
Approximate Online Matching
of Circular Strings?

Tommi Hirvola and Jorma Tarhio

Department of Computer Science and Engineering
Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

firstname.surname@aalto.fi

Abstract. Recently a fast algorithm based on the BNDM algorithm
has been presented for exact matching of circular strings. From this
algorithm, we derive several sublinear methods for approximate online
matching of circular strings. The applicability of the new algorithms is
demonstrated with practical experiments. In many cases, the new algo-
rithms are faster than an earlier solution.

1 Introduction

The task of string matching is to find all occurrences of a pattern P = p1 . . . pm
in a text T = t1 . . . tn where all characters in P and T are drawn from a finite
alphabet Σ of size σ. In approximate string matching the occurrences are allowed
to contain errors. We consider two variations of approximate string matching.
In the k differences problem, the total number of mismatches, deletions and
insertions between the pattern and its occurrence should be at most k. In the
k mismatches problem, only mismatches are allowed. Many algorithms [21] for
both variations of approximate string matching have been developed.

The circular string is a set of strings C(S) = {S(1), . . . , S(m)} corresponding
to a given string S = s1 . . . sm, where S(i) = si . . . sms1 . . . si−1 is a rotation (or
conjugate) of S. Given a text T and a circular pattern C(P) for P = p1 . . . pm,
the circular pattern matching problem (CPM) is to find all occurrences of C(P)
in T .

In the exact CPM problem (ECPM), the Z algorithm [12] finds all the exact
occurrences in time O(n+m). Lin and Adjeroh [16] present an O(n log σ) algo-
rithm based on suffix trees. Chen et al. [6] give a solution that is sublinear on
the average for ECPM. Susik et al. [26] describe a filtering method that solves
the ECPM problem in average sublinear time. By sublinearity we mean that a
part of text characters can be skipped. There are several solutions [11,16,18,23]
for the approximate CPM problem (ACPM), but none of them are sublinear. For
example, Lin and Adjeroh [16] give an O(km2n) algorithm.

In this paper, we develop sublinear online algorithms for the ACPM problem.
Our point of view is the practical efficiency of algorithms. There are several

? Work supported by the Academy of Finland (grant 134287).

sublinear algorithms [21] for a single noncircular pattern, but a straightforward
application of them does not guarantee sublinearity in ACPM, because a run
is needed for each of the m rotations and the total time complexity is even in
the best case at least m · O(n/m). However, Fredriksson and Navarro [9] give
a sublinear multi-pattern algorithm (FN for short), which can be applied to
the ACPM problem with k differences in O((k + logσm) n/m) average time
at moderate error levels. As far as we know, the FN algorithm is the fastest
one among earlier online algorithms for the ACPM problem. In this paper, we
introduce three new algorithms ASB, ACB, and ACBq for the ACPM problem.
The experimental results presented in Section 4 show that ASB and ACB are
mostly faster than FN for English and random data. For DNA data, ACBq is
mostly faster than FN.

Matching of circular strings has several applications. In computational ge-
ometry, one needs to find a polygon within a set of polygons. If the initial vertex
is not provided, a polygon of k vertices has k representations and the problem
can be reduced to the search of circular strings [4,13]. Music retrieval is another
application area [16]. Circular strings are also found in bioinformatics. There are
hundreds of protein pairs having sequences which are rotations of each other [17].
Most of the rotations retain their original three-dimensional protein structure
and biological function [2], which makes their identification important. Tradi-
tional sequence alignment methods have been developed for linear sequences,
and they are not well suited for circular strings, hence there is a need for new
methods.

In the algorithms, we use C-like notations: ‘|’, ‘&’, ‘�’, and ‘�’ represent
bitwise operations OR, AND, left shift, and right shift, respectively. The size of
the computer word is denoted by w.

2 CBNDM

Our method for approximate matching of circular strings is based on the
CBNDM algorithm introduced by Chen et al. [6]. Therefore we start by ex-
plaining it.

