
Tuning Approximate Boyer-Moorefor Gene Sequen
es⋆Petri Kalsi, Leena Salmela, and Jorma TarhioHelsinki University of Te
hnology{pkalsi, lsalmela, tarhio}�
s.hut.fiAbstra
t. Re
ently a new variation of approximate Boyer-Moore stringmat
hing was presented for the k-mismat
h problem. This variation wasdeveloped for gene sequen
es. We further tuned this algorithm gainingspeedups in both prepro
essing and sear
h times. Our prepro
essing haslower time
omplexity than the previous algorithm and our experimentsshow that our algorithm is over 30% faster than the previous one. Wealso present two variations of the algorithm for the k-di�eren
e problem.1 Introdu
tionWe
onsider two variations of approximate string mat
hing, the k-mismat
hproblem and the k-di�eren
e problem. In both of the problems, we have a pattern
p = p0, . . . , pm−1 of m
hara
ters drawn from an alphabet Σ of size σ and a text
t = t0, . . . , tn−1 of n
hara
ters over the same alphabet. We need to �nd all su
hsubstrings of the text that the distan
e between the substring and the patternis at most k. In the k-di�eren
e problem the distan
e between two strings is thestandard edit distan
e where mismat
hes, deletions and insertions are allowed.The k-mismat
h problem is a more restri
ted one using the Hamming distan
ewhere only mismat
hes are allowed.Several algorithms [12℄ for both variations of approximate string mat
hinghave been presented. Many of the algorithms have been developed with text datain mind and these algorithms do not ne
essarily work well with a small alphabet.Re
ently developing algorithms for small alphabets has attra
ted attention asapproximate sear
hing of large volumes of gene sequen
es has be
ome
ommon.One example of su
h a biologi
al problem is the gene sequen
e a
quisition prob-lem in whi
h a
olle
tion of gene sequen
es and a primer is given and we need toextra
t all those sequen
es that
ontain the primer with at most k mismat
hes.The approximate Boyer-Moore (ABM) algorithm [14℄ is an adaptation of theBoyer-Moore-Horspool algorithm [8℄ to approximate mat
hing. ABM performswell on moderately large alphabets and low error levels. ABM was originallynot designed for small alphabets and in fa
t it performs rather poorly on them.Liu et al. [9℄ tuned the k-mismat
h version of ABM for smaller alphabets. Theiralgorithm,
alled FAAST, has a stronger shift fun
tion whi
h makes it fasterthan ABM.
⋆ Work supported by A
ademy of Finland.

In this paper we introdu
e improvements to the FAAST algorithm gaining
onsiderable speedups in both prepro
essing and sear
h times. The prepro
essingwe present is simpler having a lower time
omplexity than that of FAAST. Whilethe FAAST algorithm
an only handle the k-mismat
h problem, we show thatwith the simpler prepro
essing the algorithm
an be modi�ed to also handle the
k-di�eren
e problem.2 Previous WorkSo far many algorithms have been developed based on Boyer-Moore string mat
h-ing [5℄ for the k-mismat
h problem. Here we
onsider mainly ABM [14℄ andFAAST [9℄, but two other variations developed by Baeza-Yates & Gonnet [3℄and El-Mabrouk & Cro
hemore [6℄ are worth mentioning. The shift fun
tion ofthe Baeza-Yates-Gonnet algorithm is based on the triangular inequality, whereasthe El-Mabrouk-Cro
hemore algorithm applies the Shift-Add approa
h [2℄. Three[6,9,14℄ of these four algorithms have been shown to be sublinear on the av-erage. E.g. the average
ase
omplexity of ABM (without prepro
essing) is
O(nk(1/(m − k) + k/σ)).Typi
ally algorithms of Boyer-Moore type have two phases: prepro
essingof the pattern and sear
hing of its o

urren
es in the text. ABM uses the bad
hara
ter rule for shifting and is thus a dire
t generalization of the Boyer-Moore-Horspool algorithm [8℄. Instead of stopping at the �rst mismat
h in the mat
hingloop, the
ontrol stops at the k+1st mismat
h or when an o

