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Abstract. The problem of order-preserving matching has gained atten-
tion lately. The text and the pattern consist of numbers. The task is
to find all substrings in the text which have the same relative order as
the pattern. The problem has applications in analysis of time series like
stock market or weather data. Solutions based on the KMP and BMH
algorithms have been presented earlier. We present a new sublinear so-
lution based on filtration. Any algorithm for exact string matching can
be used as a filtering method. If the filtration algorithm is sublinear, the
total method is sublinear on average. We show by practical experiments
that the new solution is more efficient than earlier algorithms.

1 Introduction

String matching [11] is a widely known problem in Computer Science. Given a
text T of length n and a pattern P of length m, both being strings over a finite
alphabet Σ, the task of string matching is to find all the occurrences of P in T .

The problem of order-preserving matching [2, 3, 8, 9] has gained attention
lately. It considers strings of numbers. The relative order of the positions in
the pattern P is matched with the relative order of a substring u of T , where
|u| = |P |. Suppose P = (10, 22, 15, 30, 20, 18, 27) and T = (22, 85, 79, 24, 42, 27,
62, 40, 32, 47, 69, 55, 25), then the relative order of P matches the substring u =
(24, 42, 27, 62, 40, 32, 47) of T , see Fig. 1. In the pattern P the relative order of the
positions is: 1, 5, 2, 7, 4, 3, 6. This means 10 is the smallest number in the string,
15 is the second smallest, 18 the third smallest and so on. In order-preserving
matching, the task is to find a substring in T which has the relative order as
P . In the given example, u has the same relative order as P . So u matches the
pattern P .

At least three solutions [2, 8, 9] have been proposed for on-line order-
preserving matching of strings. Kubica et al. [9] and Kim et al. [8] have presented
solutions based on the Knuth–Morris–Pratt algorithm (KMP) [10]. Kim et al.
doubted the applicability of the Boyer–Moore approach [1] to order-preserving
matching. However, Cho et al. [2] demonstrated that the bad character heuristic
works. We will present a new practical solution based on approximate string
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Fig. 1. Example of order-preserving matching.

matching. We form a modified pattern and use an algorithm for exact string
matching as a filtration method. Our approach is simpler and in practice more
efficient than earlier solutions. We transform the original pattern P into a bi-
nary string P ′ expressing increases (1), equalities (0), and decreases (0) between
subsequent pattern positions. Then we search for P ′ in the similarly transformed
text T ′. For example, P ′ = 101001 corresponds to P = (10, 22, 15, 30, 20, 18, 27)
and T ′ = 100101001100 to T above. Each occurrence is a match candidate which
is verified following the numerical order of the positions of the original pattern
P . Note that in this approach any algorithm for exact string matching can be
used as a filtration method. If the filtration algorithm is sublinear and the text
is transformed on line, the total method is sublinear on average.

We made experiments with two sublinear string matching algorithms and two
linear string matching algorithms as the filtering method. Our approach with
sublinear filters was considerably faster than the algorithm by Cho et al. [2],
which is the first sublinear solution of the problem and which was the previous
winner.

The paper is organized as follows. Section 2 describes the previous solutions
for the order-preserving matching, Section 3 presents our solution based on fil-
tration, Section 4 analyses the new approach, Section 5 presents and discusses
the results of practical experiments, and Section 6 concludes the article.



2 Previous solutions

There are three solutions presented so far, two algorithms are based on the
KMP algorithm [10] and the third one is based on the Boyer–Moore–Horspool
algorithm (BMH) [1, 6].

In the first KMP approach presented by Kubica et al. [9], the fail function in
the KMP algorithm is modified to compute the order-borders table. This can be
achieved in linear time. The KMP algorithm is mutated such that it determines
if the text contains substring with the same relative order as that of the pattern
using the order-borders table B, which is defined for the pattern P as follows:

B[1] = 0

B[i] = max{j < i : P [1 . . j] ≈ P [i− j + 1 . . j]} for i ≥ 2

This computation can also be done in linear time. Hence, the time complexity
of the algorithm is linear.

The second KMP approach by Kim et al. [8] is based on the prefix representa-
tion and it is further optimized according to the nearest neighbor representation.

The prefix representation is based on finding the rank of each integer in the
prefix. It can be computed easily by inserting each character to the dynamic order
statistic tree and then computing the rank of each character in the prefix. The
functions insert and rank both take O(logm) time and since there are O(m) op-
erations, the time complexity of computing prefix representation is O(m logm).
The failure function is computed as in the KMP algorithm using the previous
values in O(m logm) time. Finally the text is searched using the function KMP-
order-matcher. It is different from the KMP algorithm as it is based on the ranks
of the prefix. The functions involved in it are rank, insert and delete, and all of
them take O(logm) time, and since the number of operations can be at most
n, these functions take O(n logm) time. The failure function takes O(m logm)
time and computing the prefix representation takes O(m logm) time. Thus the
total time complexity is O(n logm).

