
Tuning Approximate Boyer-Moorefor Gene Sequenes⋆Petri Kalsi, Leena Salmela, and Jorma TarhioHelsinki University of Tehnology{pkalsi, lsalmela, tarhio}�s.hut.fiAbstrat. Reently a new variation of approximate Boyer-Moore stringmathing was presented for the k-mismath problem. This variation wasdeveloped for gene sequenes. We further tuned this algorithm gainingspeedups in both preproessing and searh times. Our preproessing haslower time omplexity than the previous algorithm and our experimentsshow that our algorithm is over 30% faster than the previous one. Wealso present two variations of the algorithm for the k-di�erene problem.1 IntrodutionWe onsider two variations of approximate string mathing, the k-mismathproblem and the k-di�erene problem. In both of the problems, we have a pattern
p = p0, . . . , pm−1 of m haraters drawn from an alphabet Σ of size σ and a text
t = t0, . . . , tn−1 of n haraters over the same alphabet. We need to �nd all suhsubstrings of the text that the distane between the substring and the patternis at most k. In the k-di�erene problem the distane between two strings is thestandard edit distane where mismathes, deletions and insertions are allowed.The k-mismath problem is a more restrited one using the Hamming distanewhere only mismathes are allowed.Several algorithms [12℄ for both variations of approximate string mathinghave been presented. Many of the algorithms have been developed with text datain mind and these algorithms do not neessarily work well with a small alphabet.Reently developing algorithms for small alphabets has attrated attention asapproximate searhing of large volumes of gene sequenes has beome ommon.One example of suh a biologial problem is the gene sequene aquisition prob-lem in whih a olletion of gene sequenes and a primer is given and we need toextrat all those sequenes that ontain the primer with at most k mismathes.The approximate Boyer-Moore (ABM) algorithm [14℄ is an adaptation of theBoyer-Moore-Horspool algorithm [8℄ to approximate mathing. ABM performswell on moderately large alphabets and low error levels. ABM was originallynot designed for small alphabets and in fat it performs rather poorly on them.Liu et al. [9℄ tuned the k-mismath version of ABM for smaller alphabets. Theiralgorithm, alled FAAST, has a stronger shift funtion whih makes it fasterthan ABM.
⋆ Work supported by Aademy of Finland.

In this paper we introdue improvements to the FAAST algorithm gainingonsiderable speedups in both preproessing and searh times. The preproessingwe present is simpler having a lower time omplexity than that of FAAST. Whilethe FAAST algorithm an only handle the k-mismath problem, we show thatwith the simpler preproessing the algorithm an be modi�ed to also handle the
k-di�erene problem.2 Previous WorkSo far many algorithms have been developed based on Boyer-Moore string math-ing [5℄ for the k-mismath problem. Here we onsider mainly ABM [14℄ andFAAST [9℄, but two other variations developed by Baeza-Yates & Gonnet [3℄and El-Mabrouk & Crohemore [6℄ are worth mentioning. The shift funtion ofthe Baeza-Yates-Gonnet algorithm is based on the triangular inequality, whereasthe El-Mabrouk-Crohemore algorithm applies the Shift-Add approah [2℄. Three[6,9,14℄ of these four algorithms have been shown to be sublinear on the av-erage. E.g. the average ase omplexity of ABM (without preproessing) is
O(nk(1/(m − k) + k/σ)).Typially algorithms of Boyer-Moore type have two phases: preproessingof the pattern and searhing of its ourrenes in the text. ABM uses the badharater rule for shifting and is thus a diret generalization of the Boyer-Moore-Horspool algorithm [8℄. Instead of stopping at the �rst mismath in the mathingloop, the ontrol stops at the k+1st mismath or when an ourrene of the wholepattern is found. The shift is alulated onsidering k + 1 haraters urrentlyaligned with the end of the pattern. The shift is the minimum of the preomputedshifts for those k+1 haraters. After shifting, at least one of the these haraterswill be aligned orretly with the pattern.FAAST is an improved variation of ABM for small alphabets using a vari-ation of the Four-Russians tehnique [1,10,15℄ to speed up the searh. Insteadof minimizing k + 1 shifts during searh, it uses a preomputed shift table for a
(k + x)-gram aligned with the end of the pattern, where x ≥ 1 is a parameterof the algorithm. The shift table is alulated so that after the shift at least
x haraters are aligned orretly. It is obvious that this stronger requirementleads to longer shifts in most situations, when x > 1 holds, and the shift is nevershorter than the shift of ABM. Note that for x = 1 the length of shift is thesame for both the algorithms, but the shift is minimized during preproessingonly in FAAST. So the algorithms are di�erent even for x = 1. The optimalvalue of x for maximum searhing speed depends on other problem parametersand the omputing platform. However, an inrement of x makes the preproess-ing time grow. FAAST presents a lear improvement on solving the k-mismathproblem on DNA data as ompared to the ABM algorithm. The preproessingphase of FAAST is advaned beause it inludes the minimization step of ABM.The preproessing time of FAAST is O((k + x)((m − k)σk+x + m)).