urren
e of the wholepattern is found. The shift is
al
ulated
onsidering k + 1
hara
ters
urrentlyaligned with the end of the pattern. The shift is the minimum of the pre
omputedshifts for those k+1
hara
ters. After shifting, at least one of the these
hara
terswill be aligned
orre
tly with the pattern.FAAST is an improved variation of ABM for small alphabets using a vari-ation of the Four-Russians te
hnique [1,10,15℄ to speed up the sear
h. Insteadof minimizing k + 1 shifts during sear
h, it uses a pre
omputed shift table for a
(k + x)-gram aligned with the end of the pattern, where x ≥ 1 is a parameterof the algorithm. The shift table is
al
ulated so that after the shift at least
x
hara
ters are aligned
orre
tly. It is obvious that this stronger requirementleads to longer shifts in most situations, when x > 1 holds, and the shift is nevershorter than the shift of ABM. Note that for x = 1 the length of shift is thesame for both the algorithms, but the shift is minimized during prepro
essingonly in FAAST. So the algorithms are di�erent even for x = 1. The optimalvalue of x for maximum sear
hing speed depends on other problem parametersand the
omputing platform. However, an in
rement of x makes the prepro
ess-ing time grow. FAAST presents a
lear improvement on solving the k-mismat
hproblem on DNA data as
ompared to the ABM algorithm. The prepro
essingphase of FAAST is advan
ed be
ause it in
ludes the minimization step of ABM.The prepro
essing time of FAAST is O((k + x)((m − k)σk+x + m)).

3 Algorithm for the k-Mismat
h ProblemOur aim is to develop a faster algorithm for DNA data based on FAAST whi
huses a (k + x)-gram for shifting. We make two major
hanges to FAAST. Weimplement a simpler and faster prepro
essing phase based on dynami
 program-ming. FAAST
ounts the number of mismat
hes in the (k + x)-gram alignedwith the end of the pattern during the sear
hing phase. Our approa
h makesit possible to
ompute this number during prepro
essing, whi
h improves thesear
hing speed.The prepro
essing phase
omputes the Hamming distan
e between an arbi-trary (k + x)-gram and ea
h (k + x)-gram of the pattern using dynami
 pro-gramming. The �rst row and
olumn of the dynami
 programming table areinitialized to 0, and the rest of the table
an be �lled with a simple iteration:
D[i, j] = D[i − 1, j − 1] + α where α =

{

0 if ti−1 = pj−1,
1 otherwiseNote that all (k + x)-grams of the pattern are handled in the same table.As an example, let us
onsider a situation where a pattern p = �gg
aa� hasbeen aligned with the text string �g
ata�, and k = x = 2 holds. The referen
e

(k + x)-gram is now �
ata�, and the
orresponding Hamming distan
e table ofsize (k + x + 1) × (m + 1),
al
ulated during prepro
essing, is shown in Fig. 1.First of all, we see that the last
ell D[k + x, m] = 3 > k, and therefore it is notpossible to �nd a mat
h at this position, as already the su�x of the aligned textstring
ontains too many mismat
hes. Otherwise, we would have to
he
k for amat
h by examining the amount of mismat
hes in the beginning of the alignedstring.We will also look at the bottom row of the table, and �nd the rightmost
ell D[k + x, j] with a value h ≤ k, ex
ept for the last
ell D[k + x, m]. This isthe next possible
andidate for aligning the pattern with the text with less than
k mismat
hes and the
orre
t shift is equal to m − j. In our example, the
ell
D[k + x, 2] = 2, and we would shift the pattern by 5− 2 = 3 positions to get thenext alignment.

Dg g
 a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0
 1 0 1 1 0 1 1a 2 0 1 2 2 0 1t 3 0 1 2 3 3 1a 4 0 1 2 3 3 3Fig. 1. The Hamming distan
e table D of size (k + x + 1) × (m + 1) for k-mismat
hproblem (k = 2, x = 2). The pattern is �gg
aa� and the referen
e (k+x)-gram is �
ata�.

