
Nordic Journal of Computing 11(2004), 321–343.

APPROXIMATE STRING MATCHING
WITH ORDEREDq-GRAMS∗

ERKKI SUTINEN
Department of Computer Science, University of Joensuu

P.O. Box 111, FIN-80101 Joensuu, Finland
sutinen@cs.joensuu.fi

JORMA TARHIO
Department of Computer Science and Engineering

Helsinki University of Technology
P.O. Box 5400, FIN-02015 HUT, Finland

tarhio@acm.org

Abstract. Approximate string matching withk differences is considered. Filtration of the
text is a widely adopted technique to reduce the text area processed by dynamic program-
ming. We present sublinear filtration algorithms based on the locations ofq-grams in the
pattern. Samples ofq-grams are drawn from the text at fixed periods, and only if consecu-
tive samples appear in the pattern approximately in the sameconfiguration, the text area is
examined with dynamic programming. The algorithm LEQ searches for exact occurrences
of the patternq-grams, whereas the algorithm LAQ searches for approximateoccurrences
of them. In addition, a static variation of LEQ is presented.The focus of the paper is on
combinatorial properties of the sampling approach.

ACM CCS Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

Key words: string matching, filtration,q-grams, indexing

1. Introduction

Given atext T= T[1 . . .n] and apattern P= P[1 . . .m] over an alphabetΣ of sizec
and an integerk, called theerror level, theapproximate pattern matching problem
is the following: find all the positionsj in T such that an approximate match ofP
ends atj. The found occurrences are calledk-approximate matches ofP.

The proximity between two stringsα andβ can be measured for example by the
edit distance d. In aunit cost model, d(α, β) is the minimum number ofedit oper-
ations(insertions, deletions, or changes) needed to convertα to β. Using the unit
cost model to evaluate edit distance results in a particularinstance of the approx-
imate pattern matching problem, called thek differences problem. Furthermore,
if only change operations are allowed, the corresponding problem is called thek
mismatches problem. In this paper, we will consider thek differences problem.

∗The work was supported by the Academy of Finland. Most of the work was done at the Univer-
sity of Helsinki.

Received June 26, 2002; revised July 13, 2004; accepted December 20, 2004.



322 E. SUTINEN, J. TARHIO

There are several solutions to thek differences problem, see e.g. Navarro’s survey
[9]. Our main interest is not, however, to compare our solutions with the earlier
ones, but derive a different approach, based on the combinatorial characteristics of
the problem. We believe that our approach may have other applications than thek
differences problem.

The approximate pattern matching problem obviously has applications in diverse
areas, such as computational biology, text databases, datasecurity, and information
retrieval. In many of these applications, the texts are large. This makes theO(kn)
solutions [15, 6, 16], which apply dynamic programming to the whole text, too
slow. In order to speed up the search, dynamic programming should be restricted to
text regions where approximate matches are supposed to be found. This technique
is calledfiltration.

Filtration. Each filtration method has basically two phases. The first one, called
the filtration phase, uncovers the promising text regions withpotentialapproxi-
mate matches. These regions are identified by a necessary condition for an ap-
proximate match, called thefiltration condition. The slower but accuratechecking
phaseapplies dynamic programming to the filtered text regions, verifies or falsi-
fies the potential matches, and returns the locations ofactualmatches. A filtration
method can be applied to both thedynamic(on-line) andstatic(off-line) search: in
the former, the text is not preprocessed for an index, whereas the latter can speed
up the search by identifying interesting portions of the text by the index.

A useful filtration scheme is often a compromise between several conflicting
requirements. First, the filtration condition should be asselectiveas possible; in an
ideal situation, all potential matches should also be actual ones, a situation with no
false, i.e., potential but not actual, matches. Second, the filtration phase should skip
as much text as possible, i.e., process the text insublinear1 time. Third, checking
the filtration condition should befast, with as little overhead as possible. Fourth,
the filtration condition shouldcoveras diverse problem instances as possible, for
example, work for all possible error levels or alphabets. Often, the second and
third requirement make too selective filtration impossible. For example,multilevel
filtration which applies several filtration conditions one after another, might be
very powerful in terms of false matches, but not in terms of text skipped or time
consumed.

Filtration with q-grams. The use ofq-grams, i.e., strings of lengthq, in filtration
is based on the fact that each approximate match must resemble the pattern. This
resemblance can be observed in the filtration phase as preserved q-grams of the
original pattern. However, theq-gram filtration does not meet the fourth require-
ment above: a sufficiently large error levelk breaks all theq-grams of the original
pattern so that they cannot serve as a criterion for a potential match.

The use of theq-gram approach in approximate pattern matching results in var-
ious filtration methods. For example, one can utilize the fact that the preserved
q-grams retain their original order. The variants of filter algorithms differ from

1 In this study, we use term “sublinear” in the same sense as Boyer and Moore [2]: an algorithm,
searching for a string of lengthm in a text of lengthn, is sublinear if it inspects less thann characters
in the search task. See also [8].



STRING MATCHING WITH ORDEREDq-GRAMS 323

each other, for example, in the frequency of false matches they yield. When ap-
plied to static search, aq-gram method uses an index ofq-grams of the text; it is a
challenge to design space efficient indexes for these algorithms [7].

We present two dynamic algorithms called LEQ (for Locationsof Exactq-grams)
and LAQ (Locations of Approximateq-grams), which improve the filtration with
the following techniques:

◦ for better selectivity, require that the preservedq-grams are in the same order
as in the original pattern;

◦ for sublinearity, observe onlyq-samples, i.e., everyhth q-gram of the text;
and

◦ for fast evaluation of the filtration condition, apply theshift-addmethod [3]
to efficiently use the information gained from preceding evaluation.

Basically, these ideas result in algorithms which observe asequence ofr adjacent
q-samples at a time, locate theseq-samples with the corresponding, adjacentpat-
tern blocks, and use the matching information for checking the following sequence
of r q-samples. In LEQ,r equalsk + s; heres ≥ 1. It turns out (Theorem 5) that
in an approximate match, at leasts of the k + s q-samples must exist in the cor-
responding pattern blocks. In LAQ, the filtration is based onthe cumulative error
made when comparing each of ther q-samples to the corresponding pattern block.
The third algorithm to be presented is SLEQ, a static variation of LEQ. The focus
of the paper is on combinatorial properties of the sampling approach.

A preliminary version appeared in two conference papers [11] and [12]. Some
of the missing proofs can be found in [10].

Related methods.Takaoka [13] applied the sampling approach in his filtration
scheme, withr = k+1. This means that the method cannot use the relative order of
the preserved patternq-grams. Wu and Manber [17] also utilize a similar relation-
ship between the foundq-grams and the pattern, withq = ⌊ m

k+1⌋. They scan every
q-gram of the text. A potential approximate match occurs if the scannedq-gram is
one of thek+ 1 subsequent, non-overlappingq-grams of the pattern.

In addition to the preservedq-grams, the filtration can be based on the slightly
distortedq-grams of the pattern, like in the LAQ algorithm. This idea was also
utilized in the BLAST tool [1]. BLAST applies a statistically derived measure to
determine the text areas withq-grams not too distant from theq-grams of a given
pattern.

Chang and Lawler [4] used a similar idea in their sublinear search algorithm,
and their approach was developed further by Chang and Marr [5]. The LAQ algo-
rithm joins the ideas of Chang and Lawler, and Chang and Marr with the sampling
approach and the prerequisite that even the distortedq-grams of the pattern shall
remain in their mutual order in an approximate match.