3 Algorithm for the k-Mismath ProblemOur aim is to develop a faster algorithm for DNA data based on FAAST whihuses a (k + x)-gram for shifting. We make two major hanges to FAAST. Weimplement a simpler and faster preproessing phase based on dynami program-ming. FAAST ounts the number of mismathes in the (k + x)-gram alignedwith the end of the pattern during the searhing phase. Our approah makesit possible to ompute this number during preproessing, whih improves thesearhing speed.The preproessing phase omputes the Hamming distane between an arbi-trary (k + x)-gram and eah (k + x)-gram of the pattern using dynami pro-gramming. The �rst row and olumn of the dynami programming table areinitialized to 0, and the rest of the table an be �lled with a simple iteration:
D[i, j] = D[i − 1, j − 1] + α where α =

{

0 if ti−1 = pj−1,
1 otherwiseNote that all (k + x)-grams of the pattern are handled in the same table.As an example, let us onsider a situation where a pattern p = �ggaa� hasbeen aligned with the text string �gata�, and k = x = 2 holds. The referene

(k + x)-gram is now �ata�, and the orresponding Hamming distane table ofsize (k + x + 1) × (m + 1), alulated during preproessing, is shown in Fig. 1.First of all, we see that the last ell D[k + x, m] = 3 > k, and therefore it is notpossible to �nd a math at this position, as already the su�x of the aligned textstring ontains too many mismathes. Otherwise, we would have to hek for amath by examining the amount of mismathes in the beginning of the alignedstring.We will also look at the bottom row of the table, and �nd the rightmostell D[k + x, j] with a value h ≤ k, exept for the last ell D[k + x, m]. This isthe next possible andidate for aligning the pattern with the text with less than
k mismathes and the orret shift is equal to m − j. In our example, the ell
D[k + x, 2] = 2, and we would shift the pattern by 5− 2 = 3 positions to get thenext alignment.

Dg g a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0 1 0 1 1 0 1 1a 2 0 1 2 2 0 1t 3 0 1 2 3 3 1a 4 0 1 2 3 3 3Fig. 1. The Hamming distane table D of size (k + x + 1) × (m + 1) for k-mismathproblem (k = 2, x = 2). The pattern is �ggaa� and the referene (k+x)-gram is �ata�.

We do not need the whole table to obtain this information, so we just storethe alulated Hamming distane for eah generated (k + x)-gram in a table Mwhih is indexed by a number obtained by transforming the (k + x)-gram to aninteger. The prealulated shifts are stored in a table Dkx. During the searhingphase we onvert the last (k + x)-gram of the aligned text string into an index
y to the tables, and hek for an ourrene if M [y] ≤ k. Note that if the text isnot pure DNA data, we need to hek the whole aligned text string against thepattern as there might be some indeterminate haraters. Finally, we shift thepattern aording to Dkx[y].We an improve the preproessing time by applying the tehnique used pre-viously by Fredriksson and Navarro [7℄ for approximate mathing and Navarroet al. [13℄ for indexed approximate mathing. If the (k + x)-grams are generatedin the lexiographial order, the dynami programming table di�ers only by thelast few rows. Therefore we an speed up the preproessing if we only realulatethe last rows of the table at eah step, starting from the �rst hanged harater.This an be implemented by traversing the trie built of all (k + x)-grams indepth �rst order. Nodes at the ith level of the trie orrespond to strings of length
i. Thus there are σi nodes on level i and the total number of nodes in the trie is