After the advent of the Shift-Or [1] algorithm, bit-parallel string matching
methods have gained more and more interest. The BNDM (Backward Nondeter-
ministic DAWG Matching) algorithm [20] is a nice example of an elegant, com-
pact, and efficient piece of code for exact string matching. Superficially BNDM
appears to be a cross of the Shift-Or and Boyer–Moore algorithms [3]. However,
the Boyer–Moore algorithm searches for suffixes of the pattern while BNDM
searches for factors of the pattern. BNDM simulates the nondeterministic finite
factor automaton of the reverse pattern. The precomputed table B associates
each character with an instance vector expressing its locations in the pattern.
The inner loop of BNDM checks an alignment of the pattern (i.e. an alignment
window in the text) in the right-to-left order. At the same time the loop recog-
nizes prefixes of the pattern. The leftmost one of the found prefixes determines

the next alignment window of the algorithm. BNDM can be modified for ap-
proximate matching [14].

SBNDM [22,24] (short for Simple BNDM) is a simplified version of BNDM.
SBNDM does not explicitly take care of prefixes, but shifts the pattern simply
over the text character which caused the state vector D to become zero or over
the first character of the alignment window in case of a match. In practice,
SBNDM is slightly faster than BNDM especially for short patterns even though
it examines more text characters [24]. The pseudocode of SBNDM is given as
Algorithm 1. This version works for patterns of at most w characters.

Algorithm 1 (SBNDM)
1: for a ∈ Σ do B[a]← 0
2: for i← 1 to m do B[pi]← B[pi] | (1� (m− i))
3: i← 1
4: while i ≤ n−m+ 1 do

5: j ← 1; D ← B[ti+m−j]
6: while D 6= 0m and j < m do

7: j ← j + 1
8: D ← (D � 1) & B[ti+m−j]
9: if j = m then output i
10: i← i+ (m− j + 1)

The Circular BNDM algorithm (CBNDM) is based on SBNDM. In CBNDM
the left shift is replaced by the rotating left shift of m bits. The state vector on
line 8 is updated as follows:

D ← (D
←→�1) & B[ti+m−j]

For example, 10100
←→�1 results in 01001 for m = 5.

Let D[1], . . . , D[m] be the last m bits of D. Now D[r] = 1 means that the
substring ti+m−j ...ti+m−1 is the same as the prefix u of P (r), |u| = j. Especially,
if D[r] = 1 holds when j = m, the alignment window contains an occurrence of
P (r).

The only difference between the CBNDM and SBNDM algorithms is the
updating of the state vector—other parts of the algorithms are identical. Actually
the condition j < m on line 6 is necessary only in CBNDM, not in SBNDM [7].

SBNDMq [7] is a variation of SBNDM applying q-grams. In each alignment
window, SBNDMq first processes q text characters ti, . . . , ti+q−1 before testing
the state vector D. In practice, SBNDMq is considerably faster than SBNDM
or BNDM. The running time of CBNDM can be improved in a similar way.

3 New algorithms

A filtering method for approximate matching finds match candidates, which
are then checked by another method. First, we introduce a filtering algorithm
based on SBNDM for noncircular patterns with k allowed mismatches. Later
this algorithm is modified for circular patterns and for k differences. We call

this algorithm ASB for Approximate SBNDM. Its idea is related to the Chang–
Lawler algorithm (CL) [5] which applies the so-called matching statistics:

M(r, P) = max{j | j = −1 or tr−j . . . tr is a factor of P}+ 1.

ASB searches up to k + 1 break points in M within an alignment window
of m text characters. The search starts at the last character of the window:
M(i+m− 1, P) = v. Now ti+m−1−v is the first break point, i.e., text character
that causes state vector D to become zero. See an example in Table 1.

Table 1. Example of recognition of break points for P = abbab.

text c a b a b b a a

M 0 1 2 2 3 3 4 1

breaks ∗ ∗ ∗
D 00000 01001 00000 00001 00010 10110 00000 01001

Each break point corresponds to either a character not appearing in the
pattern or a starting character of a new factor in a factor switch. When k + 1
break points have been found, the window is shifted forward. If k or less break
points are found, the window contains a match candidate. This is because an
approximate occurrence can contain at most k + 1 non-overlapping maximal
factors of P [5].