General terms and notations.The lengthof a stringP is denoted by|P|. The
empty stringε is a string of length 0. In the following, an empty substring of P may
also be denoted byP[i1 . . . i2], wherei1 > i2. The setQq(P) refers to theq-grams
occurring in the stringP, i.e.,Qq(P) = {P[i . . . i + q − 1] | 1 ≤ i ≤ m− q + 1}.



324 E. SUTINEN, J. TARHIO

Finally, let cond be a logical condition. The notationδcond is 0 if the condition
cond is true, otherwise 1.

2. Invariance properties of the edit distance

What is preserved in an approximate occurrence of a pattern?We study this ques-
tion in order to derive filtration conditions which identifya potential occurrence in
terms of preserved or slightly modified substrings of the pattern.

D 1. Let P and P′ be strings over an alphabetΣ. Theedit distancebe-
tween the strings P and P′, denoted by d(P,P′), is defined as the minimum number
of edit operations (deletions, insertions, or changes) needed to transform P into
P′, or equivalently, vice versa.

E 1. Let us consider stringsP = P[1 . . .m] andP′ = P′[1 . . .m′], wherem′

is at mostm. The following bounds hold for the edit distanced(P,P′):

||P| − |P′|| ≤ d(P,P′) ≤ max(|P|, |P′|).

The edit distanced(P,P′) between non-empty stringsP = P[1 . . .m] and P =
P′[1 . . .m′] (m≥ 1,m′ ≥ 1) can be stated as a recursive formula

d(P,P′) = min



















d(P[1 . . .m− 1],P′[1 . . .m′ − 1]) + δP[m]=P′[m′]

d(P[1 . . .m],P′[1 . . .m′ − 1]) + 1
d(P[1 . . .m− 1],P′[1 . . .m′]) + 1

(1)

and

d(α, ε) = d(ε, α) = |α| (2)

for every stringα over alphabetΣ.
Hence, we can evaluate the edit distance as follows. We need an (m+1)×(m′+1)–

matrix E, called theedit distance matrix. Each entryE[i, j] gives the edit distance
betweenP[1 . . . i] andP′[1 . . . j]; in particular,d(P,P′) is equal toE[m,m′]. Since
the matrixE is evaluated by dynamic programming, it needs to have initial values
E[i, 0] = i in the first column andE[0, j] = j in the first row, corresponding to (2).
Other values are calculated using the formula

E[i, j] = min



















E[i − 1, j − 1] + δP[i]=P′[ j]

E[i, j − 1] + 1
E[i − 1, j] + 1.

(3)

Note that the entryE[i, j] corresponds to editing the prefixP[1 . . . i] to the prefix
P′[1 . . . j]. The basic method to calculate the values of matrixE is to proceed
row-by-row or column-by-column. In case of largem or m′, one may benefit from
advanced methods [14].



STRING MATCHING WITH ORDEREDq-GRAMS 325

2.1 Tracing the edit operations

In principle, filtration can be based on either a set of subsequences, usually sub-
strings, likeq-grams, which cannot exist in an approximate match (exclusive filtra-
tion), or a set of subsequences which must occur in an approximatematch (inclu-
sive filtration). To derive any set useful for filtration, one must understand what
actually happens when a string is edited under the given set of edit operations, like
those associated to the standard edit distance. Theediting processcan be traced
from the edit distance matrix, and presented as a corresponding trace sequence.
The concept of trace sequence turns out to be powerful for stating inclusive filtra-
tion conditions which are based on those substrings which were either preserved or
only slightly modified under the editing process.

Since the edit distance matrixE gives the edit distances of the prefixes ofP and
P′, it can also be used to trace theE[m,m′] = d(P,P′) edit operations needed to
convertP to P′. Starting from the entryE[m,m′], one selects the entry (either
E[m,m′ − 1], E[m− 1,m′ − 1], or E[m− 1,m′]) that has been used to evaluate
E[m,m′], according to (3). In general, the edit distance matrixE reveals the edit
operation, leading to the edit distanceE[i, j] = d(P[1 . . . i],P′[1 . . . j]), in the fol-
lowing way (note that the choice is not unique):

if E[i, j] = E[i − 1, j − 1] + δP[i]=P′[ j] , then
if P[i] = P′[ j], then no edit operation;
else changeP[i] → P′[ j];

if E[i, j] = E[i, j − 1] + 1, then insertε→ P′[ j];
if E[i, j] = E[i − 1, j] + 1, then deleteP[i] → ε.

The edit operations are traced until the entryE[0, 0] is encountered (this al-
ways happens because of (2) and (3)). The trace defines atrace sequenceΓ =
(E[0, 0], . . . ,E[m,m′]). Let us consider two successive membersγ = E[i, j] and
γ′ = E[i + pi , j + p j ] of the sequenceΓ. The pair (γ, γ′) corresponds to editing
P′[1 . . . j]P[i + 1 . . .m] to P′[1 . . . j + p j ]P[i + pi + 1 . . .m].

The smaller the edit distanced(P,P′) is, the more any trace sequenceΓ includes
successive members of typeE[i, j], E[i + 1, j + 1], where the corresponding char-
acterP[i + 1] remains preserved, i.e.,P[i + 1] = P′[ j + 1]. If d(P,P′) is sufficiently
small, that is, relatively close to||P| − |P′|| (see Example 1), there must be se-
quences of adjacent preserved characters. Now, the smallerthe edit distance, the
more there are preserved substrings. If the gram lengthq is sufficiently small, these
preserved sequences also contain preservedq-grams. Like the preserved charac-
ters, the preservedq-grams retain their relative order. Let us summarize the idea of
the preservedq-grams as a definition:

D 2. Let P = P[1 . . .m] and P′ = P′[1 . . .m′] be strings, and let E be
the corresponding edit distance matrix. LetΓ = (E[0, 0], . . . ,E[m,m′]) be a cor-
responding trace sequence. A substring P′[ j − q + 1 . . . j] of length q is called a
preservedq-gramof P if Γ includes successive entries E[i − q, j − q],E[i − q+ 1,
j −q+1], . . . ,E[i, j] and the substring P[i −q+1 . . . i] is the same as the substring
P′[ j −q+1 . . . j]. A preserved q-gram is called apreserved characterof P if q= 1.



326 E. SUTINEN, J. TARHIO

Let us consider two strings,P1 = APPLETREE andP2 = TRIPLEAPE. Although
the character sets ofP1 and P2 differ only in one character, it is not natural to
define the edit distance in a way which would return an edit distance of 1 forP1

andP2. While the preserved order of the non-edited characters is arelatively simple
property of the edit distance, the algorithms to be introduced in this study are based
on it.

2.2 Edit distance between substrings

In this section, we will show how the edit operations that change a stringP into a
string P′ in d(P,P′) edit operations are reflected in the edit distance between the
substrings ofP andP′. These results are crucial for the filtration conditions, tobe
presented in Section 3.

The properties of a trace sequence make it useful for understanding the edit dis-
tance. For example, the elements of any trace sequenceΓ compose a sequence of
non-decreasing integers. This fact has been used to prove the following theorem.

T 1. Let P and P′ be strings such that d(P,P′) ≤ k. Then for each prefixα
of P, and for each suffix β of P, there exists at least one prefixα′ of P′ such that
d(α, α′) ≤ k, and at least one suffix β′ of P′ such that d(β, β′) ≤ k.