k+x
∑

i=1

σi = σ
σk+x − 1

σ − 1
= O(σk+x).If we have the dynami programming table for a node in the trie, the tables forthe hildren nodes an be obtained by alulating one more row to the dynamiprogramming table taking O(m) time per hild so alulating the dynami pro-gramming tables for all nodes in the trie takes O(σk+xm) time. At the leaf nodeswe have the dynami programming table for the orresponding (k+x)-gram andwe need to �gure out the number of mismathes entered to table M and the shiftvalue entered to table Dkx whih takes O(m) time. The extra alulation neededat leaf nodes is thus O(σk+xm) beause there are σk+x leaf nodes. Therefore thetime omplexity of the preproessing phase is O(2σk+xm) = O(σk+xm). Notethat if we implement the traversing of the trie by reursion, we atually do notneed to expliitly build the trie.We all this algorithm for the k-mismath problem Algorithm 1. The shiftbehaviors of Algorithm 1 and FAAST are exatly the same. In FAAST thenumber of mismathes in the last (k + x)-gram of an alignment is omputedduring the searhing phase whereas in Algorithm 1 this is fethed from a table.However, we still need to read the (k + x)-gram and thus the time omplexityof the searh phase of Algorithm 1 is the same as in FAAST.Implementation note. For maximum performane it is ruial how the value ofa (k + x)-gram is omputed during searhing. We mapped the ASCII values ofDNA haraters to integers {0, 1, 2, 3} and used a shift-or loop to onstrut a bitrepresentation of a (k + x)-gram.

4 Algorithms for the k-Di�erene ProblemAlgorithm 1 an be easily modi�ed to solve the k-di�erene problem.We initializethe dynami programming table as in the k-mismath ase, but now we applythe traditional equations for the k-di�erene problem
D[i, j] = min

D[i − 1, j − 1] + α,
D[i − 1, j] + 1,
D[i, j − 1] + 1

where α =

{

0 if ti−1 = pj−1,
1 otherwiseAs before we onstrut the (k+x+1)×(m+1) table during preproessing foreah possible text string, and obtain the tables M [y] and Dkx[y] by heking thebottom row of the onstruted table. The searhing phase starts by aligning thepattern against the text pre�x ending at position m−k−1. When examining analignment ending at position s all mathes ending before that position have beenreported. At eah alignment we have to onstrut a full (m + k + 1) × (m + 1)edit distane table D with the urrently aligned text ts−(m+k)+1 . . . ts against thepattern, if M [ts−(k+x)+1 . . . ts] ≤ k. A math will be reported, if D[m+k, m] ≤ k.After this operation we will shift the pattern aording to Dkx. In order toobserve orretly an ourrene of the pattern in the beginning of the text, weassume that t

−k, ..., t
−1 hold a harater not in the pattern. The modi�ation ofAlgorithm 1 for the k-di�erene problem is alled Algorithm 2.Example tables for the k-di�erene problem are shown in Fig. 2, using apattern �ggaa�, a text string �aggata� and parameters k = x = 2. We an seefrom the �rst table that Dkx[�ata�] = 5−4 = 1 and M [�ata�] = D0[k+x, m] =