In the CL algorithm, the distance of subsequent alignment windows is fixed,
whereas ASB uses dynamic shifting. The matching statistics of CL is based on a
suffix tree, which is considerably slower than the bit-parallel technique of ASB.
There has been recent improvements in computation of matching statistics (e.g.,
[15,25]), but these methods require construction of heavy data structures which
makes them slower than ASB for short patterns.

Algorithm 2 (ASB, k mismatches)
1: for a ∈ Σ do B[a]← 0
2: for i← 1 to m do B[pi]← B[pi] | (1� (i− 1))
3: E ← 1m+1; i← 1
4: while i ≤ n−m+ 1 do

5: e← 0; D ← E; j ← 0
6: while e ≤ k and j < m do

7: j ← j + 1; D ← (D � 1) & B[ti+m−j]
8: if D = 0m then e← e+ 1; D ← E
9: if j = m and e ≤ k then check candidate ti . . . ti+m−1

10: i← i+ (m− j + 1)

The pseudocode of ASB is given as Algorithm 2. The algorithm itself does
not use the matching statistics, but the break points are recognized as the state
vector D becoming zero, see the example in Table 1. This is because instance
vectors B form a factor automaton of the pattern. The state vector D stays

nonzero while a factor is processed from right to left. If the factor ends at tr,
then D becomes zero at tr−1. After that B[tr−2] is assigned to D, and the
computation is resumed. Note that ASB applies the right shift instead of the
left shift in SBNDM. Therefore the instance vectors B are reversed and we need
m+1 bits for the constant vector E. For this reason, it is assumed that m ≤ w−1
holds. Alternatively, m bits could be used for E in order to be able to handle
the case m = w but then the code would be more complicated.

ASB can be applied directly to circular patterns by considering the discon-
tinuation point of a circular occurrence as an extra error. So we search for k+ 2
break points, and if less break points are found in the alignment window, we have
found a match candidate. ASB can also be modified to handle circular patterns
by switching the bit shift to the bit rotation as done for SBNDM in Section 2.
We call this algorithm ACB (short for Approximate CBNDM). In ACB, the
width of the constant vector E can be reduced to m to handle the case m = w.

As with most bit-parallel algorithms, ASB and ACB can be extended for pat-
terns longer than w by using arrays for the state vector D and for each instance
vector B[a]. ASB can also support long patterns by searching the prefix of length
w of the pattern and checking for the full pattern on line 9 of Algorithm 2. In
the case of ACB, one may consider both the prefix and the suffix of length w.

It is possible to speed up ASB and ACB by using q-grams as with SBNDMq.
However, this variation needs that also the number of seen break points e is pre-
computed for each q-gram because q-grams can contain break points that would
otherwise go undetected. Moreover, it is beneficial to fetch the precomputed val-
ues at each break point in addition to the right end of the alignment. We call
this algorithm ACBq.

The k mismatches variation of ASB is easily extended to handle k differences.
In the k differences problem, the width of the alignment window ism−k to ensure
that if an occurrence starts at the window position then any suffix of the window
is a factor of the pattern with at most k differences so that the window is not
abandoned. Moreover, in the verification step, we consider a text substring of
length m+k as the match candidate. The pseudocode of ASB with k differences
is given as Algorithm 3. The pseudocode assumes that m < w holds.

Algorithm 3 (ASB, k differences)
1: for a ∈ Σ do B[a]← 0
2: for i← 1 to m do B[pi]← B[pi] | (1� (i− 1))
3: E ← 1m+1; i← 1
4: while i ≤ n− (m− k) + 1 do

5: e← 0; D ← E; j ← 0
6: while e ≤ k and j < m− k do

7: j ← j + 1; D ← (D � 1) & B[ti+(m−k)−j]
8: if D = 0m then e← e+ 1; D ← E
9: if j = m− k and e ≤ k then check candidate ti . . . ti+(m+k)−1

10: i← i+ ((m− k)− j + 1)

As done previously, circular patterns can be handled by switching the bit
shift to the bit rotation or allowing one extra break point.

