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Abstract We consider a compression scheme for natural-language texts and genetic data.
The method encodes characters with variable-length codewords of k-bit base symbols. We
present a new search algorithm, based on the SBNDM2 algorithm, for this encoding. The
results of practical experiments show that the method supersedes the previous comparable
methods in search speed.

1 Introduction

With the amount of information available constantly growing, fast information retrieval
is a key concept in many on-line applications. The string matching problem is defined as
follows: given a pattern P = p1 . . . pm and a text T = t1 . . . tn in an alphabet Σ, find all
the occurrences of P in T . Various good solutions [7] have been presented for this problem.
The most efficient solutions in practice are based on the Boyer-Moore algorithm [3] or on
the BNDM algorithm [21].

The compressed matching problem [1] has gained much attention. In this problem, string
matching is done in a compressed text without decompressing it. Researchers have proposed
several methods [2,19,20,22] based on Huffman coding [15] or the Ziv-Lempel family [28,29].
Alternatively, indexing methods [11,26] can be used to speed up string matching. However,
in this paper we concentrate on traditional compressed matching.

One presented idea is to encode whole words by using end-tagged dense code or (s, c)-
dense code [4]. In both the approaches, codewords consist of one or more bytes. In end-
tagged dense code, the first bit of each byte specifies whether the byte is the last byte of
the codeword or not. Thus, there are 128 possible byte values which end the codeword,
called stoppers, and 128 possible values for continuers, which are not the last byte of the
codeword. In (s, c)-dense code, the proportion between stoppers and continuers can be
chosen more freely to minimize the size of the compressed text. The bytes whose value is
less than c are continuers whereas the bytes whose value is at least c but less than s + c
(the number of possible byte values) are stoppers. String matching in the compressed text
is performed by compressing the pattern and searching for it by using the Boyer-Moore-
Horspool algorithm [14]. Brisaboa et al. [5,6] also present dynamic versions of end-tagged
dense code and (s, c)-dense code allowing fast searching. All these methods use word-based
encoding.
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Culpepper and Moffat [8,9] present another word-based compression approach where
the value of the first byte of a codeword always specifies the length of the codeword. The
rest of bytes in the codeword can obtain any of the possible values. The compressed search
can be performed in several different ways, for example using a Knuth-Morris-Pratt [17] or
Boyer-Moore-Horspool type algorithm. However, the search algorithm requires that a shift
never places the byte-level alignment between codeword boundaries.

The word-based compression methods are poor in the case of highly inflectional lan-
guages like Finnish. In this paper, we will concentrate on character-based compression.
Shibata et al. [25] present a method called BM-BPE which finds text patterns faster in a
compressed text than Agrep [27] finds the same patterns in an uncompressed text. Their
search method is based on the Boyer-Moore algorithm and they employ a restricted version
of byte pair encoding (BPE) [13], which replaces common pairs of characters with unused
characters.

Maruyama et al. [18] present a compression method related to BPE using recursive
pairing. However, in their method they select a digram AiBi (Ai and Bi are either symbols
from alphabet Σ or variables presented earlier in the compression process) that occurs
most frequently after ai ∈ Σ and replace the string aiAiBi with the string aiX where X is
a new variable. This is performed for every ai ∈ Σ. Because the symbol preceding a digram
is taken into account, the variable X can be used to replace different digrams after different
symbols. They also present an efficient pattern matching algorithm for compressed text.
The search algorithm is Knuth-Morris-Pratt [17]. The automaton is modified so that it
memorizes the symbol read previously and its Jump and Output functions are also defined
for variables occurring in the compressed text.

We present a different character-based method which is faster than BM-BPE. In our
method, characters are encoded as variable-length codewords, which consist of base symbols

containing a fixed number of bits. Our encoding approach is a generalization of that of de
Moura et al. [19], where bytes are used as base symbols for coding words. We present
several variants of our encoding scheme and give two methods for string matching in the
compressed text.

