
A Sublinear Algorithm forTwo-Dimensional String MatchingJorma Tarhio�Department of Computer ScienceP.O. Box 26 (Teollisuuskatu 23)FIN-00014 University of HelsinkiFinlandAbstractA simple algorithm based on the Boyer-Moore idea is presented for two-dimensionalstring matching. The algorithm examines a strip of columns at a time, and the shift ofthe pattern is based on a string of several characters on a row. The expected runningtime is shown to be sublinear for random texts and patterns. The algorithm is easyto implement, and it works well in practice.Key Words and Phrases: Two-dimensional string matching, Boyer-Moore algo-rithm1 IntroductionThe task of two-dimensional string matching is to �nd all occurrences of a two-dimensionalpattern P (m�m characters) in a two-dimensional string text T (n�n characters) in analphabet of c characters.The trivial algorithm for two-dimensional string matching needs O(m2n2) time in theworst case. Baker (1978) and Bird (1977) independently gave the �rst linear time algorithmworking in O(n2 +m2) time. Later Galil and Park (1992) presented a better linear timealgorithm which is independent of the alphabet.In the following we will concentrate on the expected time complexity, because the aver-age case is more important in practice. Zhu and Takaoka (1989) introduced an algorithmthat scans a preprocessed text in sublinear expected time. Baeza-Yates and R�egnier (1993)discovered the �rst on-line sublinear algorithm which runs in O(n2=m+m2) expected time.Recently K�arkk�ainen and Ukkonen (1994) showed that O(n2m2 logcm2) is the lower boundfor expected running time and presented an optimal algorithm which achieves this bound�This work was supported by the Academy of Finland and the Finnish Cultural Foundation, andwas done while the author was visiting the University of California at Berkeley. Electronic mail:Jorma.Tarhio@Helsinki.FI. 1

with additional O(m2) time for preprocessing. The lower bound agrees with the one forone-dimensional case presented by Yao (1979). These analyses are valid for random textsand patterns.The algorithm presented by Boyer and Moore (1977) with its many variations is aneÆcient solution for one-dimensional string matching. It scans the pattern from right toleft and is able to skip portions of the text achieving sublinear average behavior. We willpresent an algorithm for two-dimensional string with a similar shift heuristic as presentedby Horspool (1980) for the one-dimensional Boyer-Moore algorithm. Our algorithm ex-amines a strip of r columns at a time, r � m. Instead of inspecting a single character forshift at each stop of the pattern, the algorithm examines a d-gram, a string of d characterson a row.We will show that the expected running time of our algorithm is O(n2m2 dlogcm2e+cm2),whenm=2 � r � m and d = dlogc(rm)e. The scanning time O(n2m2 dlogcm2e) matches withthe optimal bound of the K�arkk�ainen-Ukkonen algorithm. Recently a related but di�erentmethod has been (independently) developed by Kim and Shawe-Taylor (1993).The Boyer-Moore approach has also been applied in earlier algorithms for two-dimen-sional matching. Zhu and Takaoka (1989) employ it along columns, and Baeza-Yates andR�egnier (1993) use it in two ways: Everymth row of the text is inspected, and on each suchrow, the rows of the pattern are searched for by using the one-dimensional Boyer-Mooreapproach for multiple patterns.The rest of the paper is organized as follows. The basic algorithm is presented inSection 2 and analyzed in Section 3. A linear time version and other modi�cations arepresented in Section 4. Our experiments are reviewed in Section 5 before concludingremarks in Section 6.2 AlgorithmThe characteristic feature of the Boyer-Moore algorithm for one-dimensional string match-ing is the right-to-left scan over the pattern. At each alignment of the pattern with thetext, characters of the text below the pattern are examined from right to left, startingby comparing the rightmost character of the pattern with the character in the text cur-rently below it. Between alignments, the pattern is shifted from left to right along thetext. In the variation presented by Horspool (1980), the shift is based on character x inthe text below the rightmost character of the pattern. If x does not occur in the pat-tern, the pattern is shifted beyond x, otherwise the pattern is shifted to the right untilx is below an occurrence of the same character in the pattern. We call this method theBoyer-Moore-Horspool algorithm or the BMH algorithm.The BMH algorithm has a simple code and is in practice better than the originalBoyer-Moore algorithm. Based on the BMH algorithm, we will derive a new algorithm fortwo-dimensional string matching. The text is split in d(n�m)=re+1 strips of r columns,r � m. Each strip is examined separately applying the BMH approach to �ltrate potentialmatches, which are then processed by the trivial algorithm, which checks positions of Pin order until a character mismatch is found or until a match of P is completed. Both the2

