
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 1(1), 1–4 (JANUARY1988)

A Comparison of
Approximate String Matching Algorithms

PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland
(email: tarhio@cs.helsinki.fi)

SUMMARY

Experimental comparison of the running time of approximate string matching algorithms for the k dif-
ferences problem is presented. Given a pattern string, a text string, and integer k, the task is to find all
approximate occurrences of the pattern in the text with at mostk differences (insertions, deletions, changes).
We consider seven algorithms based on different approachesincluding dynamic programming, Boyer-Moore
string matching, suffix automata, and the distribution of characters. It turns out that none of the algorithms
is the best for all values of the problem parameters, and the speed differences between the methods can be
considerable.

KEY WORDS String matching Edit distance k differences problem

INTRODUCTION

We consider thek differences problem, a version of the approximate string matching problem.
Given two strings,textT = t1t2 : : : tn andpatternP = p1p2 : : : pm and integerk, the task is
to find the end points of all approximate occurrences ofP in T . An approximate occurrence
means a substringP 0 ofT such that at mostk editing operations (insertions, deletions, changes)
are needed to convertP 0 to P .

There are several algorithms proposed for this problem, seee.g. the survey of Galil and
Giancarlo.1 The problem can be solved in timeO(mn) by dynamic programming.2, 3 A very
simple improvement givingO(kn) expected time solution for random strings is described by
Ukkonen.3 Later, Landau and Vishkin,4, 5 Galil and Park,6 Ukkonen and Wood7 give different
algorithms that consist of preprocessing the pattern in timeO(m2) (or O(m)) and scanning
the text in worst-case timeO(kn). Tarhio and Ukkonen8, 9 present an algorithm which is based
on the Boyer-Moore approach and works in sublinear average time. There are also several
other efficient solutions10-17, and some11-14 of them work in sublinear average time. CurrentlyO(kn) is the best worst-case bound known if the preprocessing timeis allowed to be at mostO(m2).

There are also fast algorithms9, 17-20 for thek mismatches problem, which is a reduced form
of k differences problem so that a change is the only editing operation allowed.

It is clear that with such a multitude of different solutionsto the same problem it is difficult
to select a proper method for each particular approximate string matching task. The theoretical
analyses given in the literature are helpful but it is important that the theory is completed with
experimental comparisons extensive enough.

CCC 0038–0644/88/010001–04 Received 1 March 1988
c
1988 by John Wiley & Sons, Ltd. Revised 25 March 1988

2 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

We will present an experimental comparison� of the running times of seven algorithms for
thek differences problem. The tested algorithms are: two dynamic programming methods,2, 3

Galil-Park algorithm,6 Ukkonen-Wood algorithm,7 an algorithm counting the distribution
of characters,18 approximate Boyer-Moore algorithm,9 and an algorithm based on maximal
matches between the pattern and the text.10 (The last algorithm10 is very similar to the linear
algorithm of Chang and Lawler,11 although they have been invented independently.) We give
brief descriptions of the algorithms as well as an Ada code for their central parts. As our
emphasis is in the experiments, the reader is advised to consult the original references for
more detailed descriptions of the methods.

The paper is organized as follows. At first, the framework based on edit distance is intro-
duced. Then the seven algorithms are presented. Finally, the comparison of the algorithms is
represented and its results are summarized.

THE K DIFFERENCES PROBLEM

We use the concept of edit distance21, 22 to measure the goodness of approximate occurrences
of a pattern. Theedit distancebetween two strings,A andB in alphabetΣ, can be defined
as the minimum number of editing steps needed to convertA to B. Each editing step is a
rewriting step of the forma! " (a deletion),"! b (an insertion), ora! b (a change) wherea, b are inΣ and" is the empty string.

The k differencesproblem is, given patternP = p1p2 : : : pm and textT = t1t2 : : : tn in
alphabetΣ of size
, and integerk, to find all suchj that the edit distance (i.e., the number of
differences) betweenP and some substring ofT ending attj is at mostk. The basic solution
of the problem is the following dynamic programming method:2, 3 LetD be anm + 1 byn +
1 table such thatD(i; j) is the minimum edit distance betweenp1p2 : : : pi and any substring
of T ending attj . ThenD(0; j) = 0; 0� j � n;D(i; j) = min

8<: D(i� 1; j) + 1D(i� 1; j � 1) + if pi = tj then 0 else 1D(i; j � 1) + 1

TableD can be evaluated column-by-column in timeO(mn). WheneverD(m; j) is found
to be at mostk for somej, there is an approximate occurrence ofP ending attj with edit
distanceD(m; j) � k. Hencej is a solution to thek differences problem.

In Fig. 1 there is an example of tableD for T = bcbacbbb andP = cacd. The pattern
occurs at positions 5 and 6 of the text with at most 2 differences.

