Animation of User Algorithms on the Web*

M. Pesoniust E. Sutinen?

J. Haajanen'

Abstract

An algorithm animation environment called Jeliot
1s presented. Jeliot allows a Web user to visualize his
own algorithms, written in Java, over the Internet.
Jeliot 1s based on self-animation of data types: the
user selects the data objects of the source code which he
wants to visualize, and Jeliot produces the animation
automatically.

1 Introduction

Recently, educationalists have paid much attention
to the World-Wide Web as a learning environment
[13]. Although the idea of an almost unlimited learn-
ing space seems most attractive, the learning outcomes
easily remain poor: the Web pages are often used as
advertisements or attractions; at most, they include
material through which the student browses, with no
active intention.

The same applies also to Computer Science educa-
tion. To be effective, a learning environment must be
linked to the learner’s current problem. This is sel-
dom the case: even the interaction between the user
and the Web pages is limited to the given hyperlinks.
The reason for this is obvious: it seems to be hard
to implement truly interactive learning environments
on the Web, which allow the user to learn by doing
instead of only by surfing.

The present study focuses on animation of al-
gorithms [3]. With an animated representation of an
algorithm, the learner can hopefully get a fresh
picture of how it works, both at an abstract (idea) level
and at a concrete (implementation) level.

The work on algorithm visualization has been act-
ive since the 50’s [7]. Tn the last few years, there has
been growing interest to provide algorithm animations

*Corresponding author: . Sutinen.

tDepartment of Computer Science,
P.0. Box 26 (Teollisuuskatu 23)
FTIN-00014 University of Helsinki, Finland
email: sutinen@cs.helsinki.fi
Department of Computer Science,
University of Joensuu
P.O. Box 111, FIN-80101 Joensuu, Finland

email: tarhio@cs.joensuu.fi

T. Terasvirtal P. Vanninent

J. Tarhiot

over the Web [1, 5, 9]. Recently, one of the most in-
teresting innovations in the area of Web-based learn-
ing environments for Computer Science education has
been the algorithm animator by Brown and Najork [4].
It provides the user with an access to an algorithm
laboratory, allowing him to study an algorithm of his
choice. Although this environment is excellent, it still
suffers from the noted drawback: the learner has only
a selection of ready-made animations.

The Jeliot environment allows the user to anim-
ate algorithms of his own over the Internet. The user
writes a Java program in a text field of a Web page,
submits it, and gets back 1ts animation. The anima-
tion 18 generated automatically from the source code,
Jeliot has

been implemented using Java. Built on an extensible

and it 1s displayed on the user’s screen.

architecture, Jeliot can be modified to animate most
common data structures.

The client/server model of Jeliot is an example of
a general framework where a Web server works as a
compiler: the user submits a source program or a spe-
cification to the server which returns a Java applet or
other executable program to the user.

The contribution of Jeliot to Computer Science edu-
cation 1s obvious. The student can combine the learn-
ing and research activities together: when studying
a new algorithm with the aid of Jeliot he can observe
strengths and weaknesses of the algorithm and develop
and test new variations of it. Thus a learner becomes

a researcher.

At 1ts present stage, the Jeliot algorithm animation
environment serves as a proof-of-concept system'. Tt
shows that 1t is possible to implement a genuinely in-
teractive learning environment also on the Web, even
for hard-to-learn topics such as algorithms. Instead of
browsing just another Web service, the user of a Jeliot-
like system can learn by doing, solving real problems
of his own interest. The inherently open world of the
Internet must provide its users with tools not only to
read other users’ ideas but also to develop and link
one’s own thinking to the whole.

"The service is available at
http://www.cs.helsinki.fi/research/aaps/Jeliot/.

2 Design of Jeliot

Jeliot animates algorithms (programs) written in
the Java programming language by visualizing data
structures as smoothly moving graphical objects. The
design and the operational framework of Jeliot are sim-
ilar to those of Eliot [10, 11], our earlier animation
generator, which works in the X windows environment
and utilizes animation primitives of the Polka anima-
tion library [14]. Jeliot (short for Java-Eliot), written
in Java, implements the model of Eliot in the World-
Wide Web environment. Although the use of Jeliot is
similar to that of Eliot, the implementation is different,
becanse the Web environment requires an architecture
of another kind.