Earlier we have presented a search algorithm [23,24] based on Tuned Boyer-Moore
[16], which is a variation of the Boyer-Moore-Horspool algorithm [14]. The shift function is
based on several base symbols in order to enable longer jumps than the ordinary occurrence
heuristic. In this paper, we present a new search algorithm based on SBNDM2 [10] which
is a variation of BNDM, the Backward Nondeterministic DAWG Matching algorithm [21].
SBNDM2 is a fast bit-parallel algorithm, which recognizes factors of the pattern by simu-
lating a nondeterministic automaton of the reversed pattern. Fredriksson and Nikitin [12]
have earlier used BNDM to search for patterns in the text that has been compressed by
their own algorithm. However, in their tests BNDM on compressed text was slower than
the Boyer-Moore-Horspool algorithm on uncompressed text, while in our experiments our
SBNDM based search algorithm was faster.

We present test results of four variations of our algorithms together with two reference
algorithms for compressed texts as well as two other reference algorithms for uncompressed
texts. We are interested only in search speed. The tests were run on DNA and on English
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and Finnish texts. Our SBNDM2 based search method was the fastest among all the tested
algorithms for English patterns of at least 9 characters.

The paper has been organized as follows. Section 2 provides an enhanced presentation
of our coding scheme [24]. Our two search algorithms are described in Section 3. Then
Section 4 reports the results of our practical experiments before the conclusions in Section 5.

2 Stopper encoding

2.1 Stoppers and continuers

We apply a semi-static encoding scheme called stopper encoding for characters, where the
codes are based on frequencies of characters in the text to be compressed. The frequencies
of characters are gathered in the first pass of the text before the encoding in the second
pass. Alternatively, fixed frequencies based on the language and the type of the text may
be used.

A codeword is a variable-length sequence of base symbols which are represented as k
bits, where k is a parameter of our scheme. The different variants of our scheme are denoted
as SEk, where SE stands for stopper encoding.

Because the length of a code varies, we need a mechanism to recognize where a new one
starts. A simple solution is to reserve some of the base symbols as stoppers which can only
be used as the last base symbol of a code. All other base symbols are continuers which
can be used anywhere but at the end of a code. If u1 . . . uj is a code, then u1, . . . , uj−1 are
continuers and uj is a stopper.

De Moura et al. [19] use a scheme related to our approach. They apply 8-bit base
symbols to encode words where one bit is used to describe whether the base symbol is a
stopper or a continuer. Thus they have 128 stoppers and 128 continuers. Brisaboa et al.
[4] use the optimal number of stoppers.

2.2 Number of stoppers

It is an optimization problem to choose the number of stoppers to achieve the best compres-
sion ratio (the size of the compressed file divided by that of the original file). The optimal
number of stoppers depends on the number of different characters and the frequencies of
the characters. If there are s stoppers of k bits, there are c = 2k − s continuers of k bits.
A codeword of l base symbols consists of l− 1 continuers and one stopper. Thus, there are
scl−1 valid codewords of length l.

Let Σ = {a1, a2, ..., aq} be the alphabet, and let f(ai) be the frequency of ai. For
simplicity, we assume that the alphabet is ordered according to the frequency, i.e. f(ai) ≥
f(aj) for i < j.

Now a1, ..., as are encoded with one base symbol, as+1, ..., as+cs are encoded with two
base symbols, as+cs+1, ..., as+c2s are encoded with three base symbols, and so on. So the
number of characters that can be encoded with l or less base symbols is
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l∑

j=1

cj−1s =
s(cl − 1)

c− 1
.

From this we can calculate the number of k-bit base symbols l(ai, k, s) needed to encode
the character ai in the case of s stoppers. It must be possible to encode at least i first
characters by using l(ai, k, s) or less base symbols and thus

i ≤
s(cl(ai,k,s) − 1)

c− 1
.

By solving the inequality, we obtain

l(ai, k, s) ≥ logc(i(c− 1)/s + 1).

Because l(ai, k, s) must be an integer and we want to choose the smallest possible integer,

l(ai, k, s) = ⌈logc(i(c− 1)/s + 1)⌉.

Then the compression ratio C is

C =
q∑

i=1

f(ai)l(ai, k, s)k

8
. (1)

Let us consider 4-bit base symbols as an example. Let us assume that all the characters
are equally frequent. Table 1 shows the optimal numbers of stoppers for different sizes of
the alphabet.