A trace sequenceΓ of an edit distance matrixE is also useful for partitioning
the editing of stringP to another stringP′. In the following, we will derive a few
results on the partitioning technique. In a case where a string P has been edited to
a stringP′ with at mostk edit operations, the theorems will be used to correlate a
set of substrings of the edited stringP′ to a corresponding set of substrings of the
original patternP.

D 3. Let P and P′ be strings, and letΓ be a trace sequence. An arbitrary
division P of the string P into its substringsαi = P[si . . .ei ], i = 1, . . . , l, i.e.,
P = α1α2 · · ·αl , is called apartitioningof the string P. For each partitioningP, the
trace sequenceΓ has at least one subsequenceΓP = (E[e1, e′1], . . . ,E[el−1, e′l−1])
such thatΓP gives thecorresponding partitioningto the edited string P′:

P′ = α′1α
′
2 · · ·α

′
l ,

whereα′i = P′[s′i . . .e
′
i ] for each i = 1, . . . , l. Above, s1 = s′1 = 1, el = m and

e′l = m′. In addition, the equations si+1 = ei + 1 and s′i+1 = e′i + 1 hold for each
i = 1, . . . , l − 1.

Note that for some indicesi, the substringαi (or α′i ) can be the empty string,
corresponding to the settingsi > ei (s′i > e′i ). For each partitioning of the stringP
there may be more than one corresponding partitioning of thestringP′. Note also
that one can construct a partitioning for the stringP starting from a partitioning
of the stringP′. The following theorem states how the edit distance betweentwo
strings can be presented as a sum of the edit distances between their substrings.



STRING MATCHING WITH ORDEREDq-GRAMS 327

T 2. Let P and P′ be strings. Let P= α1α2 · · ·αl be a partitioning of P,
and let P′ = α′1α

′
2 · · ·α

′
l be a corresponding partitioning of P′. Then

d(P,P′) =
l
∑

i=1

d(αi , α
′
i ).

As noted earlier, the partitioning technique is symmetric for the stringP and its
edited counterpartP′. Thus, for each partitioningP′ of the stringP′, we can find
a corresponding partitioningP of the stringP. This makes it natural to define an
original counterpartof a substring of the edited string.

D 4. Let P and P′ be strings. Letα′ be a substring of P′. We call a
substringα of P anoriginal counterpartof α′ if there exists a partitioning P=
α1α2 · · ·αl and a corresponding partitioning P′ = α′1α

′
2 · · ·α

′
l such that for one i,

1 ≤ i ≤ l, α = αi andα′ = α′i .

Note that a substring of the edited string may have multiple original counter-
parts, as a consequence of multiple trace sequences, each producing at least one
partitioning subsequence.

Let us now consider an arbitrary substringα′ of the stringP′. We can locate the
original counterparts ofα′ in the stringP by the following theorem:

T 3. Let P and P′ be strings with an edit distance d(P,P′) = cI + cD + cC,
where cI stands for the number of insertions to P, cD gives the number of deletions
from P, and cC is the number of changes in P. Let P′[i′ . . . j′] be a non-empty
substring of P′. Let P[i . . . j] be an arbitrary original counterpart of P′[i′ . . . j′].
Then the following inequalities hold:

j′ − cI ≤ j ≤ j′ + cD.

In addition, if i ≤ j, then also

i′ − cI ≤ i ≤ i′ + cD

holds.

P. Let P′ = α′1α
′
2 · · ·α

′
l be a partition ofP′ such thatP′[i′ . . . j′] = α′ν for

someν, 1 ≤ ν ≤ l. Let P = α1α2 · · ·αl be a corresponding partition ofP such that
αν = P[i . . . j] is an original counterpart ofP′[i′ . . . j′]. Let us first consider the
location of the indexj.

SinceE[ j, j′] gives the number of edit operations needed to transformP[1 . . . j]
to P′[1 . . . j′], and among these operations there are at mostcI insertions andcD

deletions, we getj′ ≤ j + cI and j′ ≥ j − cD, which prove the theorem forj.
Let us now assume that the original counterpartP[i . . . j] is not the empty string,

i.e., the conditioni ≤ j is satisfied. Ifν equals 1, the inequality holds trivially, be-
causei = i′ = 1. Now, letν > 1. Since the substringP′[i′ . . . j′] is also non-empty,



328 E. SUTINEN, J. TARHIO

the end positions of the substringsαν−1 andα′
ν−1 arei − 1 andi′ − 1, respectively.

Using the same technique as forj and j′ above, we get

i′ − 1− cI ≤ i − 1 ≤ i′ − 1+ cD,

which gives
i′ − cI ≤ i ≤ i′ + cD.

�

3. Filtration conditions

D 5. By thesampling step, we denote the distance between two adjacent
q-samples, i.e., q-grams observed in the text. Thesample sizeis the number of
q-samples observed at a time.

Conventionally, we refer to the sampling step ash and the sample size asr. The
q-samples of a textT are thusd j = T[ jh − q + 1 . . . jh], where j = 1, . . . , ⌊nh⌋. In
the following, the sampling steph is at mostH(m, k, q, r), where

H(m, k, q, r) = ⌊
m− k− q+ 1

r
⌋. (4)

The upper boundH(m, k, q, r) for the sampling steph ensures that each text sub-
string of length at leastm− k contains at leastr q-samples (Theorem 4). Since we
require that theq-samples do not overlap each other, the value ofh must be at least
q. If this condition does not hold for anh derived from (4), a smaller value ofq has
to be used.

D 6. By a pattern blockQi , 1 ≤ i ≤ r, we refer to the substring Qi =
P[(i − 1)h+ 1 . . . ih + q− 1+ k].

The definition above does not yield index overflows, since even for Qr , the upper
index is at mostm:

rh + q− 1+ k ≤ m− k− q+ 1+ q− 1+ k = m.

Note that pattern suffix P[rh + q+ k . . .m] does not belong to any block.
Algorithmically, the filtration methods to be presented consist of the following

stages:
◦ preprocessing the pattern into ther pattern blocks;

◦ scanning everyhth q-sample of the text;

◦ bookkeeping a scoreσ[i] for counting the number of preservedq-grams
within each successive sequenceDi = di , . . . , di+r−1 of r q-samples;

◦ identifying a potential match in the text region aroundDi based on the value
of the scoreσ[i].

In the following subsections, we will derive the filtration conditions for the al-
gorithms, in terms of the sampling steph, the sample sizer, and the value of the
scoreσ[i] required for a potential match.



STRING MATCHING WITH ORDEREDq-GRAMS 329

3.1 Sampling based on preserved q-grams

The filtration scheme of the LEQ algorithm is based on identifying the potential
approximate matches by finding the sequences ofr = k+ s consecutiveq-samples
db+1, db+2, . . . , db+k+s for whichdb+i ∈ Qq(Qi) holds for at leastsof theq-samples.
Theorems 4 and 5 present necessary conditions for an approximate match in a text,
in terms of preservedq-grams, and Theorem 6 defines the text area that needs to be
checked by dynamic programming in case of a potential match.Theorem 5 is the
main result of this subsection. It defines a potential match in terms of theq-sample
location information.

Our goal is a filtration condition which is based onk + s adjacentq-samples.
The choice for the sampling steph guarantees that any approximate match ofP in
T includes at leastk + s q-samples of which at leasts occur inP. For technical
reasons, we state our theorem as follows. The usefulness of the formulation will
be clear in the proof of Theorem 5.