1. Therefore, we would onstrut a table D, and �nd that D[m + k, m] = 1 ≤ k,and report a math at position s. We would ontinue the searh by shifting thepattern by 1.In the k-mismath problem we did not need to reread the last k+x haratersfrom the text alignment when heking for an ourrene. Instead we had storedthe number of mismathes in the table M and we ould extend the math basedon that information. For the k-di�erene problem the situation is not quite assimple beause we need to ompute the dynami programming table to hekfor an ourrene. The problem with Algorithm 2 is that when heking for anourrene the aligned text is read forward while during the preproessing phasewe have generated the dynami programming table for the last haraters ofthe pattern. In order to use that information and avoid rereading the last k + xharaters we need to invert the alulation of the dynami programming tableso that we start building the table from the end of the pattern and the textstring.First we will explain how the inverted table is built and then show how thatinformation is used to speed up the heking of an ourrene. The initializationof the inverted table is di�erent, as we set D[0, j] = j and D[i, 0] = i for i ∈
[0, k + x], j ∈ [0, m], instead of 0. We have to read the pattern and text in reverse,and therefore we get a new ondition for α:

α =

{

0 if tk+x−i = pm−j,
1 otherwise

D0g g a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0 1 0 1 1 0 1 1a 2 0 1 2 1 0 1t 3 0 1 2 2 1 1a 4 0 1 2 3 2 1

Dg g a a
i\j 0 1 2 3 4 50 0 0 0 0 0 0a 1 0 1 1 1 0 0g 2 0 0 1 2 1 1g 3 0 0 0 1 2 2 4 0 1 1 0 1 2a 5 0 1 2 1 0 1t 6 0 1 2 2 1 1a 7 0 1 2 3 2 1

Dinva a g g
i\j 0 1 2 3 4 50 0 1 2 3 4 5a 1 1 0 1 2 3 4t 2 2 1 1 2 3 4a 3 3 2 1 2 3 4 4 4 3 2 1 2 3g 5 5 4 3 2 1 2g 6 6 5 4 3 2 1a 7 7 6 5 4 3 2Fig. 2. Normal and inverted edit distane tables for k-di�erene problem (k = 2,

x = 2) with the pattern �ggaa� and the aligned text �aggata�. Sizes of the tables are
(k + x + 1) × (m + 1) for D0 and (m + k + 1) × (m + 1) for D and Dinv.This inverted table gives equivalent results when it omes to alulating theatual edit distane between the pattern and the aligned text string, but we stillneed to obtain the tables Dkx and M from a normal table. When the invertededit distane table has been �nished, we have to searh for a math at the lastolumn. To be exat, we need to hek 2k + 1 di�erent ells of the table for apossible math, beause the math an ontain up to k insert or delete operations,and the math length an therefore vary. All possible mathes that end in theharater ts will be found in the last ells of the last olumn of the inverted table.We an either report the �rst math with less than k+1 di�erenes, or searh forthe math with the minimum di�erenes. The urrent alignment ts−(m+i)+1 . . . tsmathes the pattern p0 . . . pm−1 with less than k + 1 di�erenes, if

Dinv[m + i, m] ≤ k, i ∈ −k . . . kIf we have an edit distane table alulated for the text su�x ts−(k+x)+1 . . . ts,we an hek for a omplete ourrene by �lling the rest of the table rows from
ts−(k+x) down to ts−(m+k−1). We an therefore store the last row of the invertedtable Dinv[k + x, j], j ∈ [0, m] for eah (k + x)-gram during the preproessingphase. This row an then be used to �ll up the rest of the table by dynamiprogramming during the searh phase, when the aligned text needs to be hekedfor an ourrene, and we do not need to run the dynami programming for thewhole table every time. We modify Algorithm 2 to use the inverted table duringthe searh phase, and we also store the last row of the inverted tables generatedduring the preproessing phase. The new algorithm is alled Algorithm 3, andits pseudo ode is given in Fig. 3. For simpliity, the preproessing part of thepseudo ode does not use the optimization of generating the (k + x)-grams inlexiographi order and realulating the dynami programming table only forthose rows that have hanged.The preproessing phase of Algorithm 2 has the same time omplexity as thatof Algorithm 1. In Algorithm 3, we need to alulate both the original dynami

preproess (p, m, k, x)1. for (i ∈ 0 . . . k + x)2. D[i, 0]← 03. Dinv [i, 0]← i4. for (j ∈ 0 . . . m)5. D[0, j]← 06. Dinv [0, j]← j7. for (t = t0 . . . tk+x−1 ∈ Σk+x)8. for (i ∈ 1 . . . k + x, j ∈ 1 . . . m)9. D[i, j]← min