To find the optimal number of stoppers, the frequencies of characters need to be cal-
culated first. After that, formula (1) can be used for all reasonable numbers of stoppers
(8−16 for 4-bit base symbols), and the number producing the lowest compression ratio can
be picked. Another possibility is presented by Brisaboa et al. in [4], where binary search is
used to find a minimum compression ratio calculated by using formula (1). They consider
the curve which presents the compression ratio as a function of the number of stoppers. At
each step, it is checked whether the current point is in the decreasing or increasing part

Table 1. Optimal stopper selection.

# of characters Stoppers Base symb./char at end
1–31 15 1.55
31–43 14 1.70
43–53 13 1.77
53–61 12 1.82
61–67 11 1.85
67–71 10 1.87
71–73 9 1.89
73–587 8 2.87
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of the curve and the search moves towards the decreasing direction. Using this strategy
demands that there exists a unique minimum of the curve, but in practice natural language
texts usually have that property.

2.3 Building the encoding table

After the number of stoppers (and with it, the compression ratio) has been decided, an
encoding table can be created. The average search time is smaller if the distribution of base
symbols is as uniform as possible. We use a heuristic algorithm, which produces comparable
results with an optimal solution. With this algorithm, the encoding can be decided directly
from the order of the frequencies of characters.

Base symbols of two and four bits are the easiest cases. In this encoding with 2k different
base symbols and s stoppers, the base symbols 0, 1, . . . , s − 1 will act as stoppers and
the base symbols s, . . . , 2k − 1 as continuers. At first, the s most common characters are
assigned their own stopper base symbol, in the inverse order of frequency (the most common
character receiving the base symbol s−1 and so on). After that, starting from the s+1:th
common character, each character is assigned a two-symbol codeword in numerical order
(first the ones with the smallest possible continuer, in the order starting from the smallest
stopper). Exactly the same ordering is used with codewords of three or more base symbols.
We call this technique folding, since the order of the most frequent characters is reversed
until a certain folding point. The aim of folding is to equalize the distribution of base
symbols in order to speed up searching. The resulting encoding of the characters in the
KJV Bible is presented in Table 2.

Table 2. Encoding table for the King James Bible, 4-bit version, 14 stoppers. The characters have been
sorted by the order of their relative frequencies.

ch code ch code ch code ch code
d w e1 D e9 N fe1

e c y f1 T f9 P ff1

t b c e2 R ea C ee2

h a g f2 G fa x ef2

a 9 b e3 J eb q fe2

o 8 p f3 S fb Z ff2

n 7 ←֓ e4 B ec Y ee3

s 6 v f4 ? fc K ef3

i 5 . e5 H ed ! fe3

r 4 k f5 M fd U ff3

d 3 A e6 E ee0 ( ee4

l 2 I f6 j ef0 ) ef4

u 1 : e7 W fe0 V fe4

f 0 ; f7 F ff0 - ff4

m e0 L e8 ’ ee1 Q ee5

, f0 O f8 z ef1
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Table 3. Relative frequencies of base symbols in the encoded text (average: 6.25%).

bsym freq bsym freq bsym freq bsym freq
0 4.85% 4 4.58% 8 5.11% c 8.48%
1 4.31% 5 4.62% 9 5.56% d 16.21%
2 4.62% 6 4.38% a 5.96% e 8.03%
3 4.80% 7 4.99% b 6.51% f 7.01

Table 3 shows the relative frequencies of the base symbols in our example. The frequen-
cies of the first stoppers depend on the frequencies of the most common characters. E.g.,
the frequency of d depends on the frequency of the space symbol.

2.4 Variant: code splitting

Consider a normal, uncompressed text file, composed of natural-language text. In the file,
most of the information (entropy) in every character is located in the 5–6 lowest bits. A
search algorithm could exploit this by having the fast loop ignore the highest bits, and
take the lower bits of several characters at once. The idea is not usable as such, because
the time required for shift and and operations is too much for a fast loop to perform
efficiently. However, it is the basis for a technique called code splitting.

