Tuning Approximate Boyer-Moore
for Gene Sequences*

Petri Kalsi, Leena Salmela, and Jorma Tarhio

Helsinki University of Technology
{pkalsi, 1lsalmela, tarhio}@cs.hut.fi

Abstract. Recently a new variation of approximate Boyer-Moore string
matching was presented for the k-mismatch problem. This variation was
developed for gene sequences. We further tuned this algorithm gaining
speedups in both preprocessing and search times. Qur preprocessing has
lower time complexity than the previous algorithm and our experiments
show that our algorithm is over 30% faster than the previous one. We
also present two variations of the algorithm for the k-difference problem.

1 Introduction

We consider two variations of approximate string matching, the k-mismatch
problem and the k-difference problem. In both of the problems, we have a pattern
P =Dpo,-..,Pm—1 of m characters drawn from an alphabet X of size o and a text
t =tg,...,tn_1 of n characters over the same alphabet. We need to find all such
substrings of the text that the distance between the substring and the pattern
is at most k. In the k-difference problem the distance between two strings is the
standard edit distance where mismatches, deletions and insertions are allowed.
The k-mismatch problem is a more restricted one using the Hamming distance
where only mismatches are allowed.

Several algorithms [12] for both variations of approximate string matching
have been presented. Many of the algorithms have been developed with text data
in mind and these algorithms do not necessarily work well with a small alphabet.
Recently developing algorithms for small alphabets has attracted attention as
approximate searching of large volumes of gene sequences has become common.
One example of such a biological problem is the gene sequence acquisition prob-
lem in which a collection of gene sequences and a primer is given and we need to
extract all those sequences that contain the primer with at most k mismatches.

The approximate Boyer-Moore (ABM) algorithm [14] is an adaptation of the
Boyer-Moore-Horspool algorithm [8] to approximate matching. ABM performs
well on moderately large alphabets and low error levels. ABM was originally
not designed for small alphabets and in fact it performs rather poorly on them.
Liu et al. [9] tuned the k-mismatch version of ABM for smaller alphabets. Their
algorithm, called FAAST, has a stronger shift function which makes it faster
than ABM.

* Work supported by Academy of Finland.

In this paper we introduce improvements to the FAAST algorithm gaining
considerable speedups in both preprocessing and search times. The preprocessing
we present is simpler having a lower time complexity than that of FAAST. While
the FAAST algorithm can only handle the k-mismatch problem, we show that
with the simpler preprocessing the algorithm can be modified to also handle the
k-difference problem.

2 Previous Work

So far many algorithms have been developed based on Boyer-Moore string match-
ing [5] for the k-mismatch problem. Here we consider mainly ABM [14] and
FAAST [9], but two other variations developed by Baeza-Yates & Gonnet [3]
and El-Mabrouk & Crochemore [6] are worth mentioning. The shift function of
the Baeza-Yates-Gonnet algorithm is based on the triangular inequality, whereas
the El-Mabrouk-Crochemore algorithm applies the Shift-Add approach [2]. Three
[6,9,14] of these four algorithms have been shown to be sublinear on the av-
erage. E.g. the average case complexity of ABM (without preprocessing) is
O(nk(l/(m —k)+k/o)).

Typically algorithms of Boyer-Moore type have two phases: preprocessing
of the pattern and searching of its occurrences in the text. ABM uses the bad
character rule for shifting and is thus a direct generalization of the Boyer-Moore-
Horspool algorithm [8]. Instead of stopping at the first mismatch in the matching
loop, the control stops at the k4-1°¢ mismatch or when an occurrence of the whole
pattern is found. The shift is calculated considering k + 1 characters currently
aligned with the end of the pattern. The shift is the minimum of the precomputed
shifts for those k+1 characters. After shifting, at least one of the these characters
will be aligned correctly with the pattern.

FAAST is an improved variation of ABM for small alphabets using a vari-
ation of the Four-Russians technique [1,10,15] to speed up the search. Instead
of minimizing k + 1 shifts during search, it uses a precomputed shift table for a
(k + x)-gram aligned with the end of the pattern, where z > 1 is a parameter
of the algorithm. The shift table is calculated so that after the shift at least
x characters are aligned correctly. It is obvious that this stronger requirement
leads to longer shifts in most situations, when x > 1 holds, and the shift is never
shorter than the shift of ABM. Note that for z = 1 the length of shift is the
same for both the algorithms, but the shift is minimized during preprocessing
only in FAAST. So the algorithms are different even for x = 1. The optimal
value of z for maximum searching speed depends on other problem parameters
and the computing platform. However, an increment of x makes the preprocess-
ing time grow. FAAST presents a clear improvement on solving the k-mismatch
problem on DNA data as compared to the ABM algorithm. The preprocessing
phase of FAAST is advanced because it includes the minimization step of ABM.
The preprocessing time of FAAST is O((k + z)((m — k)o*™® 4+ m)).

