Nordic Journal of Computing 11(2004), 321-343.

APPROXIMATE STRING MATCHING
WITH ORDEREDQg-GRAMS®

ERKKI SUTINEN
Department of Computer Science, University of Joensuu
P.O. Box 111, FIN-80101 Joensuu, Finland
sutinen@cs. joensuu. fi

JORMA TARHIO
Department of Computer Science and Engineering
Helsinki University of Technology
P.O. Box 5400, FIN-02015 HUT, Finland
tarhio@acm.org

Abstract. Approximate string matching witk differences is considered. Filtration of the
text is a widely adopted technique to reduce the text areeepsed by dynamic program-
ming. We present sublinear filtration algorithms based endbations ofg-grams in the
pattern. Samples afgrams are drawn from the text at fixed periods, and only icecn-
tive samples appear in the pattern approximately in the smmigguration, the text area is
examined with dynamic programming. The algorithm LEQ skeesdor exact occurrences
of the patterrg-grams, whereas the algorithm LAQ searches for approximetarrences
of them. In addition, a static variation of LEQ is present&tie focus of the paper is on
combinatorial properties of the sampling approach.

ACM CCS Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Probtem

Key words: string matching, filtrationg-grams, indexing

1. Introduction

Givenatext T=T[1...n]and apattern P= P[1... m| over an alphab€eX of sizec
and an integek, called theerror level theapproximate pattern matching problem
is the following: find all the positiongin T such that an approximate matchm®f
ends atj. The found occurrences are calle@dpproximate matches &f.

The proximity between two stringsandgs can be measured for example by the
edit distance dIn aunit cost modeld(e, 8) is the minimum number oédit oper-
ations(insertions, deletions, or changes) needed to coavewts. Using the unit
cost model to evaluate edit distance results in a particngance of the approx-
imate pattern matching problem, called thaliferences problemFurthermore,
if only change operations are allowed, the correspondingplpm is called thé
mismatches problenin this paper, we will consider tHedifferences problem.

*The work was supported by the Academy of Finland. Most of thekwvas done at the Univer-
sity of Helsinki.

Received June 26, 2002; revised July 13, 2004; acceptechibere?0, 2004.

322 E. SUTINEN, J. TARHIO

There are several solutions to thdifferences problem, see e.g. Navarro’s survey
[9]. Our main interest is not, however, to compare our sohgiwith the earlier
ones, but derive a fferent approach, based on the combinatorial characteritic
the problem. We believe that our approach may have otheicagiphs than thé
differences problem.

The approximate pattern matching problem obviously haigijpns in diverse
areas, such as computational biology, text databasesseatsty, and information
retrieval. In many of these applications, the texts aredaithis makes th&(kn)
solutions [15, 6, 16], which apply dynamic programming te thhole text, too
slow. In order to speed up the search, dynamic programmingidive restricted to
text regions where approximate matches are supposed tabd.fdhis technique
is calledfiltration.

Filtration. Each filtration method has basically two phases. The first caléed
the filtration phase uncovers the promising text regions wipletential approxi-
mate matches. These regions are identified by a necessatlitionrfor an ap-
proximate match, called tH#tration condition The slower but accuratghecking
phaseapplies dynamic programming to the filtered text regionsifies or falsi-
fies the potential matches, and returns the locatiormfal matches. A filtration
method can be applied to both thgnamic(on-line) andstatic(off-line) search: in
the former, the text is not preprocessed for an index, wisettealatter can speed
up the search by identifying interesting portions of the texthe index.

A useful filtration scheme is often a compromise between raéwwnflicting
requirements. First, the filtration condition should beelectiveas possible; in an
ideal situation, all potential matches should also be dctues, a situation with no
false i.e., potential but not actual, matches. Second, thetfdtngphase should skip
as much text as possible, i.e., process the tegtilineat time. Third, checking
the filtration condition should bfast with as little overhead as possible. Fourth,
the filtration condition shouldoveras diverse problem instances as possible, for
example, work for all possible error levels or alphabetstef@fthe second and
third requirement make too selective filtration impossitiler examplemultilevel
filtration which applies several filtration conditions one after aratimight be
very powerful in terms of false matches, but not in terms &f skipped or time
consumed.

Filtration with g-grams. The use ofj-grams, i.e., strings of lengtl in filtration
is based on the fact that each approximate match must resdéhebpattern. This
resemblance can be observed in the filtration phase as pedsggrams of the
original pattern. However, thg-gram filtration does not meet the fourth require-
ment above: a dficiently large error levek breaks all they-grams of the original
pattern so that they cannot serve as a criterion for a patenttch.

The use of the-gram approach in approximate pattern matching resultsiin v
ious filtration methods. For example, one can utilize the fhat the preserved
g-grams retain their original order. The variants of filteg@ithms difer from

1 In this study, we use term “sublinear” in the same sense asBayd Moore [2]: an algorithm,
searching for a string of lengthin a text of lengt, is sublinear if it inspects less tharcharacters
in the search task. See also [8].

STRING MATCHING WITH ORDEREDG-GRAMS 323

each other, for example, in the frequency of false matche yreld. When ap-
plied to static search, @gram method uses an indexafyrams of the text; itis a
challenge to design spacfieient indexes for these algorithms [7].

We present two dynamic algorithms called LEQ (for LocatiohExactg-grams)
and LAQ (Locations of Approximatg-grams), which improve the filtration with
the following techniques:

o for better selectivity, require that the presergegrams are in the same order
as in the original pattern;

o for sublinearity, observe onlg-samplesi.e., everyhth g-gram of the text;
and

o for fast evaluation of the filtration condition, apply thkift-addmethod [3]
to efficiently use the information gained from preceding evabrati

Basically, these ideas result in algorithms which obsemsegaience af adjacent
g-samples at a time, locate thegsamples with the corresponding, adjacpat-
tern blocks and use the matching information for checking the follaysequence
of r g-samples. In LEQr equalsk + s; heres > 1. It turns out (Theorem 5) that
in an approximate match, at leasof thek + s gsamples must exist in the cor-
responding pattern blocks. In LAQ, the filtration is basedtmncumulative error
made when comparing each of thg-samples to the corresponding pattern block.
The third algorithm to be presented is SLEQ, a static vamiatif LEQ. The focus
of the paper is on combinatorial properties of the samplpgeach.

A preliminary version appeared in two conference paper$dhdl [12]. Some
of the missing proofs can be found in [10].

Related methods.Takaoka [13] applied the sampling approach in his filtration
scheme, withr = k+ 1. This means that the method cannot use the relative order of
the preserved pattegigrams. Wu and Manber [17] also utilize a similar relation-
ship between the foungtgrams and the pattern, with= | {7 |. They scan every
g-gram of the text. A potential approximate match occurséfshanned|-gram is
one of thek + 1 subsequent, non-overlappiggrams of the pattern.