Traditionally an animation for an algorithm is con-
structed by inserting calls of animation primitives to
several places in the code of the algorithm. This is
called an “interesting event” approach [3]. Tn Jeliot,
animation is controlled by the operations of data types,
and the user does not need to write any additional
procedure calls. Tf the program uses the animated
data types provided by Jeliot, animation of the pro-
gram will be automatic because the animation is em-
bedded in the implementation of data type operations.
This paradigm is called self-animation. For example,
a push operation in the user program is animated ac-
cording to the predefined visualization of the stack data
type.

The design of Jeliot is based on the following view
on algorithm animation: an amimation generator con-
sists of a user interface and a wvisual interpreter. The
interpreter transforms the data objects of an algorithm
to their visual counterparts in the animation. Hence,
an animation generator presumes a wvisual semantics
for the animated language. To facilitate diverse visu-
alizations, the visual semantics must not be fixed but
adjustable. The user interface allows the user to define
the visual appearance of the animation, i.e. adjust the
parameters of the semantics. This is important, be-
cause Ford [6] shows that programmers visualize even
an integer variable very differently, not to mention
more complex data types.

Presentation of animation in Jeliot 1s based on a
theater metaphor, which has guided the design as well
as the implementation. One can consider the enfire
animation to be a theaitrical performance. The script
of the play is the algorithm to be visualized, since it
determines what happens and in what order. We need
also a stage for the play to be performed; this refers
to a window in which the animation is shown. Tn fact,
we may even have multiple stages with the same show
at the same time, but played slightly differently on

1 @m User algorithm_|
MAIN WINDOW 7 2
Error message
Parse Tree PARSER
S
gri i essa E Parse Tree _|
R = 3
variable list v | Vaiablelis CODE
URL of the animating g |Sededcodel | GENERATOR
Applet
R
PRECOMPILER
Generated code
5 from Javacompiler
ANIMATOR \ 4
Classfile
JAVA COMPILER
CLIENT INTERNET SERVER

Figure 1: The overall structure of Jeliot.

each stage. The play i1s performed by actors, which
are graphical entities having a set of visual attributes
like size, shape, color, and location. FEach actor has
a role to play which corresponds to a data object of
the algorithm. The appearance of each actor is de-
termined by the director, i.e. the user, who designs the
animation.

3 Using Jeliot — an Example

Next, we will give an overview of producing of an
executable animation of a user algorithm with Jeliot.
We trace an example of the use of Jeliot by following
the path of the algorithm through the system. The im-
plementation of Jeliot will be explained in more detail
in Section 4.

Overall structure. The main components of the
system and their interaction are shown in Figure 1.
The numbers tell the order in which the algorithm tra-
verses through the system. The server process con-
trols all the communication at the server side. The
system uses the main window (1) for reading in the
algorithm which is then sent to precompilation, con-
sisting of parsing (2) and code generation (3). The
latter two phases are required to add animation calls
in the source code and to extract the potential vari-
ables to be animated. After precompilation, a list of
these variables is sent to the main window.

The main window will open a director window from
which the user can open stages for the animation.
Fach stage has its own setup window from which the
user can choose the variables for animation and adjust
their presentation. Primitive types, arrays, queue, and
stack can be animated in the current version of Jeliot.

Meanwhile the server passes the generated code to

Ir @ Netscape: Jeliot — interactive algorithm animator 7

File Edit View Go Bookmarks Options Directory Window Help

Location: [‘http://verosaari. cs. Helsinki. FI:8807/Jeliot/classes/Teliot. htnl

Jeliot — interactive algorithm animator

public class T extends Appletf A|
public void init
int big;

int Otable = new int[10];
for (int i=0;i<10; i+4

tableli] = {int{Math.random{*100);
hig = table[0];
for (intj=1;]< 10; j++)

if (table(j] > hig)

big = table[jl:
System.cut.printin(”Largest: "+hig);
3

b
[« |
Example code Biggest.java placed.
Clear Detault Examples Start Help |
EW i
LY T =l

Figure 2: The main window.

the Java compiler (4). After compilation the server
passes the name of the resulting applet class to the
main window. This animating applet and the animator
(5), the animation engine of Jeliot, together show the
desired animation.