In the ACPM problem with k mismatches, the reported candidates can be
verified by searching the match candidate S with k allowed mismatches in a text
string PP . This can be done because the string PP contains all rotations of P .
In ACPM with k differences, the lengths of the occurrences are not known in
advance and the same method cannot be used. Instead, we search each rotation
of P in S using an approximate matching algorithm that allows k differences,
e.g., Myers’ algorithm [19].

4 Analysis

In this section, we prove that the k differences variation of ACB is sublinear
on the average. Sublinearity of our other algorithms can be proven with the
same method by adjusting the window size and constants which do not change
the resulting average time complexity. The proof is similar to that of the CL
algorithm [5].

The goal is to first determine the expected number of character comparisons
done in each alignment window. This number gives us the average shift length,
which has to exceed half of the window width in order to skip characters in
the text. Moreover, we need to consider the probability of a match candidate
occurring in the window to show that the verification step does not worsen the
average performance with reasonable values of m and k.

Assume that the characters of P and T are chosen independently and uni-
formly from Σ of size σ ≥ 2. The inner loop of ACB finds up to k + 1 factors
and break points of P in the alignment window. Let Xi be a random variable
representing the length of the ith factor. Since the circular pattern P contains
at most m distinct substrings of length logσm+ d, and there are mσd different
strings of that length, we get:

∀ integer d ≥ 0,Pr[Xi = logσm+ d] < σ−d

This gives us the following upper bound for the expected factor length:

E[Xi] < logσm+

∞∑
d=0

dσ−d ≤ logσm+ 2

Thus, ACB reads (k + 1)(logσm+ 3) characters per window on the av-
erage. This has to be less than (m − k)/2 to achieve sublinearity. Equating
(k + 1)(logσm+ 3) < (m− k)/2 yields us the following threshold for k:

k <
m− 2 logσm− 6

2 logσm+ 7

Now, we get the average time complexity of ACB by multiplying the expected
number of examined windows with the average work done in each window:

O

(
n−m+ 1

m− k − (k + 1)(logσm+ 3)

)
·O((k + 1)(logσm+ 3))

This is equal to O((n/m)k logσm) given that n� m and
k < m/(logσm+O(1)).

In conclusion, ACB is sublinear on the average when k is bounded appro-
priately and the match verification time is excluded. It is evident that match
candidates are rare and do not affect the average time complexity if m is large
and k is small. This can be formally proven by computing an upper bound for
Pr[k+X1 +X2 + · · ·+Xk+1 ≥ m− k] with the help of Chernoff bounds. In [5],
the probability is shown to be less than 1/m3 when k is upper bounded by the
threshold m/(logσm+O(1)).

5 Experiments

The test data consisted of three different types of text: DNA (4.5 MB), English
(4.0 MB) and Rand256 (5.0 MB). The DNA text was the genome of E.coli. The
English text was the King James Bible. The Rand256 text contained randomly
generated data in the alphabet of 256 symbols. The texts were taken from the
corpus of the SMART tool [8].

The patterns used in the tests were selected from the texts, and the resulting
strings were randomly rotated and substituted in 0–5 characters positions to
simulate mismatches. The pattern sets for the k differences algorithms allowed
also insertions and deletions. In each test run, 1000 patterns were searched in
the 2 MB long prefix of each text. Test runs were repeated 3 times for each
algorithm and for each test set. Verification of match candidates was done as
explained in Section 3.

As a reference method, we used the FN algorithm [9]. As far as we know, FN
has been the best online algorithm for approximate matching of multiple pat-
terns. We applied FN to the ACPM problem by forming all possible rotations of
a pattern and searching them simultaneously. The implementation was obtained
from the authors and ran with command-line options -D -t6 -B -Sb for the
DNA text, and -A -t2 -B -Sb for the English and Rand256 texts. The option
-s was used for searches allowing only mismatches. FN is also a filtering method
and its implementation uses similar verification algorithms as our methods.