{

D[i− 1, j − 1] + α,

D[i− 1, j] + 1,

D[i, j − 1] + 1

}

, α =

{

0 if ti−1 = pj−1,

1 otherwise10. Dinv [i, j]← min

{

Dinv [i− 1, j − 1] + α,

Dinv [i− 1, j] + 1,

Dinv [i, j − 1] + 1

}

, α =

{

0 if tk+x−i = pm−j ,

1 otherwise11. M [t]← D[k + x,m]12. lastRow[t]← Dinv [k + x]13. for (j ∈ [m− 1, 0])14. if D[k + x, j] < k15. Dkx[t]← m− j16. breaksearh (t, n, k, x)1. for (i ∈ 0 . . . m + k)2. Dinv [i, 0]← i3. for (j ∈ 0 . . . m)4. Dinv [0, j]← j5. s← m− k − 16. while (s < n)7. if (M [ts−(k+x)+1 . . . ts] ≤ k) /* possible ourrene */8. Dinv [k + x]← lastRow[ts−(k+x)+1 . . . ts]9. for (j ∈ 1 . . . m, i ∈ k + x + 1 . . . m + k)10. Dinv [i, j]← min

{

Dinv [i− 1, j − 1] + α,

Dinv [i− 1, j] + 1,

Dinv [i, j − 1] + 1

}

, α =

{

0 if ts−i+1 = pm−j ,

1 otherwise11. if (Dinv [m + i, m] ≤ k, i ∈ −k . . . k)12. Report math at ts−(m+i)+1 . . . ts with Dinv [m + i, m] differenes13. s← s + Dkx[ts−(k+x)+1 . . . ts]Fig. 3. Algorithm 3 preproessing and searh phases.

Table 1. Searh times in seonds for k-mismath, using best observed x-values. Pre-proessing times are in parentheses.
k = 1 k = 2

m ABM FAAST Alg.1 ABM FAAST Alg.115 7.28 (0.04) 1.17 (0.48) 0.64 (0.03) 15.65 (0.04) 2.17 (1.76) 1.21 (0.16)20 7.28 (0.07) 0.92 (0.65) 0.54 (0.03) 15.59 (0.08) 1.68 (2.58) 0.98 (0.14)25 7.24 (0.09) 0.78 (0.87) 0.44 (0.04) 15.63 (0.09) 1.47 (3.13) 0.81 (0.22)30 7.22 (0.15) 0.68 (0.98) 0.40 (0.06) 15.71 (0.10) 1.30 (3.70) 0.69 (0.20)35 7.34 (0.18) 0.60 (1.22) 0.36 (0.05) 15.65 (0.16) 1.22 (4.16) 0.53 (0.24)40 7.31 (0.24) 0.53 (1.42) 0.33 (0.05) 15.69 (0.19) 1.11 (4.73) 0.54 (0.27)programming table and the reversed one. Beause a (k + x)-gram is read inopposite diretions when alulating these two tables we have to enumerate the
(k+x)-grams twie. However the asymptoti time omplexity remains the same.The shifts in the searhing phase of Algorithm 2 and 3 are somewhat shorterthan in Algorithm 1 beause the probability of two strings mathing with dis-tane less than k is higher when using the standard edit distane than whenusing the Hamming distane.5 Experimental ResultsTests were run on an Intel Pentium D 2.8 GHz dual ore CPU with 1 gigabyte ofmemory. This proessor ontains 24+32 kilobytes of L1 ahe, and 1024 kilobytesof L2 ahe. Algorithms were implemented in C and ompiled with g 4.0.2,using optimization level -O2 as 32-bit binaries. All the algorithms were run threetimes for the same patterns, and the listed searh and preproessing times arethe average values observed between all runs. For omparison in the k-mismathase we use the original ABM algorithm and our implementation of FAAST.The Myers algorithm [11℄, the algorithm by Baeza-Yates and Perleberg (BYP)[4℄ and a version of ABM are used for the k-di�erene problem. All the resultsare shown with the x-value gaining the fastest searhing speed in FAAST andour new algorithms if otherwise is not stated. The best x-value is generally thesame for our algorithms and for FAAST. The other algorithms do not utilize the
x-value.The searhed text is a two megabytes long sequene of the fruit �y genome.The test patterns have been extrated randomly from the text. Eah patternset onsists of 200 di�erent patterns of the same length, and they are searhedsequentially.Table 1 shows the searh times for the original ABM, FAAST and Algorithm 1in the k-mismath problem. Algorithm 1 is generally 30�50% faster than FAASTin the k-mismath ase for k ∈ [1, 3]. Also, the preproessing phase of Algorithm1 is 10 to 30 times faster than that of FAAST.Experimental results for the k-di�erene problem are shown in Table 2, andFig. 4 further illustrates the results with k = 2. In the k-di�erene problem,