All the algorithms presented work within this model, but they utilize different approaches
in restricting the number of entries that are necessary to evaluate in tableD. Some of the algo-
rithms work in two phases: scanning and checking. The scanning phase searches for potential
occurrences of the pattern, and the checking phase verifies if the suggested occurrences are
good or not. The checking is always done using dynamic programming.� The comparison was carried out in 1991. Some of the newer methods will likely be faster than the tested algorithms for certain

values of problem parameters.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 3

 0 1 2 3 4 5 6 7 8
 b c b a c b b b
0 0 0 0 0 0 0 0 0 0
1 c 1 1 0 1 1 0 1 1 1
2 a 2 2 1 1 1 1 1 2 2
3 c 3 3 2 2 2 1 2 2 3
4 d 4 4 3 3 3 2 2 3 3

Figure 1. TableD.

ALGORITHMS

Dynamic programming

We consider two different versions of dynamic programming for thek differences problem.
In the previous section we introduced the trivial solution which computes all entries of tableD. The code of this algorithm is straight-forward,2, 21 and we do not present it here. In the
following, we refer to this solution as Algorithm DP.

Diagonalh ofD for h = �m, : : : ,n, consists of allD(i; j) such thatj�i = h. Considering
computation along diagonals gives a simple way to limit unnecessary computation. It is
easy to show that entries on every diagonalh are monotonically increasing.22 Therefore
the computation along a diagonal can be stopped, when the threshold value ofk + 1 is
reached, because the rest of the entries on that diagonal will be greater thank. This idea leads
to Algorithm EDP (Enhanced Dynamic Programming) working inaverage time3 O(kn).
Algorithm EDP is shown in Fig. 2.

In algorithm EDP, the text and the pattern are stored in tablesT andP . TableD is evaluated
a column at a time. The entries of the current column are stored in tableh, and the value ofD(i�1; j�1) is temporarily stored in variableC. A work space ofO(m) is enough, because
everyD(i; j) depends only on entriesD(i� 1; j), D(i; j � 1), andD(i� 1; j � 1). Variable
Toptells the row where the topmost diagonal still under the threshold valuek+1 intersects the
current column. On line 12 an approximate occurrence is reported, when rowm is reached.

Galil-Park

TheO(kn) algorithm presented by Galil and Park6 is based on the diagonalwise monotonic-
ity of the entries of tableD. It also uses so-called reference triples that represent matching
substrings of the pattern and the text. This approach was used already by Landau and Vishkin.4

The algorithm evaluates a modified form of tableD. The core of the algorithm is shown in
Fig. 3 as Algorithm GP.

In preprocessing of patternP (procedure callPrefixes(P) on line 2), upper triangular table
Prefix(i; j), 1 � i < j � m, is computed wherePrefix(i; j) is the length of the longest
common prefix ofpi : : : pm andpj : : : pm.

Reference triple(u, v, w) consists of start positionu, end positionv, and diagonalw such
that substringtu : : : tv matches substringpu�w : : : pv�w andtv+1 6= pv+1�w. Algorithm GP
manipulates several triples; the components of therth triple are presented asU(r), V (r), andW (r).

4 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin
2 Top := k + 1;
3 for I in 0 .. m loop H(I) := I; end loop;
4 for J in 1 .. n loop
5 C := 0;
6 for I in 1 .. Top loop
7 if P(I) = T(J) then E :=C;
8 elseE := Min((H(I – 1), H(I), C)) + 1; end if;
9 C := H(I); H(I) := E;
10 end loop;
11 while H(Top) > k loop Top := Top – 1; end loop;
12 if Top = m then Report Match(J);
13 elseTop := Top + 1; end if;
14 end loop;
15 end;

Figure 2. Algorithm EDP.

For diagonald and integere, letC(e; d) be the largest columnj such thatD(j � d; j) = e.
In other words, the entries of valuee on diagonald of D end at columnC(e; d). NowC(e; d) = Col + Jump(Col+ 1� d;Col + 1) holds whereCol = maxfC(e� 1; d� 1) + 1; C(e� 1; d) + 1; C(e� 1; d+ 1)g
andJump(i; j) is the length of the longest common prefix ofpi : : : pm andtj : : : tn for all i, j.

Let C-diagonalg consist of entriesC(e; d) such thate + d = g. For everyC-diagonal
Algorithm GP performs an iteration that evaluates it from two previousC-diagonals (lines
7–38). The evaluation of each entry starts with evaluating the Col value (line 11). The rest
of the loop (lines 12–35) effectively finds the valueJump(Col + 1� d;Col + 1) using the
reference triples and tablePrefix. A newC-value is stored on line 24.

The algorithm maintains an ordered sequence of reference triples. The sequence is updated
on lines 28–35. ProcedureWithin(d) called on line 14 tests if text positiond is within some
interval of thek first reference triples in the sequence. In the positive case, variableR is
updated to express the index of the reference triple whose interval contains text positiond.

A match is reported on line 26.
Instead of the wholeC defined above, tableC of the algorithm contains only three successiveC-diagonals. The use of this buffer of three diagonals is organized with variablesB1, B2,

andB3.