T 4. Let m and r be positive integers, P a pattern, P′ a substring of the
text T , and k an integer such that0 ≤ k ≤ m. If h ≤ H(m, k, q, r) is the sampling
step, h≥ q and|P′| ≥ m− k, then P′ contains at least r q-samples. If, in addition,
d(P,P′) ≤ k and s= r − k is positive, then among any sequence of r= k + s
q-samples in P′, at least s occur in P.

Theorem 4 states that at leasts of the k + s q-samples ofP′ occur in P. The
theorem does not guarantee that theses q-samples arepreserved q-grams ofP
(Def. 2). In fact, the theorem even allows the case where all of the s q-samples
are the same, corresponding to a singleq-gram in P. We therefore analyze the
locations of the patternq-grams, corresponding to theq-samples ofP′. We will
show thatP′ contains at leasts preservedq-samples.

Since each edit operation has transformed at most oneq-sample and onlyd(P,P′)
≤ k edit operations are allowed, at leasts q-samples have not been edited, i.e., they
are preservedq-grams. See Fig. 1.

We have proven the following corollary:

C 1. Let m and s be positive integers, P a pattern and P′ a substring of
a text T , such that d(P,P′) ≤ k, where0 ≤ k ≤ m. If h ≤ H(m, k, q, k + s) is the
sampling step, h≥ q and |P′| ≥ m− k, then P′ contains at least k+ s q-samples.
In addition, among any sequence of k+ s q-samples in P′, at least s correspond to
the preserved q-grams of P.

The previous corollary is independent of the length of pattern P. However, it is
straightforward to apply the theorem to the approximate pattern matching problem,
with |P| = m:

C 2. Let P be a pattern of length m and P′ a substring of a text T such
that d(P,P′) ≤ k. If h ≤ H(m, k, q, k + s) is the sampling step and h≥ q, then at
least s of the q-samples in P′ correspond to the preserved q-grams of P.



330 E. SUTINEN, J. TARHIO

.

P’

P

Fig. 1: Theq-samples ofP′ with the corresponding substrings ofP for k = 3 ands = 2. Thek = 3
edit operations have distorted the first, second, and fourthq-sample ofP′, while the third one and the
fifth one are preserved.

P. Since|P| = mandd(P,P′) ≤ k, the length ofP′ is at leastm−k. According
to Corollary 1,P′ includes at least one sequence ofk + s q-samples; moreover, at
leasts of theq-samples in this sequence correspond to preservedq-grams ofP. �

We will now study how to state a necessary condition for an approximate match
of P in T in terms of pattern blocks. Theorem 5 will be based on the block infor-
mation, and it gives a stronger condition than Corollary 2.

D 7. We call a sequence of k+ s subsequent q-samples di , . . . , di+k+s−1

a promising (k + s)-sequenceif at least s of the samples satisfy the condition
dl ∈ Qq(Ql−i+1).

E 2. (P ) It would be natural to assume that any sequence of
k + s subsequentq-samples in an approximate matchP′ of P is a promising one.
This is, however, not the case. As a counterexample, let us consider a string
P = ABCDEFGHIJKLMNOPQRSTUV, with m = 22, s = 2, q = 2, andk = 4. Us-
ing h = H(m, k, q, s), we geth = 2. Thus,P contains the following six blocks:
ABCDEFG, CDEFGHI, EFGHIJK, GHIJKLM, IJKLMNO, andKLMNOPQ. Let us assume
thatT includes a substringP′ = ABCXDXEXFXGHIJKLMNOPQRSTUV, which is a 4-
approximate match ofP. Provided that sampling inT starts at the 2-sampleAB, the
first (k+ s)- or 6-sequence of 2-samples has only two preserved 2-samples, namely
the first,AB, and the sixth,GH. According to our first assumption,AB should be-
long to the first block andGH to the sixth one. This is not the case. We call this
phenomenon thephase problem. Basically, it results from inserted characters oc-
curring in an approximate match. However, in this setting there are other sequences
of 6 subsequent 2-samples which are promising.

The next theorem states that it is always possible to locate at leastonepromising
(k+ s)-sequence in an approximate match of the pattern. The idea behind the proof



STRING MATCHING WITH ORDEREDq-GRAMS 331

is to locate a substringP′′ of the modified patternP′, starting with a promising
(k + s)-sequence. Intuitively, it seems to be reasonable to search for a promising
(k + s)-sequence in the middle ofP′: in this area, the lengthened right ends of the
blocks balance the dislocations caused by the inserted characters. The right choice
for P′′ turns out to be a suffix of P′. To apply Corollary 1, it is essential that the
length ofP′′ is at leastm− k.

T 5. Let P′ = T[α . . . β] be an approximate match of P with d(P,P′) ≤ k.
Then there are k+ s consecutive q-samples db+1, . . . , db+k+s, included in P′, such
that db+i ∈ Qq(Qi) holds for at least s of the samples.

P. As an approximate match ofP, P′ consists ofcI insertions,cD deletions,
andcC changes to the original patternP. Sinced(P,P′) = cI + cD + cC, we get the
inequality

cI + cD + cC ≤ k. (5)

Let us consider a suffix Ps = P[cI + 1 . . .m] of P (see Fig. 2). Sinced(P,P′) ≤ k,
the same applies to their suffixes: according to Theorem 1, a suffix P′′ = T[iσ . . . β]
of P′ exists, such thatd(Ps,P′′) ≤ k.

Let us now derive a lower bound for the length ofP′′. If cDs denotes the deletions
applied toPs, thencD ≥ cDs and, using (5), we get

|P′′| ≥ m− cI − cDs ≥ m− cI − cD ≥ m+ cC − k ≥ m− k,

because|Ps| = m− cI .

.

c
I

P
s

di

i
σ

dl

l
s

T

P

P’

P"

να β

Fig. 2: Locating a promising (k+ s)-sequence in Theorem 5.



332 E. SUTINEN, J. TARHIO

Let now di = T[ν . . . ν + q − 1] be the leftmostq-sample inP′′. Hence
ν − iσ ≤ h− 1. According to Corollary 1, suffix P′′ includes subsequentq-samples
di , di+1, . . . , di+k+s−1, of which at leastsare preservedq-grams ofPs. Note that

dl = T[ν + (l − i)h . . . ν + (l − i)h+ q− 1]

holds for i ≤ l ≤ i + k + s− 1. Let us denote the set of preservedq-samples by
X = {dl | i ≤ l ≤ i + k+ s− 1 anddl preserved}, |X| ≥ s.

Let us now consider an arbitraryq-sampledl ∈ X. Theq-gram, corresponding to
dl , can be located asP[ls . . . ls+ q− 1], wherecI + 1 ≤ ls ≤ m− q+ 1. To prove the
theorem, it remains to verify thatdl ∈ Qq(Ql−i+1), which holds if

(l − i)h+ 1 ≤ ls ≤ (l − i + 1)h+ k (6)

is satisfied. To prove the first inequality, we first denote bycIs the number of
insertions applied toPs. Since the distance ofdl from the beginning ofP′′ is at
least (l − i)h, we get the following lower bound for the corresponding distance of
dl from the beginning ofPs:

ls− (cI + 1) ≥ (l − i)h− cIs.