3 Algorithm for the k-Mismatch Problem

Our aim is to develop a faster algorithm for DNA data based on FAAST which
uses a (k + z)-gram for shifting. We make two major changes to FAAST. We
implement a simpler and faster preprocessing phase based on dynamic program-
ming. FAAST counts the number of mismatches in the (k + x)-gram aligned
with the end of the pattern during the searching phase. Our approach makes
it possible to compute this number during preprocessing, which improves the
searching speed.

The preprocessing phase computes the Hamming distance between an arbi-
trary (k + x)-gram and each (k + z)-gram of the pattern using dynamic pro-
gramming. The first row and column of the dynamic programming table are
initialized to 0, and the rest of the table can be filled with a simple iteration:

Dli,jl=D[i—1,j—1]+a where a= {(1) ftfl:r;isfﬂ’

Note that all (k + z)-grams of the pattern are handled in the same table.
As an example, let us consider a situation where a pattern p = “ggcaa” has
been aligned with the text string “gcata”, and k = x = 2 holds. The reference
(k + x)-gram is now “cata”, and the corresponding Hamming distance table of
size (k +x + 1) x (m + 1), calculated during preprocessing, is shown in Fig. 1.
First of all, we see that the last cell D[k 4+ x,m] = 3 > k, and therefore it is not
possible to find a match at this position, as already the suffix of the aligned text
string contains too many mismatches. Otherwise, we would have to check for a
match by examining the amount of mismatches in the beginning of the aligned
string.

We will also look at the bottom row of the table, and find the rightmost
cell D[k + z,j] with a value h < k, except for the last cell D[k + x, m]. This is
the next possible candidate for aligning the pattern with the text with less than
k mismatches and the correct shift is equal to m — j. In our example, the cell
DIk + x,2] = 2, and we would shift the pattern by 5 — 2 = 3 positions to get the
next alignment.

D
ggcaa
i\jl012345
“0[000000
cljo011011
a2(012201
t3012331
a4(012333

Fig. 1. The Hamming distance table D of size (k 4+ z + 1) X (m + 1) for k-mismatch
problem (k = 2, x = 2). The pattern is “ggcaa” and the reference (k+ x)-gram is “cata”.

We do not need the whole table to obtain this information, so we just store
the calculated Hamming distance for each generated (k + z)-gram in a table M
which is indexed by a number obtained by transforming the (k + z)-gram to an
integer. The precalculated shifts are stored in a table Dy,. During the searching
phase we convert the last (k + x)-gram of the aligned text string into an index
y to the tables, and check for an occurrence if M[y] < k. Note that if the text is
not pure DNA data, we need to check the whole aligned text string against the
pattern as there might be some indeterminate characters. Finally, we shift the
pattern according to Dy, [y].

We can improve the preprocessing time by applying the technique used pre-
viously by Fredriksson and Navarro [7] for approximate matching and Navarro
et al. [13] for indexed approximate matching. If the (k + x)-grams are generated
in the lexicographical order, the dynamic programming table differs only by the
last few rows. Therefore we can speed up the preprocessing if we only recalculate
the last rows of the table at each step, starting from the first changed character.

This can be implemented by traversing the trie built of all (k 4+ x)-grams in
depth first order. Nodes at the it" level of the trie correspond to strings of length
i. Thus there are o’ nodes on level i and the total number of nodes in the trie is

k+x k+x
i g -1 k+x
— = O .
;21 ot=0—— (")

If we have the dynamic programming table for a node in the trie, the tables for
the children nodes can be obtained by calculating one more row to the dynamic
programming table taking O(m) time per child so calculating the dynamic pro-
gramming tables for all nodes in the trie takes O(c*T%m) time. At the leaf nodes
we have the dynamic programming table for the corresponding (k + x)-gram and
we need to figure out the number of mismatches entered to table M and the shift
value entered to table Dy, which takes O(m) time. The extra calculation needed
at leaf nodes is thus O(c*t?m) because there are 0¥ leaf nodes. Therefore the
time complexity of the preprocessing phase is O(20*T*m) = O(c**m). Note
that if we implement the traversing of the trie by recursion, we actually do not
need to explicitly build the trie.