Ukkonen-Wood

AnotherO(kn) algorithm, given by Ukkonen and Wood,7 has an overall structure identical
to the algorithm of Galil and Park. However, no reference triples are used. Instead, to find
the necessary valuesJump(i; j), the text is scanned with a modified suffix automaton for

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 5

1 begin
2 Prefixes(P);
3 for I in –1 .. k loop
4 C(I, 1) := –Infinity; C(I, 2) := –1;
5 end loop;
6 B1:=0; B2:=1; B3:=2;
7 for J in 0 .. n – m + k loop
8 C(–1, B1) := J; R := 0;
9 for E in 0 .. k loop
10 H := J – E;
11 Col := Max((C(E–1, B2) + 1, C(E–1, B3) + 1, C(E–1, B1)));
12 Se := Col + 1; Found := false;
13 while not Found loop
14 if Within(Col + 1) then
15 F := V(R) – Col; G := Prefix(Col+1–H, Col+1–W(R));
16 if F = G then Col := Col + F;
17 elseCol := Col + Min(F, G); Found := true; end if;
18 else
19 if Col – H < m and then P(Col+1–H) = T(Col+1) then
20 Col := Col + 1;
21 elseFound := true; end if;
22 end if;
23 end loop;
24 C(E, B1) := Min(Col, m+H);
25 if C(E, B1) = H + m and then C(E–1, B2) < m + H then
26 Report Match((H + m));
27 end if;
28 if V(E) >= C(E, B1) then
29 if E = 0 then U(E) := J + 1;
30 elseU(E) := Max(U(E), V(E–1) + 1); end if;
31 else
32 V(E) := C(E, B1); W(E) := H;
33 if E = 0 then U(E) := J + 1;
34 elseU(E) := Max(Se, V(E–1) + 1); end if;
35 end if;
36 end loop;
37 B := B1; B1 := B3; B3 := B2; B2 := B;
38 end loop;
39 end;

Figure 3. Algorithm GP.

6 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin
2 Prefixes(P);
3 for I in – 1 .. k loop
4 C(I, 1) := –Infinity; C(I, 2) := –1;
5 end loop;
6 B1 := 0; B2 := 1; B3 := 2;
7 for J in 0 .. n – m + k loop
8 C(–1, B1) := J;
9 for E in 0 .. k loop
10 H := J – E;
11 Col := Max((C(E – 1, B2) + 1,
12 C(E – 1, B3) + 1, C(E – 1, B1)));
13 C(E, B1) := Col + Jump(Col + 1 – H, Col + 1);
14 if C(E, B1) = H + m and then C(E – 1, B2) < m + H then
15 Report Match(H + m);
16 end if;
17 end loop;
18 B := B1; B1 := B3; B3 := B2; B2 := B;
19 end loop;
20 end;

Figure 4. Algorithm UW.

patternP . The core of the resulting method, called Algorithm UW, is shown in Fig. 4.
TablePrefixis as in Algorithm GP. Procedure callJump(Col+ 1�H;Col+ 1) on line 13

returns theJumpvalue, as in Algorithm GP. The value is evaluated as

Jump(i; j) = min(Prefix(i;Mn(j)); Maxprefix(j))
whereMaxprefix(j)equals the length of the longest common prefix oftj : : : tn andpMn(j) : : : pm,
and 1�Mm(j) � m is such that the length of this common prefix is maximal. For each text
positionj, the values ofMaxprefix(j) andMm(j) are produced in a left-to-right scan overT
by a suffix automaton forP .

The suffix automaton is constructed during the preprocessing phase of Algorithm UW.
The construction is a modification of the suffix automata constructions of Crochemore23 and
Blumer et al.24

Speed-up heuristic based on the distribution of characters

Grossi and Luccio18 present an algorithm for thek mismatches problem, where the change
is the only editing operation allowed. The key idea is to search for substrings of the text whose
distribution of characters differs from the distribution of characters in the pattern at most as
much as it is possible underk differences. In the following we present how the same approach
can also be applied to thek differences problem.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 7

1 begin
2 for I in 1 .. m loop C(P(I)) := C(P(I)) + 1; end loop;
3 for J in 1 .. n loop
4 X := T(J); EnQueue(Q, X); C(X) := C(X) – 1;
5 if C(X) < 0 then Z := Z + 1; end if;
6 while Z > k loop
7 DeQueue(Q, X);
8 if C(X) < 0 then Z := Z – 1; end if;
9 C(X) := C(X) + 1;
10 end loop;
11 if Size(Q) = m then
12 Mark(J – m + 1); DeQueue(Q, X);
13 if C(X) < 0 then Z := Z – 1; end if;
14 C(X) := C(X) + 1;
15 end if;
16 end loop;
17 EDP(m);
18 end;

Figure 5. Algorithm DC.

Algorithm DC in Fig. 5 works in two main phases: scanning and checking. The scanning
phase (lines 3–16) scans over the text and marks the parts that may contain approximate
occurrences ofP . This is done by marking on line 12 some diagonals ofD.

The checking phase (line 17) evaluates all marked diagonalsusing Algorithm EDP restricted
to the marked diagonals. Whenever EDP refers to an entry outside the diagonals, the entry can
be taken to be1. Parameterx of call EDP(x) tells how many columns should be evaluated
for one marked diagonal. The minimum valuem for x is applicable for DC.