BecausecI ≥ cIs holds, this gives a lower bound forls:

ls ≥ (l − i)h+ cI + 1− cIs ≥ (l − i)h+ 1.

To prove the second inequality, we first note that the distance of dl from the
beginning ofP′′ is at mosth− 1+ (l − i)h = (l − i + 1)h− 1. We get the following
upper bound for the corresponding distance ofdl from the beginning ofPs:

ls− (cI + 1) ≤ (l − i + 1)h− 1+ cDs,

which yields
ls ≤ (l − i + 1)h+ cI + cDs ≤ (l − i + 1)h+ k.

Since (6) holds for anydl ∈ X, we have proven the theorem. �

We still need to define the bounds for the location of an approximate match
in case the algorithm has found enough matchingq-samples. The next theorem
determines the text area that has to be checked by dynamic programming:

T 6. Let us assume that s of k+ s consecutive q-samples db+1, . . . , db+k+s

satisfy db+i ∈ Qq(Qi) where q-sample db+1 ends at text position j. Then an approx-
imate occurrence of the pattern P[1 . . .m] may be located in the text area

T[ j − h− 2k− q+ 2 . . . j +m+ k− q].

The width of the text area is m+ 3k+ h− 1.



STRING MATCHING WITH ORDEREDq-GRAMS 333

3.2 Sampling based on approximate q-grams

A filtration method can also use of slightly modifiedq-grams of the patternP. This
observation results in a more sensitive filtration condition compared to the one
satisfied withspreservedq-grams amongr = k+ s observed ones.

The LAQ algorithm utilizes so calledASMdistances, employed also by Chang
and Marr [5]. For anyq-gramu and stringV, ASM(u,V) is equal to the minimum
edit distance (best-match distance) betweenu and any substring of the stringV.
The filtration condition of the LAQ algorithm requires that the sum of theASM
distances between the consecutiveq-samples and the corresponding blocks is at
mostk, i.e., the inequality

r
∑

i=1

ASM(db+i ,Qi) ≤ k

holds for a given parameterb, defining the firstq-sample in the inspected test se-
quence.

Since theASMdistance between a string ofq characters and any other string is
always at mostq, the sum

∑r
i=1 ASM(db+i ,Qi) cannot exceedrq. Therefore it is

required thatrq is greater thank, since otherwise the sum is always at mostk and
the filtration condition triggers for any sequence ofr consecutiveq-samples. We
get the following bounds for the sample sizer:

k
q
< r ≤ ⌊

m− k− q+ 1
q

⌋,

where the maximum choice forr is given by (4).
We will now present how theASMdistance can be utilized to decide whether a

given test sequence includes a potential match. As in the case of the LEQ algo-
rithm, we provide two theorems. The first introduces a necessary condition for an
approximate match, in terms of theASMdistances between theq-samples of a test
sequence and the found pattern. The second defines the text area to be checked for
a potential match.

T 7. Let P′ be an approximate match of P= P[1 . . .m] with d(P,P′) ≤ k.
Then there are r consecutive q-samples db+1, . . . , db+r , included in P′, such that the
following inequality is true:

r
∑

i=1

ASM(db+i ,Qi) ≤ k.

P. Let us denoteP′ = P′[1 . . . µ]. If cI denotes the number of insertions to
the stringP andcD gives the number of deletions fromP, the lengthµ of P′ equals
m+ cI − cD. Hence, the lengthµ can be estimated by the limits

m− k ≤ µ ≤ m+ k.



334 E. SUTINEN, J. TARHIO

Let us now consider a suffix P′′ = P′[cI + 1 . . . µ] of the stringP′. Since the
number of insertions and deletionscI + cD is at mostk, we get the bound

|P′′| = µ − cI − 1+ 1 = m+ cI − cD − cI = m− cD ≥ m− k,

becausecD is obviously at mostk.
Because (4) defines the sample sizer so that any string of length at leastm− k

includes at leastr consecutiveq-samples, this is also true for the stringP′′. Let us
denote the leftmostq-sample ofP′′ by db+1. This means that an indexσ exists for
which db+1 = P′[σ . . . σ + q − 1]. Sincedb+1 is the leftmostq-sample ofP′′, we
get the bounds

cI + 1 ≤ σ ≤ cI + h.

Let us now consider the sequencedb+1, . . . , db+r . Let P′ = α′1α
′
2 · · ·α

′
ν be a

partitioning ofP where for eachi, 1 ≤ i ≤ r, an indexj i exists such thatdb+i = α
′
j i
.

We can choose the indicesj i so that they form an increasing sequence of integers.
Let P = α1 · · ·αν be a corresponding partitioning of the stringP. Let us denote the
original counterpartα j i of theq-sampledb+i by o(db+i). According to Theorem 2,

d(P,P′) =
ν
∑

l=1

d(αl , α
′
l ),

which means that it is sufficient to prove that for eachi, 1 ≤ i ≤ r, the substring
o(db+i) is a substring ofQi , since thenASM(db+i ,Qi) ≤ d(db+i , o(db+i)) and there-
fore

r
∑

i=1

ASM(db+i ,Qi) ≤
r
∑

i=1

d(db+i , o(db+i)) ≤
ν
∑

l=1

d(αl , α
′
l ) = d(P,P′) ≤ k,

which proves our theorem.
Now, let us prove that for eachi, 1 ≤ i ≤ r, the substringo(db+i) is included inQi .

Let us consider an arbitraryq-sampledb+i = P′[σ+ (i −1)h . . . σ+q−1+ (i −1)h].
If o(db+i) is the empty string, it is trivially a substring ofQi . Let us now assume
thato(db+i) is non-empty. According to Theorem 3, the original counterparto(db+i)
is included inP[σ+ (i − 1)h− cI . . . σ+ q− 1+ (i − 1)h+ cD]. The latter, however,
is included inQi = P[(i − 1)h+ 1 . . . ih + q− 1+ k], since

(i) σ + (i − 1)h− cI ≥ cI + 1+ (i − 1)h− cI , and
(ii) σ+q−1+ (i −1)h+cD ≤ cI +h+q−1+ (i −1)h+cD ≤ ih+q−1+cI +cD ≤

ih + q− 1+ k.
This proves our claim and completes the proof. �

The theorem above gives a necessary condition for potentialmatches. However,
we need another result to define the text area which has to be processed in the
checking phase. It turns out that this area is slightly larger than the one of the LEQ
algorithm, due to the different use of the test samples; we will give an example of
this after the proof of the theorem.



STRING MATCHING WITH ORDEREDq-GRAMS 335

T 8. Let an approximate match P′ of the pattern P[1 . . .m], with d(P,P′) ≤
k, trigger the filtration condition of the LAQ algorithm, i.e., the inequality

r
∑

i=1

ASM(db+i ,Qi) ≤ k

holds. If the q-sample db+1 ends at a text position j, then P′ is located in the text
area

T[ j − h− 2k− q+ 2 . . . j +m+ k− 1].

The width of the text area to be inspected is m+ 3k+ h+ q− 2.

P. Let us assume thatP′ = T[α . . . β], cI is the number of insertions toP,
and cD is the number of deletions fromP. In the same way as in the proof of
Theorem 7 we conclude that for a set of original counterpartso(db+1), . . . , o(db+r )
the following holds:o(db+i) is a substring ofQi .