In addition to the preservegtgrams, the filtration can be based on the slightly
distortedg-grams of the pattern, like in the LAQ algorithm. This ideaswadso
utilized in the BLAST tool [1]. BLAST applies a statisticgllerived measure to
determine the text areas withgrams not too distant from thgggrams of a given
pattern.

Chang and Lawler [4] used a similar idea in their sublinearde algorithm,
and their approach was developed further by Chang and Marf e LAQ algo-
rithm joins the ideas of Chang and Lawler, and Chang and Mélnrtve sampling
approach and the prerequisite that even the distaptghms of the pattern shall
remain in their mutual order in an approximate match.

General terms and notationsThe lengthof a stringP is denoted byP|. The
empty string: is a string of length 0. In the following, an empty substririgPonay
also be denoted biJi; ...io], whereiy > i>. The setQq(P) refers to theg-grams
occurring in the string?, i.e.,Qq(P) = {P[i...i+q-1] |1 <i <m-q+1}.

324 E. SUTINEN, J. TARHIO

Finally, let cond be a logical condition. The notatiafi.ng is O if the condition
cond is true, otherwise 1.

2. Invariance properties of the edit distance

What is preserved in an approximate occurrence of a pati&m8tudy this ques-
tion in order to derive filtration conditions which identifypotential occurrence in
terms of preserved or slightly modified substrings of theguat

DeriniTioN 1. Let P and P be strings over an alphab&. Theedit distancebe-
tween the strings P and Pdenoted by (P, P’), is defined as the minimum number
of edit operations (deletions, insertions, or changes)deéeto transform P into
P’, or equivalently, vice versa.

ExampiLe 1. Let us consider string3= P[1...m]andP’ = P’[1...n"], wherenY
is at mostm. The following bounds hold for the edit distand@, P’):

IPI = [Pll < d(P, P") < max(P}, |P’]).

The edit distancel(P, P’) between non-empty string® = P[1...m] andP =
PI1...m](m> 1 > 1) can be stated as a recursive formula

d(P[1...m= 1], P’[1...00 = 1]) + Sppmj=p (]
d(P.P") = min{ d(P[L...m,PLl...m —1]) +1 1)
d(P[L...m-1,P[1...m]) +1

and
d(a, &) = d(g, @) = || (2)

for every stringw over alphabek.

Hence, we can evaluate the edit distance as follows. We megoahal)< (' +1)—
matrix E, called theedit distance matrixEach entryE[i, j] gives the edit distance
betweerP[1...iJandP’[1... |]; in particular,d(P, P") is equal toE[m, m']. Since
the matrixE is evaluated by dynamic programming, it needs to have Initiies
E[i, 0] =i in the first column and[0, j] = j in the first row, corresponding to (2).
Other values are calculated using the formula

Eli - 1, - 1] + opjij=p1j)
E[i,j] = min{ E[i,j-1]+1 (3)
E[i-1,] + 1

Note that the entr§[i, j] corresponds to editing the preff1...i] to the prefix
P’[1...]]. The basic method to calculate the values of maKixs to proceed
row-by-row or column-by-column. In case of largeor m’, one may benefit from
advanced methods [14].

STRING MATCHING WITH ORDEREDg-GRAMS 325

2.1 Tracing the edit operations

In principle, filtration can be based on either a set of subseges, usually sub-
strings, likeg-grams, which cannot exist in an approximate maettiusive filtra-
tion), or a set of subsequences which must occur in an approximatieh (nclu-
sive filtration). To derive any set useful for filtration, one must underdtatat
actually happens when a string is edited under the givenf selitoperations, like
those associated to the standard edit distance. e@iiteng processan be traced
from the edit distance matrix, and presented as a corresmptrdce sequence
The concept of trace sequence turns out to be powerful fongtanclusive filtra-
tion conditions which are based on those substrings whick ei¢ther preserved or
only slightly modified under the editing process.

Since the edit distance matrx gives the edit distances of the prefixesoand
P’, it can also be used to trace tkgm, m'] = d(P, P") edit operations needed to
convertP to P’. Starting from the entrfg[m, '], one selects the entry (either
E[mn - 1], Ef[m - 1,nY — 1], or E[m - 1, m]) that has been used to evaluate
E[m, m’], according to (3). In general, the edit distance maEireveals the edit
operation, leading to the edit distangg, j] = d(P[1...i],P’[1...]]), in the fol-
lowing way (note that the choice is not unique):

if E[i, j] = E[i - 1, j - 1] + Sp=p1j), then
if P[i] = P’[]], then no edit operation;
else chang®[i] — P[]j];
if E[i, j] = E[i, - 1]+ 1, theninsert — P'[]];
if E[i,] = E[i -1,]] +1, then deleté[i] — «.

The edit operations are traced until the en0, 0] is encountered (this al-
ways happens because of (2) and (3)). The trace defitexa sequenc& =
(E[0,0],...,E[m n]). Let us consider two successive members E[i, j] and
Y = E[i + pi, j + p;] of the sequenc&. The pair {,y’) corresponds to editing
PA...jJP[i+1...mtoP[1...]+pj]P[i+pi+1...m].

The smaller the edit distanckP, P’) is, the more any trace sequeriteacludes
successive members of typggi, j], E[i + 1, j + 1], where the corresponding char-
acterP[i + 1] remains preserved, i.&[i + 1] = P[] + 1]. If d(P, P’) is suficiently
small, that is, relatively close thP| — |P’|| (see Example 1), there must be se-
guences of adjacent preserved characters. Now, the srf@ledit distance, the
more there are preserved substrings. If the gram lemitisuticiently small, these
preserved sequences also contain presegvgihms. Like the preserved charac-
ters, the preservegigrams retain their relative order. Let us summarize tha afe
the preserved-grams as a definition:

DermNition 2. Let P = P[1...m] and P = P’[1...nY] be strings, and let E be
the corresponding edit distance matrix. et (E[O,0],..., E[m m]) be a cor-
responding trace sequence. A substrif@jjP- q+ 1... j] of length q is called a
preserved}-gramof P if T" includes successive entrie$iE g, j — q], E[i — g+ 1,
j—qg+1],...,Eli, j] and the substring P—qg+1...i] is the same as the substring
PTj—-q+1...]]. Apreserved g-gram is calledmeserved charactef P if q = 1.

326 E. SUTINEN, J. TARHIO

Let us consider two string$; = APPLETREE andP, = TRIPLEAPE. Although
the character sets &, and P, differ only in one character, it is not natural to
define the edit distance in a way which would return an edibdise of 1 forP;
andP,. While the preserved order of the non-edited charactensiatvely simple
property of the edit distance, the algorithms to be intredlia this study are based
on it.

2.2 Edit distance between substrings

In this section, we will show how the edit operations thatndea string? into a
string P’ in d(P, P’) edit operations are reflected in the edit distance betwaen t
substrings o andP’. These results are crucial for the filtration conditiongh¢o
presented in Section 3.