We do not need the whole table to obtain this information, so we just storethe
al
ulated Hamming distan
e for ea
h generated (k + x)-gram in a table Mwhi
h is indexed by a number obtained by transforming the (k + x)-gram to aninteger. The pre
al
ulated shifts are stored in a table Dkx. During the sear
hingphase we
onvert the last (k + x)-gram of the aligned text string into an index
y to the tables, and
he
k for an o

urren
e if M [y] ≤ k. Note that if the text isnot pure DNA data, we need to
he
k the whole aligned text string against thepattern as there might be some indeterminate
hara
ters. Finally, we shift thepattern a

ording to Dkx[y].We
an improve the prepro
essing time by applying the te
hnique used pre-viously by Fredriksson and Navarro [7℄ for approximate mat
hing and Navarroet al. [13℄ for indexed approximate mat
hing. If the (k + x)-grams are generatedin the lexi
ographi
al order, the dynami
 programming table di�ers only by thelast few rows. Therefore we
an speed up the prepro
essing if we only re
al
ulatethe last rows of the table at ea
h step, starting from the �rst
hanged
hara
ter.This
an be implemented by traversing the trie built of all (k + x)-grams indepth �rst order. Nodes at the ith level of the trie
orrespond to strings of length
i. Thus there are σi nodes on level i and the total number of nodes in the trie is

k+x
∑

i=1

σi = σ
σk+x − 1

σ − 1
= O(σk+x).If we have the dynami
 programming table for a node in the trie, the tables forthe
hildren nodes
an be obtained by
al
ulating one more row to the dynami
programming table taking O(m) time per
hild so
al
ulating the dynami
 pro-gramming tables for all nodes in the trie takes O(σk+xm) time. At the leaf nodeswe have the dynami
 programming table for the
orresponding (k+x)-gram andwe need to �gure out the number of mismat
hes entered to table M and the shiftvalue entered to table Dkx whi
h takes O(m) time. The extra
al
ulation neededat leaf nodes is thus O(σk+xm) be
ause there are σk+x leaf nodes. Therefore thetime
omplexity of the prepro
essing phase is O(2σk+xm) = O(σk+xm). Notethat if we implement the traversing of the trie by re
ursion, we a
tually do notneed to expli
itly build the trie.We
all this algorithm for the k-mismat
h problem Algorithm 1. The shiftbehaviors of Algorithm 1 and FAAST are exa
tly the same. In FAAST thenumber of mismat
hes in the last (k + x)-gram of an alignment is
omputedduring the sear
hing phase whereas in Algorithm 1 this is fet
hed from a table.However, we still need to read the (k + x)-gram and thus the time
omplexityof the sear
h phase of Algorithm 1 is the same as in FAAST.Implementation note. For maximum performan
e it is
ru
ial how the value ofa (k + x)-gram is
omputed during sear
hing. We mapped the ASCII values ofDNA
hara
ters to integers {0, 1, 2, 3} and used a shift-or loop to
onstru
t a bitrepresentation of a (k + x)-gram.

4 Algorithms for the k-Di�eren
e ProblemAlgorithm 1
an be easily modi�ed to solve the k-di�eren
e problem.We initializethe dynami
 programming table as in the k-mismat
h
ase, but now we applythe traditional equations for the k-di�eren
e problem
D[i, j] = min







D[i − 1, j − 1] + α,
D[i − 1, j] + 1,
D[i, j − 1] + 1







where α =

{

0 if ti−1 = pj−1,
1 otherwiseAs before we
onstru
t the (k+x+1)×(m+1) table during prepro
essing forea
h possible text string, and obtain the tables M [y] and Dkx[y] by
he
king thebottom row of the
onstru
ted table. The sear
hing phase starts by aligning thepattern against the text pre�x ending at position m−k−1. When examining analignment ending at position s all mat
hes ending before that position have beenreported. At ea
h alignment we have to
onstru
t a full (m + k + 1) × (m + 1)edit distan
e table D with the
urrently aligned text ts−(m+k)+1 . . . ts against thepattern, if M [ts−(k+x)+1 . . . ts] ≤ k. A mat
h will be reported, if D[m+k, m] ≤ k.After this operation we will shift the pattern a

ording to Dkx. In order toobserve
orre
tly an o

urren
e of the pattern in the beginning of the text, weassume that t

−k, ..., t
−1 hold a
hara
ter not in the pattern. The modi�
ation ofAlgorithm 1 for the k-di�eren
e problem is
alled Algorithm 2.Example tables for the k-di�eren
e problem are shown in Fig. 2, using apattern �gg
aa�, a text string �agg
ata� and parameters k = x = 2. We
an seefrom the �rst table that Dkx[�
ata�] = 5−4 = 1 and M [�
ata�] = D0[k+x, m] =