The main window, the animator, and the animat-
ing applet are run on the user’s machine (the client
side), other components on the provider’s machine (the
server side).

Main window. The main window (Figure 2) is an
applet on a Web page containing an input area for an
algorithm.

In the beginning an algorithm is typed or pasted
to the input area. Then the algorithm is submitted to
the Jeliot server for parsing and compilation phases
(the Start button). A collection of sample algorithms
is provided for the user (the Fzamples button).

Input algorithm. Algorithms written in Java must
be placed inside a Java class or classes. Algorithms
submitted to Jeliot are not different in this respect. As
a default, Jeliot offers a skeletal class so that the user
may concentrate on the code of his actual algorithm.

The algorithm should be added to such a method
of a user class which is run for sure. Since the classes
are made subclasses of the Applet class by the system,
a good choice is the init () method we use this ap-
proach in Figure 3, which shows one of the predefined
example algorithms. This example algorithm searches
sequentially for the largest value of an integer array,
which has been initialized with random integers.

public class T{
public void init(){
int big;
int [Jtable = new int[10];
for (int i = 0; i < 10; i++)
table[i] = (int) (Math.random()*100);
big = tablel[0];
for (int j = 1; j < 10; j++)
if (tablel[j]l > big)
big = tablel[j];
System.out.println("Largest: '"+big);

Figure 3: An example algorithm.

Precompilation. When the Jeliot server receives
the algorithm, 1t extracts the variables, which can be
animated, from the source code and forms a list struc-
ture of them. This list structure is then passed back
to the main window to be shown in the setup window,
which can be opened from the stage window.

The code generator replaces operations on variables
by method calls that besides doing the intended opera-
tion cause an animation call to be sent to the animator.
After precompilation the animating applet 1s compiled
with the Java compiler.

Director, stage, and stage manager windows.
The animation control in the Jeliot 1s based on the
concepts of director, stage and actor. In the following,
the term “director” is used for the module, which helps
the user to direct the play. The director is responsible
for the management of the stages. A stage gives an
unique view to the animation. The actors visualize the
operations done on variables. Several actors can be
present on a stage and a certain actor can be shown on
many stages. An actor may have different presentation
on each stage 1t 1s viewed on.

The animation and stage creation are controlled
from the director window. When a stage is created,
a stage manager window will also be opened for it.
This is the window where the user can pick the act-
ors variables from any desired class and method of
his algorithm for the animation. The location, size,
color and the representation of the actors on the screen
can also be defined in this window. A variable can
be visualized in various numeric formats or geomet-
ric shapes. The selections are stored into the proper
actor class instance that will represent that particular

Antmation speed

for tint i =0; 1< 10; i++

table(i] = {int}{Mathrandom®*1
big = table[ol:

for (intj =1;j < 10; j++
)

big = tablel]}
System.cut printin{’largest: "+hi

- big
Animation paused
P — (=T
Unsigned Java applet wind
table
|‘31 |50|‘35|E4|55|‘34| 3 | 1 |7B|72|
Setup | Help | Close |

Unsigned Java Applet window

Figure 4: With the director window the user controls
the animation of his code, running on Stage 1.

variable on that stage. All the operations done on a
variable are acted by all the actors representing it on
distinct stages.

Animation. TIn the animation a variable is visual-
ized as an object, which can be for example a box
or a circle. The contents of the variable is visualized
inside the object, and the name is shown beside the
object. Operations are shown by moving these objects
and possibly showing the operator between them. In
comparisons, the result is given as colored text. Op-
tionally, the director window highlights the active line
of the user program.

