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Abstract

A simple algorithm based on the Boyer-Moore idea is presented for two-dimensional
string matching. The algorithm examines a strip of columns at a time, and the shift of
the pattern is based on a string of several characters on a row. The expected running
time is shown to be sublinear for random texts and patterns. The algorithm is easy
to implement, and it works well in practice.
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1 Introduction

The task of two-dimensional string matching is to find all occurrences of a two-dimensional
pattern P (m x m characters) in a two-dimensional string text T (n x n characters) in an
alphabet of ¢ characters.

The trivial algorithm for two-dimensional string matching needs O(m?n?) time in the
worst case. Baker (1978) and Bird (1977) independently gave the first linear time algorithm
working in O(n? + m?) time. Later Galil and Park (1992) presented a better linear time
algorithm which is independent of the alphabet.

In the following we will concentrate on the expected time complexity, because the aver-
age case is more important in practice. Zhu and Takaoka (1989) introduced an algorithm
that scans a preprocessed text in sublinear expected time. Baeza-Yates and Régnier (1993)
discovered the first on-line sublinear algorithm which runs in O(n?/m+m?) expected time.
Recently Karkkiinen and Ukkonen (1994) showed that O(;L%—Z2 log, m?) is the lower bound
for expected running time and presented an optimal algorithm which achieves this bound
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with additional O(m?) time for preprocessing. The lower bound agrees with the one for
one-dimensional case presented by Yao (1979). These analyses are valid for random texts
and patterns.

The algorithm presented by Boyer and Moore (1977) with its many variations is an
efficient solution for one-dimensional string matching. It scans the pattern from right to
left and is able to skip portions of the text achieving sublinear average behavior. We will
present an algorithm for two-dimensional string with a similar shift heuristic as presented
by Horspool (1980) for the one-dimensional Boyer-Moore algorithm. Our algorithm ex-
amines a strip of 7 columns at a time, r < m. Instead of inspecting a single character for
shift at each stop of the pattern, the algorithm examines a d-gram, a string of d characters
on a row.

We will show that the expected running time of our algorithm is 0(77:1_22 [og,. m?]+em?),
when m/2 <r <m and d = [log,.(rm)]. The scanning time O(Z—ZZ [log, m?]) matches with
the optimal bound of the Karkkiinen-Ukkonen algorithm. Recently a related but different
method has been (independently) developed by Kim and Shawe-Taylor (1993).

The Boyer-Moore approach has also been applied in earlier algorithms for two-dimen-
sional matching. Zhu and Takaoka (1989) employ it along columns, and Baeza-Yates and
Régnier (1993) use it in two ways: Every m'™ row of the text is inspected, and on each such
row, the rows of the pattern are searched for by using the one-dimensional Boyer-Moore
approach for multiple patterns.

The rest of the paper is organized as follows. The basic algorithm is presented in
Section 2 and analyzed in Section 3. A linear time version and other modifications are
presented in Section 4. Our experiments are reviewed in Section 5 before concluding
remarks in Section 6.

2 Algorithm

The characteristic feature of the Boyer-Moore algorithm for one-dimensional string match-
ing is the right-to-left scan over the pattern. At each alignment of the pattern with the
text, characters of the text below the pattern are examined from right to left, starting
by comparing the rightmost character of the pattern with the character in the text cur-
rently below it. Between alignments, the pattern is shifted from left to right along the
text. In the variation presented by Horspool (1980), the shift is based on character z in
the text below the rightmost character of the pattern. If z does not occur in the pat-
tern, the pattern is shifted beyond z, otherwise the pattern is shifted to the right until
x is below an occurrence of the same character in the pattern. We call this method the
Boyer-Moore-Horspool algorithm or the BMH algorithm.