The properties of a trace sequence make it useful for uradwetistg the edit dis-
tance. For example, the elements of any trace sequénoepose a sequence of
non-decreasing integers. This fact has been used to preveltbwing theorem.

Tueorem 1. Let P and P be strings such that(®, P’) < k. Then for each prefix
of P, and for each gfix 8 of P, there exists at least one prefikof P’ such that
d(a,a’) <k, and at least one glix 8’ of P’ such that ¢5,8’) < k.

A trace sequencE of an edit distance matrik is also useful for partitioning
the editing of string? to another strind® . In the following, we will derive a few
results on the partitioning technique. In a case where agsrihas been edited to
a stringP’” with at mostk edit operations, the theorems will be used to correlate a
set of substrings of the edited strifgto a corresponding set of substrings of the
original patterrP.

DeriniTioN 3. Let P and P be strings, and lef be a trace sequence. An arbitrary
division # of the string P into its substrings; = P[s...g],i = 1,...,1, i.e,,

P = a1a7 - - - ay, is called apartitioningof the string P. For each partitioning, the
trace sequenck has at least one subsequerice = (E[e;, €].....E[a-1,€_;])
such thafl'p gives thecorresponding partitionintp the edited string P

P’ =aja,---af,

whereaj = P'[s...€] foreachi= 1,...,l. Above, $ = ss=La=m and
€ = m'. In addition, the equations.s = & +1and ¢, = € + 1 hold for each
i=1,...,1-1

Note that for some indiceis the substringy; (or o) can be the empty string,
corresponding to the settirgy> & (s > €). For each partitioning of the stririg
there may be more than one corresponding partitioning ostitieg P’. Note also
that one can construct a partitioning for the stridgtarting from a partitioning
of the stringP’. The following theorem states how the edit distance betviaen
strings can be presented as a sum of the edit distances Inetfredesubstrings.

STRING MATCHING WITH ORDEREDg-GRAMS 327

Tueorem 2. Let P and P be strings. Let P= aja2- - be a partitioning of P,
and let P = o} - - - o] be a corresponding partitioning of' PThen

|
d(P.P) = > d(ai,q)).
i=1

As noted earlier, the partitioning technique is symmeticthe stringP and its
edited counterpa®’. Thus, for each partitionin§’ of the stringP’, we can find
a corresponding partitioning of the stringP. This makes it natural to define an
original counterpartof a substring of the edited string.

DeriniTiON 4. Let P and P be strings. Letr’ be a substring of P We call a
substringa of P anoriginal counterparbf o’ if there exists a partitioning P=

a1az---a and a corresponding partitioning’P= aja} - - - o such that for one i,
l1<i<l,a=ajande’ = qj.

Note that a substring of the edited string may have multipigirmal counter-
parts, as a consequence of multiple trace sequences, eatiiciirg at least one
partitioning subsequence.

Let us now consider an arbitrary substrimgof the stringP’. We can locate the
original counterparts at’ in the stringP by the following theorem:

TueoreMm 3. Let P and P be strings with an edit distancd® P’) = ¢, + ¢p + Cc,
where ¢ stands for the number of insertions to B, gives the number of deletions
from P, and ¢ is the number of changes in P. Let[P... '] be a non-empty
substring of P. Let Hi... j] be an arbitrary original counterpart of #i’... j’].
Then the following inequalities hold:

j-a<j<j+cp.
In addition, if i < j, then also

i"—c <i<i"+cp

holds.

Proor. LetP’ = ajaj---a| be a partition of?” such thatP’[i"... |'] = «;, for
somev, 1 <v <. LetP = masy- - a be a corresponding partition & such that
a, = PJi...|]is an original counterpart o®’[i’... j’]. Let us first consider the

location of the indeX.

SinceE[j, j’] gives the number of edit operations needed to transfefin. . j]
to P’[1...]’], and among these operations there are at momtsertions andap
deletions, we ge}’ < j + ¢, andj’ > j — cp, which prove the theorem fgt

Let us now assume that the original counterirt .. j] is not the empty string,
i.e., the condition < j is satisfied. Ifv equals 1, the inequality holds trivially, be-
causd =i’ = 1. Now, lety > 1. Since the substring’[i’ ... j’] is also non-empty,

328 E. SUTINEN, J. TARHIO

the end positions of the substrings 1 ande’,_, arei — 1 andi’ - 1, respectively.
Using the same technique as foand |’ above, we get

i"—1-¢ <i-1<i"-1+cp,

which gives
i"—¢ <i<i’"+cp.

3. Filtration conditions

DerniTion 5. By thesampling stepwe denote the distance between two adjacent
g-samplesi.e., g-grams observed in the text. Témmple sizas the number of
g-samples observed at a time.

Conventionally, we refer to the sampling stepheend the sample size asThe
g-samples of a texT are thusd; = T[jh—q+ 1... jh], wherej = 1,...,[7]. In
the following, the sampling stepis at mostH(m, k, g, r), where

m-k-q+1

H(mk,q,r) = Lf]- (4)

The upper boundiH(m, k, g, r) for the sampling step ensures that each text sub-
string of length at leagh — k contains at leastg-samples (Theorem 4). Since we
require that thel-samples do not overlap each other, the valuemiust be at least
g. If this condition does not hold for @mderived from (4), a smaller value gfhas
to be used.

DeriniTiON 6. By a pattern blockQ;,1 < i < r, we refer to the substring Q=
Pl[i-1)h+1...ih+g-1+K].

The definition above does not yield index overflows, sincandoeQ;, the upper
index is at mosin:

rh+q-1+k<m-k-g+1+g-1+k=m

Note that pattern gfix P[rh + g + k... m] does not belong to any block.
Algorithmically, the filtration methods to be presented sishof the following
stages:
o preprocessing the pattern into thpattern blocks;
o scanning everyith g-sample of the text;

o bookkeeping a scorefi] for counting the number of preservaeggrams
within each successive sequerige= d;, ..., d;,_1 of r g-samples;
o identifying a potential match in the text region aroubdbased on the value
of the scorerfi].
In the following subsections, we will derive the filtratiooraitions for the al-
gorithms, in terms of the sampling stepthe sample size, and the value of the
scoreo|i] required for a potential match.

STRING MATCHING WITH ORDEREDG-GRAMS 329

3.1 Sampling based on preserved g-grams

The filtration scheme of the LEQ algorithm is based on idgm{ the potential
approximate matches by finding the sequences-0k + s consecutiva-samples
db+1, Obs2, . . ., Obskes fOr which dyp,i € Qy(Q;) holds for at leass of theg-samples.
Theorems 4 and 5 present necessary conditions for an appatexmatch in a text,
in terms of preservedg-grams, and Theorem 6 defines the text area that needs to be
checked by dynamic programming in case of a potential matbkeorem 5 is the
main result of this subsection. It defines a potential maidbrims of theg-sample
location information.