Applying code splitting to SE6 means that each 6-bit base symbol is split into two
parts: the 4-bit low part and the 2-bit high part, which are stored separately. The search
algorithm first works with low parts only, trying to find a match in them. Only after such
a match is found, the high parts are checked. Depending on the alphabet, it may also be
applicable to split the codes into 4-bit high part and 2-bit low part and to start the search
with the high part. We denote a code-split variant as SE6,4 or SE6,2, where the smaller
number is the number of low bits.

Code splitting can also be applied to SE8. SE8,4 is a special case. The characters of
the original text are split as such into two 4-bit arrays. This speeds up search but does
not involve compression. Code splitting is useful in evenly-distributed alphabets where no
compression could be gained, or as an end-coding method for some compression method,
including de Moura [19].

3 String matching

We start with a description of our old searching algorithm [24]. This will help to understand
the details of the new algorithm, which is more complicated.

3.1 Boyer-Moore based algorithm

Let us consider a text with less than 16 different characters. With the SE4 schema, any
character of this text can be represented with a codeword consisting of a single four-bit
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Table 4. An example of BM-SE, pattern 618e05.

. . . 6 1 8 e 0 5 . . .

. . . . . . 6 1 8 e 0 5

base symbol. For effective use, two consecutive base symbols are stored into each byte of
the encoded text, producing an exact compression ratio of 50%.

Instead of searching directly the 4-bit array, which would require expensive shift and
and operations, we use the 8-bit bytes. There are two 8-bit alignments of each 4-bit pattern:
one starting from the beginning of a 8-bit character and the other one from the middle of
it, as presented in Table 4. For example, consider the encoded pattern (in hexadecimal)
618e05. Occurrences of both 61-8e-05 and *6-18-e0-5*1 clearly need to be reported as
matches.

The final algorithm works exactly in the same way: by finding an occurrence of the
encoded pattern consisting of longer codewords in the text. One additional constraint
exists: the base symbol directly preceding the presumed match must be a stopper symbol.
Otherwise, the meaning of the first base symbol is altered. It is not the beginning of a
codeword, but it belongs to another codeword which begins before the presumed match.
Thus, the match is not complete.

It is also noteworthy that because positions in the original text are not mapped one-
to-one into positions in the encoded text, an occurrence in the encoded text cannot be
converted to a position in the original text. However, we get the context of the encoded
pattern, and with fast on-line decoding, it can be expanded.

The search algorithm, based on Tuned Boyer-Moore (TBM) [16], is called Boyer-Moore

for Stopper Encoding, or BM-SE. It is a direct extension of TBM allowing multiple patterns
and classes of characters. The algorithm contains a fast loop designed to quickly skip over
most of the candidate positions, and a slow loop to verify possible matches produced by
the fast loop.

The last byte of both alignments not containing wild cards, the pointer byte, has a skip
length of 0. The previous bytes have their skip lengths relative to their distances from the
pointer byte. The skip lengths for the example pattern 618e05 are presented in Table 5.
The fast loop operates by reading a character from text, and obtaining its skip length. If
the skip length is 0, the position is examined with a slow loop, otherwise the algorithm
moves forward a number of positions equal to the skip length.

A half-byte (one containing a wild-card) at the end of the pattern is ignored for the fast
loop, whereas one in the beginning sets all 16 variations to have the desired jump length.
This works according to the bad-character, or occurrence, heuristic of Boyer and Moore [3].

String matching with 2-bit base symbols works basically in the same way as with 4-bit
ones. There are 4 parallel alignments instead of 2, and the number of characters enabled
by wild-cards can vary from 4 to 64. Compression and string matching with 2-bit base
symbols and its various extension possibilities are presented in [23].

1 The asterisk * denotes a wild card, i.e. any base symbol.
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Table 5. Skip lengths. The symbol * is a wild card.

encoded ch skip
05, e0 0
8e, 18 1
61, *6 2

** 3

3.2 SBNDM2 matching

Our new search solution, called SBNDM2-SE, uses the SBNDM2 algorithm [10] for string
matching in SE-coded texts. SBNDM2 is a simplified version of BNDM [21]. The idea of
SBNDM2 is to maintain a state vector D, which has a one in each position where a factor of
the pattern starts such that the factor is a suffix of the processed text string. For example,
if the processed text string is “abc” and the pattern is “pabcabdabc”, the value of D is
0100000100. To make maintaining D possible, table B which associates each character a
with a bit mask expressing its locations in the pattern is precomputed before searching.

