
Alternative Algorithms for Lyndon Factorization?

Sukhpal Singh Ghuman1, Emanuele Giaquinta2, and Jorma Tarhio1

1 Department of Computer Science and Engineering, Aalto University
P.O.B. 15400, FI-00076 Aalto, Finland

{Sukhpal.Ghuman,Jorma.Tarhio}@aalto.fi
2 Department of Computer Science, P.O.B. 68, FI-00014 University of Helsinki, Finland

Emanuele.Giaquinta@cs.helsinki.fi

Abstract. We present two variations of Duval’s algorithm for computing the Lyndon
factorization of a word. The first algorithm is designed for the case of small alphabets
and is able to skip a significant portion of the characters of the string, for strings
containing runs of the smallest character in the alphabet. Experimental results show
that it is faster than Duval’s original algorithm, more than ten times in the case of long
DNA strings. The second algorithm computes, given a run-length encoded string R of
length ρ, the Lyndon factorization of R in O(ρ) time and constant space.

1 Introduction

Given two strings w and w′, w′ is a rotation of w if w = uv and w′ = vu, for some
strings u and v. A string is a Lyndon word if it is lexicographically smaller than all
its proper rotations. Every string has a unique factorization in Lyndon words such
that the corresponding sequence of factors is nonincreasing with respect to lexico-
graphical order. This factorization was introduced by Chen, Fox and Lyndon [2].
Duval’s classical algorithm [3] computes the factorization in linear time and constant
space. The Lyndon factorization is a key ingredient in a recent method for sorting the
suffixes of a text [8], which is a fundamental step in the construction of the Burrows-
Wheeler transform and of the suffix array, as well as in the bijective variant of the
Burrows-Wheeler transform [4] [6]. The Burrows-Wheeler transform is an invertible
transformation of a string, based on the sorting of its rotations, while the suffix array
is a lexicographically sorted array of the suffixes of a string. They are the basis for
important data compression methods and text indexes. Although Duval’s algorithm
runs in linear time and is thus efficient, it can still be useful to further improve the
time for the computation of the Lyndon factorization in the cases where the string is
either huge or compressible and given in a compressed form.

Various alternative algorithms for the Lyndon factorization have been proposed in
the last twenty years. Apostolico and Crochemore presented a parallel algorithm [1],
while Roh et al. described an external memory algorithm [10]. Recently, I et al. showed
how to compute the Lyndon factorization of a string given in grammar-compressed
form and in Lempel-Ziv 78 encoding [5].

In this paper, we present two variations of Duval’s algorithm. The first variation
is designed for the case of small alphabets like the DNA alphabet {a, c, g, t}. If the
string contains runs of the smallest character, the algorithm is able to skip a significant
portion of the characters of the string. In our experiments, the new algorithm is more
than ten times faster than the original one for long DNA strings.

? Supported by the Academy of Finland (grant 134287).

Paper Submitted to PSC

The second variation is for strings compressed with run-length encoding. The
run-length encoding of a string is a simple encoding where each maximal consecutive
sequence of the same symbol is encoded as a pair consisting of the symbol plus the
length of the sequence. Given a run-length encoded string R of length ρ, our algorithm
computes the Lyndon factorization of R in O(ρ) time and uses constant space. It is
thus preferable to Duval’s algorithm in the cases in which the strings are stored or
maintained in run-length encoding.

2 Basic definitions

Let Σ be a finite ordered alphabet of symbols and let Σ∗ be the set of words (strings)
over Σ ordered by lexicographic order. The empty word ε is a word of length 0. Let
also Σ+ be equal to Σ∗ \{ε}. Given a word w, we denote with |w| the length of w and
with w[i] the i-th symbol of w, for 0 ≤ i < |w|. The concatenation of two words u and
v is denoted by uv. Given two words u and v, v is a substring of u if there are indices
0 ≤ i, j < |u| such that v = u[i]...u[j]. If i = 0 (j = |u|−1) then v is a prefix (suffix) of
u. We denote by u[i..j] the substring of u starting at position i and ending at position
j. For i > j u[i..j] = ε. We denote by uk the concatenation of k u’s, for u ∈ Σ+ and
k ≥ 1. The longest border of a word w, denoted with β(w), is the longest proper prefix
of w which is also a suffix of w. Let lcp(w,w′) denote the length of the longest common
prefix of words w and w′. We write w < w′ if either lcp(w,w′) = |w| < |w′|, i.e., if
w is a proper prefix of w′, or if w[lcp(w,w′)] < w′[lcp(w,w′)]. For any 0 ≤ i < |w|,
rot(w, i) = w[i..|w| − 1]w[0..i − 1] is a rotation of w. A Lyndon word is a word w
such that w < rot(w, i), for 1 ≤ i < |w|. Given a Lyndon word w, the following
properties hold:

1. |β(w)| = 0;
2. either |w| = 1 or w[0] < w[|w| − 1].