The BMH algorithm has a simple code and is in practice better than the original
Boyer-Moore algorithm. Based on the BMH algorithm, we will derive a new algorithm for
two-dimensional string matching. The text is split in [(n —m)/r] + 1 strips of r columns,
r < m. Bach strip is examined separately applying the BMH approach to filtrate potential
matches, which are then processed by the trivial algorithm, which checks positions of P
in order until a character mismatch is found or until a match of P is completed. Both the
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P aaabacch
acclbccbic
ccbec aaalaccalb
ccab b ablaacb|b
acbhb c b alc b[a blc
babc abababac
abcbcabb
ababacca

Figure 1: An example.

filtration of potential matches and the shifting of the pattern are based on d-grams, i.e. a
string of d characters on a row, r +d < m + 1.

Let us consider a stop of the pattern. For simplicity, let us assume that r4+d = m+1.
According to the basic idea of Boyer and Moore (1977), the end of the pattern is probed
first. So d-gram z, corresponding to the lower right corner of the pattern, is read from
the text and compared with the last row of P. If £ occurs on the last row of P, we have
a potential match, and the corresponding alignment will be further checked by the trivial
algorithm (excluding those positions already included in z). Because z may occur in 7
positions on the last row of P, there can be up to r potential matches at each stop.

For shifting we use a precomputed table D, which follows the shift heuristic of the
BMH algorithm. Entry D[z] tells the distance of the closest occurrence of d-gram z in
Y = P[]l : m — 1,1 : m] from the last row of P. (Here P[i; : i2,71 : j2] denotes the
rectangular region of P with (i1, j1) and (i2,j2) as the opposite corners.) If 2 does not
occur in Y, D[z] is m.

Fig. 1 shows a situation where the pattern has been aligned at (2,4) and d-gram
x = T[5,6 : 7] = ab has been read. Because z occurs on the last row of P, there is a
potential match at (2,5), which turns out to be an actual match. Because = appears also
on the second row of P, the length of shift will be m — 2 = 2 and the next d-gram to be
probed will be T'[7,6 : 7].

Above we assumed that 7+ d = m + 1. In a general case we have r +d < m + 1 and
the probe string corresponds to P[m,r : r + d — 1] which is not necessarily in the lower
right corner of P.

For the filtration of potential matches we use a preprocessed table M. The entry
Mz] tells the starting column of an occurrence of d-gram z in Z = P[m,1 : r+d — 1],
r+d <m+ 1. If z does not occur in Z, M[x] = 0. Another preprocessed table N of size
m contains a linked list of other occurrences of = in Z, as well as the corresponding linked
lists for other d-grams occurring in Z. So M|[z] is the first occurrence of z and N[M|[z]]
is the second occurrence etc.



Algorithm 1: Preprocessing of P.

1. fori:=0 to c? do begin

2. D[i] :==m;

3. MTi] := 0 end;

4. for i:=1 to m do begin

5. x = P[i, 1];

6. for k:=2toddo z:=z-c+ Pli,k];

7. for j :=1 to r do begin

8. if 4 = m then begin

9. N[r —j+1] := Mlz];

10. Mlz]) :=r —j+1 end;

11. else if D[z] > m — i then D[z] := m — i;
12. if 7 < r then

13. z:= (z — Pli,§]-c¢* 1) -c+ P[i,j + d] end end;

Algorithm 1 describes the computation of tables D, M, and N. The processing of D
is based on definition

D(y) =min{k | k=mor (k>0andy=Plm —k,h: h+d—1],1 <h <r)}
We have now the following total method for two-dimensional string matching.

Algorithm 2: Two-dimensional string matching.

1. compute D, M, and N with Algorithm 1;
2. ji=m

3. while 5 <n —m+r do begin

4. 1:=Mm;

o. while ¢ < n do begin

6 x =TI, j];

7 fork:==j+1toj+d—-1doz:=z-c+ T,k
8 k:= M]x];

9. while k£ > 0 do begin

10. Check(i —m+ 1,5 —r + k);
11. k := N(k) end;

12. i := 1+ D[z] end,;

13. j:=7+rend

Subroutine Check(a, b) on line 10 checks the potential match at (a,b).