This approach is optimized to overcome the overhead involved in computing
the rank function using the nearest neighbor representation. It checks if the order
of each character in the text matches the corresponding character in the pattern.
In this, the characters itself are compared and there is no need to compute the
rank. It takes O(m logm) time to compute the nearest neighbor representation
of the pattern, O(m) time for the computation of the failure function and O(n)
time for searching the text. So the total time complexity is O(n+m logm).

The BMH approach [2] is based on the bad character rule applied to q-grams,
i.e. strings of q characters. A q-gram is treated as a single character to make shifts
longer. In this way, a large amount of text can be skipped for long patterns, and
the algorithm is obviously sublinear on the average. This algorithm is the first
sublinear solution for order-preserving matching.



3 Our solution

In Section 1 we gave an informal description of order-preserving matching. That
definition cause problems in handling equal values which can appear in real data.
The concept of order-isomorphism removes these problems.

Problem definition. Two strings u and v of the same length over Σ are called
order-isomorphic [9], written u ≈ v, if

ui ≤ uj ⇔ vi ≤ vj for 1 ≤ i, j ≤ |u|.

In the order-preserving pattern matching problem, the task is to find all the
substrings of T which are order-isomorphic with P .

Our solution for order-preserving matching consists of two parts: filtration
and verification. First the text is filtered with some exact string matching algo-
rithm and then the match candidates are verified using a checking routine.

Filtration. For filtration, the consecutive numbers in the pattern P = p1p2...pm
are compared pairwise in the preprocessing phase and the result is encoded as a
string P ′ = b1b2...bm−1 of binary numbers: bi is 1 if pi < pi+1 holds, otherwise bi
is 0. In the search phase, some algorithm for exact string matching (let us call it
A) is applied to filter out the text. When Algorithm A reads an alignment window
of the original text, the text is encoded on line in the same way as the pattern.
Algorithm A is run, as if the whole text would have been encoded. Because
Algorithm A may recognize an occurrence of P ′ which does not correspond to
an actual match of P in T , each occurrence of P ′ is only a match candidate
which should be verified. It is clear that this filtration method cannot skip any
occurrence of P in T .

Verification. In the preprocessing phase, the positions of the pattern P =
p1p2...pm are sorted. The result is an auxiliary table r: pr[i] ≤ pr[j] holds for
each pair i < j and pr[1] is the smallest number in P . In addition, we need a
binary vector E representing the equalities: E[i] = 1 denotes that pr[i] = pr[i+1]

holds. The match candidates found by Algorithm A are traversed in accordance
with the table r. If the candidate starts from tj in T , the first comparison is
done between tj−1+r[1] and tj−1+r[2]. There is a mismatch when

tj−1+r[i] > tj−1+r[i+1] or

(tj−1+r[i] = tj−1+r[i+1] and E[i] = 0) or

(tj−1+r[i] < tj−1+r[i+1] and E[i] = 1)

is satisfied. The candidate is discarded when a mismatch is encountered. Verifi-
cation is efficient because sorting is done only once during preprocessing.

Remark. We use binary characters in encoding. We also tried encoding of three
characters 0, 1, and 2 corresponding to ‘<’, ‘=’, and ‘>’, but the binary approach
was faster in practice, because testing of one condition is faster than testing of
two conditions. Also the frequency of consecutive equalities is low in real data.



4 Analysis

We will prove that our approach is sublinear in the average case, if the filtration
algorithm is sublinear. Sublinearity means that on average all the characters in
the text are not examined.

Let us assume that the numbers in P and T are integers and they are sta-
tistically independent of each other and the distribution of numbers is discrete
uniform. Let P ′ and T ′ be the transformed pattern and text. Let c be the count
of the integer range (i.e. the alphabet size). The probability of one in a position
of P ′ or T ′ (as a result of a comparison) is p = (c2/2− c/2)/c2 = (c− 1)/2c, be-
cause there are c2 integer pairs and c equalities. So the probability of a character
match q is

p2 + (1− p)2 = 2p(p− 1) + 1 = 1− c− 1

c
· c+ 1

2c
= 1− c2 − 1

2c2
=

1

2
+

1

2c2
.

The probability of a match of P ′ (i.e. a match candidate of P ) at a certain
position of T ′ is qm−1, which approaches to zero, when m grows. This is true
even for c = 2. This means that the verification time approaches zero when m
grows, and the filtration time dominates. If the filtration method is sublinear,
the total algorithm is sublinear.

In the worst case, the total algorithm requires O(nm) time, if for example P
is 1m and T is 1n.

The preprocessing phase requires O(m logm) due to sorting of the pattern
positions. The space requirement is O(m).

5 Experiments

We tested four string matching algorithms as filtration methods for order-
preserving matching. Two of them, SBNDM2 and SBNDM4 [4] are based on
the Backward Nondeterministic DAWG Matching (BNDM) algorithm [11]. In
BNDM, each alignment window is processed from right to left like in the Boyer–
Moore algorithm [1]. BNDM simulates the nondeterministic automaton of the
reversed pattern with bitparallelism. SBNDMq starts the processing of each
alignment window by reading a q-gram. The third algorithm is Fast Shift-Or
(FSO) [5]. We utilized a version of FSO coded by B. Ďurian [4]. FSO was se-
lected because it is fast on short binary patterns [4]. The fourth algorithm is the
KMP algorithm [10]; together with verification it was supposed to approximate
the two earlier methods [8, 9] based on KMP. Of the algorithms, SBNDM2 and
SBNDM4 are sublinear, whereas FSO and KMP are linear.