Both properties imply that no word ak, for a ∈ Σ, k ≥ 2, is a Lyndon word. The
following result is due to Chen, Fox and Lyndon [7]:

Theorem 1. Any word w admits a unique factorization CFL(w) = w1, w2, . . . , wm,
such that wi is a Lyndon word, for 1 ≤ i ≤ m, and w1 ≥ w2 ≥ . . . ≥ wm.

The run-length encoding (RLE) of a word w, denoted by rle(w), is a sequence of pairs
(runs) 〈(c1, l1), (c2, l2,), . . . , (cρ, lρ)〉 such that ci ∈ Σ, li ≥ 1, ci 6= ci+1 for 1 ≤ i < r,

and w = cl11 c
l2
2 . . . c

lρ
ρ . The interval of positions in w of the factor wi in the Lyndon

factorization of w is [ai, bi], where ai =
∑i−1

j=1 |wj|, bi =
∑i

j=1 |wj| − 1. Similarly,

the interval of positions in w of the run (ci, li) is [arlei , brlei] where arlei =
∑i−1

j=1 lj,

brlei =
∑i

j=1 lj − 1.

3 Duval’s algorithm

In this section we briefly describe Duval’s algorithm for the computation of the Lyn-
don factorization of a word. Let L be the set of Lyndon words and let

P = {w | w ∈ Σ+ and wΣ∗ ∩ L 6= ∅} ,

2

Alternative Algorithms for Lyndon Factorization

LF-Duval(w)
1. k ← 0
2. while k < |w| do
3. i← k + 1
4. j ← k + 2
5. while true do
6. if j = |w|+ 1 or w[j − 1] < w[i− 1] then
7. while k < i do
8. output(w[k..k + j − i])
9. k ← k + j − i

10. break
11. else
12. if w[j − 1] > w[i− 1] then
13. i← k + 1
14. else
15. i← i+ 1
16. j ← j + 1

Figure 1. Duval’s algorithm to compute the Lyndon factorization of a string.

be the set of nonempty prefixes of Lyndon words. Let also P ′ = P ∪ {ck | k ≥ 2},
where c is the maximum symbol in Σ. Duval’s algorithm is based on the following
Lemmas, proved in [3]:

Lemma 2. Let w ∈ Σ+ and w1 be the longest prefix of w = w1w
′ which is in L. We

have CFL(w) = w1CFL(w′).

Lemma 3. P ′ = {(uv)ku | u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L}.

Lemma 4. Let w = (uav′)ku, with u, v′ ∈ Σ∗, a ∈ Σ, k ≥ 1 and uav′ ∈ L. The
following propositions hold:

1. For a′ ∈ Σ and a > a′, wa′ /∈ P ′;
2. For a′ ∈ Σ and a < a′, wa′ ∈ L;
3. For a′ = a, wa′ ∈ P ′ \ L.

Lemma 2 states that the computation of the Lyndon factorization of a word w
can be carried out by computing the longest prefix w1 of w = w1w

′ which is a
Lyndon word and then recursively restarting the process from w′. Lemma 3 states
that the nonempty prefixes of Lyndon words are all of the form (uv)ku, where
u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L. By the first property of Lyndon words, the
longest prefix of (uv)ku which is in L is uv. Hence, if we know that w = (uv)kuav′,
(uv)ku ∈ P ′ but (uv)kua /∈ P ′, then by Lemma 2 and by induction we have CFL(w) =
w1w2 . . . wk CFL(uav′), where w1 = w2 = . . . = wk = uv. Finally, Lemma 4 explains
how to compute, given a word w ∈ P ′ and a symbol a ∈ Σ, whether wa ∈ P ′,
and thus makes it possible to compute the factorization using a left to right parsing.
Note that, given a word w ∈ P ′ with |β(w)| = i, we have w[0..|w| − i − 1] ∈ L and

w = (w[0..|w| − i − 1])qw[0..r − 1] with q = b |w||w|−ic and r = |w| mod (|w| − i). For

example, if w = abbabbab, we have |w| = 8, |β(w)| = 5, q = 2, r = 2 and w = (abb)2ab.
The code of Duval’s algorithm is shown in Figure 1.