The scanning phase is almost identical to the original algorithm.18 It maintains queueQ,
which corresponds to a substring of the text with at mostm characters. Iff(x) andq(x) are
frequencies of characterx in the pattern and inQ, variableZ has the valueXx in Qmax(q(x)� f(x); 0):
The value ofZ is computed together with tableC which maintains the differencef(x)� q(x)
for everyx. WhenZ is greater thank, we know for sure that no approximate occurrence of
the pattern with at mostk differences can contain substring held byQ. This is because the
value ofZ is always at most as large as the number of differences betweenP and the substring
of T that corresponds to the currentQ. Items are inserted toQ until Z > k or Q containsm characters. In the latter case a potential approximate occurrence has been found, which is
marked on line 12.

8 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 function Maxprefix(I: positive) return integer is
2 begin
3 State := Initial State; R := I; D:= 0;
4 while State.Go To(T(R)) /= null loop
5 State := State.Go To(T(R));
6 R := R + 1; D := D + 1;
7 end loop;
8 return D;
9 end Maxprefix;
10
11 begin
12 Create; I := –1; S := 0;
13 while I < n loop
14 S := S + 1; Bound := I + 1 + Maxprefix(I + 2);
15 while I < Bound loop
16 I := I + 1; H(I) := S;
17 end loop;
18 end loop;
19 for I in 1 .. n – m + k + 1 loop
20 if H(I + m – k – 1) – H(I) – 1 <= k then Mark(I); end if;
21 end loop;
22 EDP(m + k);
23 end;

Figure 6. Algorithm MM.

Speed-up heuristic based on maximal matches

Our next algorithm, described and analyzed in detail by Ukkonen,10 has the same two
phases (scanning and checking) as Algorithm DC. The scanning part again marks the potential
approximate occurrences ofP . Now they are found using a heuristic measure that tries to take
into account the relative order of the characters. Note thatthe order is totally ignored in the
character distribution heuristic of Algorithm DC. That heuristic gives the same estimate of
the number of differences for all permutations ofP and all permutations of the corresponding
text portion.

The heuristic is based on the observation that the smaller isthe number of the differences
betweenP and its occurrenceP 0, the longer portions ofP andP 0 must have exact matches.
Whenever there are long exact matches betweenP and a substring ofT , then the substring is
a potential occurrence ofP .

To make this precise, let again for 1� j � n,

Maxprefix(j) = max
1�i�mflength of the longest common prefix oftj : : : tn andpi : : : pmg;

and letMaxprefix(n + 1) = 0. LetBound(1) = Maxprefix(1) and letH(i) = 1 for 1 � i �

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 9

Bound(1). Generally, ifBound(s) = B andB < n, thenH(i) = s+ 1 forB + 1� i � B + 1+ Maxprefix(B + 2);
and

Bound(s+ 1) = B + 1+ Maxprefix(B + 2):
Informally, assume that we try matchP againstT in a greedy fashion by taking as long

matches as possible. Starting fromp1 and t1, determine the longest common prefix of the
suffixes ofP andt1 : : : tn. When a mismatch is found attj, we continue by searching for the
longest common prefix of the suffixes ofP andtj+1 : : : tn, and so on. ThenH(i) tells the
number of discontinuation positions int1 : : : ti, i.e., how many times a new longest common
prefix is applied or there is no common prefix at all.

It is easy to show that there can be an approximate occurrenceof P with � k differences
starting fromti only if H(i+m� k � 1)�H(i)� 1� k:

The scanning phase finds valuesH(i), 1� i � n, and marks for checking the indexesi that
satisfy the above condition. The resulting method, called Algorithm MM, is given in Figures 6
and 7.

The computation of valuesH(i) reduces to valuesMaxprefix(i) (line 14 of Fig. 6). These
are found by scanningT with a similar but somewhat simpler suffix automaton forP as was
used in algorithm UW. The construction of the automaton, essentially from Crochemore,23 is
given in Fig. 7. The automaton consists of the initial state,other states (of type Node), and
goto and fail transitions between them. ValueMaxprefix(i) is found simply by scanningT
from ti with the automaton using only goto transitions (lines 1–9 ofFig. 6). When the firsttj
is encountered such that there is no matching goto step fortj, thenMaxprefix(i) = j � i.

Lines 13–17 of Algorithm MM compute theH(i) values, and line 20 tests and marks the
appropriate entries. This takes linear time. The final checking is again done by EDP on line
22.

Boyer-Moore approach

The characteristic feature of the Boyer-Moore algorithm25 for exact matching of string
patterns is the right-to-left scan over the pattern. At eachalignment of the pattern with the
text, characters of the text below the pattern are examined from right to left, starting by
comparing the rightmost character of the pattern with the character currently below it in the
text. Between alignments, the pattern is shifted to the right along the text.

