
Animation of User Algorithms on the Web�J. Haajaneny M. Pesoniusy E. Sutineny J. Tarhioz T. Ter�asvirtay P. VanninenyAbstractAn algorithm animation environment called Jeliotis presented. Jeliot allows a Web user to visualize hisown algorithms, written in Java, over the Internet.Jeliot is based on self-animation of data types: theuser selects the data objects of the source code which hewants to visualize, and Jeliot produces the animationautomatically.1 IntroductionRecently, educationalists have paid much attentionto the World-Wide Web as a learning environment[13]. Although the idea of an almost unlimited learn-ing space seems most attractive, the learning outcomeseasily remain poor: the Web pages are often used asadvertisements or attractions; at most, they includematerial through which the student browses, with noactive intention.The same applies also to Computer Science educa-tion. To be e�ective, a learning environment must belinked to the learner's current problem. This is sel-dom the case: even the interaction between the userand the Web pages is limited to the given hyperlinks.The reason for this is obvious: it seems to be hardto implement truly interactive learning environmentson the Web, which allow the user to learn by doinginstead of only by sur�ng.The present study focuses on animation of al-gorithms [3]. With an animated representation of analgorithm, the learner can | hopefully | get a freshpicture of how it works, both at an abstract (idea) leveland at a concrete (implementation) level.The work on algorithm visualization has been act-ive since the 50's [7]. In the last few years, there hasbeen growing interest to provide algorithm animations�Corresponding author: E. Sutinen.yDepartment of Computer Science,P.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finlandemail: sutinen@cs.helsinki.fizDepartment of Computer Science,University of JoensuuP.O. Box 111, FIN-80101 Joensuu, Finlandemail: tarhio@cs.joensuu.fi

over the Web [1, 5, 9]. Recently, one of the most in-teresting innovations in the area of Web-based learn-ing environments for Computer Science education hasbeen the algorithm animator by Brown and Najork [4].It provides the user with an access to an algorithmlaboratory, allowing him to study an algorithm of hischoice. Although this environment is excellent, it stillsu�ers from the noted drawback: the learner has onlya selection of ready-made animations.The Jeliot environment allows the user to anim-ate algorithms of his own over the Internet. The userwrites a Java program in a text �eld of a Web page,submits it, and gets back its animation. The anima-tion is generated automatically from the source code,and it is displayed on the user's screen. Jeliot hasbeen implemented using Java. Built on an extensiblearchitecture, Jeliot can be modi�ed to animate mostcommon data structures.The client/server model of Jeliot is an example ofa general framework where a Web server works as acompiler: the user submits a source program or a spe-ci�cation to the server which returns a Java applet orother executable program to the user.The contribution of Jeliot to Computer Science edu-cation is obvious. The student can combine the learn-ing and research activities together: when studyinga new algorithm with the aid of Jeliot he can observestrengths and weaknesses of the algorithm and developand test new variations of it. Thus a learner becomesa researcher.At its present stage, the Jeliot algorithm animationenvironment serves as a proof-of-concept system1. Itshows that it is possible to implement a genuinely in-teractive learning environment also on the Web, evenfor hard-to-learn topics such as algorithms. Instead ofbrowsing just another Web service, the user of a Jeliot-like system can learn by doing, solving real problemsof his own interest. The inherently open world of theInternet must provide its users with tools not only toread other users' ideas but also to develop and linkone's own thinking to the whole.1The service is available athttp://www.cs.helsinki.fi/research/aaps/Jeliot/.