The following is an alternative formulation of Duval’s algorithm by I et al. [5]:

3

Paper Submitted to PSC

LF-skip(w)
1. e← |w| − 1
2. while e ≥ 0 and w[e] = c̄ do
3. e← e− 1
4. l← |w| − 1− e
5. w ← w[0..e]
6. s← minOcc{c̄c̄}(w) ∪ {|w|}
7. LF-Duval(w[0..s− 1])
8. r ← 0
9. while s < |w| do

10. w ← w[s..|w| − 1]
11. while w[r] = c̄ do
12. r ← r + 1
13. s← |w|
14. k ← 1
15. P ← {c̄rc | c ≤ w[r]}
16. j ← 0
17. for i ∈ OccP(w) : i > j do
18. h← lcp(w,w[i..|w| − 1])
19. if h = |w| − i or w[i+ h] < w[h] then
20. s← i
21. k ← 1 + bh/sc
22. break
23. j ← i+ h
24. for i← 1 to k do
25. output(w[0..s− 1])
26. s← s× k
27. for i← 1 to l do
28. output(c̄)

Figure 2. The algorithm to compute the Lyndon factorization that can potentially skip symbols.

Lemma 5. Let j > 0 be any position of a string w such that w < w[i..|w| − 1] for
any 0 < i ≤ j and lcp(w,w[j..|w| − 1]) ≥ 1. Then, w < w[k..|w| − 1] also holds for
any j < k ≤ j + lcp(w,w[j..|w| − 1]).

Lemma 6. Let w be a string with CFL(w) = w1, w2, . . . , wm. It holds that |w1| =
min{j | w[j..|w| − 1] < w} and w1 = w2 = . . . = wk = w[0..|w1| − 1], where k =
1 + blcp(w,w[|w1|..|w| − 1])/|w1|c.

Based on these Lemmas, Duval’s algorithm can be implemented by initializing j ← 1
and executing the following steps until w becomes ε: 1) compute h← lcp(w,w[j..|w|−
1]). 2) if j+h < |w| and w[h] < w[j+h] set j ← j+h+1; otherwise output w[0..j−1]
k times and set w ← w[jk..|w| − 1], where k = 1 + bh/jc, and set j ← 1.

4 Improved algorithm for small alphabets

Let w be a word over an alphabet Σ with CFL(w) = w1, w2, . . . , wm and let c̄ be
the smallest symbol in Σ. Suppose that there exists k ≥ 2, i ≥ 1 such that c̄k is a
prefix of wi. If the last symbol of w is not c̄, then by Theorem 1 and by the properties
of Lyndon words, c̄k is a prefix of each of wi+1, wi+1, . . . , wm. This property can be
exploited to devise an algorithm for Lyndon factorization that can potentially skip

4

Alternative Algorithms for Lyndon Factorization

symbols. Our algorithm is based on the alternative formulation of Duval’s algorithm
by I et al.. Given a set of strings P , let OccP(w) be the set of all (starting) positions
in w corresponding to occurrences of the strings in P . We start with the following
Lemmas:

Lemma 7. Let w be a word and let s = max{i | w[i] > c̄}∪{−1}. Then, CFL(w) =
CFL(w[0..s])CFL(c̄(|w|−1−s)).

Proof. If s = −1 or s = |w| − 1 the Lemma plainly holds. Otherwise, Let wi be
the factor in CFL(w) such that s ∈ [ai, bi]. To prove the claim we have to show
that bi = s. Suppose by contradiction that s < bi, which implies |wi| ≥ 2. Then,
wi[|wi| − 1] = c̄, which contradicts the second property of Lyndon words. ut

Lemma 8. Let w be a word such that c̄c̄ occurs in it and let s = minOcc{c̄c̄}(w).
Then, we have CFL(w) = CFL(w[0..s− 1])CFL(w[s..|w| − 1]).