3 Analysis

Let us consider the average case complexity of Algorithm 2 without preprocessing. We
use the standard random string model, where each character of the text and the pattern



is selected uniformly and independently. The time requirement is proportional to C, the
number of text characters the algorithm inspects.
Let us estimate C, the expected value of C. We have

C =P(d+ NE)

where P is the expected number of stops, NV is the expected number of alignments examined
at a stop, and F is the expected number of character comparisons for checking of an
alignment.

The expected value of shift is S = ¢(1 — (1 — 1/¢)™) for the BMH algorithm (see
e.g. Baeza-Yates (1989)). In our approach, we need to replace ¢ by 1/q, where ¢ is the
probability that a d-gram occurs in a (r + d — 1)-gram. We will use estimates ¢; and g2

for q, ¢1 < q < ¢o, such that
1
=1-(1-—=)"
a1 ( Cd)

is the probability that a d-gram is present in a set of r d-grams and

,rc(r+d71)fd r

72 = crtd-1 - E

is the probability that a d-gram without an overlap with itself occurs in a (r+d —1)-gram.
Now we get

g _ l=(-g"
q
(1 (1-q)")
, Szt

Let us then consider the number of stops. Let P; be the expected number of stops in one
strip. By using similar reasoning as Tarhio and Ukkonen (1993), we get P, < (n—m+1)/S
for large n — m + 1. Thus we get

2

3
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N

r r

When estimating upwards, we can use r/c? for N, because r/c? is the expected number
of occurrences of a d-gram in r d-grams.

We have
c 1

c— 1(1 - ch*d)

E =

at the first stop of a strip or when the previous shift is m (see e.g. Baeza-Yates (1989)).
In other cases at most d additional positions may be checked. Hence we have £ < 2 + d,
because ¢ > 2.



Putting these together, we get

C = P(d+ NE)
n?r(d+ NE)
red(1— (1= 5)m™)
n*(d + 5(2 4 d))
A (1~ L)

C

When d = [log.(rm)| we get

n?([log (rm)1(1 + 75) + %)

rm

rm(1 — (1 — L)rm) ’

rm

C <

because (1 — (1 — 1/2)"™) is an increasing function of z. Then because (1 — £)* < L for

all k> 1,
n?([log, (rm)](1 + &) + )

m

rm(l — %) ’

C<
which is clearly O(:%—ZZ [log, m?]) when r > m/2.

The algorithm needs O(c?) = O(cm?) space. The computation of D, M, and N takes
time O(m? + ¢?) = O(cm?), where the initialization of D and M takes O(cm?) time and
the rest of the preprocessing O(m?) time.

We have shown the following result.

Theorem 1 Algorithm 2 finds the occurrences of an m X m pattern P in an n X n text T
. . 2 : :
in expected time O(Z5[log. m*]+cm?) and in space O(cm?) in an alphabet of ¢ characters.

4 Modifications

Linear time version. Because the trivial algorithm is used for checking, Algorithm 2
needs O(m?n?) time in the worst case. There is a way to make our approach work in
linear time also in the worst case without changing the average complexity.

Let us consider how to modify Algorithm 2. Let k be a positive constant. When kr
text characters have been inspected at a stop of the pattern at (i, 7j), the processing of
Algorithm 2 at that stop is ceased and region T'[i : i+2m — 1,7 : j+r+m — 1] is processed
according to the algorithm by Bird (1977) (or some other linear time algorithm), and after
that Algorithm 2 is resumed with a shift of m. The preprocessing for Bird’s algorithm is
performed only once during the first call.

The modified algorithm clearly works in linear time, because the amortized number
of text positions the modified algorithm inspects for each r x m region of T' is at most a
constant times rm.

Asymptotically, Bird’s algorithm is applied very seldom, when k is large enough, and
therefore the average complexity will remain the same.