Now, at least one of the original counterparts, sayo(db+i), is not the empty
string, because otherwised(P,P′) ≥ rq > k. Let us denoteo(db+i) by P[λ1, λ2],
whereλ2 ≥ λ1, becauseo(db+i) is not empty. SinceP[λ1, λ2] is included inQi =

P[(i − 1)h+ 1 . . . ih + q− 1+ k], we get the inequalities

(i − 1)h+ 1 ≤ λ2 ≤ ih + q− 1+ k. (7)

In addition, since theq-sampledb+1 ends at the text positionj, theq-sampledb+i

ends at thetextposition j+(i−1)h, or equivalently, at the positionj+(i−1)h−α+1
in thepattern P′[1 . . . β − α + 1] = T[α . . . β]. Now, applying Theorem 3, we get
the inequalities

j + (i − 1)h− α + 1− k ≤ λ2 ≤ j + (i − 1)h− α + 1+ cD, (8)

because−k ≤ −cI .

Combining the right inequality of (7) with the left inequality of (8), we get the
lower bound forα:

j − h− 2k− q+ 2 ≤ α. (9)

On the other hand, the left inequality of (7) combined with the right inequality of
(8) tells us thatα is at mostj + cD. By noting that|P′| = β−α+ 1 ≤ m+ cI , we get
the inequality

β ≤ m+ cI + j + cD − 1 ≤ j +m+ d(P,P′) − 1 ≤ j +m+ k− 1. (10)

The inequalities (9) and (10) prove the claim. �

E 3. Let us consider the patternP = ABCDEFGHIJ of lengthm = 10. Let
the error levelk = 3 and the gram lengthq = 2. Let the sample sizer = 2.
These choices result in a sampling steph = 3. The choices are appropriate, since
h ≥ q andrq = 4 > 3 = k. The pattern has two blocks, namelyQ1 = ABCDEFG

and Q2 = DEFGHIJ. Let us suppose that a textT has an approximate match



336 E. SUTINEN, J. TARHIO

P′ = AXXXBCDEFGHIJ = T[91 . . .103]. Since ASM(FG,Q1) + ASM(IJ,Q2) = 0
andFG ends at text positionj = 100, it is appropriate to start the inspection of the
text at text positionα = j − h− 2k− q+ 2 = 100− 3− 6− 2+ 2 = 91.

Since the filtration condition already triggers atj = 94, this example shows that
the bounds for the area to be inspected may be quite pessimistic.

4. Algorithms

4.1 The LEQ algorithm

Matching a sequence ofk + s q-samples in the corresponding pattern blocks can
be regarded as an instance of the generalizedk mismatches problem. Therefore,
the shift-add technique [3] can be used in the LEQ algorithm,to efficiently resolve
the matching of a sequenceDi = di . . .di+m′−1, based on the information of its
predecessorDi−1.

The triggering of the filtration condition, as stated in Theorem 5, can be inter-
preted as a reduction to a generalizedk mismatches problem. In this problem, each
position of the pattern has a set of accepted characters of its own. Let us consider
the set ofq-grams as the alphabet,q-samples as a textτ = d1 . . .dn′ , and theq-gram
sets of blocks of the original pattern as a patternπ = Qq(Q1) . . .Qq(Qm′), where
n′ = ⌊n/h⌋ andm′ = k + s. We can now restate Theorem 5 as follows: a potential
approximate match ofπ with at mostk mismatches ends atj if τ[ j −m′ + i] ∈ π[i],
or equivalently,d j−m′+i ∈ Qq(Qi), holds for at leastm′ − k indicesi, 1 ≤ i ≤ m′.

In order to apply shift-add technique [3], we define a bit matrix B as follows:
B[d, j] equals 1 if theq-gramd belongs toQq(Q j), otherwiseB[d, j] is zero. For
eachq-gramd, B[d, ∗] gives theblock profileof d.

An array M[1 . . .m′] is used to compute the number of matchingq-samples in
an alignment of the patternπ with τ[i . . . i +m′ − 1]. An approximate match with
at mostk mismatches can be found only if at leastm′ − k matchedq-samples are
aligned, i.e.,M[m′] ≥ m′ − k = s.

In order to find all potential matches, the algorithm has to evaluateM for each
substringDi = di . . .di+m′−1 of the textτ. The crucial question, decisive for the
applicability of the LEQ algorithm, is how to efficiently updateM[m′] for Di , using
the results evaluated forDi−1, i.e., how to evaluate the scoreσ[i] from the score
σ[i − 1]. In order to do this, we maintain inM the information about how each
suffix of Di aligns with the corresponding prefix ofπ. This information provides
a simple way to decide whether continuing any prefix ofπ results in a potential
match.

Let us assume that the algorithm has evaluated the values of the arrayM for
Di = di . . .di+m′−1. For eachj, 1 ≤ j ≤ m′, the entryM[ j] contains the number of
matchedq-samples between the suffix di+m′− j . . .di+m′−1 and the prefixπ[1 . . . j].
Initially, each entry ofM equals 0. The arrayM is updated at each text position as
follows:



STRING MATCHING WITH ORDEREDq-GRAMS 337

Procedure Shift add(M, B[d, ∗])
for j := m′ downto 2 do M[ j] := M[ j − 1]; % shift
M[1] := 0;
for j := 1 to m′ do M[ j] := M[ j] + B[d, j]; % add

In practice, the next value ofM is evaluated using bit parallel operations. Let us
consider the cases = 2. Because the sufficient number of positiveq-samples in a
text area is then two, only two bits are needed for an element of M. Therefore, to
add a new block profileB[d, ∗] to M, two bits are also reserved for each entry of
the indexB.

Algorithm LEQ.
1. constructB[d, ∗] for eachd ∈ Qq(P);
2. for i := 1 to m′ do M[i] := 0;
3. for j := h to n step h do
4. begin
5. if T[ j − q+ 1 . . . j] < Qq(P) then bp := [0, . . . , 0]

else bp := B[T[ j − q+ 1 . . . j], ∗];
6. Shift add(M, bp);
7. if M[m′] ≥ m′ − k then
8. DP(P,T[ j −m′h− 2k− q+ 2 . . . j +m− (m′ − 1)h+ k− q]);
9. end

The procedure DP searches for approximate matches ofP in the text area
T[i1 . . . i2] using dynamic programming. For an efficient implementation of DP,
see [15].

Let us assume that LEQ has found a potential approximate match ending at text
position j. In this case, we have two options: either verify the approximate match
right away with dynamic programming, or check the conditiononce more using
different samples2. The latter alternative is reasonable in cases where a single
application of the filtration condition results in too many false matches.

To do another check, the algorithm screens a slightly shifted sequence ofk + s
q-samples. It backtracks (m′ −1)h+ ⌊h2⌋ positions in the text and restarts the search
with newq-samples. The restart is permitted only ifj− jp is large enough, wherejp

is the previous backtracking position, otherwise the checking phaseDP is called.
The following result is a rough estimate for the probabilityof a potential match.

We apply here (as well as in subsequent theorems) the symmetric Bernoulli model3.

T 9. The probability Pc of a potential match in the LEQ algorithm for s= 2
is

Pc ≤ 1− (1−
m+ k2

+ k
kcq )k+2.

2 This idea can also be applied to some other filtration schemes.
3 In a random text generated according to theBernoulli model, each charactera from the alphabetΣ
occurs in the text according to afixedprobability pr(a), and independently of other characters, like
the preceding ones. The sum of the probabilitiesΣa∈Σ pr(a) equals 1. Asymmetric Bernoulli model,
sometimes also called thei.i.d. model(for independent and identical distribution), means that each
character of the alphabet has an equal probability1

c of occurrence in a random text. InMarkovian
models, an occurrence of a character can depend on its preceding character(s).