When a new alignment is checked, at first two characters of the text are read before
testing the state vector D. We use a precomputed table F such that for each pair of
characters, F [cicj] = B[ci]&(B[cj ]≪ 1).

At each alignment i we check whether D = F [ti, ti+1] is zero. If it is, it means that the
characters ti and ti+1 do not appear successively in the pattern and we can fast proceed to
the next alignment m − 1 positions forward. If D is not zero, we continue by calculating
D ← B[ti−1]&(D ≪ 1) and decrementing the value of i by 1 until D becomes zero. This
happens when either the pattern has been found or the processed substring does not belong
to the pattern. The former case can been distinguished from the latter by the number of
characters processed before D became zero.

When we apply the SBNDM2 algorithm to an SE-encoded text, we start by encoding
the pattern with the same algorithm as the text was encoded. If SE4 is used, the length of
the base symbol is 4 bits. This means that the pattern may start either from the beginning
of a 8-bit character or from the middle of it. To find the occurrence in both cases, we
search for two patterns simultaneously: one which starts from the beginning of the encoded
pattern and the other which starts from the second half-byte of the encoded pattern. In
SBNDM2, it is possible to search for two equal length patterns by searching for the pattern
which has been constructed by concatenating the two patterns. For example, if the encoded
pattern (in hexadecimal) is 618e0, we search for both pattern 61-8e and pattern 18-e0

simultaneously by searching the pattern 61-8e-18-e0. An extra bit vector (denoted by f in
the pseudocode of the algorithm) is used to prevent from finding matches which consist of
the end of the first half and the beginning of the second half like 8e-18 in the example case.
If SBNDM2 finds the first or the second half of the longer pattern, it is checked whether
this is the real occurrence of the pattern by matching the bytes of the encoded pattern and
the bytes of the text one by one. It is also checked that the first or last half-byte is found
in the text.
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Algorithm 1 SBNDM2 for SE4-encoded text. (P 2 = p1p2 · · · p2m is a string containing
both the alignments of the encoded pattern, T = t1t2 · · · tn is the encoded text.)

/* Preprocessing */

1: for all c ∈ Σ′ do B[c]← 0 /* c is a byte in the compressed text. */
2: for all ci, cj ∈ Σ′ do F [cicj ]← 0
3: for j ← 1 to 2m do

4: B[pj ]← B[pj ] | (1 << (2m− j))
5: for i← 1 to 2m do

6: for j ← 1 to 2m do

7: F [pipj]← B[pi] & (B[pj ] << 1)
8: f ← a bit vector containing 0s in positions 0 (the least significant bit) and m and otherwise 1s.

/* Searching */
9: j ← m

10: while (true) do

11: while (D ← F [tj−1jtj]) = 0 do

12: j ← j + m− 1
13: pos ← j

14: while (D ← (D << 1) & f & B[tj−2]) 6= 0 do

15: j ← j − 1
16: j ← j + m− 2
17: if j ≤ pos then

18: if j > n then

19: End of text reached, exit.
20: A possible occurrence ending at pos found, check
21: by matching the bytes one by one.
22: j ← pos +1

If the length of the encoded pattern is even, for example in the case of the pattern
618e05, the long pattern is constructed by concatenating strings where the first is formed
by dropping the last byte of the encoded string and the latter by dropping the first and last
half-byte of the encoded string. In the case of the example string, the pattern 61-8e-18-e0

would be searched for by SBNDM2. Again, if the first or the second half of the longer
pattern is found, the match is checked by comparing the bytes of the text and the pattern
one by one. The pseudocode is shown as Algorithm 1.

If SE8,4 encoding is used, SBNDM2 algorithm is applied only to the file containing the
low part (the 4 lowest bits) of each encoded byte. The search is performed similarly to the
search in the case of SE4. If an occurrence is found, the high bits are checked one by one.