We also ran preliminary tests with an approximate multiple pattern matching
algorithm proposed by Fulwider and Mukherjee [10], but that algorithm was not
competitive.

The test computer has the Intel R© CoreTM i7 860 2.80 GHz processor with
16 GB DDR3 main memory. The operating system is Linux (kernel 3.2.0-48-
generic). The test processes were run on a single core. The algorithms were
implemented in C and compiled with gcc 4.6.3 using O2 or O3 optimization.

Table 2 shows test results in the case of k mismatches. ACB is faster than
ASB on all the inputs and the values of k. This is because ASB gives more
false positives than ACB. ACB is also significantly faster than FN for English
and Rand256 data. When the preprocessing times of the patterns are included,
our algorithms are much faster than FN in most tested cases because FN has a
heavy preprocessing phase whereas ASB and ACB have negligible preprocessing

Table 2. Running times (in seconds) of algorithms for approximate circular matching
with k mismatches. Preprocessing times of FN are in parentheses. Preprocessing times
of ASB and ACB have been included in the running times.

k = 1 k = 2 k = 5
Σ m FN ASB ACB FN ASB ACB FN ASB ACB
DNA 20 2.16 (6.21) 8.64 4.41 4.75 (6.16) 16.01 8.23 442.68 (6.29) 1741.85 684.77

40 1.05 (15.11) 3.55 2.13 1.97 (15.04) 5.14 3.49 4.14 (15.18) 14.47 10.49
60 0.77 (28.70) 2.26 1.43 1.31 (28.61) 3.13 2.28 2.25 (28.73) 6.93 5.53

English 20 2.70 (56.81) 4.75 2.55 4.04 (56.95) 6.92 3.97 63.91 (78.91) 28.84 14.33
40 1.68 (263.71) 2.44 1.41 2.38 (217.48) 3.40 2.09 5.62 (203.50) 7.05 4.83
60 1.33 (443.65) 1.69 1.02 1.69 (397.06) 2.29 1.49 3.19 (382.84) 4.38 3.19

Rand256 20 1.69 (57.42) 1.12 0.82 2.23 (57.56) 1.53 1.13 5.99 (79.51) 3.04 2.32
40 1.19 (266.26) 0.80 0.52 1.34 (219.86) 1.04 0.71 2.51 (205.70) 1.75 1.35
60 0.94 (450.82) 0.67 0.43 0.94 (404.10) 0.85 0.57 1.74 (390.07) 1.37 1.04

times (at most a few milliseconds). However, excluding the preprocessing times,
FN beats the other algorithms on DNA data and ASB on English data. The
significance of preprocessing times depends much on user needs. The shorter
texts are processed, the larger is the proportion of preprocessing in the total
times. In addition, it must be noted that FN has a specific option for DNA
data allowing tuned computation, whereas ASB and ACB make no assumptions
about the input data. Also, decreasing m reduces the preprocessing times of FN
accordingly, which makes FN more competitive in terms of total execution time
for short patterns.

Table 3. Running times (in seconds) of algorithms for approximate circular matching
with k differences. The preprocessing times of FN are shown in parentheses. Prepro-
cessing times of ASB and ACB are included in the running times.

k = 1 k = 2 k = 5
Σ m FN ASB ACB FN ASB ACB FN ASB ACB
DNA 20 2.56 (5.60) 7.21 3.67 7.19 (5.56) 34.88 8.79 1932.83 (5.49) 6066.03 5540.40

40 1.18 (8.92) 2.84 1.71 2.06 (8.81) 4.32 3.09 14.17 (8.80) 31.03 12.81
60 0.98 (12.29) 1.83 1.16 1.19 (12.41) 2.71 2.01 2.91 (12.46) 7.26 5.84