Proof. Let wi be the factor in CFL(w) such that s ∈ [ai, bi]. To prove the claim we
have to show that ai = s. Suppose by contradiction that s > ai, which implies |wi| ≥ 2.
If s = bi then wi[|wi|−1] = c̄, which contradicts the second property of Lyndon words.
Otherwise, since wi is a Lyndon word it must hold that wi < rot(wi, s − ai). This
implies at least that wi[0] = wi[1] = c̄, which contradicts the hypothesis that s is the
smallest element in Occ{c̄c̄}(w). ut

Lemma 9. Let w be a word such that w[0] = w[1] = c̄ and w[|w| − 1] 6= c̄. Let r be
the smallest position in w such that w[r] 6= c̄. Note that w[0..r − 1] = c̄r. Let also
P = {c̄rc | c ≤ w[r]}. Then we have

b1 = min{s ∈ OccP(w) | w[s..|w| − 1] < w} ∪ {|w|} − 1 ,

where b1 is the ending position of factor w1.

Proof. By Lemma 6 we have that b1 = min{s | w[s..|w| − 1] < w}− 1. Since w[0..r−
1] = c̄r and |w| ≥ r + 1, for any string v such that v < w we must have that either
v[0..r] ∈ P , if |v| ≥ r+ 1, or v = c̄|v| otherwise. Since w[|w|−1] 6= c̄, the only position
s that satisfies w[s..|w| − 1] = c̄|w|−s is |w|, corresponding to the empty word. Hence,

{s | w[s..|w| − 1] < w} = {s ∈ OccP(w) | w[s..|w| − 1] < w} ∪ {|w|}

ut

Based on these Lemmas, we can devise a faster factorization algorithm for words
containing runs of c̄. The key idea is that, using Lemma 9, it is possible to skip
symbols in the computation of b1, if a suitable string matching algorithm is used to
compute OccP(w). W.l.o.g. we assume that the last symbol of w is different from c̄.
In the general case, by Lemma 7, we can reduce the factorization of w to the one
of its longest prefix with last symbol different from c̄, as the remaining suffix is a
concatenation of c̄ symbols, whose factorization is a sequence of factors equal to c̄.
Suppose that c̄c̄ occurs in w. By Lemma 8 we can split the factorization of w in
CFL(u) and CFL(v) where uv = w and |u| = minOcc{c̄c̄}(w). The factorization of
CFL(u) can be computed using Duval’s original algorithm.

5

Paper Submitted to PSC

LF-rle(R)
1. k ← 0
2. while k < |R| do
3. (m, q)← LF-rle-next(R, k)
4. for i← 1 to q do
5. output (k, k +m− 1)
6. k ← k +m

LF-rle-next(R = 〈(c1, l1), . . . , (cρ, lρ)〉, k)
1. i← k
2. j ← k + 1
3. while true do
4. if i > k and lj−1 < li−1 then
5. z ← 1
6. else z ← 0
7. s← i− z
8. if j = |R| or cj < cs or
9. (cj = cs and lj > ls and cj < cs+1) then

10. return (j − i, b(j − k − z)/(j − i)c)
11. else
12. if cj > cs or lj > ls then
13. i← k
14. else
15. i← i+ 1
16. j ← j + 1

Figure 3. The algorithm to compute the Lyndon factorization of a run-length encoded string.

Concerning v, let r = min{i | v[i] 6= c̄}. By definition v[0] = v[1] = c̄ and v[|v| −
1] 6= c̄, and we can apply Lemma 9 on v to find the ending position s of the first factor
in CFL(v). To this end, we have to find the position min{i ∈ OccP(v) | v[i..|v|−1] <
v}, where P = {c̄rc | c ≤ v[r]}. For this purpose, we can use any algorithm for multiple
string matching to iteratively compute OccP(v) until either a position i is found that
satisfies v[i..|v|−1] < v or we reach the end of the string. Let h = lcp(v, v[i..|v|−1]) ,
for a given i ∈ OccP(v). Observe that h ≥ r and, if v < v[i..|v|−1], then, by Lemma 5,
we do not need to verify the positions i′ ∈ OccP(v) such that i′ ≤ i + h. Given that
all the patterns in P differ in the last symbol only, we can express P more succinctly
using a character class for the last symbol and match this pattern using a string
matching algorithm that supports character classes, such as the algorithms based on
bit-parallelism. In this respect, SBNDM2 [11], a variation of the BNDM algorithm [9]
is an ideal choice, as it is sublinear on average. Instead of P , it is naturally possible
to search for c̄r, but that solution is slower in practice for small alphabets. Note that
the same algorithm can also be used to compute minOccc̄c̄(w) in the first phase.