338 E. SUTINEN, J. TARHIO

The bound shows the clear dependence of the filtration efficiency on the error
levelk. This is even more important because the algorithm can only apply relatively
small values ofq because of the conditionh ≥ q. On the other hand,h decreases
quickly with an increasingk. This phenomenon can be seen in Fig. 3: the filtration
does not work for error levels larger than 11, due to the decreased value ofq = 1.

.
0.001

0.01

0.1

1

2 4 6 8 10 12
k

max probability of a potential match

Fig. 3: The upper bound for the probability of a potential match, given by Theorem 9, for the case
c = 40,m = 40, andk = 1 . . . 12. For error levelsk of at most 8, the gram lengthq equals 3, for
k = 9 . . . 11, the gram length is 2, and fork = 12 it equals 1.

The time for processing theq-samples dominates over the other phases, espe-
cially the dynamic programming phase, as long as the error level k remains suffi-
ciently small. It is straightforward to prove the followingresult.

T 10. Let w be the word size in bits. The average time complexity of the
LEQ algorithm for s= 2 is O( n

mk(q + k
w)) in the general case and O( n

mqk) for
k ≤ w/2.

Whenq = logc m andk ≤ w/2, the time complexity isO( kn
m logc m), which is

the same as the average time complexity of the Chang–Lawler algorithm [4] and
Takaoka’s algorithm [13].

4.2 The LAQ algorithm

The LAQ algorithm is based on sampling and is similar to LEQ.



STRING MATCHING WITH ORDEREDq-GRAMS 339

Algorithm LAQ.
1. preprocessP;
2. for i := 1 to r do M[i] := 0;
3. for j := h to n step h do
4. begin
5. d := T[ j − q+ 1 . . . j];
6. for l := r downto 2 do
7. M[l] := M[l − 1] + ASM(d,Ql);
8. M[1] := ASM(d,Q1);
9. if M[r] ≤ k then
10. DP(P,T[ j − rh − 2k− q+ 2 . . . j +m− (r − 1)h+ k− 1]);
11.end

There are certain differences between the two algorithms, though. First, the
lines 6–8 correspond to theShift add operation of the LEQ algorithm. However,
whereas LEQ counts the number of correctly located patternq-grams, occurring as
q-samples in the text, the LAQ algorithm counts the differences of the text sam-
ples, compared to the corresponding pattern blocks. From the filtration efficiency
point of view, the cumulative errorM[r] in the LAQ algorithm should be as large as
possible, to decrease the number of false matches, while thecorresponding entity
of the LEQ algorithm should be as small as possible. These observations must be
taken into account when applying the algorithms, especially when determining the
values for the parametersr (in LAQ), s (in LEQ), q, andh.

Secondly, because of the commonShift add operation, the LAQ algorithm
could also utilize bit parallel operations. Contrary to theLEQ approach, the LAQ
algorithm benefits less from this technique, since each entry of theM array requires
at leastO(log2 k) bits, compared to 2 bits in LEQ (fors= 2).

Thirdly, the preprocessing routine of the LAQ algorithm consumes more time
and space than that of the LEQ algorithm. This is because the values ASM(d,Ql),
l = 1, . . . , r, must be tabulated for eachq-gramd of the setΣq, whereas the LEQ
algorithm records only block profiles forq-grams occurring in the pattern. This
means that the LAQ algorithm is appropriate only for long texts where the time
used for preprocessing the pattern is marginal compared to the time needed for the
whole filtration. For short texts, it is also possible to evaluate the ASM distances
on-the-fly: for each readq-sampled, the algorithm evaluates the ASM distances
ASM(d,Ql) for eachl, l = 1, . . . , r, and stores them. However, if these distances
have already been computed which means that the readq-sample is not the first
occurrence ofd, the algorithm utilizes the stored values. Furthermore, itis possible
to compromise between the two alternatives and pre-evaluate the ASM distances
for commonq-grams in the given text.

Fourthly, the overall time consumption for the LAQ algorithm is close to that
of the LEQ algorithm, with differences due to the variations in theShift add
operation. However, the probability of a potential match isdifferent.



340 E. SUTINEN, J. TARHIO

4.3 SLEQ — a static variation of LEQ

In the area of static filtration, the LEQ approach diminishesone of the main prob-
lems: the space needed for the text index. It is possible to reduce the space require-
ment by modifying the sampling scheme of the LEQ algorithm, to be suitable for
storing the locations of only everyhth textq-gram. This approach is complemen-
tary to other methods of decreasing space consumption, likecompressing the index
itself [7].

While the LEQ indexing scheme already reduces the space consumption of the
q-gram index and location lists by a factor ofh, we can save even more: instead of
indicating aq-gram position in the text, we just refer to its location among all the
q-samples. This reduces the index space from{1, . . . , n} to {1, . . . , ⌊nh⌋}.

The standard implementation of aq-gram index stores the locations of all the
q-grams of the text. Since the number ofq-grams in a text of lengthn is n−q+1
and storing a position takes log2 n bits without compression, the overall space con-
sumption isn log2 n, provided thatq is small compared ton. Let us define aspace
saving factor vr as the space requirement ratio between our method and the stan-
dard approach, i.e.,

vr =

n
h log2

n
h

n log2 n
≈

1
h

(for largen).

In cases where one can apply the most space-efficient h for each search task,
the new approach gives promising results. For example, in the case ofm = 40,
k = 0, . . . , 4, s= 2 andn = 500, 000, the SLEQ approach consumes only 4–17.5%
of the space used by a standardq-gram index.

In the SLEQ algorithm, the sampling steph depends on the values ofm, k, q, and
s in a way similar to the LEQ algorithm. However, while the dynamic LEQ algo-
rithm can choose a differenth for each particular search, the static SLEQ algorithm
has to apply a preprocessed index, produced according to a specific value ofh. This
can be done by adjustings according toh, to be able to utilize the LEQ filtration
scheme. The following result is a straightforward consequence of Theorem 5.

T 11. Let P be a pattern, T a text, and let P′ be a substring of T such that
d(P,P′) ≤ k. Let h be the sampling step. Then there are k+s consecutive q-samples
db+1, . . . , db+k+s in P′ such that db+i ∈ Qq(Qi) holds for at least s of the samples,
where

s≤ ⌊
m− k− q+ 1

h
− k⌋. (11)

The formula (11) fors means that we do not need to create a different index for
each pair (m, k). That is, we do not fixs before definingh, but adjusts according
to the values ofm, k, q, andh. Actually, sinces has to be at least 1 for reasonable
application of Theorem 11, we get from (11) thatm−k−q+1

h − k has to be at least 1,
giving an upper bound for the error levelk:

k ≤
m− q− h+ 1

h+ 1
. (12)



STRING MATCHING WITH ORDEREDq-GRAMS 341

For example, assume that a 2-gram index has been built withh = 5. If the pattern
is of length 20, the index is applicable for error levels 0. . .2, according to (12). On
the other hand, the same index can be used for error levels 0. . .5 in the case of
m = 40. The values ofs are given by (11). Note thats = ⌊m−k−q+1

h − k⌋ is the
largest integer for which the index can be utilized.