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory
running Ubuntu 12.10. All the algorithms were implemented in C in the 64 bit
mode and run in the testing framework of Hume and Sunday [7]. Our solution
based on filtration was compared with the earlier BMH approach by Cho et
al. [2] (the authors generously let us use their implementation).



Table 1. Execution time of algorithms (random: in seconds, others: in 10 milliseconds).

Data Algorithm 5 8 10 15 20 30 50

DOW KOPM 2.02 1.94 1.94 2.00 1.94 1.96 1.95
BMOPM-3 1.64 1.06 0.91 0.81 0.79 0.76 0.78
BMOPM-4 2.16 0.96 0.72 0.50 0.41 0.34 0.31
BMOPM-5 4.34 1.13 0.78 0.47 0.35 0.27 0.22
FSO-OPM 1.01 0.48 0.46 0.46 0.44 0.46 0.46
S2OPM 1.05 0.58 0.41 0.24 0.16 0.09 0.06
S4OPM 1.03 0.31 0.20 0.31 0.10 0.08 0.06

Hel temp KOPM 0.85 0.81 0.75 0.77 0.76 0.76 0.76
BMOPM-3 0.70 0.46 0.46 0.40 0.39 0.39 0.44
BMOPM-4 0.91 0.40 0.42 0.28 0.24 0.21 0.21
BMOPM-5 1.87 0.49 0.52 0.31 0.23 0.18 0.17
FSO-OPM 0.34 0.21 0.22 0.22 0.21 0.21 0.21
S2OPM 0.40 0.18 0.13 0.08 0.06 0.03 0.03
S4OPM 0.43 0.12 0.09 0.06 0.04 0.04 0.03

Random KOPM 6.90 4.91 6.66 6.06 4.94 6.72 6.70
BMOPM-3 8.08 4.01 4.69 4.17 4.08 4.10 4.07
BMOPM-4 11.48 3.89 3.47 1.77 1.39 1.47 1.18
BMOPM-5 22.83 5.97 4.70 2.67 1.88 1.22 0.79
FSO-OPM 5.36 1.93 1.64 1.68 1.65 1.69 1.68
S2OPM 3.90 2.47 1.89 1.17 1.26 0.79 0.35
S4OPM 3.90 2.01 1.76 1.15 0.85 0.57 0.35

For testing we used three texts: a random text and two real texts, which were
time series of the Dow Jones index and Helsinki temperatures. The random data
contains 1, 000, 000 random integers between 0 and 230. The Dow Jones data
contains 15, 248 integers pertaining to the daily values of the stock index in
the years 1950–2011 and the Helsinki temperature data contains 6, 818 integers
referring to the daily mean temperatures in Fahrenheit (multiplied by ten) in
Helsinki in the years 1995–2005. From each text we picked random patterns of
length 5, 8, 10, 12, 15, and 20. Each set contains 1, 000 patterns for the random
text and 200 patterns for the real texts. Table 1 shows the average execution
times of all the algorithms. In addition, a graph on the times for the Dow Jones
data is shown in Fig. 2. The real texts were tested with 180 repeated runs and the
random text was tested with 60 repeated runs. In Table 1, S2OPM represents
the algorithm based on SBNDM2 filtration, S4OPM represents the algorithm
based on SBNDM4 filtration, BMOPM-q represents the BMH approach for q =
3, 4, 5, KOPM represents the algorithm based on KMP filtration and FSO-OPM
represents the algorithm based on Fast Shift-Or.

From Table 1, it can be clearly seen that in case of real data, S4OPM is
faster than all the other algorithms for all tested values of m except for m = 5.
For m = 5, FSO-OPM is the fastest. In all the three cases, S2OPM is slower
than S4OPM but its execution time approaches the execution time of S4OPM



Fig. 2. Execution times of algorithms for the Dow Jones data.

as the value of m increases. And for m = 50, the execution times of S2OPM and
S4OPM are almost equal. Relatively, S2OPM and S4OPM performed better on
the real data than on the random data. In the case of Helsinki daily temperatures,
S2OPM and S4OPM both give almost the same performance. In the case of
random data, for m = 5 S2OPM and S4OPM are the best and for m = 8 and
for m = 10, FSO-OPM is the best.

In case of real data like the Dow Jones stock index, it is also interesting to
consider the number of matches. For m = 5, the number of matches is 56, 048,
for m = 8 number of matches is 2, 133, and for m = 10 number of matches is
360.

6 Concluding remarks

We introduced a new practical solution based on filtration for order-preserving
matching. Any exact string matching algorithm can be used as the filtration
algorithm. In this paper we have used SBNDM2, SBNDM4, FSO, and KMP as
the filtration method of our solution. The results of our practical experiments
prove that our SBNDM2 and SBNDM4 based solutions are much faster than
the earlier BMOPM algorithm. Moreover, our FSO based solution is the fastest
algorithm for certain short pattern lengths.
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