Let h = lcp(v, v[s..|v| − 1]) and k = 1 + bh/sc. Based on Lemma 6, the algorithm
then outputs v[0..s − 1] k times and iteratively applies the above method on v′ =
v[sk..|v| − 1]. It is not hard to verify that, if v′ 6= ε, then |v′| ≥ r + 1, v′[0..r − 1] = c̄
and v′[|v′| − 1] 6= c̄, and so Lemma 9 can be used on v′. The code of the algorithm
is shown in Figure 2. The computation of the value r′ = min{i | v′[i] 6= c̄} for v′

takes advantage of the fact that v′[0..r − 1] = c̄, so as to avoid useless comparisons.
If the the total time spent for the iteration over the sets OccP(v) is O(|w|), the full
algorithm has also linear time complexity in the worst case. To see why, it is enough
to observe that the positions i for which the algorithm verifies if v[i..|v| − 1] < v are
a subset of the positions verified by the original algorithm.

6

Alternative Algorithms for Lyndon Factorization

5 Computing the Lyndon factorization of a run-length
encoded string

In this section we present an algorithm to compute the Lyndon factorization of a
string given in RLE form. The algorithm is based on Duval’s original algorithm and
on a combinatorial property between the Lyndon factorization of a string and its
RLE, and has O(ρ)-time and O(1)-space complexity, where ρ is the length of the
RLE. We start with the following Lemma:

Lemma 10. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factoriza-
tion. For any 1 ≤ i ≤ |rle(w)|, let 1 ≤ j, k ≤ m, j ≤ k, such that arlei ∈ [aj, bj] and
brlei ∈ [ak, bk]. Then, either j = k or |wj| = |wk| = 1.

Proof. Suppose by contradiction that j < k and either |wj| > 1 or |wk| > 1. By
definition of j, k, we have wj ≥ wk. Moreover, since both [aj, bj] and [ak, bk] overlap
with [arlei , brlei], we also have wj[|wj| − 1] = wk[0]. If |wj| > 1, then, by definition
of wj, we have wj[0] < wj[|wj| − 1] = wk[0]. Instead, if |wk| > 1 and |wj| = 1, we
have that wj is a prefix of wk. Hence, in both cases we obtain wj < wk, which is a
contradiction. ut

The consequence of this Lemma is that a run of length l in the RLE is either
contained in one factor of the Lyndon factorization, or it corresponds to l unit-length
factors. Formally:

Corollary 11. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factor-
ization. Then, for any 1 ≤ i ≤ |rle(w)|, either there exists wj such that [arlei , brlei] is
contained in [aj, bj] or there exist li factors wj, wj+1, . . . , wj+li−1 such that |wj+k| = 1
and aj+k ∈ [arlei , brlei], for 0 ≤ k < li.

This property can be exploited to obtain an algorithm for the Lyndon factorization
that runs in O(ρ) time. First, we introduce the following definition:

Definition 12. A word w is a LR word if it is either a Lyndon word or it is equal to
ak, for some a ∈ Σ, k ≥ 2. The LR factorization of a word w is the factorization in
LR words obtained from the Lyndon factorization of w by merging in a single factor
the maximal sequences of unit-length factors with the same symbol.

For example, the LR factorization of cctgccaa is 〈cctg, cc, aa〉. Observe that this
factorization is a (reversible) encoding of the Lyndon factorization. Moreover, in this
encoding it holds that each run in the RLE is contained in one factor and thus the
size of the LR factorization is O(ρ). Let L′ be the set of LR words. We now present
the algorithm LF-rle-next(R, k) which computes, given an RLE sequence R and
an integer k, the longest LR word in R starting at position k. Analogously to Duval’s
algorithm, it reads the RLE sequence from left to right maintaining two integers, j
and `, which satisfy the following invariant:

clkk . . . c
lj−1

j−1 ∈ P ′;

` =

{
|rle(β(clkk . . . c

lj−1

j−1))| if j − k > 1,

0 otherwise.