Our goal is a filtration condition which is based ki s adjacentg-samples.
The choice for the sampling stépguarantees that any approximate matclk drf
T includes at leask + s gsamples of which at leastoccur inP. For technical
reasons, we state our theorem as follows. The usefulnes® dbtmulation will
be clear in the proof of Theorem 5.

TueoreM 4. Let m and r be positive integers, P a patterr, @substring of the
text T, and k an integer such th@t< k < m. If h < H(m k, g,r) is the sampling
step, h> q and|P’| > m—k, then P contains at least r g-samples. If, in addition,
d(P,P) < k and s= r — Kk is positive, then among any sequence of K + s
g-samples in R at least s occur in P.

Theorem 4 states that at leasof thek + s gsamples of?” occurin P. The
theorem does not guarantee that thesgsamples argreserved egrams ofP
(Def. 2). In fact, the theorem even allows the case wherefdh@s gsamples
are the same, corresponding to a singlgram inP. We therefore analyze the
locations of the patterg-grams, corresponding to tligesamples ofP’. We will
show that?” contains at least preservedj-samples.

Since each edit operation has transformed at mostiezz@nple and onlg(P, P)
< k edit operations are allowed, at leasftsamples have not been edited, i.e., they
are preserved-grams. See Fig. 1.

We have proven the following corollary:

CoroLLARY 1. Let m and s be positive integers, P a pattern aricaRBubstring of
atext T, such that@, P’) < k, whereO < k <m. Ifh< Himk, g,k + s) is the
sampling step, k& g and|P’| > m -k, then P contains at least k s g-samples.
In addition, among any sequence of Is g-samples in B at least s correspond to
the preserved g-grams of P.

The previous corollary is independent of the length of pate However, it is
straightforward to apply the theorem to the approximateegpainatching problem,
with |P| = m:

CoroLLARY 2. Let P be a pattern of length m and R substring of a text T such
that dP,P’) < k. If h < Himk, g,k + 9) is the sampling step and & g, then at
least s of the g-samples irf Borrespond to the preserved g-grams of P.

330 E. SUTINEN, J. TARHIO

Fig. 1. Theg-samples of’ with the corresponding substrings Bffor k = 3 ands = 2. Thek = 3
edit operations have distorted the first, second, and fapsdmple of?’, while the third one and the
fifth one are preserved.

Proor. SincelP| = mandd(P, P’) < k, the length o’ is at leasim—k. According
to Corollary 1,P’ includes at least one sequencekaf s gsamples; moreover, at
leasts of theg-samples in this sequence correspond to presepgrdms ofP. o

We will now study how to state a necessary condition for arr@gmate match
of Pin T in terms of pattern blocks. Theorem 5 will be based on thekvioior-
mation, and it gives a stronger condition than Corollary 2.

DeriniTion 7. We call a sequence of k s subsequent g-samples.d., diikis-1
a promising k + s)-sequencdf at least s of the samples satisfy the condition

d € Qq(Qr-i+1)-

ExampLE 2. (Paase proBLEM) It would be natural to assume that any sequence of
k + s subsequeng-samples in an approximate matehof P is a promising one.
This is, however, not the case. As a counterexample, let nsider a string

P = ABCDEFGHIJKLMNOPQRSTUV, withm = 22,s = 2,q = 2, andk = 4. Us-
ing h = H(mk, g, s), we geth = 2. Thus,P contains the following six blocks:
ABCDEFG, CDEFGHI, EFGHIJK, GHIJKLM, IJKLMNO, andKLMNOPQ. Let us assume
thatT includes a substring’ = ABCXDXEXFXGHIJKLMNOPQRSTUV, which is a 4-
approximate match d®. Provided that sampling ifi starts at the 2-sampkeB, the
first (k+ s)- or 6-sequence of 2-samples has only two preserved 2-sammamely
the first,AB, and the sixthGH. According to our first assumptiodB should be-
long to the first block and@H to the sixth one. This is not the case. We call this
phenomenon thphase problemBasically, it results from inserted characters oc-
curring in an approximate match. However, in this settiregehare other sequences
of 6 subsequent 2-samples which are promising.

The next theorem states that it is always possible to loddéastonepromising
(k+ s)-sequence in an approximate match of the pattern. The iel@adbthe proof

STRING MATCHING WITH ORDEREDg-GRAMS 331

is to locate a substrin®” of the modified patteri’, starting with a promising
(k + s)-sequence. Intuitively, it seems to be reasonable to kdarca promising

(k + s)-sequence in the middle &f: in this area, the lengthened right ends of the
blocks balance the dislocations caused by the insertedcteas. The right choice
for P” turns out to be a gfix of P’. To apply Corollary 1, it is essential that the
length of P” is at leastm — k.

Tueorem 5. Let P = T[«...8] be an approximate match of P witfRJP") < k.
Then there are k s consecutive g-sampleg.d, ..., dpk+s, iNcluded in P, such
that d, € Qy(Q;) holds for at least s of the samples.

Proor. As an approximate match &, P’ consists ot insertions,cp deletions,
andcc changes to the original pattem Sinced(P, P’) = ¢, + ¢p + cc, we get the
inequality

C+Cp+cCc <k (5)

Let us consider a stix Ps = P[c; + 1...m] of P (see Fig. 2). Sincd(P, P") <k,
the same applies to theirffixes: according to Theorem 1, aBxu P’ = T[i,...H]
of P’ exists, such thad(Ps, P”) < k.

Let us now derive a lower bound for the lengthRSf. If cp, denotes the deletions
applied toPs, thencp > cp, and, using (5), we get

IP”|>m-¢ —cp,=2m—-c¢ —Cp =m+cc—k>m-Kk,

becausé¢Ps = m-c.

Pll

Pl

V)

Fig. 2: Locating a promisingk + s)-sequence in Theorem 5.

332 E. SUTINEN, J. TARHIO

Let nowd; = T[v...v + q — 1] be the leftmostg-sample inP”. Hence
v—i, <h-1. According to Corollary 1, gtix P includes subsequegtsamples
di,di;1,...,dkes1, Of Which at leass are preserved-grams ofPs. Note that

d=T+(0-ih...v+(—-i)h+q-1]

holds fori < | <i+k+ s— 1. Let us denote the set of presengdamples by
X={d |i<l<i+k+s—1andd preserved |X| > s.

Let us now consider an arbitragysampled, € X. Theg-gram, corresponding to
d;, can be located &®[ls...ls+qg- 1], wherec; +1 < |l < m—-q+ 1. To prove the
theorem, it remains to verify thalf € Q4(Qi-i+1), which holds if

(-Dh+1<ls<(—-i+Dh+k (6)

is satisfied. To prove the first inequality, we first denotechythe number of
insertions applied t®s. Since the distance @i from the beginning oP” is at
least { — i)h, we get the following lower bound for the corresponding atiste of
dy from the beginning oPs:

ls—(ci+1)>(-i)h-c..
Because, > ¢ holds, this gives a lower bound fby.
ls>(-i)h+c+1-c,>(-i)h+1
To prove the second inequality, we first note that the digtaofad, from the
beginning ofP” isat mosth— 1+ (I —i)h = (I —i + 1)h— 1. We get the following
upper bound for the corresponding distancedfom the beginning oPs:

ls—(c+1)<(-i+1)h-1+cp,

which yields
ls<(-i+1h+c+cp, <(I-i+1)h+k
Since (6) holds for ang, € X, we have proven the theorem.]