Ta a a b a c c ba c c b c c b ca a a a c c a bb a b a a c b bc b a c b a b ca b a b a b a ca b c b c a b ba b a b a c c a
Pc c b cc c a ba c b bb a b cFigure 1: An example.�ltration of potential matches and the shifting of the pattern are based on d-grams, i.e. astring of d characters on a row, r + d � m+ 1.Let us consider a stop of the pattern. For simplicity, let us assume that r+d = m+1.According to the basic idea of Boyer and Moore (1977), the end of the pattern is probed�rst. So d-gram x, corresponding to the lower right corner of the pattern, is read fromthe text and compared with the last row of P . If x occurs on the last row of P , we havea potential match, and the corresponding alignment will be further checked by the trivialalgorithm (excluding those positions already included in x). Because x may occur in rpositions on the last row of P , there can be up to r potential matches at each stop.For shifting we use a precomputed table D, which follows the shift heuristic of theBMH algorithm. Entry D[x] tells the distance of the closest occurrence of d-gram x inY = P [1 : m � 1; 1 : m] from the last row of P . (Here P [i1 : i2; j1 : j2] denotes therectangular region of P with (i1; j1) and (i2; j2) as the opposite corners.) If x does notoccur in Y , D[x] is m.Fig. 1 shows a situation where the pattern has been aligned at (2; 4) and d-gramx = T [5; 6 : 7] = ab has been read. Because x occurs on the last row of P , there is apotential match at (2; 5), which turns out to be an actual match. Because x appears alsoon the second row of P , the length of shift will be m� 2 = 2 and the next d-gram to beprobed will be T [7; 6 : 7].Above we assumed that r + d = m+ 1. In a general case we have r + d � m+ 1 andthe probe string corresponds to P [m; r : r + d � 1] which is not necessarily in the lowerright corner of P .For the �ltration of potential matches we use a preprocessed table M . The entryM [x] tells the starting column of an occurrence of d-gram x in Z = P [m; 1 : r + d � 1],r + d � m+ 1. If x does not occur in Z, M [x] = 0. Another preprocessed table N of sizem contains a linked list of other occurrences of x in Z, as well as the corresponding linkedlists for other d-grams occurring in Z. So M [x] is the �rst occurrence of x and N [M [x]]is the second occurrence etc.

3

Algorithm 1: Preprocessing of P.1. for i := 0 to cd do begin2. D[i] := m;3. M [i] := 0 end;4. for i := 1 to m do begin5. x := P [i; 1];6. for k := 2 to d do x := x � c+ P [i; k];7. for j := 1 to r do begin8. if i = m then begin9. N [r � j + 1] := M [x];10. M [x] := r � j + 1 end;11. else if D[x] > m� i then D[x] := m� i;12. if j < r then13. x := (x� P [i; j] � cd�1) � c+ P [i; j + d] end end;Algorithm 1 describes the computation of tables D, M , and N . The processing of Dis based on de�nitionD(y) = minfk j k = m or (k > 0 and y = P [m� k; h : h+ d� 1]; 1 � h � r)g:We have now the following total method for two-dimensional string matching.Algorithm 2: Two-dimensional string matching.1. compute D, M , and N with Algorithm 1;2. j := r;3. while j � n�m+ r do begin4. i := m;5. while i � n do begin6. x := T [i; j];7. for k := j + 1 to j + d� 1 do x := x � c+ T [i; k];8. k :=M [x];9. while k > 0 do begin10. Check(i �m+ 1; j � r + k);11. k := N(k) end;12. i := i+D[x] end;13. j := j + r endSubroutine Check(a; b) on line 10 checks the potential match at (a; b).3 AnalysisLet us consider the average case complexity of Algorithm 2 without preprocessing. Weuse the standard random string model, where each character of the text and the pattern4