2 Design of JeliotJeliot animates algorithms (programs) written inthe Java programming language by visualizing datastructures as smoothly moving graphical objects. Thedesign and the operational framework of Jeliot are sim-ilar to those of Eliot [10, 11], our earlier animationgenerator, which works in the X windows environmentand utilizes animation primitives of the Polka anima-tion library [14]. Jeliot (short for Java-Eliot), writtenin Java, implements the model of Eliot in the World-Wide Web environment. Although the use of Jeliot issimilar to that of Eliot, the implementation is di�erentbecause the Web environment requires an architectureof another kind.Traditionally an animation for an algorithm is con-structed by inserting calls of animation primitives toseveral places in the code of the algorithm. This iscalled an \interesting event" approach [3]. In Jeliot,animation is controlled by the operations of data types,and the user does not need to write any additionalprocedure calls. If the program uses the animateddata types provided by Jeliot, animation of the pro-gram will be automatic because the animation is em-bedded in the implementation of data type operations.This paradigm is called self-animation. For example,a push operation in the user program is animated ac-cording to the prede�ned visualization of the stack datatype.The design of Jeliot is based on the following viewon algorithm animation: an animation generator con-sists of a user interface and a visual interpreter. Theinterpreter transforms the data objects of an algorithmto their visual counterparts in the animation. Hence,an animation generator presumes a visual semanticsfor the animated language. To facilitate diverse visu-alizations, the visual semantics must not be �xed butadjustable. The user interface allows the user to de�nethe visual appearance of the animation, i.e. adjust theparameters of the semantics. This is important, be-cause Ford [6] shows that programmers visualize evenan integer variable very di�erently, not to mentionmore complex data types.Presentation of animation in Jeliot is based on atheater metaphor, which has guided the design as wellas the implementation. One can consider the entireanimation to be a theatrical performance. The scriptof the play is the algorithm to be visualized, since itdetermines what happens and in what order. We needalso a stage for the play to be performed; this refersto a window in which the animation is shown. In fact,we may even have multiple stages with the same showat the same time, but played slightly di�erently on

S

E

R

V
GENERATOR

CODE

PRECOMPILER

User algorithm

Parse Tree

Generated code

SERVER

Variable list
Generated code

Parse Tree

E

R

3

2

JAVA COMPILER

4

Variable list or error message

MAIN WINDOW

ANIMATOR

variable list

URL of the animating

Applet

1

5

CLIENT INTERNET

from Java compiler
Error messages

Animating Applet or
URL of the

User algorithm

Error message

PARSER

Class fileFigure 1: The overall structure of Jeliot.each stage. The play is performed by actors, whichare graphical entities having a set of visual attributeslike size, shape, color, and location. Each actor hasa role to play which corresponds to a data object ofthe algorithm. The appearance of each actor is de-termined by the director, i.e. the user, who designs theanimation.3 Using Jeliot | an ExampleNext, we will give an overview of producing of anexecutable animation of a user algorithm with Jeliot.We trace an example of the use of Jeliot by followingthe path of the algorithm through the system. The im-plementation of Jeliot will be explained in more detailin Section 4.Overall structure. The main components of thesystem and their interaction are shown in Figure 1.The numbers tell the order in which the algorithm tra-verses through the system. The server process con-trols all the communication at the server side. Thesystem uses the main window (1) for reading in thealgorithm which is then sent to precompilation, con-sisting of parsing (2) and code generation (3). Thelatter two phases are required to add animation callsin the source code and to extract the potential vari-ables to be animated. After precompilation, a list ofthese variables is sent to the main window.The main window will open a director window fromwhich the user can open stages for the animation.Each stage has its own setup window from which theuser can choose the variables for animation and adjusttheir presentation. Primitive types, arrays, queue, andstack can be animated in the current version of Jeliot.Meanwhile the server passes the generated code to

Figure 2: The main window.the Java compiler (4). After compilation the serverpasses the name of the resulting applet class to themain window. This animating applet and the animator(5), the animation engine of Jeliot, together show thedesired animation.The main window, the animator, and the animat-ing applet are run on the user's machine (the clientside), other components on the provider's machine (theserver side).Main window. The main window (Figure 2) is anapplet on a Web page containing an input area for analgorithm.In the beginning an algorithm is typed or pastedto the input area. Then the algorithm is submitted tothe Jeliot server for parsing and compilation phases(the Start button). A collection of sample algorithmsis provided for the user (the Examples button).Input algorithm. Algorithms written in Java mustbe placed inside a Java class or classes. Algorithmssubmitted to Jeliot are not di�erent in this respect. Asa default, Jeliot o�ers a skeletal class so that the usermay concentrate on the code of his actual algorithm.The algorithm should be added to such a methodof a user class which is run for sure. Since the classesare made subclasses of the Applet class by the system,a good choice is the init() method | we use this ap-proach in Figure 3, which shows one of the prede�nedexample algorithms. This example algorithm searchessequentially for the largest value of an integer array,which has been initialized with random integers.