1. Therefore, we would
onstru
t a table D, and �nd that D[m + k, m] = 1 ≤ k,and report a mat
h at position s. We would
ontinue the sear
h by shifting thepattern by 1.In the k-mismat
h problem we did not need to reread the last k+x
hara
tersfrom the text alignment when
he
king for an o

urren
e. Instead we had storedthe number of mismat
hes in the table M and we
ould extend the mat
h basedon that information. For the k-di�eren
e problem the situation is not quite assimple be
ause we need to
ompute the dynami
 programming table to
he
kfor an o

urren
e. The problem with Algorithm 2 is that when
he
king for ano

urren
e the aligned text is read forward while during the prepro
essing phasewe have generated the dynami
 programming table for the last
hara
ters ofthe pattern. In order to use that information and avoid rereading the last k + x
hara
ters we need to invert the
al
ulation of the dynami
 programming tableso that we start building the table from the end of the pattern and the textstring.First we will explain how the inverted table is built and then show how thatinformation is used to speed up the
he
king of an o

urren
e. The initializationof the inverted table is di�erent, as we set D[0, j] = j and D[i, 0] = i for i ∈
[0, k + x], j ∈ [0, m], instead of 0. We have to read the pattern and text in reverse,and therefore we get a new
ondition for α:

α =

{

0 if tk+x−i = pm−j,
1 otherwise

D0g g
 a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0
 1 0 1 1 0 1 1a 2 0 1 2 1 0 1t 3 0 1 2 2 1 1a 4 0 1 2 3 2 1

Dg g
 a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0a 1 0 1 1 1 0 0g 2 0 0 1 2 1 1g 3 0 0 0 1 2 2
 4 0 1 1 0 1 2a 5 0 1 2 1 0 1t 6 0 1 2 2 1 1a 7 0 1 2 3 2 1

Dinva a
 g g
i\j 0 1 2 3 4 50 0 1 2 3 4 5a 1 1 0 1 2 3 4t 2 2 1 1 2 3 4a 3 3 2 1 2 3 4
 4 4 3 2 1 2 3g 5 5 4 3 2 1 2g 6 6 5 4 3 2 1a 7 7 6 5 4 3 2Fig. 2. Normal and inverted edit distan
e tables for k-di�eren
e problem (k = 2,

x = 2) with the pattern �gg
aa� and the aligned text �agg
ata�. Sizes of the tables are
(k + x + 1) × (m + 1) for D0 and (m + k + 1) × (m + 1) for D and Dinv.This inverted table gives equivalent results when it
omes to
al
ulating thea
tual edit distan
e between the pattern and the aligned text string, but we stillneed to obtain the tables Dkx and M from a normal table. When the invertededit distan
e table has been �nished, we have to sear
h for a mat
h at the last
olumn. To be exa
t, we need to
he
k 2k + 1 di�erent
ells of the table for apossible mat
h, be
ause the mat
h
an
ontain up to k insert or delete operations,and the mat
h length
an therefore vary. All possible mat
hes that end in the
hara
ter ts will be found in the last
ells of the last
olumn of the inverted table.We
an either report the �rst mat
h with less than k+1 di�eren
es, or sear
h forthe mat
h with the minimum di�eren
es. The
urrent alignment ts−(m+i)+1 . . . tsmat
hes the pattern p0 . . . pm−1 with less than k + 1 di�eren
es, if

Dinv[m + i, m] ≤ k, i ∈ −k . . . kIf we have an edit distan
e table
al
ulated for the text su�x ts−(k+x)+1 . . . ts,we
an
he
k for a
omplete o

urren
e by �lling the rest of the table rows from
ts−(k+x) down to ts−(m+k−1). We
an therefore store the last row of the invertedtable Dinv[k + x, j], j ∈ [0, m] for ea
h (k + x)-gram during the prepro
essingphase. This row
an then be used to �ll up the rest of the table by dynami
programming during the sear
h phase, when the aligned text needs to be
he
kedfor an o

urren
e, and we do not need to run the dynami
 programming for thewhole table every time. We modify Algorithm 2 to use the inverted table duringthe sear
h phase, and we also store the last row of the inverted tables generatedduring the prepro
essing phase. The new algorithm is
alled Algorithm 3, andits pseudo
ode is given in Fig. 3. For simpli
ity, the prepro
essing part of thepseudo
ode does not use the optimization of generating the (k + x)-grams inlexi
ographi
 order and re
al
ulating the dynami
 programming table only forthose rows that have
hanged.The prepro
essing phase of Algorithm 2 has the same time
omplexity as thatof Algorithm 1. In Algorithm 3, we need to
al
ulate both the original dynami