is selected uniformly and independently. The time requirement is proportional to C, thenumber of text characters the algorithm inspects.Let us estimate �C, the expected value of C. We have�C = �P (d+ �N �E)where �P is the expected number of stops, �N is the expected number of alignments examinedat a stop, and �E is the expected number of character comparisons for checking of analignment.The expected value of shift is �S = c(1 � (1 � 1=c)m) for the BMH algorithm (seee.g. Baeza-Yates (1989)). In our approach, we need to replace c by 1=q, where q is theprobability that a d-gram occurs in a (r + d � 1)-gram. We will use estimates q1 and q2for q, q1 � q � q2, such that q1 = 1� (1� 1cd)ris the probability that a d-gram is present in a set of r d-grams andq2 = rc(r+d�1)�dcr+d�1 = rcdis the probability that a d-gram without an overlap with itself occurs in a (r+d�1)-gram.Now we get �S = 1� (1� q)mq� cd(1� (1� q)m)r� cd(1� (1� 1cd)rm)r :Let us then consider the number of stops. Let �P1 be the expected number of stops in onestrip. By using similar reasoning as Tarhio and Ukkonen (1993), we get �P1 � (n�m+1)= �Sfor large n�m+ 1. Thus we get�P � n�m+ 1�S (�n�mr �+ 1) � n2r �S :When estimating upwards, we can use r=cd for �N , because r=cd is the expected numberof occurrences of a d-gram in r d-grams.We have �E = cc� 1(1� 1cm2�d)at the �rst stop of a strip or when the previous shift is m (see e.g. Baeza-Yates (1989)).In other cases at most d additional positions may be checked. Hence we have �E � 2 + d,because c � 2. 5

Putting these together, we get�C = �P (d+ �N �E)� n2r(d+ �N �E)rcd(1� (1� 1cd)rm)� n2(d+ rcd (2 + d))cd(1� (1� 1cd)rm) :When d = dlogc(rm)e we get�C � n2(dlogc(rm)e(1 + rrm) + 2rrm)rm(1� (1� 1rm)rm) ;because x(1� (1� 1=x)rm) is an increasing function of x. Then because (1� 1k)k < 1e forall k > 1, �C � n2(dlogc(rm)e(1 + 1m) + 2m)rm(1� 1e) ;which is clearly O(n2m2 dlogcm2e) when r � m=2.The algorithm needs O(cd) = O(cm2) space. The computation of D, M , and N takestime O(m2 + cd) = O(cm2), where the initialization of D and M takes O(cm2) time andthe rest of the preprocessing O(m2) time.We have shown the following result.Theorem 1 Algorithm 2 �nds the occurrences of an m�m pattern P in an n�n text Tin expected time O(n2m2 dlogcm2e+cm2) and in space O(cm2) in an alphabet of c characters.4 Modi�cationsLinear time version. Because the trivial algorithm is used for checking, Algorithm 2needs O(m2n2) time in the worst case. There is a way to make our approach work inlinear time also in the worst case without changing the average complexity.Let us consider how to modify Algorithm 2. Let k be a positive constant. When krtext characters have been inspected at a stop of the pattern at (i; j), the processing ofAlgorithm 2 at that stop is ceased and region T [i : i+2m�1; j : j+r+m�1] is processedaccording to the algorithm by Bird (1977) (or some other linear time algorithm), and afterthat Algorithm 2 is resumed with a shift of m. The preprocessing for Bird's algorithm isperformed only once during the �rst call.The modi�ed algorithm clearly works in linear time, because the amortized numberof text positions the modi�ed algorithm inspects for each r �m region of T is at most aconstant times rm.Asymptotically, Bird's algorithm is applied very seldom, when k is large enough, andtherefore the average complexity will remain the same.6

Rectangular shapes and higher dimensions. Algorithm 2 can easily be modi�ed towork with patterns and texts of arbitrary rectangular shape. The square shape was onlyused to make the presentation clear.The generalization to higher dimensions is also obvious.Bitmap pictures. A bitmap picture is often represented so that a byte corresponds toeight consecutive pixels on a row. It is easy to adopt our method to take advantage of thisrepresentation. When d = 8k for k = 1; : : :, the algorithm works for m � 8 + d � 1 andr = 8 � b(m+ 1� d)=8c. As the only additional change, the �rst strip must be handled ina di�erent way: the initial value of j should be r0 = r � 7.Use of subpatterns. If the bottom row of the pattern contain d-grams that occurfrequently in the text, the checking phase is repeatedly started, which is not desirable forour algorithm. To avoid this phenomenon, a suitable subpattern could be selected for the�ltration phase according to some heuristic. For example, a subpattern with a bottom rowwithout d-grams 0 and cd � 1 is usually advantageous for scanning of a bitmap picture.The actual checking is always performed with the original pattern. Also the scanningdirection of the algorithm (left-to-right, top-down) can be made optional.5 ExperiencesIn Table 1 we compare Algorithm 2 with the algorithm by Baeza-Yates and R�egnier(1993), denoted by BYR, and the trivial algorithm in the binary alphabet for n = 1000and for 2 � m � 64. For Algorithm 2, we selected r = minfk j m + 1 � k � log2(km)gand d = dlog2(rm)e. The �gures in Table 1 represent total execution times in secondscontaining preprocessing and checking but excluding loading of the pattern and the text.Each time reported is a median of the results for ten di�erent patterns of the same size. Thealgorithms were coded in C and the experiments were carried out in a Sun4 workstation.In this test the trivial algorithm was the best for m < 5. Within the range 5 � m < 10Algorithm 2 and the BYR algorithm were in practice equally good. Algorithm 2 was thebest for values m � 10.In a similar test with a di�erent implementation, Algorithm 2 was as fast as theK�arkk�ainen-Ukkonen algorithm for values m � 20 and slightly slower for smaller patterns.6 Concluding RemarksWe have extended the Boyer-Moore-Horspool algorithm into two dimensions. Our algo-rithm is eÆcient, conceptionally simple, and easy to implement. The expected scanningtime of the algorithm is O(n2m2 logcm2). Practical experiments on random strings agreewith the theoretical bound.Our algorithm is related to the algorithm by K�arkk�ainen and Ukkonen (1994), denotedby KU, and the algorithm by Kim and Shawe-Taylor (1993), denoted by KST. We willshortly compare our algorithm with these. 7