We call this algorithm for the k-mismatch problem Algorithm 1. The shift
behaviors of Algorithm 1 and FAAST are exactly the same. In FAAST the
number of mismatches in the last (k 4+ x)-gram of an alignment is computed
during the searching phase whereas in Algorithm 1 this is fetched from a table.
However, we still need to read the (k + z)-gram and thus the time complexity
of the search phase of Algorithm 1 is the same as in FAAST.

Implementation note. For maximum performance it is crucial how the value of
a (k + x)-gram is computed during searching. We mapped the ASCII values of
DNA characters to integers {0, 1, 2, 3} and used a shift-or loop to construct a bit
representation of a (k + z)-gram.

4 Algorithms for the k-Difference Problem

Algorithm 1 can be easily modified to solve the k-difference problem. We initialize
the dynamic programming table as in the k-mismatch case, but now we apply
the traditional equations for the k-difference problem

D[i—l,j—l]+0&,
D[’L,]] = min D[l — l,j] + 1, where oo = {
D[i,j— 1] +1

0 ift;_y =pj_1,
1 otherwise

As before we construct the (k+z+1) x (m+1) table during preprocessing for
each possible text string, and obtain the tables M[y] and Dy, [y] by checking the
bottom row of the constructed table. The searching phase starts by aligning the
pattern against the text prefix ending at position m —k — 1. When examining an
alignment ending at position s all matches ending before that position have been
reported. At each alignment we have to construct a full (m + k+ 1) x (m + 1)
edit distance table D with the currently aligned text t,_(,,44)41 - - - ts against the
pattern, if M[t,_(41z)41-..ts] < k. A match will be reported, if D[m+k, m] < k.
After this operation we will shift the pattern according to Dg,. In order to
observe correctly an occurrence of the pattern in the beginning of the text, we
assume that t_g,...,t_1 hold a character not in the pattern. The modification of
Algorithm 1 for the k-difference problem is called Algorithm 2.

Example tables for the k-difference problem are shown in Fig. 2, using a
pattern “ggcaa”, a text string “aggcata” and parameters k = x = 2. We can see
from the first table that Dy,[‘cata”’] = 5—4 =1 and M[‘cata”] = Dolk+z,m| =
1. Therefore, we would construct a table D, and find that Dim +k,m] =1 < k,
and report a match at position s. We would continue the search by shifting the
pattern by 1.

In the k-mismatch problem we did not need to reread the last k+x characters
from the text alignment when checking for an occurrence. Instead we had stored
the number of mismatches in the table M and we could extend the match based
on that information. For the k-difference problem the situation is not quite as
simple because we need to compute the dynamic programming table to check
for an occurrence. The problem with Algorithm 2 is that when checking for an
occurrence the aligned text is read forward while during the preprocessing phase
we have generated the dynamic programming table for the last characters of
the pattern. In order to use that information and avoid rereading the last k + x
characters we need to invert the calculation of the dynamic programming table
so that we start building the table from the end of the pattern and the text
string.

First we will explain how the inverted table is built and then show how that
information is used to speed up the checking of an occurrence. The initialization
of the inverted table is different, as we set D0, j] = j and D[:,0] = ¢ for ¢ €
[0,k + x],j € [0,m], instead of 0. We have to read the pattern and text in reverse,
and therefore we get a new condition for a:

o= 0 if tktz—i = Pm—j,
1 otherwise

D Dinv

D ggcaa aacgg
ggcaa i\jl012345 i\jl012345
Mjl01234 5 0000000 0012345
00000 all011100 all101234
cilot1011 g2(001211 t20211234
aolo12101 g3[000122 a3l321234
c3l019211 c4l011012 c4l432123
aalo12321 ab5/012101 g5(543212
t6[012211 g6l654321

a7l012321 a7|765432

Fig. 2. Normal and inverted edit distance tables for k-difference problem (k = 2,
x = 2) with the pattern “ggcaa” and the aligned text “aggcata”. Sizes of the tables are
(k+z+1)x(m+1)for Do and (m + k+1) x (m+ 1) for D and Din,.