Tarhio and Ukkonen9 have developed an approximate string matching algorithm which is a
generalization of the Horspool version26 of the Boyer-Moore algorithm. A slightly modified
version called Algorithm ABM is presented in Fig. 8. The algorithm has scanning and checking
phases. The scanning phase based on a Boyer-Moore idea repeatedly applies two operations:
mark and shift. Checking is done by EDP as in the case of algorithms DC and MM. In the
case of ABM, 2m+ k columns have to be checked for every marked diagonal.

Let us consider an alignment of patternP with text T . In deciding whether a diagonal
corresponding to this alignment should be marked, we searchfor bad characters. Letpi be
abovetj. Charactertj in T is bad (for this alignment), if the distance fromi to the closest
occurrence oftj inP is more thank (whenk = 0, a bad character is simply a mismatch). It can
be shown that no approximate occurrence ofP in T may contain more thank bad characters.

10 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 function Create
2 begin
3 Root := new Node; Root.Depth := 0; Top := Root;
4 for I in 1 .. m loop
5 New Node := new Node; Next := Top;
6 while Next /= Root and Next.Go To(P(I)) = null loop
7 Next.Go To(P(I)) := New Node;
8 Next := Next.Fail;
9 end loop;
10 if Next.Go To(P(I)) = null then
11 Root.Go To(P(I)) := New Node;
12 New Node.Fail := Root;
13 elsif Next.Depth + 1 = Next.Go To(P(I)).Depth then
14 New Node.Fail := Next.Go To(P(I));
15 else
16 R := new Node;
17 R.Fail := Next.Go To(P(I)).Fail;
18 R.Go To := Next.Go To(P(I)).Go To;
19 R.Depth := Next.Depth + 1; New Node.Fail := R;
20 Next.Go To(P(I)).Fail := R;
21 loop
22 Next.Go To(P(I)) := R; Next := Next.Fail;
23 exit when Next = null or else
24 Next.Go To(P(I)).Depth < R.Depth;
25 end loop;
26 end if;
27 New Node.Depth := Top.Depth + 1; Top := New Node;
28 end loop;
29 Initial State := Root;
30 end Create;

Figure 7. Preprocessing ofP for Algorithm MM.

So at every alignment of the pattern we search for bad characters proceeding from right to
left until k + 1 of them were found or the whole pattern was traversed. In theformer case
there is no approximate occurrence at the current alignmentand in the latter case a potential
approximate occurrence has been found.

For determining the length of the shift, i.e. what is the nextpotential diagonal afterh
for marking, we search for the first diagonal afterh, where at least one of the charactersth+m; th+m�1; : : : ; th+m�k matches with the corresponding character ofP . This can be done
with a precomputed (k + 1)�
 tabled defined for eachi = m� k; : : : ;m, and for eacha inS such that d[i; a℄ = minfs j s = m or (1� s < m andpi�s = a)g:

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 11

1 begin
2 Initialize;
3 J := m;
4 while J <= n + k loop
5 R := J; I := m;
6 Bad Chars := 0; Shift := m;
7 while I > 0 and Bad Chars <= k loop
8 if I >= m – k then
9 Shift := Min(Shift, d(I, T(R)));
10 end if;
11 if Bad(T(R), I) then
12 Bad Chars := Bad Chars + 1;
13 end if;
14 I := I – 1; R := R – 1;
15 end loop;
16 if Bad Chars <= k then
17 Mark(J – m – k + 1);
18 J := J + m + 1;
19 elseJ := J + Max(Min(k + 1, I + 1), Shift);
20 end if;
21 end loop;
22 EDP(2 * m + k);
23 end;

Figure 8. Algorithm ABM.

In Algorithm ABM the minimum ofd[m � k; th+m�k℄; : : : ; d[m; th+m℄ is computed to
variableShiftsimultaneously with the inspection of the bad characters. There are two cases in
determining the final value of shift. If a diagonal is marked,the length of the shift ism+1 (on
line 18), which ensures that no text position is reinspectedafter marking (the value ofShift is
not used in this case). This heuristic is correct as 2m+ k columns ofD are checked by EDP
(line 22), starting from the first column that crosses a marked diagonal. If the diagonal is not
marked, the length of the shift is the maximum of the value of variableShiftand the minimum
of k+ 1 andI + 1, where variableI tells the number of positions not inspected at the current
alignment.

In order to be able to handle correctly an approximate occurrence ofP in the end of text, it
is assumed thatk additional dummy characters have been appended to the text.

For finding the bad characters fast we use precomputed tableBad(i; a), 1� i � m, a 2 Σ,
such thatBad(i; a) = true, if and only if a does not appear inpi�k : : : pi+k, wherepj = " forj < 1 andj > m.

The computation of tablesBadandd from P andS is straightforward. An efficient imple-
mentation for computingd is given in Fig. 9, where we assume alphabetΣ consists of codes
1; : : : ;
. This is a corrected form of the original preprocessing algorithm.9

12 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin
2 for J in 1 .. c loop
3 ready(J) := m + 1;
4 end loop;
5 for J in 1 .. c loop
6 for I in m–k .. k loop
7 d(I, J) := m;
8 end loop;
9 end loop;
10 for I in reverse1 .. m–1 loop
11 for J in reverseMax(I+1, m–k) .. ready(P(I))–1 loop
12 P(I)) := J – I;
13 end loop;
14 ready(P(I)) := Max(I+1, m–k)
15 end loop;
16 end

Figure 9. Computation of tabled for Algorithm ABM.