Table 2. Searh times in seonds for k-di�erene, using best observed x-values.
k = 1 k = 2

m ABM Myers BYP Alg.2 Alg.3 ABM Myers BYP Alg.2 Alg.315 8.82 7.35 2.85 1.98 1.65 38.58 7.33 6.90 6.70 5.0420 8.27 7.41 2.74 1.63 1.44 27.24 7.36 4.50 5.75 4.5325 7.99 7.34 2.69 1.41 1.34 19.49 7.37 3.79 5.58 4.0930 8.07 7.37 2.67 1.32 1.15 14.80 7.37 3.89 5.61 4.0335 8.07 - 2.62 1.29 1.13 12.48 - 3.73 5.77 4.0040 7.99 - 2.63 1.23 1.05 11.08 - 3.94 5.95 4.04

 0

 5

 10

 15

 20

 25

 15 20 25 30 35 40

S
ea

rc
h

tim
e

Pattern length m

ABM
Myers
Alg.2
Alg.3
BYP

Fig. 4. Searh times for k-di�erene with k = 2.our new algorithms ompare well against the Myers, BYP and ABM algorithms.Algorithms 2 and 3 are up to 50% faster than the BYP algorithm with k = 1,as it is shown in Table 2. For k = 2 Algorithm 3 is faster than BYP for shortpatterns but the BYP algorithm takes the lead for longer patterns. If we allowmore di�erenes, Myers is the fastest for short patterns and BYP for long ones.The basi version of the Myers algorithm is limited by the 32-bit word size,and it annot handle patterns where m > 32. The modi�ations in Algorithm 3derease searh time by 20-30%, when ompared to Algorithm 2.We also ran some preliminary tests to ompare Algorithm 3 and the algorithmby Fredriksson and Navarro [7℄. We used the version of their algorithm that readsthe window bakwards. In these tests Algorithm 3 was faster for pattern lengthsup to 18 when k = 1 and up to pattern length 15 when k = 2. For longer patternsthe algorithm by Fredriksson and Navarro was faster.The e�et of inreasing the prealulated edit distane table size, and thusinreasing preproessing time with a large x-value is shown in Table 3. With small