English 20 2.99 (44.24) 3.65 2.39 5.16 (44.76) 6.83 4.35 661.07 (66.48) 840.25 254.65
40 1.86 (169.99) 1.85 1.26 2.69 (123.98) 2.81 2.02 11.29 (109.40) 7.69 6.14
60 1.59 (212.83) 1.33 0.91 1.86 (166.77) 1.96 1.43 4.01 (152.77) 4.33 3.81

Rand256 20 1.75 (44.27) 0.95 0.69 2.60 (44.25) 1.40 1.09 8.82 (66.65) 4.54 3.78
40 1.18 (170.25) 0.61 0.44 1.45 (123.77) 0.84 0.66 3.00 (109.56) 1.99 1.80
60 0.90 (213.54) 0.49 0.36 1.01 (167.20) 0.67 0.54 2.12 (152.99) 1.55 1.41

The results for approximate matching with k differences are presented in
Table 3. Again ACB is the fastest algorithm in nearly all the test runs when the
preprocessing times of FN are included. The only exception is DNA for m = 20
and k = 5 where FN beats both ASB and ACB. In this test run, the number
of checked match candidates is high and FN handles the case better than our
algorithms. In terms of scanning time only, ACB is the fastest algorithm on
English and Rand256, but slightly slower than FN on DNA.

Note that in many cases ASB and ACB are faster when allowing differences
instead of only mismatches. This is due to the faster occurrence verification
algorithm applied in the k differences implementations of the algorithms. Also,
the preprocessing of FN is faster for the k differences case than k mismatches.

0 2 4 6 8 10

0

10

20

30

40

50

60

70

n (MB)

ti
m
e
(s
)

DNA

0 20 40 60 80 100

0

100

200

300

400

n (MB)

ti
m
e
(s
)

English

0 20 40 60 80 100

0

50

100

150

200

250

n (MB)

ti
m
e
(s
)

Rand256

FN ASB ACB

Fig. 1. Total running times of the k difference algorithms as a function of the input
text size for m = 30 and k = 3. The range is 0–10 MB for DNA and 0–100 MB for
English and Rand256.

Figure 1 shows that the running times of the algorithms grow linearly when
the text length is increased. The long input texts were produced by concatenating
the texts with themselves. We used 10 MB for DNA in order to visualize the
intersection points clearly, while 100 MB was used for English and Rand256. On
the DNA text, FN is slower than ASB and ACB for short texts due to the heavy
preprocessing. However, FN becomes faster than the other algorithms when n
increases. ASB and ACB are slower than FN on DNA when n exceeds 2 MB and
5 MB, respectively. On English and Rand256, our algorithms are faster than FN
for all values of n.

Finally, we tuned our best algorithm, ACB, with q-grams for DNA data. The
precomputed D and e values were stored into a table of σq (σ = 4) elements.
The results are shown in Table 4.

Table 4. Running times (in seconds) of ACBq for the k differences problem. Prepro-
cessing times are excluded. The times are comparable to those in Table 3.

k = 1 k = 2 k = 5
Σ m ACB4 ACB6 ACB8 ACB4 ACB6 ACB8 ACB4 ACB6 ACB8
DNA 20 2.62 1.97 1.36 6.19 7.10 6.63 5522.47 5524.56 5545.28

40 1.28 1.10 0.75 2.07 2.40 2.59 9.51 9.42 11.42
60 0.91 0.84 0.66 1.46 1.60 1.81 4.55 4.34 5.36

The q-gram variations are faster than the original ACB algorithm in all the
test cases except for q = 8, k = 5 and m = 20. Interestingly, ACB8 was the
fastest algorithm for k = 1, ACB4 for k = 2 and ACB6 for k = 5. ACBq also
beats the running times of FN in several cases, especially for low k values.

6 Concluding remarks

We have developed several sublinear algorithms for approximate online matching
of circular strings with k errors. Our experiments show that the new algorithms
work well in practice at reasonable error levels. According to our tests, our
algorithms are faster than the current top algorithm FN [9] in many cases. The
main advantages over FN are a compact implementation and significantly lower
preprocessing times, which makes the new algorithms faster than FN by orders
of magnitude for short texts and pattern lengths close to w. Our algorithms are
also better suited for large alphabets than FN.