COMPARISON

We performed an extensive test program on all seven algorithms DP, EDP, GP, DC, UW, MM,
and ABM described in the previous sections. The results are presented in Table I. In our tests,
we used random patterns of varying lengths and random texts of length 100,000 characters
over alphabets of different sizes. Besides random texts we ran a test series on a text of English
fiction. The tests were run on a Vaxstation 3100 under VMS. In order to decrease random
variation, the figures of Table I are averages of ten runs withdifferent patterns. All times are
total execution times including preprocessing, scanning,and checking. The best value on each
row is set in boldface.

All patterns and texts were generated independently, because if the patterns had been
selected from the texts, the scanning speeds of some algorithms would have depended on the
length of the text. In the case of the fiction text, a 100,000 characters long portion was used as
a text, and the patterns were selected from another portion starting from a character preceded
by a space.

We tested the effect ofm in a test series with varyingm = 8;16;32;64;128 and fixedk = 4. We examined the effect ofk in two test series. In one series we evaluated the effect
of absolute error with parametersk = 0;1;2;4;6;8 and with fixedm = 10, and in the other
series we tested fixed relative error ofk = m=8 with m = 8;16;32;64;128. All tests were
performed for alphabet sizes
 = jΣj = 2;4;10;30;90 and for the English text.

The algorithms with two phases (scanning and checking) wereimplemented so that they
perform two subsequent passes overT . An alternative way would be to merge the two phases
into a one-pass algorithm. In practice this is more desirable form of the algorithms as then we
need a buffer of lengthO(m) only to save the relevant part ofT . Therefore we also tried (e.g.
for ABM) that type of implementations. In our tests the approach of two passes was about 10
percent faster, but, on the other hand, it consumes more space.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 13

Table I. Execution times (in units of 10 milliseconds) of thealgorithms (n = 100,000). Value E of
 denotes the
English text.

c m k DP GP UW EDP DC MM ABM
2 8 4 778 2648 2970 807 1157 1129 1095
2 16 4 1440 2847 2957 1352 1691 1716 1677
2 32 4 2803 2836 2996 1479 1819 1876 1823
2 64 4 5565 2775 2757 1493 1878 155 1854
2 128 4 11108 2794 2899 1379 1573 144 1695
2 10 0 919 596 917 343 495 370 305
2 10 1 920 1149 1407 596 760 867 880
2 10 2 924 1716 1913 809 1077 1112 1080
2 10 4 949 2771 3044 988 1356 1314 1280
2 10 6 951 3654 4138 991 1361 1320 1300
2 10 8 950 4537 5203 989 1359 1318 1313
2 8 1 751 1114 1356 559 750 845 848
2 16 2 1433 1681 1914 861 1175 1165 1142
2 32 4 2802 2795 2994 1426 1741 1819 1764
2 64 8 5564 4993 4625 2653 3281 3220 3166
2 128 16 11102 9946 8903 5102 6038 6047 5829
4 8 4 906 2652 2876 923 1283 1261 1227
4 16 4 1708 2675 2959 1047 1279 1387 1320
4 32 4 3347 2702 3026 1072 1257 244 1378
4 64 4 6650 2619 2811 1051 933 147 1507
4 128 4 13296 2694 2940 1047 597 148 1694
4 10 0 1077 536 935 263 213 164 101
4 10 1 1087 1063 1435 457 393 488 471
4 10 2 1087 1585 1921 631 754 916 897
4 10 4 1093 2691 2928 1019 1379 1358 1322
4 10 6 1114 3695 4014 1150 1538 1505 1479
4 10 8 1117 4617 5134 1156 1548 1514 1505
4 8 1 877 1027 1371 444 405 673 468
4 16 2 1707 1567 1951 644 681 564 978
4 32 4 3341 2699 3033 1065 1207 239 1392
4 64 8 6663 4791 4655 1858 2150 150 2291
4 128 16 13342 9624 8959 3653 4375 149 4313

10 8 4 988 2437 2758 860 1060 1202 1166
10 16 4 1917 2445 2952 864 678 1129 896
10 32 4 3774 2478 3044 861 306 157 444
10 64 4 7520 2402 2848 860 197 156 440
10 128 4 15024 2500 2953 863 190 156 432
10 10 0 1218 506 910 237 187 165 49
10 10 1 1221 987 1411 383 195 175 134
10 10 2 1220 1479 1897 542 264 664 279
10 10 4 1222 2479 2875 869 958 1203 1185
10 10 6 1225 3515 3858 1175 1541 1544 1520
10 10 8 1250 4539 4968 1293 1698 1676 1652
10 8 1 990 955 1338 383 200 287 133
10 16 2 1918 1447 1944 539 205 163 232
10 32 4 3768 2489 3045 865 301 157 484
10 64 8 7524 4448 4684 1510 777 157 1737
10 128 16 15035 8999 8964 2886 3028 156 3400