A screen shot from the animation of our example
s given in Figure 4, where a comparison of variables
big and table is shown. The director window is also
shown in the same figure.

4 Implementation of Jeliot

The animations produced by Jeliot are visual inter-
pretations of the data objects of a source code. The two
main parts of Jeliot are the server and the animator.
The server parses the source code and recognizes the
data objects which can be animated. Tt also modifies
the source code so that animation calls will be sent to
the animator. The animator (or the animation engine)
constructs and shows the animation of the resulting
code.
4.1 Animation classes

A data object becomes a self-animating one when
it is replaced by an instance of an animation class.
These instances are the visual counterparts of the ac-
tual data objects. Tn Jeliot the animation classes are

divided into two classes: roles and actors. The vari-
ables in the user’s code are replaced by a proper role
class in the precompilation phase. These role class in-
stances then send requests to the actor class instances
visualizing that particular role on the stages. Both
the role classes and actor classes are organized in a
way that inheritance and overloading can be used as
effectively as possible. At the moment there are an-
imation classes which correspond to primitive types,
array (one and two-dimensional), queue, and stack.

The conversion to self-animating types 1s achieved
by modifying the references of the data objects (either
declarations or uses). FEach instance of an role class
has a unique TD. These TDs link the data objects the
user has chosen to animate to the instances that are
created during the execution of the code.

The role classes have (visual) methods correspond-
ing to the operations performed on the animated data
objects. These methods include calls to the actor class
instances. The roles do not have to know if they are
animated or not. All they have to do is to send an-
imation requests to the actors. These requests are re-
layed through the director to all the stages. Fach stage
knows which roles are acted on it and the request is
passed to the actor if necessary.

Animation classes are precompiled, and they are
stored as byte code. Therefore, the code generator has
to add import statements to include these classes to
the user code.

4.2 Server

The server process receives all incoming service re-
quests from the main window. All requests come to a
single socket. The server process then allocates a new
socket and a corresponding communication thread for
each new client. The communication thread creates
a directory for the new client, and it 1s able to write
required files into this directory.

Communication thread. The communication
thread takes care of a single client of Jeliot by commu-
nicating with 1t over the Internet. The communication
thread 1s capable of receiving two types of messages
from the client and sending back three types of mes-
sages. The start of a message determines the message
type.

Received messages. The communication thread
listens continuously to the socket, which the server has
allocated for it. Tt controls its own operation accord-
ing to the received message. A received message of the
first type contains the code to be animated; the mes-
sages of the second type are stop requests. Whenever
the communication thread receives a stop request, it

releases the no longer needed resources and stops.

Sent messages. The communication thread can

send any of the following messages to the client:
1. a list of data objects that can be animated;

2. a reference to the class to be loaded for running
the animation; or

3. a compilation error which can originate from the
parser, the code generator, or the Java compiler
(see Fig. 1).

Processing the source code. The communication
thread transforms the source code, received in a mes-
sage, into a Java class file. In order to do this, the
communication thread utilizes three separate modules,
namely the parser, the code generator, and the com-
piler. Before compilation, some segments of the ori-
ginal code have to be replaced with a new code.

Parsing. First, the communication thread starts the
parser to check the syntax of the source code. The
parser has been constructed with the CUP tool [8] from
an LALR grammar, and it applies a lexical analyzer
constructed with the JLex tool [2]. The parser builds
a parse tree which is returned to the communication
thread.

Code generation. The second step is to modify the
parsed code into a form which can be animated. This
phase also produces the list of data objects from which
the user can select those to be animated.

The skeleton of the list structure is a tree consist-
ing of nodes representing class or method declarations.
Fach of the nodes starts a list representing data objects
declared in the corresponding class or method; we call
these elements the data object nodes. If a node repres-
ents a class, the code generator stores the name of the
class. Into a method node, the code generator stores
also the types of the arguments, the return type of the
method, and the method name. Data object nodes hold
the name and the type of the data object and a unique
1D to be used in the animation. The code generator
maintains a counter to administer the TD numbering.

The code generator writes the modified code into
a file and returns the control to the communication
thread. The communication thread sends the anima-
tion selection list to the client.