Table 3. Preproessing times and searh times for k-di�erene, with di�erent x-values(k = 1, m = 20) Preproessing Searh
x Alg. 2 Alg. 3 Alg.2 Alg.31 <0.01 <0.01 977.30 724.612 0.01 0.01 213.43 144.533 0.02 0.05 45.57 28.924 0.10 0.18 11.64 7.085 0.37 0.71 3.94 2.446 1.59 2.76 1.84 1.447 6.38 11.35 1.63 1.518 25.27 46.50 3.06 2.949 101.09 188.38 4.03 4.06values of x, the searh time dereases as the amount of preproessing inreases,but after a ertain limit inreasing the x-value will begin to slow down the searh.For these pattern lengths and k-values the optimal x-value was typially 4 forthe k-mismath problem and 6 for the k-di�erene problem.In the implementation of Algorithm 2, preproessing is optimized by gen-erating the (k + x)-grams in lexiographi order and realulating the dynamiprogramming table only for those haraters that di�er form the previous (k+x)-gram while Algorithm 3 needs to do this reursion twie, one to generate thenormal dynami programming table and one to alulate the reversed one.Thus the preproessing times in Table 3 are longer for Algorithm 3 than forAlgorithm 2.6 Conluding RemarksWe have presented improved variations of the approximate Boyer-Moore algo-rithm for gene sequenes for both the k-mismath problem and the k-di�ereneproblem.This in ongoing work. Next we will try to apply bit-parallelism for the pre-proessing phase. We are working also on an alphabet redution. We developeda variation of Algorithm 1, where the DNA alphabet was mapped to the binaryalphabet. This version was only a bit slower than the original version. However,for short DNA texts the total time (preproessing + searhing) was the best withthe alphabet redution. The alphabet redution also extends the appliability ofour preomputed shift to larger alphabets.Aknowledgments. We thank Janne Auvinen for implementing a part of thealgorithms.

Referenes1. Arlazarova, V., Dini, E., Kronrod, M., Faradzev, I.: On eonomi onstrutionof the transitive losure of a direted graph. Doklady Aademi Nauk SSSR 194(1970) 487�488 (in Russian). English translation in Soviet Mathematis Doklady11 (1975) 1209�12102. Baeza-Yates, R., Gonnet, G.: A new approah to text searhing. Communiationsof the ACM 35(10) (1992) 74�823. Baeza-Yates, R., Gonnet, G.: Fast string mathing with mismathes. Informationand Computation 108(2) (1994) 187�1994. Baeza-Yates, R.A., Perleberg, C.H.: Fast and pratial approximate string math-ing. Information Proessing Letters 59(1) (1996) 21�275. Boyer, R., Moore, J.: A fast string searhing algorithm. Communiations of theACM 10(20) (1977) 762�7726. El-Mabrouk, N., Crohemore, M.: Boyer-Moore strategy to e�ient approximatestring mathing. In: Proeedings of 7th Symposium on Combinatorial PatternMathing. Volume 1075 of LNCS, Berlin, Springer-Verlag (1996) 24�387. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximatestring mathing. ACM Journal of Experimental Algorithmis 9 (2004) 1�478. Horspool, N.: Pratial fast searhing in strings. Software Pratie & Experiene10 (1980) 501�5069. Liu, Z., Chen, X., Borneman, J., Jiang, T.: A fast algorithm for approximate stringmathing on gene sequenes. In: Proeedings of 16th Symposium on CombinatorialPattern Mathing. Volume 3537 of LNCS, Berlin, Springer-Verlag (2005) 79�9010. Masek, W., Paterson, M.: A faster algorithm for omputing string edit distanes.Journal of Computer and System Sienes 20 (1980) 18�3111. Myers, G.: A fast bit-vetor algorithm for approximate string mathing based ondynami programming. Journal of the ACM 46(3) (1999) 395�41512. Navarro, G.: A guided tour to approximate string mathing. ACM ComputingSurveys 33(1) (2001) 31�8813. Navarro, G., Sutinen, E., Tanninen, J., Tarhio, J.: Indexing text with approximate
q-grams. In: Proeedings of 11th Symposium on Combinatorial Pattern Mathing.Volume 1848 of LNCS, Berlin, Springer-Verlag (2000) 350�36314. Tarhio, J., Ukkonen, E.: Approximate Boyer-Moore string mathing. SIAM Journalon Computing 22 (1993) 243�26015. Wu, S., Manber, U., Myers, E.: A subquadrati algorithm for approximate limitedexpression mathing. Algorithmia 15(1) (1996) 50�67