We still need to define the bounds for the location of an apiprate match
in case the algorithm has found enough matchigrgamples. The next theorem
determines the text area that has to be checked by dynangcaononing:

TueoreMm 6. Let us assume that s ofiks consecutive g-sampleg.d, ..., dpikis
satisfy @i € Qy(Qi) where g-samplegl; ends at text position j. Then an approx-
imate occurrence of the patterr{P... m] may be located in the text area

T[j-h-2k-gq+2...j+m+k-q].

The width of the text area is m3k + h — 1.

STRING MATCHING WITH ORDEREDG-GRAMS 333

3.2 Sampling based on approximate g-grams

A filtration method can also use of slightly modifigeyrams of the patterR. This
observation results in a more sensitive filtration condittmmpared to the one
satisfied withs preserved-grams among = k + sobserved ones.

The LAQ algorithm utilizes so calleASMdistances, employed also by Chang
and Marr [5]. For anyg-gramu and stringV, ASMu, V) is equal to the minimum
edit distance (best-match distance) betwaeand any substring of the string.
The filtration condition of the LAQ algorithm requires thésetsum of theASM
distances between the consecutigeamples and the corresponding blocks is at
mostk, i.e., the inequality

D ASM.i. Q) <k
i=1

holds for a given parametéx defining the firsig-sample in the inspected test se-
quence.

Since theASMdistance between a string gfcharacters and any other string is
always at mosg, the sumy;;_; ASM(d.i, Q;) cannot exceedq. Therefore it is
required thatq is greater thark, since otherwise the sum is always at miosind
the filtration condition triggers for any sequencerafonsecutiveg-samples. We
get the following bounds for the sample size

k m-k-q+1

—<r<l—--—1
q q

where the maximum choice foris given by (4).

We will now present how thdSMdistance can be utilized to decide whether a
given test sequence includes a potential match. As in the abthe LEQ algo-
rithm, we provide two theorems. The first introduces a nergssondition for an
approximate match, in terms of th&SMdistances between tlgesamples of a test
sequence and the found pattern. The second defines thedaxbdre checked for
a potential match.

Tueorem 7. Let P be an approximate match of £ P[1...m] with d(P,P’) < k.
Then there are r consecutive g-samplgsid. . ., dy.r, included in P, such that the
following inequality is true:

> ASMdbi, Q) <k
i=1

Proor. Let us denotd® = P’[1...u]. If ¢, denotes the number of insertions to
the stringP andcp gives the number of deletions froR) the lengthu of P’ equals
m+ ¢ — cp. Hence, the length can be estimated by the limits

m-k<u<m+k

334 E. SUTINEN, J. TARHIO

Let us now consider a fix P” = P’[c; + 1...u] of the stringP’. Since the
number of insertions and deletioas+ cp is at mosk, we get the bound

IP/l=p—c —1+1=m+c —Cp—C =m-cp=m-Kk

because&p is obviously at mosk.

Because (4) defines the sample siz® that any string of length at least— k
includes at least consecutivey-samples, this is also true for the striR§. Let us
denote the leftmosi-sample ofP” by dy,1. This means that an index exists for
whichdp,1 = P'[o...0 + q—1]. Sincedy, is the leftmosig-sample ofP”, we
get the bounds

c+l<o<c+h

Let us now consider the sequendg 1, ...,dpr. LEtP = aja)---a; be a
partitioning of P where for each, 1 < i < r, an indexj; exists such thady,; = af}i.
We can choose the indicgsso that they form an increasing sequence of integers.
LetP = a3 ---a, be a corresponding partitioning of the strirgLet us denote the
original counterpart; of theg-sampledy,; by o(dy.i). According to Theorem 2,

d(P.P) =) d(,a).
=1

which means that it is glicient to prove that for eachl < i < r, the substring
0(dy.i) is a substring of);, since therASMdp.i, Qi) < d(dy.i, 0(dp+i)) and there-
fore

D ASMh.i, Q) < d(doi, (dbei)) < Y d(en,af) = d(P.P)) <k,
i=1 i=1 1=1

which proves our theorem.

Now, let us prove that for eadhl < i < r, the substring(dy.) is included inQ;.
Let us consider an arbitragtsampledy,j = P’[oc+(i—1)h...c+gq-1+(i—1)h].
If o(dy,i) is the empty string, it is trivially a substring @J;. Let us now assume
thato(dy,;) is non-empty. According to Theorem 3, the original coupdeto(dy.)
isincluded inP[o+ (i—1)h-c;...0c+qg-1+ (i — Dh+ cp]. The latter, however,
isincluded inQ; = P[(i—1)h+ 1...ih+qg-1+K], since

o+(@{-2h-c>¢+1+(@(-21)h-c,and

(i) c+q-1+(—-1h+cp <c+h+q-1+(i—-1h+cp <ih+g-1+¢ +cp <
ih+g-1+k

This proves our claim and completes the proof. |

The theorem above gives a necessary condition for potengtthes. However,
we need another result to define the text area which has todwegsed in the
checking phase. It turns out that this area is slightly latigen the one of the LEQ
algorithm, due to the lierent use of the test samples; we will give an example of
this after the proof of the theorem.

STRING MATCHING WITH ORDEREDg-GRAMS 335

Tueorem 8. Let an approximate match’®Bf the pattern PL ... m], with d(P, P’) <
k, trigger the filtration condition of the LAQ algorithm, i,¢he inequality

D ASMdh.i, Q) <k
i=1

holds. If the g-samplewd; ends at a text position |, ther’ s located in the text
area
T[j-h-2k-q+2...j+m+k-1].

The width of the text area to be inspected is 8k + h+ q— 2.

Proor. Let us assume th&’ = T[a...B], ¢ is the number of insertions B,
andcp is the number of deletions froR. In the same way as in the proof of
Theorem 7 we conclude that for a set of original counterpa(dg, 1), . .., 0(dpr)
the following holds:o(dy.) is a substring of);.