prepro
ess (p, m, k, x)1. for (i ∈ 0 . . . k + x)2. D[i, 0]← 03. Dinv [i, 0]← i4. for (j ∈ 0 . . . m)5. D[0, j]← 06. Dinv [0, j]← j7. for (t = t0 . . . tk+x−1 ∈ Σk+x)8. for (i ∈ 1 . . . k + x, j ∈ 1 . . . m)9. D[i, j]← min

{

D[i− 1, j − 1] + α,

D[i− 1, j] + 1,

D[i, j − 1] + 1

}

, α =

{

0 if ti−1 = pj−1,

1 otherwise10. Dinv [i, j]← min

{

Dinv [i− 1, j − 1] + α,

Dinv [i− 1, j] + 1,

Dinv [i, j − 1] + 1

}

, α =

{

0 if tk+x−i = pm−j ,

1 otherwise11. M [t]← D[k + x,m]12. lastRow[t]← Dinv [k + x]13. for (j ∈ [m− 1, 0])14. if D[k + x, j] < k15. Dkx[t]← m− j16. breaksear
h (t, n, k, x)1. for (i ∈ 0 . . . m + k)2. Dinv [i, 0]← i3. for (j ∈ 0 . . . m)4. Dinv [0, j]← j5. s← m− k − 16. while (s < n)7. if (M [ts−(k+x)+1 . . . ts] ≤ k) /* possible o

urren
e */8. Dinv [k + x]← lastRow[ts−(k+x)+1 . . . ts]9. for (j ∈ 1 . . . m, i ∈ k + x + 1 . . . m + k)10. Dinv [i, j]← min

{

Dinv [i− 1, j − 1] + α,

Dinv [i− 1, j] + 1,

Dinv [i, j − 1] + 1

}

, α =

{

0 if ts−i+1 = pm−j ,

1 otherwise11. if (Dinv [m + i, m] ≤ k, i ∈ −k . . . k)12. Report mat
h at ts−(m+i)+1 . . . ts with Dinv [m + i, m] differen
es13. s← s + Dkx[ts−(k+x)+1 . . . ts]Fig. 3. Algorithm 3 prepro
essing and sear
h phases.

Table 1. Sear
h times in se
onds for k-mismat
h, using best observed x-values. Pre-pro
essing times are in parentheses.
k = 1 k = 2

m ABM FAAST Alg.1 ABM FAAST Alg.115 7.28 (0.04) 1.17 (0.48) 0.64 (0.03) 15.65 (0.04) 2.17 (1.76) 1.21 (0.16)20 7.28 (0.07) 0.92 (0.65) 0.54 (0.03) 15.59 (0.08) 1.68 (2.58) 0.98 (0.14)25 7.24 (0.09) 0.78 (0.87) 0.44 (0.04) 15.63 (0.09) 1.47 (3.13) 0.81 (0.22)30 7.22 (0.15) 0.68 (0.98) 0.40 (0.06) 15.71 (0.10) 1.30 (3.70) 0.69 (0.20)35 7.34 (0.18) 0.60 (1.22) 0.36 (0.05) 15.65 (0.16) 1.22 (4.16) 0.53 (0.24)40 7.31 (0.24) 0.53 (1.42) 0.33 (0.05) 15.69 (0.19) 1.11 (4.73) 0.54 (0.27)programming table and the reversed one. Be
ause a (k + x)-gram is read inopposite dire
tions when
al
ulating these two tables we have to enumerate the
(k+x)-grams twi
e. However the asymptoti
 time
omplexity remains the same.The shifts in the sear
hing phase of Algorithm 2 and 3 are somewhat shorterthan in Algorithm 1 be
ause the probability of two strings mat
hing with dis-tan
e less than k is higher when using the standard edit distan
e than whenusing the Hamming distan
e.5 Experimental ResultsTests were run on an Intel Pentium D 2.8 GHz dual
ore CPU with 1 gigabyte ofmemory. This pro
essor
ontains 24+32 kilobytes of L1
a
he, and 1024 kilobytesof L2
a
he. Algorithms were implemented in C and
ompiled with g