Compilation. As the final task, the communication
thread starts the Java compiler for the generated code
file. After the compilation, the communication thread
s able to send a message about the class to be loaded
on the Web page. When this class is run, the animation
calls are produced as a side effect and the Web user
can see the animation.

4.3 Animator

The animator is the module of Jeliot which shows
the actual visualization of an algorithm. The anim-
ator can be thought as a small server, which handles
requests of animated operations sent by the animating
applet. The animator basically includes the director,
the stages, the communication between them, and the
GUI. The term animator is used here to describe these
parts as a whole. A typical animated operation is a
comparison between two variables or an assignment.
The animator animates the requested operation and
returns the control to the animating applet, which is
blocked while the animator is active. As described
earlier, the animation requests are embedded in the
code of the animating applet during code generation.

Start of animation. The director is started by the
main window. At that point, the list of variables that
can be animated has been received, but the animat-
ing applet 1s still being compiled at the server side.
The stages and the properties of the variables on them
can be set at this time. When the compilation has
been successfully finished, the animating applet class
18 loaded from the server. This class has been stored
in the directory of the original Web page containing
the main applet. This makes it possible to use the de-
fault class loader of the Java virtual machine, which
searches for the classes in the home directory of the
Web page. After the class has been loaded, the anima-
tion 1s started in the director window and the director
opens a new window and starts the animating applet
in it. Because the animating applet runs in a separate
window, the user may utilize any graphical capabilit-
ies of Java in his algorithm to be presented in that
window. This feature makes Jeliot quite versatile. For
example Jeliot can bhe used to debug even (other) an-
imation algorithms.

Linking of actors with roles. To manage the an-
imated variables (i.e. actors), the animator keeps track
of them. Fach stage keeps a list of all potential vari-
ables for animation (including those which have not
been selected). FEach variable in the list has a refer-
ence to its role counterpart in the play, and a record of
the graphical properties: location, size, color, etc. The
opposite does not, hold, the roles do not know their
graphical representations (actors).

User interface. The user interface of the animator
consists of two parts: stages where the animation takes
place, and the director window (Figure 4) where the
user can control the animation and its speed on all the

& e Ay
1 <int big>
<intll table> i
!:ﬂActor Setup: table (nunl] 21 84
3
] Unsigned Java Applet Winc i
Orientati
Onstage yes Fast Mode no Color] oo vertical 78
72
Placement user X ¥ widtarray Edae yes
O R
IR o
-4 1] a 1] Value Type Humber
Text Color Black e e
Advanced | Stage | Help polet Window
25 Unsigned |ava Applet Window Value Color Black
Extra Color Blue
Act Destroy yes
Bar’s Width
G

Figure 5: The stage setup window.

stages. Every stage has a setup window (Figure 5),
called a stage manager, for adjusting the properties of
the actors on that stage as well as the properties of the
stage itself. The Figure 4 shows a screen shot of the
director window.

Animation. The outlook of the animated variables
can be selected from many predefined visualizations.
The value of a variable can be seen for example as
an alphanumerical value drawn inside a box or as a
bar without a bounding box. The same variable can
have different appearances on separate stages. When
a variable takes part in some animated operation, a
temporary copy is made of the corresponding graph-
ical object. The copy is moved in the window while
the original object stays at a fixed position. This sim-
plifies the stage management because the positions of
the actual objects in a window remain unchanged.

The animator uses double buffering scheme to get a
flickerless and continuous animation.