public class T{public void init(){int big;int []table = new int[10];for (int i = 0; i < 10; i++)table[i] = (int)(Math.random()*100);big = table[0];for (int j = 1; j < 10; j++)if (table[j] > big)big = table[j];System.out.println("Largest: "+big);}} Figure 3: An example algorithm.Precompilation. When the Jeliot server receivesthe algorithm, it extracts the variables, which can beanimated, from the source code and forms a list struc-ture of them. This list structure is then passed backto the main window to be shown in the setup window,which can be opened from the stage window.The code generator replaces operations on variablesby method calls that besides doing the intended opera-tion cause an animation call to be sent to the animator.After precompilation the animating applet is compiledwith the Java compiler.Director, stage, and stage manager windows.The animation control in the Jeliot is based on theconcepts of director, stage and actor. In the following,the term \director" is used for the module, which helpsthe user to direct the play. The director is responsiblefor the management of the stages. A stage gives anunique view to the animation. The actors visualize theoperations done on variables. Several actors can bepresent on a stage and a certain actor can be shown onmany stages. An actor may have di�erent presentationon each stage it is viewed on.The animation and stage creation are controlledfrom the director window. When a stage is created,a stage manager window will also be opened for it.This is the window where the user can pick the act-ors | variables from any desired class and method ofhis algorithm| for the animation. The location, size,color and the representation of the actors on the screencan also be de�ned in this window. A variable canbe visualized in various numeric formats or geomet-ric shapes. The selections are stored into the properactor class instance that will represent that particular

Figure 4: With the director window the user controlsthe animation of his code, running on Stage 1.variable on that stage. All the operations done on avariable are acted by all the actors representing it ondistinct stages.Animation. In the animation a variable is visual-ized as an object, which can be for example a boxor a circle. The contents of the variable is visualizedinside the object, and the name is shown beside theobject. Operations are shown by moving these objectsand possibly showing the operator between them. Incomparisons, the result is given as colored text. Op-tionally, the director window highlights the active lineof the user program.A screen shot from the animation of our exampleis given in Figure 4, where a comparison of variablesbig and table is shown. The director window is alsoshown in the same �gure.4 Implementation of JeliotThe animations produced by Jeliot are visual inter-pretations of the data objects of a source code. The twomain parts of Jeliot are the server and the animator.The server parses the source code and recognizes thedata objects which can be animated. It also modi�esthe source code so that animation calls will be sent tothe animator. The animator (or the animation engine)constructs and shows the animation of the resultingcode.4.1 Animation classesA data object becomes a self-animating one whenit is replaced by an instance of an animation class.These instances are the visual counterparts of the ac-tual data objects. In Jeliot the animation classes are

divided into two classes: roles and actors. The vari-ables in the user's code are replaced by a proper roleclass in the precompilation phase. These role class in-stances then send requests to the actor class instancesvisualizing that particular role on the stages. Boththe role classes and actor classes are organized in away that inheritance and overloading can be used ase�ectively as possible. At the moment there are an-imation classes which correspond to primitive types,array (one and two-dimensional), queue, and stack.The conversion to self-animating types is achievedby modifying the references of the data objects (eitherdeclarations or uses). Each instance of an role classhas a unique ID. These IDs link the data objects theuser has chosen to animate to the instances that arecreated during the execution of the code.The role classes have (visual) methods correspond-ing to the operations performed on the animated dataobjects. These methods include calls to the actor classinstances. The roles do not have to know if they areanimated or not. All they have to do is to send an-imation requests to the actors. These requests are re-layed through the director to all the stages. Each stageknows which roles are acted on it and the request ispassed to the actor if necessary.Animation classes are precompiled, and they arestored as byte code. Therefore, the code generator hasto add import statements to include these classes tothe user code.4.2 ServerThe server process receives all incoming service re-quests from the main window. All requests come to asingle socket. The server process then allocates a newsocket and a corresponding communication thread foreach new client. The communication thread createsa directory for the new client, and it is able to writerequired �les into this directory.Communication thread. The communicationthread takes care of a single client of Jeliot by commu-nicating with it over the Internet. The communicationthread is capable of receiving two types of messagesfrom the client and sending back three types of mes-sages. The start of a message determines the messagetype.Received messages. The communication threadlistens continuously to the socket which the server hasallocated for it. It controls its own operation accord-ing to the received message. A received message of the�rst type contains the code to be animated; the mes-sages of the second type are stop requests. Wheneverthe communication thread receives a stop request, itreleases the no longer needed resources and stops.