 4.0.2,using optimization level -O2 as 32-bit binaries. All the algorithms were run threetimes for the same patterns, and the listed sear
h and prepro
essing times arethe average values observed between all runs. For
omparison in the k-mismat
h
ase we use the original ABM algorithm and our implementation of FAAST.The Myers algorithm [11℄, the algorithm by Baeza-Yates and Perleberg (BYP)[4℄ and a version of ABM are used for the k-di�eren
e problem. All the resultsare shown with the x-value gaining the fastest sear
hing speed in FAAST andour new algorithms if otherwise is not stated. The best x-value is generally thesame for our algorithms and for FAAST. The other algorithms do not utilize the
x-value.The sear
hed text is a two megabytes long sequen
e of the fruit �y genome.The test patterns have been extra
ted randomly from the text. Ea
h patternset
onsists of 200 di�erent patterns of the same length, and they are sear
hedsequentially.Table 1 shows the sear
h times for the original ABM, FAAST and Algorithm 1in the k-mismat
h problem. Algorithm 1 is generally 30�50% faster than FAASTin the k-mismat
h
ase for k ∈ [1, 3]. Also, the prepro
essing phase of Algorithm1 is 10 to 30 times faster than that of FAAST.Experimental results for the k-di�eren
e problem are shown in Table 2, andFig. 4 further illustrates the results with k = 2. In the k-di�eren
e problem,

Table 2. Sear
h times in se
onds for k-di�eren
e, using best observed x-values.
k = 1 k = 2

m ABM Myers BYP Alg.2 Alg.3 ABM Myers BYP Alg.2 Alg.315 8.82 7.35 2.85 1.98 1.65 38.58 7.33 6.90 6.70 5.0420 8.27 7.41 2.74 1.63 1.44 27.24 7.36 4.50 5.75 4.5325 7.99 7.34 2.69 1.41 1.34 19.49 7.37 3.79 5.58 4.0930 8.07 7.37 2.67 1.32 1.15 14.80 7.37 3.89 5.61 4.0335 8.07 - 2.62 1.29 1.13 12.48 - 3.73 5.77 4.0040 7.99 - 2.63 1.23 1.05 11.08 - 3.94 5.95 4.04

 0

 5

 10

 15

 20

 25

 15 20 25 30 35 40

S
ea

rc
h

tim
e

Pattern length m

ABM
Myers
Alg.2
Alg.3
BYP

Fig. 4. Sear
h times for k-di�eren
e with k = 2.our new algorithms
ompare well against the Myers, BYP and ABM algorithms.Algorithms 2 and 3 are up to 50% faster than the BYP algorithm with k = 1,as it is shown in Table 2. For k = 2 Algorithm 3 is faster than BYP for shortpatterns but the BYP algorithm takes the lead for longer patterns. If we allowmore di�eren
es, Myers is the fastest for short patterns and BYP for long ones.The basi
 version of the Myers algorithm is limited by the 32-bit word size,and it
annot handle patterns where m > 32. The modi�
ations in Algorithm 3de
rease sear
h time by 20-30%, when
ompared to Algorithm 2.We also ran some preliminary tests to
ompare Algorithm 3 and the algorithmby Fredriksson and Navarro [7℄. We used the version of their algorithm that readsthe window ba
kwards. In these tests Algorithm 3 was faster for pattern lengthsup to 18 when k = 1 and up to pattern length 15 when k = 2. For longer patternsthe algorithm by Fredriksson and Navarro was faster.The e�e
t of in
reasing the pre
al
ulated edit distan
e table size, and thusin
reasing prepro
essing time with a large x-value is shown in Table 3. With small