The animation requests are made by the instances
of the Role classes that call the director which then
multicasts these requests to all the stages (Figure 6).
Fach stage checks if the role that sent the request is
visualized on that stage. If a proper actor is found, the
request is passed to the actor, which then calls the an-
imation routines that perform the visualization. All the
animation routines needed for example drawing a
box or a circle to a specific location on the stage are
implemented in a class called JAPT, short for the Jeliot
Animation Primitive Interface. At present, the anim-
ator supports several types of requests, for example
comparison and assignment. Furthermore, these are
divided in subtypes by overloading the method names
with different arguments. For example, the animating

Code @

Animation .
Mo i request Director
; .assw an(3);
Animation/ready
Animation
request
Animati . .
ot DirectorsAssistant
Animation ready
Stagel Stage2

Figure 6: Messages during animation.

applet may request to show the comparison between
an integer constant and an integer variable or two in-
teger variables. The actual animation action depends
on the arguments given in the request. The compar-
ison between two integer variables is animated as fol-
lows:

1. The copies of the corresponding objects in the
window are slid to the comparison area, by de-
fault in the upper part of the animation window.

2. Tf the result of the comparison is true, the green
text Yes is drawn between them. Otherwise, the
red text Nof is drawn.

3. The copies are slid back on the original objects
and deleted.

The comparison between an integer constant and
integer variable is carried out in the same way, except
that a temporary object is first made for the constant.
Arrays are handled as a set of scalar objects. When an
animation request 1s associated with an array item, a
copy of the 1tem is made and it is animated as a scalar
variable.

When a stage has finished an animation request,
it sends a message to the director’s assistant which
forwards this message to the director. The director’s
assistant works as an asynchronous mailbox for the
director. The director blocks the the animating class
until 1t has received the messages from all of the stages,
and then the execution of the code can continued.

The animator is designed to be flexible. The needs
of the future development are kept in mind. The
object-oriented nature of Java gives us a solid devel-
opment framework with method overloading, inherit-
ance etc. The animation routines offered by the JAPT

class supports the building of new animated data types.
Furthermore, dividing the implementation of the an-
imated variables in roles and actors makes it possible
to develop the visual aspects just by concentrating on
the actual animation without modifying the server, for
example the code generation. Also the director, re-
laying messages between roles and actors, does not
know what types of animating classes exist in the sys-
tem, and therefore adding new types would mean no
changes there.

4.4 EJava

The dialect of Java accepted by Jeliot is called
FJava. There are minor differences between E.Java
and Java(tm). EJava includes two animated abstract
data types: Rstack and Rqueue for presenting stacks
and queues. Rstack resembles the Stack class in the
standard java.util package.

There are some limitations in EJava concerning ar-
rays: When declaring an array, 1t cannot be assigned
to another array or null. Arrays should be declared us-
ing notation Type [] name instead of Type name [].
Animated arrays must be one or two-dimensional.
ArrayIndexOutOfBoundsException cannot be canght.

FJava does not properly support inheritance of user
classes. New variables cannot be declared in while or
do-while statements without making an explicit block
for the statement. Class aftributes are not nitialized.
Error checking is weaker in EJava than in Java.

FJava contains more reserved words than Java.
Jeliot does not handle unicode characters properly.
Compound assignment operators |=, &=, <<=, >>=and
<<<= cannot be used with animated variables.

We are working on reducing the differences between
FJava and Java. Up to date list can be found with the
on-line user’s manual that can be found at our server.

5 Future development

We are gradually adding new features to Jeliot. The
storing of the values of visual attributes 1s on the top
of our wish list. We have also plans of improving the
space allocating heuristic for actors on stages.

We will implement new animated data types, in-
cluding more complex data types like binary trees and
lists. Also the visualization of instances of classes will
be studied.

Meisalo ef, al. [12] performed a case study of Eliot, as
a learning environment in a laboratory course offered
at the University of Helsinki. Tt gave valuable feedback
from intermediate level Computer Science students.
The overall experience of using Eliot as a learning aid
was positive. Because the use of Jeliot is similar to
that of Eliot, this evaluation applies also to developing
Jeliot further.

In its present form, Jeliot offers a platform for a
Web-based learning environment. Tts benefit is in-
creasing with the general acceptance of Java. There-
fore, one of its potential applications 1s a guided tour
of Java. Along with getting acquainted with differ-
ent aspects of the language, the learners could prac-
tice programming using Jeliot. This approach could
serve an environment of several concurrent learners,
each of which visualizing his own algorithm and com-
paring it with the results of the others. This is how the
Web would not only offer a substitute for a traditional
learning environment, following its methods, but add
value by supporting a collaborative learning process.