This inverted table gives equivalent results when it comes to calculating the
actual edit distance between the pattern and the aligned text string, but we still
need to obtain the tables Dy, and M from a normal table. When the inverted
edit distance table has been finished, we have to search for a match at the last
column. To be exact, we need to check 2k + 1 different cells of the table for a
possible match, because the match can contain up to k insert or delete operations,
and the match length can therefore vary. All possible matches that end in the
character ¢, will be found in the last cells of the last column of the inverted table.
We can either report the first match with less than k+1 differences, or search for
the match with the minimum differences. The current alignment ,_ (,45)41 - - - ts
matches the pattern pg...pp,—1 with less than k + 1 differences, if

Diny[m+i,m)| < k,i€—-k...k

If we have an edit distance table calculated for the text suffix t,_(410)41 .- - s,
we can check for a complete occurrence by filling the rest of the table rows from
to—(kta) dOWN t0 t5_(y4—1).- We can therefore store the last row of the inverted
table Djn, [k + z,j], j € [0,m] for each (k + x)-gram during the preprocessing
phase. This row can then be used to fill up the rest of the table by dynamic
programming during the search phase, when the aligned text needs to be checked
for an occurrence, and we do not need to run the dynamic programming for the
whole table every time. We modify Algorithm 2 to use the inverted table during
the search phase, and we also store the last row of the inverted tables generated
during the preprocessing phase. The new algorithm is called Algorithm 3, and
its pseudo code is given in Fig. 3. For simplicity, the preprocessing part of the
pseudo code does not use the optimization of generating the (k 4 z)-grams in
lexicographic order and recalculating the dynamic programming table only for
those rows that have changed.

The preprocessing phase of Algorithm 2 has the same time complexity as that
of Algorithm 1. In Algorithm 3, we need to calculate both the original dynamic

preprocess (p, m, k,)

1. for (4€0...k+2)
2. D[i,0] <0
3. Dinoli,0] — i
4. for (j€0...m)
5. DI[0,j] — 0
7. for (t:to...tk.t,_g;_l S EkJrz)
8. for i€l...k4+z, jel...m)
Dii—1,5 -1+« e
R U o F I S (DNt
Dli,j—1]+1
Dznv[l_17]_1]+a7 . o
10. Dinli,] ‘—min{Dmv[i_lJ]"‘l, },a— {‘1) iihj“;j”i; —Pmea

11. MIt] «+ D[k + x,m]
12. lastRow[t] < Diny [k +]
13. for (j € [m—1,0)

14. if Dk+z,j] <k
16. break

search (¢, n, k, x)

1. for GeO0...m+ k)
2. Dino[i, 0] «— i
3. for (j€0...m)
4. Dim}[ov‘j] (_.7
5. s—m-—k—1
6. while (s <mn)
7. if (Mts—(k+a)+1---ts] < k) /* possible occurrence */
8. Diny[k 4] — lastRow([ts_ (y4a)+1 - - - ts]
9. for (jel...m, ick+ax+1...m+k)
Dinoli —1,j — 1] + a, . B
10. Diny [Z,]] «— min { Dinw [7, — l,j] +1, } ,a = {(1) iihisr;i;;e_ Pm—j,
11. if (Dinw[m+i,m] < k,i€ —k...k)
12. Report match at t,_(myij41...ts with Dipy[m +14,m] differences

13. § <« S+ ka [ts—(k+z)+l .. tg]

Fig. 3. Algorithm 3 preprocessing and search phases.

Table 1. Search times in seconds for k-mismatch, using best observed z-values. Pre-
processing times are in parentheses.

k=1 k=2

m| ABM FAAST Algl ABM FAAST Algl

15(7.28 (0.04) 1.17 (0.48) 0.64 (0.03)[15.65 (0.04) 2.17 (1.76) 1.21 (0.16)
20(7.28 (0.07) 0.92 (0.65) 0.54 (0.03)[15.59 (0.08) 1.68 (2.58) 0.98 (0.14)
25(7.24 (0.09) 0.78 (0.87) 0.44 (0.04)|15.63 (0.09) 1.47 (3.13) 0.81 (0.22)
30(7.22 (0.15) 0.68 (0.98) 0.40 (0.06)|15.71 (0.10) 1.30 (3.70) 0.69 (0.20)
35(7.34 (0.18) 0.60 (1.22) 0.36 (0.05)|15.65 (0.16) 1.22 (4.16) 0.53 (0.24)
40|7.31 (0.24) 0.53 (1.42) 0.33 (0.05)[15.69 (0.19) 1.11 (4.73) 0.54 (0.27)

programming table and the reversed one. Because a (k + z)-gram is read in
opposite directions when calculating these two tables we have to enumerate the
(k+ x)-grams twice. However the asymptotic time complexity remains the same.