14 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

c m k DP GP UW EDP DC MM ABM
30 8 4 1031 2325 2692 782 333 1128 464
30 16 4 1999 2333 2897 781 189 287 192
30 32 4 3960 2393 3012 779 188 167 179
30 64 4 7906 2315 2841 777 189 165 194
30 128 4 15794 2415 2958 779 188 166 188
30 10 0 1275 500 855 232 188 176 36
30 10 1 1276 965 1351 363 188 176 73
30 10 2 1275 1442 1842 500 188 226 117
30 10 4 1274 2373 2808 779 229 1112 287
30 10 6 1273 3336 3776 1069 788 1440 1079
30 10 8 1287 4328 4798 1321 1682 1714 1683
30 8 1 1031 936 1282 363 188 183 86
30 16 2 1997 1405 1893 500 187 171 94
30 32 4 3958 2395 3014 779 188 167 185
30 64 8 7903 4210 4665 1357 188 165 315
30 128 16 15807 8546 8977 2534 190 165 486
90 8 4 1044 2300 2657 750 193 1097 189
90 16 4 2023 2305 2852 749 188 183 110
90 32 4 4026 2371 2957 747 188 179 81
90 64 4 8045 2298 2771 748 188 176 72
90 128 4 16089 2396 2940 749 189 176 74
90 10 0 1291 497 826 230 187 185 33
90 10 1 1290 960 1318 357 188 184 59
90 10 2 1289 1432 1815 486 187 186 88
90 10 4 1290 2346 2776 748 188 1084 149
90 10 6 1290 3285 3746 1015 230 1389 290
90 10 8 1293 4225 4722 1285 928 1682 1162
90 8 1 1045 932 1252 357 188 186 73
90 16 2 2021 1393 1848 485 187 182 61
90 32 4 4027 2373 2960 749 188 179 82
90 64 8 8039 4114 4589 1281 189 176 185
90 128 16 16091 8225 8959 2377 189 175 292
E 8 4 1012 2370 2730 817 755 1158 967
E 16 4 1964 2393 2923 836 250 883 359
E 32 4 3882 2423 3022 805 188 164 273
E 64 4 7724 2359 2838 823 188 164 292
E 128 4 15443 2460 2972 832 189 168 311
E 10 0 1251 500 888 234 188 171 43
E 10 1 1253 972 1381 370 189 185 101
E 10 2 1253 1456 1874 515 203 493 183
E 10 4 1246 2431 2850 834 626 1166 902
E 10 6 1256 3430 3825 1137 1344 1506 1492
E 10 8 1273 4445 4891 1314 1718 1707 1685
E 8 1 1014 943 1313 371 190 246 111
E 16 2 1968 1418 1919 512 188 169 151
E 32 4 3868 2453 3023 843 189 164 286
E 64 8 7755 4370 4689 1473 192 164 430
E 128 16 15472 8799 8957 2753 206 167 639

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 15

The tests show that algorithms DP, GP, and UW are considerably slower than the other four
algorithms and they can almost never win the best of the four.Algorithm DP is the best ifm
is very small ork is close tom; the advantage of DP in such cases is, however, only marginal
both in theory and in practice.

The behavior of theO(kn) algorithms GP and UW is mutually rather similar, mostly
GP being the faster one in our experiments. Both GP and UW showO(kn) behavior but,
unfortunately, with relative high overhead. Therefore they are often slower than the trivial
solution DP.

EDP

DC

MM

ABM

m

8 16 32 64 128

32

64

128

256

512

1024

2048

Figure 10. Execution times for
 = 2 andk = 4.

Because algorithms EDP, DC, MM, and ABM were better than the others, we studied
relations of their execution times more carefully. Figure 10 shows the total execution times
of EDP, DC, MM, and ABM whenk = 4 andm varies for alphabet size
 = 2. Algorithm
EDP is the best form � 32, MM form > 32. Figure 11 shows the corresponding times whenk = m=8 for alphabet size
 = 10. Now ABM is the best fork < 2 and MM fork � 2. In
Figure 12m = 10 andk varies for alphabet size
 = 30. Algorithm ABM is the best fork � 3
and DC for 3< k � 7 and EDP fork > 7. Figure 13 presents the situation wherek = 4 andm varies for alphabet size
 = 90. This time ABM is clearly the best for all testedm � 8.

Figure 14 is based on a larger test series. It shows roughly the fastest algorithm for different
values ofm (� 64) andk in the cases of the binary text and the English text. In the case of
the binary alphabet, DC is only slightly slower than EDP for small values ofk.

Based on similar classification in all relevant alphabets, it is possible to build a hybrid
algorithm of EDP, DC, MM, and ABM, which selects on the basis of values
, m, andk
which method to use. Because DC, MM, and ABM already contain EDP as their subroutine,
it would be easy to incorporate such a selection between the advanced method and EDP to
make the total algorithm faster. Particularly the variation of the execution times for ABM can

16 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

k

1 2 4 8 16

32

64

128

256

512

1024

2048

4096

 EDP

DC

MM

ABM

Figure 11. Execution times for
 = 10 andk = m / 8.

be decreased by widening the belt of diagonals that are evaluated for each marking and by
correspondingly increasing the length of the shift.