Table 3. Prepro
essing times and sear
h times for k-di�eren
e, with di�erent x-values(k = 1, m = 20) Prepro
essing Sear
h
x Alg. 2 Alg. 3 Alg.2 Alg.31 <0.01 <0.01 977.30 724.612 0.01 0.01 213.43 144.533 0.02 0.05 45.57 28.924 0.10 0.18 11.64 7.085 0.37 0.71 3.94 2.446 1.59 2.76 1.84 1.447 6.38 11.35 1.63 1.518 25.27 46.50 3.06 2.949 101.09 188.38 4.03 4.06values of x, the sear
h time de
reases as the amount of prepro
essing in
reases,but after a
ertain limit in
reasing the x-value will begin to slow down the sear
h.For these pattern lengths and k-values the optimal x-value was typi
ally 4 forthe k-mismat
h problem and 6 for the k-di�eren
e problem.In the implementation of Algorithm 2, prepro
essing is optimized by gen-erating the (k + x)-grams in lexi
ographi
 order and re
al
ulating the dynami
programming table only for those
hara
ters that di�er form the previous (k+x)-gram while Algorithm 3 needs to do this re
ursion twi
e, on
e to generate thenormal dynami
 programming table and on
e to
al
ulate the reversed one.Thus the prepro
essing times in Table 3 are longer for Algorithm 3 than forAlgorithm 2.6 Con
luding RemarksWe have presented improved variations of the approximate Boyer-Moore algo-rithm for gene sequen
es for both the k-mismat
h problem and the k-di�eren
eproblem.This in ongoing work. Next we will try to apply bit-parallelism for the pre-pro
essing phase. We are working also on an alphabet redu
tion. We developeda variation of Algorithm 1, where the DNA alphabet was mapped to the binaryalphabet. This version was only a bit slower than the original version. However,for short DNA texts the total time (prepro
essing + sear
hing) was the best withthe alphabet redu
tion. The alphabet redu
tion also extends the appli
ability ofour pre
omputed shift to larger alphabets.A
knowledgments. We thank Janne Auvinen for implementing a part of thealgorithms.

Referen
es1. Arlazarova, V., Dini
, E., Kronrod, M., Faradzev, I.: On e
onomi

onstru
tionof the transitive
losure of a dire
ted graph. Doklady A
ademi Nauk SSSR 194(1970) 487�488 (in Russian). English translation in Soviet Mathemati
s Doklady11 (1975) 1209�12102. Baeza-Yates, R., Gonnet, G.: A new approa
h to text sear
hing. Communi
ationsof the ACM 35(10) (1992) 74�823. Baeza-Yates, R., Gonnet, G.: Fast string mat
hing with mismat
hes. Informationand Computation 108(2) (1994) 187�1994. Baeza-Yates, R.A., Perleberg, C.H.: Fast and pra
ti
al approximate string mat
h-ing. Information Pro
essing Letters 59(1) (1996) 21�275. Boyer, R., Moore, J.: A fast string sear
hing algorithm. Communi
ations of theACM 10(20) (1977) 762�7726. El-Mabrouk, N., Cro
hemore, M.: Boyer-Moore strategy to e�
ient approximatestring mat
hing. In: Pro
eedings of 7th Symposium on Combinatorial PatternMat
hing. Volume 1075 of LNCS, Berlin, Springer-Verlag (1996) 24�387. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximatestring mat
hing. ACM Journal of Experimental Algorithmi
s 9 (2004) 1�478. Horspool, N.: Pra
ti
al fast sear
hing in strings. Software Pra
ti
e & Experien
e10 (1980) 501�5069. Liu, Z., Chen, X., Borneman, J., Jiang, T.: A fast algorithm for approximate stringmat
hing on gene sequen
es. In: Pro
eedings of 16th Symposium on CombinatorialPattern Mat
hing. Volume 3537 of LNCS, Berlin, Springer-Verlag (2005) 79�9010. Masek, W., Paterson, M.: A faster algorithm for
omputing string edit distan
es.Journal of Computer and System S
ien
es 20 (1980) 18�3111. Myers, G.: A fast bit-ve
tor algorithm for approximate string mat
hing based ondynami
 programming. Journal of the ACM 46(3) (1999) 395�41512. Navarro, G.: A guided tour to approximate string mat
hing. ACM ComputingSurveys 33(1) (2001) 31�8813. Navarro, G., Sutinen, E., Tanninen, J., Tarhio, J.: Indexing text with approximate
q-grams. In: Pro
eedings of 11th Symposium on Combinatorial Pattern Mat
hing.Volume 1848 of LNCS, Berlin, Springer-Verlag (2000) 350�36314. Tarhio, J., Ukkonen, E.: Approximate Boyer-Moore string mat
hing. SIAM Journalon Computing 22 (1993) 243�26015. Wu, S., Manber, U., Myers, E.: A subquadrati
 algorithm for approximate limitedexpression mat
hing. Algorithmi
a 15(1) (1996) 50�67