Now, at least one of the original counterparts, fgh.i), is not the empty
string, because otherwiskP, P’) > rq > k. Let us denote(dy.i) by P[11, 12],
wherel, > 13, becaus@(dy,i) is not empty. Sincd’[11, A9] is included inQ; =
P[(i—1)h+1...ih+qg-1+Kk], we get the inequalities

(i-Dh+1<i<ih+g-1+k (7)

In addition, since thg-sampled,,1 ends at the text positiop the g-sampledp.;
ends at théextpositionj + (i — 1)h, or equivalently, at the positiopt+ (i—1)h—a+1

in thepattern P[1...8—a + 1] = T[a...8]. Now, applying Theorem 3, we get
the inequalities

jJ+(-h-a+1-k<<j+(-1h-a+1+cCp, (8)

because-k < —c;.
Combining the right inequality of (7) with the left inequiliof (8), we get the
lower bound fora:
j-h-2k-g+2<a. 9)

On the other hand, the left inequality of (7) combined wité tlght inequality of
(8) tells us thatr is at mostj + cp. By noting thaiP’| = 8 —a+ 1 < m+ ¢, we get
the inequality

B<m+c+j+cp-1<j+m+dPP)-1<j+m+k-1 (20)

The inequalities (9) and (10) prove the claim. O

ExamriE 3. Let us consider the pattef = ABCDEFGHIJ of lengthm = 10. Let
the error levelk = 3 and the gram lengtly = 2. Let the sample size = 2.
These choices result in a sampling skep 3. The choices are appropriate, since
h > gandrq = 4 > 3 = k. The pattern has two blocks, namé&)y = ABCDEFG
and Q> = DEFGHIJ]. Let us suppose that a teXt has an approximate match

336 E. SUTINEN, J. TARHIO

P’ = AXXXBCDEFGHIJ = T[91...103] Since ASMEG, Q) + ASM(13,Qz) = 0
andFG ends at text positiofi = 100, it is appropriate to start the inspection of the
text at text positionr = j—h—-2k-q+2=100-3-6-2+2 = 91.

Since the filtration condition already triggersjat 94, this example shows that
the bounds for the area to be inspected may be quite pessimist

4. Algorithms

4.1 The LEQ algorithm

Matching a sequence &f+ s gsamples in the corresponding pattern blocks can
be regarded as an instance of the generalkzedsmatches problem. Therefore,
the shift-add technique [3] can be used in the LEQ algoritiongticiently resolve
the matching of a sequend® = d;...di,nv—_1, based on the information of its
predecessdb;_j.

The triggering of the filtration condition, as stated in Trezno 5, can be inter-
preted as a reduction to a generalikadismatches problem. In this problem, each
position of the pattern has a set of accepted characters afvit. Let us consider
the set ofj-grams as the alphabetsamples as atext=d; ... dy, and theg-gram
sets of blocks of the original pattern as a patters Qq(Q1)...Qq(Qm), where
n = [n/h] andm = k+ s. We can now restate Theorem 5 as follows: a potential
approximate match of with at mostk mismatches ends &if z[j — nY +1i] € a[i],
or equivalentlydj_ny.i € Qq(Qi), holds for at least’ — kindicesi, 1 <i < nt.

In order to apply shift-add technique [3], we define a bit iaB as follows:
B[d, j] equals 1 if theg-gramd belongs toQ4(Qj), otherwiseB[d, j] is zero. For
eachg-gramd, B[d, %] gives theblock profileof d.

An array M[1...m] is used to compute the number of matchiopgamples in
an alignment of the patternwith 7[i...i + m" — 1]. An approximate match with
at mostk mismatches can be found only if at least— k matchedg-samples are
aligned, i.,e. M[m]>m -k =s.

In order to find all potential matches, the algorithm has talwateM for each
substringD; = d;...dw_1 Of the textr. The crucial question, decisive for the
applicability of the LEQ algorithm, is how tdigciently updateM[nt] for D;, using
the results evaluated fd@;_1, i.e., how to evaluate the scoedi] from the score
ofi = 1]. In order to do this, we maintain iM the information about how each
sufix of D; aligns with the corresponding prefix af This information provides
a simple way to decide whether continuing any prefixroksults in a potential
match.

Let us assume that the algorithm has evaluated the valudwedairtayM for
Di = d;...diw-1. Foreachj,1 < j < n7, the entryM[j] contains the number of
matchedg-samples between thefSd diiny—j ... disw-1 and the prefixt[1... j].
Initially, each entry ofM equals 0. The arralyl is updated at each text position as
follows:

STRING MATCHING WITH ORDEREDg-GRAMS 337

Procedure Shift_add(M, B[d, =])

for j := nf downto 2do M[j] := M[] — 1]; % shift
M[1] := 0;

for j := 1tom do M[j] := M[j] + B[d, j]; % add

In practice, the next value dfl is evaluated using bit parallel operations. Let us
consider the case = 2. Because the slicient number of positivg-samples in a
text area is then two, only two bits are needed for an elemiekt.oT herefore, to
add a new block profil®[d,] to M, two bits are also reserved for each entry of
the indexB.

Algorithm LEQ.

1. construcB[d,] for eachd € Qq(P);

2. fori:=1tonY doM[i]:=0;

3. for j:=htonstep hdo

4. begin

5 ifT[j—g+1...j] ¢ Qq(P)thenbp:=10,...,0]
elsebp:=B[T[j—q+1...]],«];

6. Shiftadd(, bp);

7. if M[M'] > nY —kthen

8 DPP,T[j—-mh-2k—-q+2...j+m—(m —1Lh+k-q]);

9. end

The procedure DP searches for approximate matcheB wf the text area
T[i1...i2] using dynamic programming. For atffieient implementation of DP,
see [15].

Let us assume that LEQ has found a potential approximatehneaiding at text
positionj. In this case, we have two options: either verify the apprate match
right away with dynamic programming, or check the conditamte more using
different samplés The latter alternative is reasonable in cases where aesing|
application of the filtration condition results in too mamysie matches.

To do another check, the algorithm screens a slightly shgsgfjuence df + s
g-samples. It backtracksn — 1)h+ L%J positions in the text and restarts the search
with newg-samples. The restart is permitted only+j, is large enough, wherg
is the previous backtracking position, otherwise the chrechhaseDP is called.

The following result is a rough estimate for the probabitfya potential match.
We apply here (as well as in subsequent theorems) the syinmBetnoulli modet.

TueoreM 9. The probability R of a potential match in the LEQ algorithm for=s2

is
m+ k2 + k

kca

2 This idea can also be applied to some other filtration schemes

3 In a random text generated according to Beenoulli model each charactex from the alphabeX
occurs in the text according tofixed probability pr(a), and independently of other characters, like
the preceding ones. The sum of the probabilitigs pr(a) equals 1. Asymmetric Bernoulli modgel
sometimes also called thé.d. model(for independent and identical distribution), means tlzathe
character of the alphabet has an equal probabiliqf occurrence in a random text. Markovian
models an occurrence of a character can depend on its precedingotbds).

Pe<1-(1-)k+2,

338 E. SUTINEN, J. TARHIO

The bound shows the clear dependence of the filtratfboiency on the error
levelk. This is even more important because the algorithm can mlyaelatively
small values ofy because of the conditidm > g. On the other hand) decreases
quickly with an increasing. This phenomenon can be seen in Fig. 3: the filtration
does not work for error levels larger than 11, due to the desae value off = 1.