Sent messages. The communication thread cansend any of the following messages to the client:1. a list of data objects that can be animated;2. a reference to the class to be loaded for runningthe animation; or3. a compilation error which can originate from theparser, the code generator, or the Java compiler(see Fig. 1).Processing the source code. The communicationthread transforms the source code, received in a mes-sage, into a Java class �le. In order to do this, thecommunication thread utilizes three separate modules,namely the parser, the code generator, and the com-piler. Before compilation, some segments of the ori-ginal code have to be replaced with a new code.Parsing. First, the communication thread starts theparser to check the syntax of the source code. Theparser has been constructed with the CUP tool [8] froman LALR grammar, and it applies a lexical analyzerconstructed with the JLex tool [2]. The parser buildsa parse tree which is returned to the communicationthread.Code generation. The second step is to modify theparsed code into a form which can be animated. Thisphase also produces the list of data objects from whichthe user can select those to be animated.The skeleton of the list structure is a tree consist-ing of nodes representing class or method declarations.Each of the nodes starts a list representing data objectsdeclared in the corresponding class or method; we callthese elements the data object nodes. If a node repres-ents a class, the code generator stores the name of theclass. Into a method node, the code generator storesalso the types of the arguments, the return type of themethod, and the method name. Data object nodes holdthe name and the type of the data object and a uniqueID to be used in the animation. The code generatormaintains a counter to administer the ID numbering.The code generator writes the modi�ed code intoa �le and returns the control to the communicationthread. The communication thread sends the anima-tion selection list to the client.Compilation. As the �nal task, the communicationthread starts the Java compiler for the generated code�le. After the compilation, the communication threadis able to send a message about the class to be loadedon the Web page. When this class is run, the animationcalls are produced as a side e�ect and the Web usercan see the animation.

4.3 AnimatorThe animator is the module of Jeliot which showsthe actual visualization of an algorithm. The anim-ator can be thought as a small server, which handlesrequests of animated operations sent by the animatingapplet. The animator basically includes the director,the stages, the communication between them, and theGUI. The term animator is used here to describe theseparts as a whole. A typical animated operation is acomparison between two variables or an assignment.The animator animates the requested operation andreturns the control to the animating applet, which isblocked while the animator is active. As describedearlier, the animation requests are embedded in thecode of the animating applet during code generation.Start of animation. The director is started by themain window. At that point, the list of variables thatcan be animated has been received, but the animat-ing applet is still being compiled at the server side.The stages and the properties of the variables on themcan be set at this time. When the compilation hasbeen successfully �nished, the animating applet classis loaded from the server. This class has been storedin the directory of the original Web page containingthe main applet. This makes it possible to use the de-fault class loader of the Java virtual machine, whichsearches for the classes in the home directory of theWeb page. After the class has been loaded, the anima-tion is started in the director window and the directoropens a new window and starts the animating appletin it. Because the animating applet runs in a separatewindow, the user may utilize any graphical capabilit-ies of Java in his algorithm to be presented in thatwindow. This feature makes Jeliot quite versatile. Forexample Jeliot can be used to debug even (other) an-imation algorithms.Linking of actors with roles. To manage the an-imated variables (i.e. actors), the animator keeps trackof them. Each stage keeps a list of all potential vari-ables for animation (including those which have notbeen selected). Each variable in the list has a refer-ence to its role counterpart in the play, and a record ofthe graphical properties: location, size, color, etc. Theopposite does not hold, the roles do not know theirgraphical representations (actors).User interface. The user interface of the animatorconsists of two parts: stages where the animation takesplace, and the director window (Figure 4) where theuser can control the animation and its speed on all the

