seed match (BLAT-m2), and for MEGABLAST.
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Fig. 6: Sensitivity of MEGABLAST, BLAT, and SSAHA compared to MPSCAN as the percentage of found
matches after filtering. Influence of the number of tags on sensitivity (with l = 30 bp). The sensitivity of
similarity search tools decreases strongly with the number of tags for short tags.

r MPSCAN SSAHA-B SSAHA-A BLAT-m1 BLAT-m2 MEGABLAST

100 12 20 12 12 11 12
300 42 222 42 42 35 42

1,000 1,159 30,718 890 170 150 624
3,000 11,753 222,293 7,516 599 425 5,121

10,000 113,556 653,221 48,673 2,106 1,734 29,235
30,000 417,902 1,894,740 166,875 6,154 5,151 97,970

100,000 1,654,573 6,783,372 632,318 20,094 16,887 357,616

(a)
l MPSCAN SSAHA-B SSAHA-A BLAT-m1 BLAT-m2 MEGABLAST

20 851,693 85,682 85,682 3,501 3 −
30 113,556 653,221 48,673 2,106 1,734 29,235
40 12,200 117,059 9,789 1,744 1,685 8,118
50 5,492 19,757 4,966 1,545 1,534 4,570
60 3,333 5,497 3,301 1,423 1,423 3,245
70 2,962 3,301 2,962 1,358 1,358 2,957
80 2,766 2,974 2,766 1,308 1,308 2,761
90 2,466 2,681 2,466 1,247 1,247 2,462

100 2,123 2,321 2,123 1,213 1,213 2,119

(b)
Table 1: Number of matches found by BLAT, MEGABLAST, SSAHA, and MPSCAN when searching for
genomic tags in mouse chromosome 2 (178 Mbp). Column MPSCAN gives the exact number of matches.
For SSAHA, columns SSAHA-B and SSAHA-A give the number of matches before and after elimination
of false positives, respectively; the ratio SSAHA-A/SSAHA-B gives the specificity of SSAHA. Columns
BLAT-m1 and BLAT-m2 allows to compare the sensitivity of BLAT when the filtration criterion asks
for one or two seed matches, respectively; BLAT-m1 found necessarily more matches than BLAT-m2.
(a) Influence of the number of tags (r) on sensitivity. Comparison of the searches for increasing tag sets
for 30 bp tags (l = 30). From sets of 10,000 tags and beyond, the sensitivity of SSAHA, BLAT, and
MEGABLAST remains below 50%. (b) Influence of tag length (l) on sensitivity. Comparison of the searches
for r = 10,000 tags of length l in the range [20,100] bp. The sensitivity of similarity search tools increases
with tag length: it stays below 50% for tags < 40 bp and reaches 90% for MEGABLAST and SSAHA with
tags ≥ 60 bp.