1 F T T T T T
[max probability of a potential match —<—

01} B

0.01 | B

0.001 1 1 1 1 1

Fig. 3: The upper bound for the probability of a potential matchegiby Theorem 9, for the case
¢ =40m = 40 andk = 1...12. For error levelk of at most 8, the gram lengtipequals 3, for
k=9...11, the gram length is 2, and fkr= 12 it equals 1.

The time for processing thg-samples dominates over the other phases, espe-
cially the dynamic programming phase, as long as the ervet keremains sffi-
ciently small. It is straightforward to prove the followimgsult.

Tueorem 10. Let w be the word size in bits. The average time complexithieof t
LEQ algorithm for s= 2 is O(fk(q + \Tkv)) in the general case and (@qk) for
k<w/2.

Whenq = log.mandk < w/2, the time complexity i@("—n? log, m), which is
the same as the average time complexity of the Chang-Lavgeritam [4] and
Takaoka’s algorithm [13].

4.2 The LAQ algorithm

The LAQ algorithm is based on sampling and is similar to LEQ.

STRING MATCHING WITH ORDEREDG-GRAMS 339

Algorithm LAQ.

1. preproces®;

2. fori:=1tor doMJi] :=0;
3. for j:=htonstep hdo

4. begin
5. d:=T[j-q+1...]];

6. for | :=r downto 2 do

7. M[I] := M[Il = 1] + ASM(d, Q));

8. M[1] := ASM(d, Q1);

9. if M[r] < kthen

10. DPR,T[j-rh—-2k-q+2...j+m—-(r—1h+k-1]);
1l.end

There are certain fferences between the two algorithms, though. First, the
lines 6-8 correspond to ttehi ft_add operation of the LEQ algorithm. However,
whereas LEQ counts the number of correctly located patfgrams, occurring as
g-samples in the text, the LAQ algorithm counts th&atences of the text sam-
ples, compared to the corresponding pattern blocks. Frerfiltration eficiency
point of view, the cumulative errdvi[r] in the LAQ algorithm should be as large as
possible, to decrease the number of false matches, whileotihesponding entity
of the LEQ algorithm should be as small as possible. Theserafitions must be
taken into account when applying the algorithms, espgoigfien determining the
values for the parametergin LAQ), s (in LEQ), g, andh.

Secondly, because of the commBhift_add operation, the LAQ algorithm
could also utilize bit parallel operations. Contrary to tHeQ approach, the LAQ
algorithm benefits less from this technique, since eacly efithe M array requires
at leastO(log, k) bits, compared to 2 bits in LEQ (far= 2).

Thirdly, the preprocessing routine of the LAQ algorithm somes more time
and space than that of the LEQ algorithm. This is becauseatesy ASM{, Q)),
| =1,...,r, must be tabulated for eachigramd of the setz9, whereas the LEQ
algorithm records only block profiles fargrams occurring in the pattern. This
means that the LAQ algorithm is appropriate only for longtidexhere the time
used for preprocessing the pattern is marginal comparduktirhe needed for the
whole filtration. For short texts, it is also possible to exdé the ASM distances
on-the-fly: for each read-sampled, the algorithm evaluates the ASM distances
ASM(d, Q) for eachl,| = 1,...,r, and stores them. However, if these distances
have already been computed which means that the gesple is not the first
occurrence ofl, the algorithm utilizes the stored values. Furthermoiis,ppssible
to compromise between the two alternatives and pre-ewathat ASM distances
for commong-grams in the given text.

Fourthly, the overall time consumption for the LAQ algonithis close to that
of the LEQ algorithm, with dterences due to the variations in tRkift_add
operation. However, the probability of a potential matctifferent.

340 E. SUTINEN, J. TARHIO

4.3 SLEQ — a static variation of LEQ

In the area of static filtration, the LEQ approach diminisbes of the main prob-
lems: the space needed for the text index. It is possiblediacethe space require-
ment by modifying the sampling scheme of the LEQ algorithorhe suitable for
storing the locations of only evelyth textg-gram. This approach is complemen-
tary to other methods of decreasing space consumptiorgdikgressing the index
itself [7].

While the LEQ indexing scheme already reduces the spacaicgion of the
g-gram index and location lists by a factorlgfwe can save even more: instead of
indicating ag-gram position in the text, we just refer to its location ameti the
g-samples. This reduces the index space ftymn..,n}to {1,..., LEJ}.

The standard implementation ofgagram index stores the locations of all the
g-grams of the text. Since the number@gframs in a text of lengtm is n—g+1
and storing a position takes lpg bits without compression, the overall space con-
sumption isnlog, n, provided thag is small compared ta. Let us define apace
saving factor y as the space requirement ratio between our method and tie sta
dard approach, i.e.,
flog, p
nlog, n

vV = ~ % (for largen).

In cases where one can apply the most spdideient h for each search task,
the new approach gives promising results. For example,drcése ofin = 40,
k=0,...,4,s=2andn = 500 000, the SLEQ approach consumes only 4-17.5%
of the space used by a standgrdram index.

In the SLEQ algorithm, the sampling steplepends on the values ot k, g, and
sin a way similar to the LEQ algorithm. However, while the dymia LEQ algo-
rithm can choose a fierenth for each particular search, the static SLEQ algorithm
has to apply a preprocessed index, produced according xdiswalue oth. This
can be done by adjustirgaccording tdh, to be able to utilize the LEQ filtration
scheme. The following result is a straightforward consegaef Theorem 5.

Tueorem 11. Let P be a pattern, T a text, and let Be a substring of T such that
d(P, P’) < k. Let h be the sampling step. Then there arskconsecutive g-samples
dbs1, ..., dbikss in P such that g, € Q4(Q;i) holds for at least s of the samples,
where
s< L%‘“l k). (11)

The formula (11) fors means that we do not need to createféedént index for
each pairifn, k). That is, we do not fixs before definingh, but adjusts according
to the values ofn, k, g, andh. Actually, sinces has to be at least 1 for reasonable
application of Theorem 11, we get from (11) t%{% —k has to be at least 1,
giving an upper bound for the error level

<m—q—h+1

k=< h+1

(12)

STRING MATCHING WITH ORDEREDg-GRAMS 341

For example, assume that a 2-gram index has been builtwth. If the pattern
is of length 20, the index is applicable for error levels @, according to (12). On
the other hand, the same index can be used for error level&0n the case of
m = 40. The values of are given by (11). Note that = | T*-%1 _ | is the
largest integer for which the index can be utilized.

In the index of they-samples, eactysampled; = T[ih—q+1...ih],i = 1...|}],
is hashed into an element of a hash tathldeach entr\H[€] points to the beginning
of the list Ly(€) consisting of thosel-grams which hash te. In addition to a
g-gramu, each entry of the list(€) also contains pointers to the beginning and
to the end of the list.(u), which stores the end points of tqesamples equal ta
in the textT. Optionally, we could also use a trie structure to store toations
of the textg-samples. This approach is, however, slower in practice #iecient

hashing.