(1)

7

Paper Submitted to PSC

The integer j, initialized to k + 1, is the index of the next run to read and is in-
cremented at each iteration until either j = |R| or clkk . . . c

lj−1

j−1 /∈ P ′. The integer `,

initialized to 0, is the length in runs of the longest border of clkk . . . c
lj−1

j−1 , if clkk . . . c
lj−1

j−1

spans at least two runs, and equal to 0 otherwise. For example, in the case of the
word ab2ab2ab we have β(ab2ab2ab) = ab2ab and ` = 4. Let i = k + `. In general, if
` > 0, we have

lj−1 ≤ li−1, lk ≤ lj−`,

β(clkk . . . c
lj−1

j−1) = clkk c
lk+1

k+1 . . . c
li−2

i−2 c
lj−1

i−1 = clkj−`c
lj−`+1

j−`+1 . . . c
lj−2

j−2 c
lj−1

j−1 .

Note that the longest border may not fully cover the last (first) run of the corre-
sponding prefix (suffix). Such the case is for example for the word ab2a2b. However,

since clkk . . . c
lj−1

j−1 ∈ P ′ it must hold that lj−` = lk, i.e., the first run of the suffix is fully
covered. Let

z =

{
1 if ` > 0 ∧ lj−1 < li−1,

0 otherwise.

Informally, the integer z is equal to 1 if the longest border of clkk . . . c
lj−1

j−1 does not

fully cover the run (ci−1, li−1). By 1 we have that clkk . . . c
lj−1

j−1 can be written as (uv)qu,
where

q = b j−k−z
j−i c, r = z + (j − k − z) mod (j − i),

u = c
lj−r
j−r . . . c

lj−1

j−1 , uv = clkk . . . c
lj−`−1

j−`−1 = c
li−r
i−r . . . c

lj−r−1

j−r−1,

uv ∈ L′

For example, in the case of the word ab2ab2ab, for k = 0, we have j = 6, i = 4, q =
2, r = 2. The algorithm is based on the following Lemma:

Lemma 13. Let j, ` be such that invariant 1 holds and let s = i− z. Then, we have
the following cases:

1. If cj < cs then clkk . . . c
lj
j /∈ P ′;

2. If cj > cs then clkk . . . c
lj
j ∈ L′ and 1 holds for j + 1, `′ = 0;

Moreover, if z = 0, we also have:

3. If cj = ci and lj ≤ li, then clkk . . . c
lj
j ∈ P ′ and 1 holds for j + 1, `′ = `+ 1;

4. If cj = ci and lj > li, either cj < ci+1 and clkk . . . c
lj
j /∈ P ′ or cj > ci+1, clkk . . . c

lj
j ∈ L′

and 1 holds for j + 1, `′ = 0.

Proof. The idea is the following: we apply Lemma 4 with the word (uv)qu as defined
above and symbol cj. Observe that cj is compared with symbol v[0], which is equal
to ck+r−1 = ci−1 if z = 1 and to ck+r = ci otherwise.

First note that, if z = 1, cj 6= ci−1, since otherwise we would have cj−1 = ci−1 = cj.
In the first three cases, we obtain the first, second and third proposition of Lemma 4,
respectively, for the word clkk . . . c

lj−1

j−1 cj. Independently of the derived proposition, it is

easy to verify that the same proposition also holds for clkk . . . c
lj−1

j−1 c
m
j , m ≤ lj. Consider

now the fourth case. By a similar reasoning, we have that the third proposition of
Lemma 4 holds for clkk . . . c

li
j . If we then apply Lemma 4 to clkk . . . c

li
j and cj, cj is

compared to ci+1 and we must have cj 6= ci+1 as otherwise ci = cj = ci+1. Hence,
either the first (if cj < ci+1) or the second (if cj > ci+1) proposition of Lemma 4 must
hold for the word clkk . . . c

li+1
j . ut

8

Alternative Algorithms for Lyndon Factorization

We prove by induction that invariant 1 is maintained. At the beginning, the vari-
ables j and ` are initialized to k+1 and 0, respectively, so the base case trivially holds.
Suppose that the invariant holds for j, `. Then, by Lemma 13, either clkk . . . c

lj
j /∈ P ′ or

it follows that the invariant also holds for j+ 1, `′, where `′ is equal to `+ 1, if z = 0,
cj = ci and lj ≤ li, and to 0 otherwise. When clkk . . . c