References

1. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Communica-
tions of the ACM 35(10), 74–82 (1992).

2. Bliven, S., Prlic, A.: Circular permutation in proteins. PLoS Computational Biol-
ogy 8(3) (2012).

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Comm. ACM 20(10),
762–772 (1977).

4. Bunke, H., Bühler, U.: Applications of approximate string matching to 2D shape
recognition. Pattern Recognition 26(12), 1797–1812 (1993).

5. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biological
applications. Algorithmica 12(4/5), 327–344 (1994).

6. Chen, K.H., Huang, G.S., Lee, R.C.T.: Exact circular pattern matching using the
bit-parallelism and q-gram technique. In: Proc. The 29th Workshop on Combina-
torial Mathematics and Computation Theory. pp. 18–27. National Taipei College
of Business (2012).

7. Ďurian, B., Holub, J., Peltola, H., Tarhio, J.: Improving practical exact string
matching. Information Processing Letters 110(4), 148–152 (2010).

8. Faro, S., Lecroq, T.: Smart: a string matching algorithm research
tool. University of Catania and Univeristy of Rouen (2011).
http://www.dmi.unict.it/∼faro/smart/

9. Fredriksson, K., Navarro, N.: Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics 9, article 1.4 (2004).

10. Fulwider, S., Mukherjee, A.: Multiple Pattern Matching. In: PATTERNS 2010, The
Second International Conferences on Pervasive Patterns and Applications, 78–83
(2010).

11. Gregor, J., Thomason, M.G.: Dynamic programming alignment of sequences rep-
resenting cyclic patterns. IEEE Trans. Pattern Anal. Mach. Intell. 15, 129–135
(1993).

12. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997).

13. Huh, Y., Yu, K., Heo, J.: Detecting conjugate-point pairs for map alignment be-
tween two polygon datasets. Computers, Environment and Urban Systems 35(3),
250–262 (2011).

14. Hyyrö, H., Navarro, G.: Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica 41(3), 203–231 (2005).

15. Kärkkäinen, J., Kempa, D., Puglisi, S.: Lightweight Lempel-Ziv parsing. In: Ex-
perimental Algorithms, pp. 139–150. Springer Berlin Heidelberg (2013).

16. Lin, J., Adjeroh, D.: All-against-all circular pattern matching. Computer Journal
55(7), 897–906 (2012).

17. Lo, W.C., Lee, C.C., Lee, C.Y., Lyu, P.C.: CPDB: A database of circular permu-
tation in proteins. Nucleic acids research 37(Suppl. 1), D328–D332 (2009).

18. Marzal, A., Barrachina, S.: Speeding up the computation of the edit distance for
cyclic strings. In: Int’l Conference on Pattern Recognition, pp. 891–894. IEEE
Computer Society (2000).

19. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46(3), 395–415 (1999).

20. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. Journal of Experimental Algorithmics 5 (2000).

21. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001).

22. Navarro, G.: NR-grep: A fast and flexible pattern-matching tool. Softw. Pract.
Exp. 31(13), 1265–1312 (2001).

23. Oncina, J.: The Cocke-Younger-Kasami algorithm for cyclic strings. In: ICPR ’96:
Proc. 13th Int. Conf. Pattern Recognition, Vienna, Austria, pp. 413–416. IEEE
Computer Society (1996).

24. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching. In:
Proc. String Processing and Information Retrieval, 10th International Symposium
(SPIRE ’03). Lecture Notes in Computer Science, vol. 2857, pp. 80–94. Springer
(2003).

25. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Information and Computation
213, 13–22 (2012).

26. Susik, R., Grabowski, S., Deorowicz, S.: Fast and simple circular pattern matching.
In: Proc. 3rd International Conference on Man-Machine Interactions, Advances in
Intelligent Systems and Computing, vol. 242, pp. 537–544. Springer (2014).