4 Experiments

We tested the stopper encoding schemes against other similar algorithms and each other.
As a reference method for uncompressed texts, we use TBM (uf fwd md2 from Hume and
Sunday’s widely known test bench [16]), and SBNDM2 [10]. As a reference method for com-
pressed texts, we use BM-BPE [25] and Knuth-Morris-Pratt search algorithm on recursive-
pairing compressed text developed by Maruyama et al. [18]. Their compression algorithm
is denoted by BPX and their search algorithm for compressed text by KMP-BPX. The
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implementation is by courtesy of Maruyama. For BM-BPE, we used the recommended ver-
sion with a maximum of 3 original characters per encoded character. The implementation
is by courtesy of Takeda.

As to our own variants, we tested TBM and SBBDM2 based algorithms for SE4 and
SE8,4 encoded tests (denoted by BM-SE4 and BM-SE8,4, SBNDM2-SE4, and SBNDM2-
SE8,4, respectively). SE4 is a representative of our compression scheme, and SE8,4 represents
code splitting. Note that SE8,4 offers no compression at all.

The most important properties of these algorithms are search speed and compression
ratio, in that order. In this experiment, only these properties are examined. Encoding and
decoding speeds were not considered. In search, we focus on pattern lengths of 5, 10, 20,
and 30. In the case of English and Finnish, the pattern length of 30 was not used, because
some of the encoded patterns were too long for the 32-bit bitvector used by SBNDM2-SE4.
(Because SBNDM2-SE4 searches for two patterns at the same time, one which starts from
the beginning of the encoded pattern and the other starting from the second half-byte of
the encoded pattern, the maximum length of the encoded pattern is 34 half-bytes when
the 32-bit bitvector is used.) After the preliminary experiments, we added tests for pattern
lenghts of 6, 7, 8 and 9 for English texts and for pattern lengths of 11, 12, 13, 14 and 15
for Finnish texts to find out where SBNDM2-SE4 becomes faster than SBNDM2.

As a DNA text, we used a 5 MB long part of a DNA of the fruitfly. As an English text,
we used the KJV Bible such that the beginning of the text was concatenated to the end to
lengthen the text to 5 MB. As a Finnish text, we used the Finnish Bible (1938). Because
the original size of the Finnish text was about 4 MB, we concatenated the beginning of
the text to the end to lengthen the text to 5 MB.

The compression ratios for various encoding algorithms are presented in Table 6. The
ratios are given for the original (not extended) text files. For the compression of natural-
language texts, the BPX algorithm is better and BPE slightly better than SE4. This is
true also for DNA text, because SE4 always uses at least four bits for each symbol.

All experiments were run on a 2.40 GHz Lenovo ThinkPad t400s laptop with Debian
Linux and the Intel R© CoreTM2 Duo CPU P9400 2.40 GHz processor. The computer had
3851 megabytes of main memory. There were no other users using the test computer at the
same time. The Linux function sched_setaffinity was used to bind the process to only
one core. All the programs were compiled using gcc [version 4.6.3] with the optimization
flag -O3 and the flag -m64 to produce 64 bit code. The programs were modified to measure
their own execution time by using the times() function similarly to Hume and Sunday’s
test bench. The clocked time includes everything except program argument processing and
reading the file containing the encoded text from disk.

In each test, the set of 200 patterns was searched for. The patterns were randomly
picked from the corresponding text. The searches were performed sequentially one pattern
at a time. The preprocessing was repeated 100 times and the searching 500 times for each
pattern. The average times for the whole set are presented in Tables 7, 8, and 9, and
graphically in Figures 1, 2, and 3.
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Table 6. Compression ratios.

KJV Bible Finnish Bible DNA
BPX 28.0% 32.6% 27.8%
BPE 51.0% 52.1% 34.0%
SE8,4 100.0% 100.0% 100.0%
SE4 58.8% 58.2% 50.0%

For short DNA patterns, KMP-BPX and SBNDM2-SE4 were the fastest. For longer
DNA patterns, all our algorithms were clearly faster than KMP-BPX. SBNDM2-SE4 was
the fastest for longer patterns.