Figure 5: The stage setup window.stages. Every stage has a setup window (Figure 5),called a stage manager, for adjusting the properties ofthe actors on that stage as well as the properties of thestage itself. The Figure 4 shows a screen shot of thedirector window.Animation. The outlook of the animated variablescan be selected from many prede�ned visualizations.The value of a variable can be seen for example asan alphanumerical value drawn inside a box or as abar without a bounding box. The same variable canhave di�erent appearances on separate stages. Whena variable takes part in some animated operation, atemporary copy is made of the corresponding graph-ical object. The copy is moved in the window whilethe original object stays at a �xed position. This sim-pli�es the stage management because the positions ofthe actual objects in a window remain unchanged.The animator uses double bu�ering scheme to get a
ickerless and continuous animation.The animation requests are made by the instancesof the Role classes that call the director which thenmulticasts these requests to all the stages (Figure 6).Each stage checks if the role that sent the request isvisualized on that stage. If a proper actor is found, therequest is passed to the actor, which then calls the an-imation routines that perform the visualization. All theanimation routines needed | for example drawing abox or a circle to a speci�c location on the stage | areimplemented in a class called JAPI, short for the JeliotAnimation Primitive Interface. At present, the anim-ator supports several types of requests, for examplecomparison and assignment. Furthermore, these aredivided in subtypes by overloading the method nameswith di�erent arguments. For example, the animating

Stage1 Stage2

DirectorsAssistant

Director

i.assign(3);

...

Rint i;

...

Code

Animation
request

Animation
request

Animation
request

Animation ready

Animation ready

Actor Actor

Role

Figure 6: Messages during animation.applet may request to show the comparison betweenan integer constant and an integer variable or two in-teger variables. The actual animation action dependson the arguments given in the request. The compar-ison between two integer variables is animated as fol-lows:1. The copies of the corresponding objects in thewindow are slid to the comparison area, by de-fault in the upper part of the animation window.2. If the result of the comparison is true, the greentext Yes is drawn between them. Otherwise, thered text Not is drawn.3. The copies are slid back on the original objectsand deleted.The comparison between an integer constant andinteger variable is carried out in the same way, exceptthat a temporary object is �rst made for the constant.Arrays are handled as a set of scalar objects. When ananimation request is associated with an array item, acopy of the item is made and it is animated as a scalarvariable.When a stage has �nished an animation request,it sends a message to the director's assistant whichforwards this message to the director. The director'sassistant works as an asynchronous mailbox for thedirector. The director blocks the the animating classuntil it has received the messages fromall of the stages,and then the execution of the code can continued.The animator is designed to be
exible. The needsof the future development are kept in mind. Theobject-oriented nature of Java gives us a solid devel-opment framework with method overloading, inherit-ance etc. The animation routines o�ered by the JAPI

class supports the building of new animated data types.Furthermore, dividing the implementation of the an-imated variables in roles and actors makes it possibleto develop the visual aspects just by concentrating onthe actual animation without modifying the server, forexample the code generation. Also the director, re-laying messages between roles and actors, does notknow what types of animating classes exist in the sys-tem, and therefore adding new types would mean nochanges there.4.4 EJavaThe dialect of Java accepted by Jeliot is calledEJava. There are minor di�erences between EJavaand Java(tm). EJava includes two animated abstractdata types: Rstack and Rqueue for presenting stacksand queues. Rstack resembles the Stack class in thestandard java.util package.There are some limitations in EJava concerning ar-rays: When declaring an array, it cannot be assignedto another array or null. Arrays should be declared us-ing notation Type [] name instead of Type name [].Animated arrays must be one or two-dimensional.ArrayIndexOutOfBoundsException cannot be caught.EJava does not properly support inheritance of userclasses. New variables cannot be declared in while ordo-while statements without making an explicit blockfor the statement. Class attributes are not initialized.Error checking is weaker in EJava than in Java.EJava contains more reserved words than Java.Jeliot does not handle unicode characters properly.Compound assignment operators |=, &=, <<=, >>=, and<<<= cannot be used with animated variables.We are working on reducing the di�erences betweenEJava and Java. Up to date list can be found with theon-line user's manual that can be found at our server.5 Future developmentWe are gradually adding new features to Jeliot. Thestoring of the values of visual attributes is on the topof our wish list. We have also plans of improving thespace allocating heuristic for actors on stages.We will implement new animated data types, in-cluding more complex data types like binary trees andlists. Also the visualization of instances of classes willbe studied.Meisalo et al. [12] performed a case study of Eliot asa learning environment in a laboratory course o�eredat the University of Helsinki. It gave valuable feedbackfrom intermediate level Computer Science students.The overall experience of using Eliot as a learning aidwas positive. Because the use of Jeliot is similar tothat of Eliot, this evaluation applies also to developingJeliot further.