In the index of theq-samples, eachq-sampledi = T[ih−q+1 . . . ih], i = 1 . . . ⌊nh⌋,
is hashed into an element of a hash tableH. Each entryH[e] points to the beginning
of the list LH(e) consisting of thoseq-grams which hash toe. In addition to a
q-gramu, each entry of the listLH(e) also contains pointers to the beginning and
to the end of the listL(u), which stores the end points of theq-samples equal tou
in the textT. Optionally, we could also use a trie structure to store the locations
of the textq-samples. This approach is, however, slower in practice than efficient
hashing.

The scoreσ[i] gives the number of preservedq-grams within theq-sample se-
quencedi , . . . , di+k+s−1. Let aq-gramuP of P among theq-samples ofT end at a
position j = ih for somei. For each blockQb of P such thatQq(Qb) containsuP,
we then increment the scoreσ[i−b+1]. For each found patternq-gram occurrence,
the algorithm updates the respective scores, by utilizing the block profiles of the
patternq-grams.

Algorithm SLEQ.
1. s := ⌊m−k−q+1

h − k⌋;
2. constructB[u, ∗] for eachu ∈ Qq(P);
3. for eachu ∈ Qq(P)
4. begin
5. QLIST := L(u);
6. while QLIST , NULL
7. begin
8. i := QLIST.location;
9. for b := 1 to k+ s
10. if B[u, b] = 1 then σ[i − b+ 1] := σ[i − b+ 1] + 1;
11. QLIST := QLIST.next;
12. end
13.end
14.for i := 1 to ⌊n/h⌋
15. if σ[i] ≥ s then
16. begin
17. j := ih;
18. DP(P,T[ j − h− 2k− q+ 2 . . . j +m+ k− q]);
19. end
20.end

It is straightforward to show the following result.

T 12. Algorithm SLEQ has the following characteristics:



342 E. SUTINEN, J. TARHIO

(i) The text preprocessing phase takes O(q⌊nh⌋) time on average.

(ii) The size of the index is O(n
h log2

n
h).

(iii) The expected length of a q-gram list L(u) is O(⌊nh⌋
1
cq ).

(iv) The average time complexity of the text searching phaseis O( n
cq km).

The time complexity of the checking phase is similar to that of the dynamic ver-
sion, with one exception: SLEQ has to scan all the scoresσ[i], i.e., ⌊n/h⌋ entries.
Especially for small error levelsk, only few of the elements are non-zero. A better
way is to have a score window which slides only through the text areas with pattern
q-gram occurrences. Thus, only a fraction of the elements ofσ will be processed.

One possibility to maintain the score window is the following. We merge the
patternq-gram lists, the elements of which store theq-sample locations in the in-
creasing order. Using this list, we evaluate the scores onlyin the text regions
containing patternq-grams.

An efficient method to implement the score window is based on the heap tech-
nique. We build a heapK, containingcard(Qq(P)) nodes. We start by inserting
the first element of each patternq-gram listL(u1), . . . , L(ucard(Qq(P))) into K. The
invariant of the heap is that the minimum value is always in the root.

After this initialization, we execute the next loop until the heap is empty: extract
the root element, indicating a location ofq-gramu, into the merged listLM, and
insert the next element of the listL(u) into K.

The time complexity of merging theq-gram lists is given by the following theo-
rem. The result suggests that the method is useful especially for finding a pattern
with few commonq-grams with the text. To test this condition, the text index
should contain the number of occurrences for each different textq-sample.

T 13. The average time complexity of merging the q-gram lists using a heap
is O(mn

h
1
cq log2 m).

5. Concluding remarks

We have presented filtration algorithms based onq-grams for thek-differences
problem. Our approach differs from previousq-gram filtration methods in that
we take the order ofq-grams into account: the found patternq-grams or their ap-
proximate versions must be in the same order as they appear inthe original pattern.

We have tested the efficiency of the presented methods in practice. Our exper-
iments [11, 12] confirm that the order requirement improves efficiency for the
q-gram based algorithms. In general, compared to other filtration methods, the
location-sensitive approach works the better the smaller the allowed error level is.
As with everyq-gram based approach, the efficiency depends on the alphabet size:
the bigger the alphabet size the better the filtration.

The filtration conditions presented were designed for thek differences problem.
In a simpler form, they also work for thek mismatches problem. Besides the
formulation of these filtration conditions, it is an open question whether they can
be evaluated fast enough in practice.



STRING MATCHING WITH ORDEREDq-GRAMS 343

References

[1] A, S. F., G, W., M, W., M, E. W.,  L, D. J. 1990. Basic Local
Alignment Search Tool.Journal of Molecular Biology 215, 3, 403–410.

[2] B, R. S. M, J. S. 1977. A Fast String Searching Algorithm.Communications of
the ACM 20, 10 (Oct.), 762–772.

[3] B-Y, R.  G, G. 1992. A New Approach to Text Searching.Communications
of the ACM 35, 10, 74–82.

[4] C, W.  L, E. 1994. Sublinear approximate string matching and biological appli-
cations.Algorithmica 12, 327–344.

[5] C, W.  M, T. 1994. Approximate String Matching and Local Similarity. In Proc.
5th Annual Symposium on Combinatorial Pattern Matching, Crochemore, M. and Gusfield, D.,
Editors, Volume 807 ofLecture Notes in Computer Science. Springer-Verlag, 259–273.

[6] G, Z.  P, K. 1990. An Improved Algorithm for Approximate String Matching.
SIAM Journal on Computing 19, 6, 989–999.

[7] K ̈̈, J.  S, E. 1998. Lempel–Ziv Index forq-Grams. Algorithmica 21, 1,
137–154.

[8] M, E. W. 1994. A Sublinear Algorithm for Approximate Keyword Searching.Algorith-
mica 12, 4-5, 345–374.

[9] N, G. 2001. A Guided Tour to Approximate String Matching.ACM Computing Surveys
33, 1, 31–88.

[10] S, E. 1998. Approximate Pattern Matching with theq-Gram Family. PhD Thesis. Report
A-1998-3, University of Helsinki, Department of Computer Science, Helsinki, Finland.

[11] S, E. T, J. 1995. On Usingq-Gram Locations in Approximate String Matching.
In Proc. 3rd Annual European Symposium on Algorithms ESA ’95, Spirakis, P., Editor, Volume
979 ofLecture Notes in Computer Science.Springer-Verlag, 327–340.

[12] S, E.  T, J. 1996. Filtration withq-Samples in Approximate String Matching.
In Proc. 7th Symposium on Combinatorial Pattern Matching CPM ’96, Hirschberg, D. and
Myers, G., Editors, Volume 1075 ofLecture Notes in Computer Science.Springer-Verlag,
50–63.

[13] T, T. 1994. Approximate Pattern Matching with Samples. InProc. 5th Annual Interna-
tional Symposium on Algorithms and Computation ISAAC ’94, Du, D. and Zhang, X., Editors,
Volume 834 ofLecture Notes in Computer Science.Springer-Verlag, 234–242.

[14] U, E. 1985 Algorithms for Approximate String Matching.Information and Control 64,
100–118.

[15] U, E. 1985. Finding approximate patterns in strings.Journal of Algorithms 6, 1, 132–
137.

[16] U, E.W, D. 1993. Approximate String Matching with Suffix Automata.Algo-
rithmica 10, 5, 353–364.

[17] W, S. M, U. 1992. Fast Text Searching Allowing Errors.Communications of the
ACM 35, 10 (Oct.), 83–91.