The shifts in the searching phase of Algorithm 2 and 3 are somewhat shorter
than in Algorithm 1 because the probability of two strings matching with dis-
tance less than k is higher when using the standard edit distance than when
using the Hamming distance.

5 Experimental Results

Tests were run on an Intel Pentium D 2.8 GHz dual core CPU with 1 gigabyte of
memory. This processor contains 24432 kilobytes of L1 cache, and 1024 kilobytes
of 1.2 cache. Algorithms were implemented in C and compiled with gcc 4.0.2,
using optimization level -02 as 32-bit binaries. All the algorithms were run three
times for the same patterns, and the listed search and preprocessing times are
the average values observed between all runs. For comparison in the k-mismatch
case we use the original ABM algorithm and our implementation of FAAST.
The Myers algorithm [11], the algorithm by Baeza-Yates and Perleberg (BYP)
[4] and a version of ABM are used for the k-difference problem. All the results
are shown with the z-value gaining the fastest searching speed in FAAST and
our new algorithms if otherwise is not stated. The best z-value is generally the
same for our algorithms and for FAAST. The other algorithms do not utilize the
z-value.

The searched text is a two megabytes long sequence of the fruit fly genome.
The test patterns have been extracted randomly from the text. Each pattern
set, consists of 200 different patterns of the same length, and they are searched
sequentially.

Table 1 shows the search times for the original ABM, FAAST and Algorithm 1
in the k-mismatch problem. Algorithm 1 is generally 30-50% faster than FAAST
in the k-mismatch case for k € [1, 3]. Also, the preprocessing phase of Algorithm
1 is 10 to 30 times faster than that of FAAST.

Experimental results for the k-difference problem are shown in Table 2, and
Fig. 4 further illustrates the results with & = 2. In the k-difference problem,

Table 2. Search times in seconds for k-difference, using best observed z-values.

k=1 k=2

m |ABM Myers BYP Alg.2 Alg.3|]ABM Myers BYP Alg.2 Alg.3
15(8.82 7.35 2.85 1.98 1.65 [38.58 7.33 6.90 6.70 5.04
2018.27 7.41 2.74 1.63 1.44 (27.24 7.36 4.50 5.75 4.53
25(7.99 7.34 2.69 141 1.34 |19.49 7.37 3.79 5.58 4.09
30(8.07 7.37 2.67 1.32 1.15 |14.80 7.37 3.89 5.61 4.03

35(8.07 - 2.62 1.29 1.13 |12.48 - 3.73 5.77 4.00
40(7.99 - 2.63 1.23 1.05 |11.08 - 3.94 5.95 4.04
25
ABM --&
Myers ---a
Alg.2 ---*--—-
Alg.3 —8—
BYP -
20
15
; .
10
o e e —
0

15 20 25 30 35 40
Pattern length m

Fig. 4. Search times for k-difference with k = 2.

our new algorithms compare well against the Myers, BYP and ABM algorithms.
Algorithms 2 and 3 are up to 50% faster than the BYP algorithm with k& = 1,
as it is shown in Table 2. For k = 2 Algorithm 3 is faster than BYP for short
patterns but the BYP algorithm takes the lead for longer patterns. If we allow
more differences, Myers is the fastest for short patterns and BYP for long ones.
The basic version of the Myers algorithm is limited by the 32-bit word size,
and it cannot handle patterns where m > 32. The modifications in Algorithm 3
decrease search time by 20-30%, when compared to Algorithm 2.

We also ran some preliminary tests to compare Algorithm 3 and the algorithm
by Fredriksson and Navarro [7]. We used the version of their algorithm that reads
the window backwards. In these tests Algorithm 3 was faster for pattern lengths
up to 18 when k£ = 1 and up to pattern length 15 when k = 2. For longer patterns
the algorithm by Fredriksson and Navarro was faster.