The scorer[i] gives the number of preserveggrams within theg-sample se-

quenced;, ..

., Oiskrs1. Let ag-gramup of P among theg-samples ofl end at a

position j = ih for somei. For each block), of P such thai,(Qp) containsup,
we then increment the scargi —b+1]. For each found pattegggram occurrence,
the algorithm updates the respective scores, by utilizieghiock profiles of the
patterng-grams.

Algorithm SLEQ.

1. s:= L%q*l —k;

2. construcBlu,] for eachu € Qq(P);
3. for eachu € Qq4(P)

4. begin

5. QLIST = L(u);

6. while QLIST # NULL
7. begin

8. i := QLIST.location;
9. forb:=1tok+s

10. if Blu,b] =1thenofi—-b+1] :=cfi —b+ 1] + 1;
11. QLIST = QLIST.next;

12. end

13.end

14.fori:=1to|n/h]

15. if ofi] > sthen

16. begin

17. ji=1ih;

18. DP(P,T[j-h-2k-q+2...j+m+k-q]);
19. end

20.end

It is straightforward to show the following result.

Tueorem 12. Algorithm SLEQ has the following characteristics:

342 E. SUTINEN, J. TARHIO

(i) The text preprocessing phase takeg|(d) time on average.
(i) The size of the index is(@log; 7).
(iii) The expected length of a g-gram lisfu) is O(Lﬁjé).
(iv) The average time complexity of the text searching pra@¢km).

The time complexity of the checking phase is similar to tHahe dynamic ver-
sion, with one exception: SLEQ has to scan all the scofési.e., [n/h] entries.
Especially for small error levels only few of the elements are non-zero. A better
way is to have a score window which slides only through thedexas with pattern
g-gram occurrences. Thus, only a fraction of the elementswill be processed.

One possibility to maintain the score window is the folloginWe merge the
patterng-gram lists, the elements of which store tiggample locations in the in-
creasing order. Using this list, we evaluate the scores onlje text regions
containing patterg-grams.

An efficient method to implement the score window is based on thp tesdn-
nique. We build a heafs, containingcard(Qqy(P)) nodes. We start by inserting
the first element of each pattegagram listL(u), . . ., L(Ucardq(py)) into K. The
invariant of the heap is that the minimum value is always artbot.

After this initialization, we execute the next loop untietheap is empty: extract
the root element, indicating a location gfgramu, into the merged list.y;, and
insert the next element of the lisfu) into K.

The time complexity of merging thg-gram lists is given by the following theo-
rem. The result suggests that the method is useful espefalfinding a pattern
with few commong-grams with the text. To test this condition, the text index
should contain the number of occurrences for eaffleidint textg-sample.

Tueorem 13. The average time complexity of merging the g-gram listsgusineap
is O(m? & log, m).

5. Concluding remarks

We have presented filtration algorithms basedgegrams for thek-differences
problem. Our approach filers from previousy-gram filtration methods in that
we take the order af-grams into account: the found pattepgrams or their ap-
proximate versions must be in the same order as they appter aniginal pattern.

We have tested thdiiiency of the presented methods in practice. Our exper-
iments [11, 12] confirm that the order requirement improvégiency for the
g-gram based algorithms. In general, compared to othertidiranethods, the
location-sensitive approach works the better the smdikeatiowed error level is.
As with everyg-gram based approach, th&eiency depends on the alphabet size:
the bigger the alphabet size the better the filtration.

The filtration conditions presented were designed forktbdéferences problem.
In a simpler form, they also work for thie mismatches problem. Besides the
formulation of these filtration conditions, it is an open gtien whether they can
be evaluated fast enough in practice.

STRING MATCHING WITH ORDEREDg-GRAMS 343

References

[1] Arrscuui, S. F., Gsu, W., MiLLer, W., MyErs, E. W., anp Lipman, D. J. 1990. Basic Local

(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]
(10]

(11]

(12]

(13]

(14]
(15]
(16]

(17]

Alignment Search ToolJournal of Molecular Biology 215, 403-410.

Bover, R. S.anp Moore, J. S. 1977. A Fast String Searching Algorith@ommunications of
the ACM 2Q 10 (Oct.), 762—772.

Baeza-Yates, R. aNp Gonner, G. 1992. A New Approach to Text SearchinGommunications
of the ACM 35 10, 74-82.

CHang, W. anp LawLER, E. 1994. Sublinear approximate string matching and bio&gppli-
cations.Algorithmica 12 327-344.

Cuang, W. anp Marr, T. 1994. Approximate String Matching and Local Similarity Proc.
5th Annual Symposium on Combinatorial Pattern Match@gpchemore, M. and Gusfield, D.,
Editors, Volume 807 of.ecture Notes in Computer Sciencgpringer-Verlag, 259-273.

Gaui, Z. anp Park, K. 1990. An Improved Algorithm for Approximate String Miag.
SIAM Journal on Computing 1%, 989-999.

K ARKKAINEN, J. AND SUTINEN, E. 1998. Lempel-Ziv Index fog-Grams. Algorithmica 21 1,
137-154.

Myers, E. W. 1994. A Sublinear Algorithm for Approximate Keywor@&ching. Algorith-
mica 12 4-5, 345-374.

Navarro, G. 2001. A Guided Tour to Approximate String Matchil@CM Computing Surveys
331, 31-88.

Suriven, E. 1998. Approximate Pattern Matching with tp&ram Family. PhD Thesis. Report
A-1998-3, University of Helsinki, Department of Computeié&hce, Helsinki, Finland.
SuTINEN, E. AND TaRrHIO, J. 1995. On Using-Gram Locations in Approximate String Matching.
In Proc. 3rd Annual European Symposium on Algorithms ESA &firakis, P., Editor, Volume
979 of Lecture Notes in Computer Scien&pringer-Verlag, 327-340.

Sutiven, E. anp Tarmio, J. 1996. Filtration witlg-Samples in Approximate String Matching.
In Proc. 7th Symposium on Combinatorial Pattern Matching CPB| Hirschberg, D. and
Myers, G., Editors, Volume 1075 dfecture Notes in Computer Scienc&pringer-Verlag,
50-63.

Takaoka, T. 1994. Approximate Pattern Matching with SamplesPhac. 5th Annual Interna-
tional Symposium on Algorithms and Computation ISAAC,'®4, D. and Zhang, X., Editors,
Volume 834 ofLecture Notes in Computer Scien&pringer-Verlag, 234-242.

UkkoNEeN, E. 1985 Algorithms for Approximate String Matchintpformation and Control 64
100-118.

UxkkoneN, E. 1985. Finding approximate patterns in strindeurnal of Algorithms 61, 132—
137.

UkkoNeN, E. ano Woob, D. 1993. Approximate String Matching with Six Automata.Algo-
rithmica 10 5, 353-364.

Wu, S.anp Maneer, U. 1992. Fast Text Searching Allowing Error€ommunications of the
ACM 35, 10 (Oct.), 83-91.