The future Jeliot could, thus, provide a common
ground for human communication and cooperation,
helping learners to represent their ideas on the screen
but also understanding in others’ ways to do the same
thing. Tn the same way, Jeliot opens new directions to
Web-based collaborative research: the researchers can
experiment with their (competitive) algorithms over
the net, passing the code with for example email, and
using Jeliot to visualize the results online.

One of the aims of Eliot was to bring a student’s
learning process closer to research activity. Jeliot adds
a new dimension to this. In the future, the Web-
based Jeliot hopefully brings learners, teachers, and
researches together, working actively on a topic, in-
dependently on local shortcomings on teaching or re-
search resources.

Acknowledgments. We thank Tanja Bergius, Arne
Dybdahl, Pasi Huhtiniemi, Soile Huttunen, Jari
Juslin, Marko Kivi-Koskinen, Pirkka Tiukkonen, Juh-
ani Peltola, Mikko Pettila, Joonas Reynders, and Ari
Vaha-FErkkila for their assistance. The work was fin-
ancially supported by the Ministry of Education.

References
[1] J. E. Baker, F. Cruz, G. Liotta, and R. Tamassia:
Algorithm animation over the World-Wide Web.
In: Proc. AVI 96, Int. Workshop on Advanced
Visual Interfaces, 1996, 203 212.

[2] E.J. Berk: JLex: A lexical analyzer generator for
Java. http://www.cs.princeton.edu/...
“appel/modern/java/JLex/

[3] M. Brown: Perspectives on algorithm animation.
In: Proc. CHI ’88, Human Factors in Computing
Systems, ACM, 1988, 33 8K.

[4] M. H. Brown and M. A. Najork: Collaborative
active textbooks: a Web-based algorithm anima-
tion system for an electronic classroom. In: Proc.

VT, 96, Symposium on Visual Languages, TEEE,
1996, 266 275.

J. Domingue and P. Mulholland: Staging software
visualizations on the Web. To appear in: Proc.
VI, 97, Symposium on Visual Languages, TEEE,
1997.

I.. Ford: How programmers visualize programs.
Research Report No. 271, Department of Com-
puter Science, Old Taibrary, The University of Ex-
eter, Exeter, EX4 4PT, 1993.

I.. M. Haibt: A program to draw multi-level flow
charts. Tn: Proc. of The Western Joint Computer
Conference, volume 15, 1959, 131 137.

S. Hudson: CUP User’s Manual.
http://wwu.cc.gatech.edu/gvu/people/...
Faculty/hudson/java cup/manual.v0.9e.html

B. Thrahim: World-wide algorithm animation. In:
Proc. 1st World-Wide Web Conference, (GGeneve,
Switzerland, May 25 27, 1994, 305 316.

S.-P. Lahtinen, T. Lamminjoki, E. Sutinen, J.
Tarhio, and A .-P. Tuovinen: Towards automated
animation of algorithms. In: Proceedings

[13]

of Fourth TInternational Conference in Central
Furope on Computer Graphics and Visualization
96 (ed. N. Thalmann and V. Skala). University of
West, Bohemia, Department of Computer Science,

1996, 150 161.

S.-P. Lahtinen, E. Sutinen, and J. Tarhio: Auto-
mated animation of algorithms. Report C-1997-
38, Department of Computer Science, University

of Helsinki, 1997.

V. Meisalo, E. Rautama, F. Sutinen, and .J. Tar-
hio: Teaching algorithms with animation a case
study using Eliot. To appear in: Proc. of Le TTET
96, Learning Technology and Telematics in Edu-

cation and Training, Joensuu, Finland, 1997.

T. Reeves and P. Reeves: The effective dimen-
sions of interactive learning on the WWW. In:
B. Khan (ed), Web-based instruction, Englewood
Cliffs, N.J: Educational Technology, 1997, 59 66.

J. Stasko: Polka Animation Designer’s Package.
Animator’s Manual, included in Polka software
documentation, 1994.