For short English patterns, SBNDM2 was clearly faster than our algorithms, which
were comparable to KMP-BPX. For longer patterns, our algorithms outperformed KMP-
BPX and BM-BPE, but mostly they were comparable to SBNDM2. SBNDM2-SE4 was
faster than SBNDM2 for longer patterns. To be more exact, SBNDM2-SE4 was still slower
than SBNDM2 for the pattern length 8, but the fastest among the tested methods for the
pattern length 9.

The test results for Finnish patterns were rather similar to the results for English
patterns, but the search times of SBNDM2-SE4 and SBNDM2-SE8,4 were nearer to each
other. For some pattern lengths, SBNDM2-SE4 was slightly faster than SBNDM2-SE8,4, for
some other pattern lengths it was the opposite. The smallest pattern length was 11 where
SBNDM2-SE4 and SBNDM2-SE8,4 were faster than SBNDM2 and the fastest among the
tested methods. Interestingly, most algorithmss were a bit faster with Finnish data than
with English data.

Table 7. Search times of DNA patterns in milliseconds, text size 5 MB. The pattern set contained 200
patterns.

pattern length → 5 10 20 30
algorithm ↓
TBM 2336 1918 1779 1733
SBNDM2 1609 1014 582 407
BM-BPE 1387 728 424 336
KMP-BPX 969 951 952 957
BM-SE4 1548 751 491 416
BM-SE8,4 1562 766 501 425
SBNDM2-SE4 974 397 210 169
SBNDM2-SE8,4 1067 475 277 235

5 Concluding remarks

Stopper encoding is a semi-static character-based compression method enabling fast
searches. It is useful in applications where on-line updates and on-line decoding are needed.
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Table 8. Search times of English patterns in milliseconds, text size 5 MB. The pattern set contained 200
patterns.

pattern length → 5 6 7 8 9 10 20
algorithm ↓
TBM 1072 939 831 756 706 668 465
SBNDM2 542 507 448 399 397 370 295
BM-BPE 1275 1250 923 871 860 701 431
KMP-BPX 960 959 960 959 960 962 966
BM-SE4 925 749 626 543 489 440 239
BM-SE8,4 1040 719 705 522 532 428 240
SBNDM2-SE4 951 726 501 418 354 308 156
SBNDM2-SE8,4 912 949 505 489 362 350 169

Table 9. Search times of Finnish patterns in milliseconds, text size 5 MB. The pattern set contained 200
patterns.

pattern length → 5 10 11 12 13 14 15 20
algorithm ↓
TBM 1007 630 593 567 540 527 504 439
SBNDM2 473 308 295 286 277 272 260 238
BM-BPE 1240 670 657 645 549 539 534 406
KMP-BPX 1118 1123 1126 1125 1127 1127 1126 1129
BM-SE4 914 428 389 360 335 314 289 226
BM-SE8,4 1000 403 414 345 348 298 301 222
SBNDM2-SE4 969 311 266 240 221 205 189 143
SBNDM2-SE8,4 907 327 254 254 210 212 182 148
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Figure 1. Search times of DNA patterns in milliseconds.
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Figure 2. Search times of English patterns in milliseconds.
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Figure 3. Search times of Finnish patterns in milliseconds.
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Stopper encoding resembles the semi-static Huffman encoding [15] and whole-word de
Moura encoding [19]. Every character of the original text is encoded with variable-length
codewords, which consist of fixed-length base symbols. The base symbols could have 2, 4,
6, or 8 bits. Base symbols of 6 or 8 bits allow code splitting to be applied, dividing the bits
of each base symbol into two parts, which are stored, respectively, into two arrays in order
to speed up searching.

We presented a new search algorithm for stopper encoding, based on the SBNDM2
algorithm [10]. Stopper encoding is not restricted to exact matching nor to this search
algorithm, but it can be applied to string matching problems of other types as well.

We tested our algorithm experimentally. The running time of the search algorithm was
compared with two reference algorithms for compressed texts as well as two other reference
algorithms for uncompressed texts. Our SBNDM2 based search method SBNDM2-SE4 was
the fastest among all the tested algorithms for English patterns of at least 9 characters
and either SBNDM2-SE4 or SBNDM2-SE8,4 for Finnish patterns of at least 11 characters.
Especially, SBNDM2-SE4 was faster than the standard search algorithms in uncompressed
texts for these patterns.
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