Table 1: Experimental results (in seconds) for c = 2 and n = 1000.m Trivial BYR Alg. 22 3.03 9.58 7.504 2.70 3.83 2.946 2.63 1.81 1.588 2.58 1.06 1.0112 2.55 0.63 0.5016 2.55 0.55 0.2824 2.50 0.60 0.1332 2.45 0.78 0.0848 2.38 1.52 0.0764 2.30 2.60 0.07Our algorithm is functionally di�erent from the KU algorithm, because our algorithmdetermines the test entries dynamically, whereas the KU algorithm uses a static scheme,where samples of d-grams are taken at �xed grid points of the text.Our algorithm uses integers to represent d-grams. The KST algorithm uses only tries,and K�arkk�ainen and Ukkonen consider the both ways. The number of character compar-isons is less for the trie than for the integer representation. However, an implementationbased on the trie is in practice slower because of the overhead of a more complicated datastructure.The shape of a test area is a line in our algorithm. K�arkk�ainen and Ukkonen consideralso a square shape and Kim and Shawe-Taylor also a triangle shape. The line shapeseems to be the most eÆcient in practice.The expected scanning times of our algorithm and the KU algorithm are the same.Kim and Shawe-Taylor show that the expected scanning time of the KST algorithm isO(n2m2 log2m2) for a �xed alphabet.Acknowledgement. The author thanks Ricardo Baeza-Yates and Juha K�arkk�ainen forproviding the the implementations of their algorithms.ReferencesBaeza-Yates, R. (1989). String searching algorithms revisited. In: Proceedings of Work-shop on Algorithms and Data Structures (ed. F. Dehne et al.), Lecture Notes in ComputerScience 382, Springer-Verlag, Berlin, 75{96.Baeza-Yates, R. and M. R�egnier (1993). Fast two dimensional pattern matching. Infor-mation Processing Letters 45, 51{57. 8

Baker, T. (1978). A technique for extending rapid exact-match string matching to arraysmore than one dimension. SIAM Journal on Computing 7, 533{541.Bird, R. (1977). Two dimensional pattern matching. Information Processing Letters 6,168{170.Boyer, R. and S. Moore (1977). A fast string searching algorithm. Communications ofthe ACM 20, 762{772.Galil, Z. and K. Park (1992). Truly alphabet-independent two-dimensional pattern match-ing. In: Proceedings of the 33st IEEE Annual Symposium on Foundations of ComputerScience, IEEE, 247{256.Horspool, N. (1980). Practical fast searching in strings. Software Practice & Experience10, 501{506.K�arkk�ainen, J. and E. Ukkonen (1994). Two and higher dimensional pattern matching inoptimal expected time. In: Proceedings of the Fifth Symposium on Discrete Algorithms,ACM-SIAM, 715{723.Kim, J. and J. Shawe-Taylor (1993). Fast expected two dimensional pattern matching.In: Proceedings of the First South American Workshop on String Processing (ed. R.Baeza-Yates and N. Ziviani), 77{92.Tarhio, J. and E. Ukkonen (1993). Approximate Boyer-Moore string matching. SIAMJournal on Computing 22, 243{260.Yao, A. (1979). The complexity of pattern matching for a random string. SIAM Journalon Computing 8, 368{387.Zhu, R. and T. Takaoka (1989). A technique for two-dimensional pattern matching. Com-munications of the ACM 32, 1110{1120.

9