In its present form, Jeliot o�ers a platform for aWeb-based learning environment. Its bene�t is in-creasing with the general acceptance of Java. There-fore, one of its potential applications is a guided tourof Java. Along with getting acquainted with di�er-ent aspects of the language, the learners could prac-tice programming using Jeliot. This approach couldserve an environment of several concurrent learners,each of which visualizing his own algorithm and com-paring it with the results of the others. This is how theWeb would not only o�er a substitute for a traditionallearning environment, following its methods, but addvalue by supporting a collaborative learning process.The future Jeliot could, thus, provide a commonground for human communication and cooperation,helping learners to represent their ideas on the screenbut also understanding in others' ways to do the samething. In the same way, Jeliot opens new directions toWeb-based collaborative research: the researchers canexperiment with their (competitive) algorithms overthe net, passing the code with for example email, andusing Jeliot to visualize the results online.One of the aims of Eliot was to bring a student'slearning process closer to research activity. Jeliot addsa new dimension to this. In the future, the Web-based Jeliot hopefully brings learners, teachers, andresearches together, working actively on a topic, in-dependently on local shortcomings on teaching or re-search resources.Acknowledgments. We thank Tanja Bergius, ArneDybdahl, Pasi Huhtiniemi, Soile Huttunen, JariJuslin, Marko Kivi-Koskinen, Pirkka Liukkonen, Juh-ani Peltola, Mikko Pettil�a, Joonas Reynders, and AriV�ah�a-Erkkil�a for their assistance. The work was �n-ancially supported by the Ministry of Education.References[1] J. E. Baker, F. Cruz, G. Liotta, and R. Tamassia:Algorithm animation over the World-Wide Web.In: Proc. AVI '96, Int. Workshop on AdvancedVisual Interfaces, 1996, 203{212.[2] E. J. Berk: JLex: A lexical analyzer generator forJava. http://www.cs.princeton.edu/: : :~appel/modern/java/JLex/[3] M. Brown: Perspectives on algorithm animation.In: Proc. CHI '88, Human Factors in ComputingSystems, ACM, 1988, 33{88.[4] M. H. Brown and M. A. Najork: Collaborativeactive textbooks: a Web-based algorithm anima-tion system for an electronic classroom. In: Proc.

VL '96, Symposium on Visual Languages, IEEE,1996, 266{275.[5] J. Domingue and P. Mulholland: Staging softwarevisualizations on the Web. To appear in: Proc.VL '97, Symposium on Visual Languages, IEEE,1997.[6] L. Ford: How programmers visualize programs.Research Report No. 271, Department of Com-puter Science, Old Library, The University of Ex-eter, Exeter, EX4 4PT, 1993.[7] L. M. Haibt: A program to draw multi-level
owcharts. In: Proc. of The Western Joint ComputerConference, volume 15, 1959, 131{137.[8] S. Hudson: CUP User's Manual.http://www.cc.gatech.edu/gvu/people/: : :Faculty/hudson/java cup/manual.v0.9e.html[9] B. Ibrahim: World-wide algorithm animation. In:Proc. 1st World-Wide Web Conference, Geneve,Switzerland, May 25{27, 1994, 305{316.[10] S.-P. Lahtinen, T. Lamminjoki, E. Sutinen, J.Tarhio, and A.-P. Tuovinen: Towards automatedanimation of algorithms. In: Proceedings
of Fourth International Conference in CentralEurope on Computer Graphics and Visualization96 (ed. N. Thalmann and V. Skala). University ofWest Bohemia, Department of Computer Science,1996, 150{161.[11] S.-P. Lahtinen, E. Sutinen, and J. Tarhio: Auto-mated animation of algorithms. Report C-1997-38, Department of Computer Science, Universityof Helsinki, 1997.[12] V. Meisalo, E. Rautama, E. Sutinen, and J. Tar-hio: Teaching algorithms with animation { a casestudy using Eliot. To appear in: Proc. of LeTTET'96, Learning Technology and Telematics in Edu-cation and Training, Joensuu, Finland, 1997.[13] T. Reeves and P. Reeves: The e�ective dimen-sions of interactive learning on the WWW. In:B. Khan (ed), Web-based instruction, EnglewoodCli�s, NJ: Educational Technology, 1997, 59{66.[14] J. Stasko: Polka Animation Designer's Package.Animator's Manual, included in Polka softwaredocumentation, 1994.