The effect of increasing the precalculated edit distance table size, and thus
increasing preprocessing time with a large x-value is shown in Table 3. With small

Table 3. Preprocessing times and search times for k-difference, with different x-values
(k=1, m=20)

Preprocessing|Search

Alg. 2 Alg. 3 |Alg.2 Alg.3
<0.01 <0.01 |977.30 724.61
0.01 0.01 |(213.43 144.53
0.02 0.05 |45.57 28.92
0.10 0.18 |[11.64 7.08
037 071 [3.94 244
1.59 276 (1.84 1.44
6.38 11.35 |1.63 1.51
25.27 46.50 |3.06 2.94
101.09 188.384.03 4.06

© 00~ O Ul WN R

values of x, the search time decreases as the amount of preprocessing increases,
but after a certain limit increasing the x-value will begin to slow down the search.
For these pattern lengths and k-values the optimal z-value was typically 4 for
the k-mismatch problem and 6 for the k-difference problem.

In the implementation of Algorithm 2, preprocessing is optimized by gen-
erating the (k 4+ z)-grams in lexicographic order and recalculating the dynamic
programming table only for those characters that differ form the previous (k+x)-
gram while Algorithm 3 needs to do this recursion twice, once to generate the
normal dynamic programming table and once to calculate the reversed one.
Thus the preprocessing times in Table 3 are longer for Algorithm 3 than for
Algorithm 2.

6 Concluding Remarks

We have presented improved variations of the approximate Boyer-Moore algo-
rithm for gene sequences for both the k-mismatch problem and the k-difference
problem.

This in ongoing work. Next we will try to apply bit-parallelism for the pre-
processing phase. We are working also on an alphabet reduction. We developed
a variation of Algorithm 1, where the DNA alphabet was mapped to the binary
alphabet. This version was only a bit slower than the original version. However,
for short DNA texts the total time (preprocessing + searching) was the best with
the alphabet reduction. The alphabet reduction also extends the applicability of
our precomputed shift to larger alphabets.

Acknowledgments. We thank Janne Auvinen for implementing a part of the
algorithms.

References

10.

11.

12.

13.

14.

15.

. Arlazarova, V., Dinic, E., Kronrod, M., Faradzev, I.: On economic construction

of the transitive closure of a directed graph. Doklady Academi Nauk SSSR 194
(1970) 487-488 (in Russian). English translation in Soviet Mathematics Doklady
11 (1975) 1209 1210

Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Communications
of the ACM 35(10) (1992) 74-82

Baeza-Yates, R., Gonnet, G.: Fast string matching with mismatches. Information
and Computation 108(2) (1994) 187 199

. Baeza-Yates, R.A., Perleberg, C.H.: Fast and practical approximate string match-

ing. Information Processing Letters 59(1) (1996) 21 27

Boyer, R., Moore, J.: A fast string searching algorithm. Communications of the
ACM 10(20) (1977) 762-772

El-Mabrouk, N., Crochemore, M.: Boyer-Moore strategy to efficient approximate
string matching. In: Proceedings of 7th Symposium on Combinatorial Pattern
Matching. Volume 1075 of LNCS, Berlin, Springer-Verlag (1996) 24-38
Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics 9 (2004) 1-47
Horspool, N.: Practical fast searching in strings. Software Practice & Experience
10 (1980) 501 506

Liu, Z., Chen, X., Borneman, J., Jiang, T.: A fast algorithm for approximate string
matching on gene sequences. In: Proceedings of 16th Symposium on Combinatorial
Pattern Matching. Volume 3537 of LNCS, Berlin, Springer-Verlag (2005) 79 90
Masek, W.; Paterson, M.: A faster algorithm for computing string edit distances.
Journal of Computer and System Sciences 20 (1980) 18-31

Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46(3) (1999) 395-415

Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1) (2001) 31 88

Navarro, G., Sutinen, E.; Tanninen, J., Tarhio, J.: Indexing text with approximate
g-grams. In: Proceedings of 11th Symposium on Combinatorial Pattern Matching.
Volume 1848 of LNCS, Berlin, Springer-Verlag (2000) 350 363

Tarhio, J., Ukkonen, E.: Approximate Boyer-Moore string matching. STAM Journal
on Computing 22 (1993) 243-260

Wu, S., Manber, U., Myers, E.: A subquadratic algorithm for approximate limited
expression matching. Algorithmica 15(1) (1996) 50-67