lj
j /∈ P ′ the algorithm returns

the pair (j − i, q), i.e., the length of uv and the corresponding exponent. Based on
Lemma 2, the factorization of R can then be computed by iteratively calling LF-
rle-next. When a given call to LF-rle-next returns, the factorization algorithm
outputs the q factors uv starting at positions k, k+ (j− i), . . . , k+ (q− 1)(j− i) and
restarts the factorization at position k+q(j−i). The code of the algorithm is shown in
Figure 3. We now prove that the algorithm runs in O(ρ) time. First, observe that, by
definition of LR factorization, the for loop at line 4 is executed O(ρ) times. Suppose
that the number of iterations of the while loop at line 2 is n and let k1, k2, . . . , kn+1

be the corresponding values of k, with k1 = 0 and kn+1 = |R|. We now show that
the s-th call to LF-rle-next performs less than 2(ks+1 − ks) iterations, which will
yield O(ρ) number of iterations in total. This analysis is analogous to the one used
by Duval. Suppose that i′, j′ and z′ are the values of i, j and z at the end of the
s-th call to LF-rle-next. The number of iterations performed during this call is
equal to j′ − ks. We have ks+1 = ks + q(j′ − i′), where q = b j′−ks−z

j−i′ c, which implies

j′ − ks < 2(ks+1 − ks) + 1, since, for any positive integers x, y, x < 2bx/ycy holds.

6 Experiments with LF-Skip

The experiments were run on MacBook Pro with the 2.4 GHz Intel Core 2 Duo
processor and 2 GB memory. Programs were written in the C programming language
and compiled with the gcc compiler (4.8.2) using the -O3 optimization level.

We tested the LF-skip algorithm and Duval’s algorithm with various texts. With
the protein sequence of the Saccharomyces cerevisiae genome (3 MB), LF-skip gave a
speed-up of 3.5 times over Duval’s algorithm. Table 1 shows the speed-ups for random
texts of 5 MB with various alphabets sizes. With longer texts, speed-ups were larger.
For example, the speed-up for the 50 MB DNA text (without newlines) from the
Pizza&Chili Corpus1 was 14.6 times.

Table 1. Speed-up of LF-skip with various alphabet sizes in a random text.

|Σ| Speed-up
2 9.0
3 7.7
4 7.2
5 6.1
6 4.8
8 4.3
10 3.5
12 3.4
15 2.4
20 2.5
25 2.2
30 1.9

1 http://pizzachili.dcc.uchile.cl/

9

Paper Submitted to PSC

We made also some tests with texts of natural language. Because runs are very
short in natural language, the benefit of LF-skip is marginal. We even tried alphabet
transformations in order to vary the smallest character of the text, but that did not
help.

7 Conclusions

In this paper we have presented two variations of Duval’s algorithm for computing the
Lyndon factorization of a string. The first algorithm was designed for the case of small
alphabets and is able to skip a significant portion of the characters of the string for
strings containing runs of the smallest character in the alphabet. Experimental results
show that the algorithm is considerably faster than Duval’s original algorithm. The
second algorithm is for strings compressed with run-length encoding and computes
the Lyndon factorization of a run-length encoded string of length ρ in O(ρ) time and
constant space.

References

1. A. Apostolico and M. Crochemore: Fast parallel Lyndon factorization with applications.
Mathematical Systems Theory, 28(2) 1995, pp. 89–108.

2. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. IV. The quotient
groups of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.

3. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.

4. J. Y. Gil and D. A. Scott: A bijective string sorting transform. CoRR, abs/1201.3077 2012.

5. T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Faster lyndon factorization
algorithms for SLP and LZ78 compressed text, in SPIRE, O. Kurland, M. Lewenstein, and
E. Porat, eds., vol. 8214 of Lecture Notes in Computer Science, Springer, 2013, pp. 174–185.

6. M. Kufleitner: On bijective variants of the Burrows-Wheeler transform, in Proceedings of
the Prague Stringology Conference 2009, J. Holub and J. Zdárek, eds., 2009, pp. 65–79.

7. M. Lothaire: Combinatorics on Words, Cambridge Mathematical Library, Cambridge Uni-
versity Press, 1997.

8. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: Sorting suffixes of a text via its
Lyndon factorization, in Proceedings of the Prague Stringology Conference 2013, J. Holub and
J. Zdárek, eds., 2013, pp. 119–127.

9. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics, 5 2000.

10. K. Roh, M. Crochemore, C. S. Iliopoulos, and K. Park: External memory algorithms
for string problems. Fundam. Inform., 84(1) 2008, pp. 17–32.

11. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

10