Rectangular shapes and higher dimensions. Algorithm 2 can easily be modified to
work with patterns and texts of arbitrary rectangular shape. The square shape was only
used to make the presentation clear.

The generalization to higher dimensions is also obvious.

Bitmap pictures. A bitmap picture is often represented so that a byte corresponds to
eight consecutive pixels on a row. It is easy to adopt our method to take advantage of this
representation. When d = 8k for k = 1, ..., the algorithm works for m > 8 +d — 1 and
r=8-|(m+1-d)/8]. As the only additional change, the first strip must be handled in
a different way: the initial value of j should be ry =+ — 7.

Use of subpatterns. If the bottom row of the pattern contain d-grams that occur
frequently in the text, the checking phase is repeatedly started, which is not desirable for
our algorithm. To avoid this phenomenon, a suitable subpattern could be selected for the
filtration phase according to some heuristic. For example, a subpattern with a bottom row
without d-grams 0 and ¢? — 1 is usually advantageous for scanning of a bitmap picture.
The actual checking is always performed with the original pattern. Also the scanning
direction of the algorithm (left-to-right, top-down) can be made optional.

5 Experiences

In Table 1 we compare Algorithm 2 with the algorithm by Baeza-Yates and Régnier
(1993), denoted by BYR, and the trivial algorithm in the binary alphabet for n = 1000
and for 2 < m < 64. For Algorithm 2, we selected r = min{k | m +1 — k > logy(km)}
and d = [logy(rm)]. The figures in Table 1 represent total execution times in seconds
containing preprocessing and checking but excluding loading of the pattern and the text.
Each time reported is a median of the results for ten different patterns of the same size. The
algorithms were coded in C and the experiments were carried out in a Sun4 workstation.

In this test the trivial algorithm was the best for m < 5. Within the range 5 <m < 10
Algorithm 2 and the BYR algorithm were in practice equally good. Algorithm 2 was the
best for values m > 10.

In a similar test with a different implementation, Algorithm 2 was as fast as the
Karkkainen-Ukkonen algorithm for values m > 20 and slightly slower for smaller patterns.

6 Concluding Remarks

We have extended the Boyer-Moore-Horspool algorithm into two dimensions. Our algo-

rithm is efficient, conceptionally simple, and easy to implement. The expected scanning

n2

time of the algorithm is O(;5 log, m?). Practical experiments on random strings agree
with the theoretical bound.

Our algorithm is related to the algorithm by Karkkéainen and Ukkonen (1994), denoted
by KU, and the algorithm by Kim and Shawe-Taylor (1993), denoted by KST. We will

shortly compare our algorithm with these.



Table 1: Ezperimental results (in seconds) for ¢ =2 and n = 1000.

Trivial BYR Alg. 2
3.03  9.58 7.50
270  3.83 2.94
2.63 181 1.58
2.58 1.06 1.01
255 0.63 0.50

16 255 0.5 0.28

24 2.50  0.60 0.13

32 245 0.78 0.08

48 238 1.52 0.07

64 2.30  2.60 0.07

—_
DO S NS

Our algorithm is functionally different from the KU algorithm, because our algorithm
determines the test entries dynamically, whereas the KU algorithm uses a static scheme,
where samples of d-grams are taken at fixed grid points of the text.

Our algorithm uses integers to represent d-grams. The KST algorithm uses only tries,
and Karkkainen and Ukkonen consider the both ways. The number of character compar-
isons is less for the trie than for the integer representation. However, an implementation
based on the trie is in practice slower because of the overhead of a more complicated data
structure.

The shape of a test area is a line in our algorithm. Kéarkkédinen and Ukkonen consider
also a square shape and Kim and Shawe-Taylor also a triangle shape. The line shape
seems to be the most efficient in practice.

The expected scanning times of our algorithm and the KU algorithm are the same.
Kim and Shawe-Taylor show that the expected scanning time of the KST algorithm is
O(T’fl—Z2 log, m?) for a fixed alphabet.
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