In order to get some impression of the behavior of the algorithms on other computer systems,
we tested EDP and ABM programmed in Pascal on Sun 4/260S. The execution times of EDP
and ABM on Sun (shown in Table II for some parameter values) were on the average 68 per
cent and 60 per cent, respectively, of the corresponding times on Vaxstation. Though ABM
seems to work relatively slightly better on Sun than on Vaxstation, the results were in general
very similar.

CONCLUSIONS

The string matching algorithms are algorithmic miniatureswhose relative speeds are sensitive
on implementation details and on the processor used. We reported experimental comparison
(on a Vaxstation 3100) of seven different algorithms for thek differences problem. The speed
of the algorithms varied in a wide range, depending on the algorithm itself and on the problem
parametersk, m and
. Typically a scanning speed of 20,000 – 200,000 text characters per
second was obtained.

Algorithms DP, GP, and UW turned out to be uniformly slower than the remaining methods
EDP, DC, MM, and ABM. Among these, no single method is always the fastest. Rather, we
found the unsatisfactory situation that depending onk, m, and
, any algorithm can be the
best. The algorithms also show quite unstable behavior. In certain cases the fastest of the four
methods was observed to be even 30 times faster than the slowest one. Hence the choice of
the proper algorithm can be very significant decision in an application where long texts have
to be scanned.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 17

EDP

DC

MM

ABM

k

0 2 4 6 8

32

64

128

256

512

1024

2048

Figure 12. Execution times for c = 30 and m = 10.

Roughly summarized, our results on EDP, DC, MM, and ABM suggest that EDP is the
best method for the binary alphabet and also for other alphabets whenk is relatively large.
Algorithm ABM is the best method for very smallk (k = 1;2) in which cases it achieves very
high speed. In the remaining cases the choice is between algorithms MM and DC. Whenm is
large andk not too large relative tom, algorithm MM shows the highest speed, even for the
binary alphabet.

Table II. Execution times (in units of 10 milliseconds) of EDP and ABM on Sun 4/260S.

c m k EDP ABM
2 10 0 217 147
2 10 1 419 542
2 10 2 552 653
2 10 4 702 803
2 10 6 707 816
2 10 8 707 820

30 10 0 149 27
30 10 1 237 44
30 10 2 331 69
30 10 4 527 146
30 10 6 723 568
30 10 8 893 1001

18 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

EDP

DC

MM

ABM

m

8 16 32 64 128

32

64

128

256

512

1024

2048

Figure 13. Execution times for c = 90 and k = 4.

ACKNOWLEDGEMENTS

The financial support of the Academy of Finland and the Alexander von Humboldt Foundation
is gratefully acknowledged.

REFERENCES

1. Z. Galil and R. Giancarlo, ‘Data structures and algorithms for approximate string matching’,Journal of
Complexity, 4, 33–72 (1988).

2. P. Sellers, ‘The theory and computation of evolutionary distances: Pattern recognition’,Journal of Algorithms,
1, 359–372 (1980).

3. E. Ukkonen, ‘Finding approximate patterns in strings’,Journal of Algorithms, 6, 132–137 (1985).
4. G. Landau and U. Vishkin, ‘Fast string matching with k differences’,Journal of Computer and System

Sciences, 37, 63–78 (1988).
5. G. Landau and U. Vishkin, ‘Fast parallel and serial approximate string matching’,Journal of Algorithms, 10,

157–169 (1989).
6. Z. Galil and K. Park, ‘An improved algorithm for approximate string matching’,SIAM Journal on Computing,

19, 989–999 (1990).
7. E. Ukkonen and D. Wood, ‘Approximate string matching withsuffix automata’,Algorithmica, 10, 353–364

(1993).
8. J. Tarhio and E. Ukkonen, ‘Boyer-Moore approach to approximate string matching’, J. Gilbert and R. Karlson

(eds.),SWAT90, 2nd Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science 447,
Berlin, 1990, pp. 348–359. Springer-Verlag.

9. J. Tarhio and E. Ukkonen, ‘Approximate Boyer-Moore string matching’,SIAM Journal on Computing, 22,
243–260 (1993).

10. E. Ukkonen, ‘Approximate string matching with q-grams and maximal matches’,Theoretical Computer
Science, 92, 191–211 (1992).

11. W. Chang and E. Lawler, ‘Sublinear approximate string matching and biological applications’,Algorithmica,

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 19

4 8 16 32 64

32

16

8

4

2

1

m

k

= 2

MM

EDP

c

4 8 16 32 64

32

16

8

4

2

1

m

k

English text

ABM

MMDC

EDP

Figure 14. Rough classification.

12, 327–344 (1994).
12. T. Takaoka, ‘Approximate pattern matching with samples’, Proceedings of ISAAC ’94, Lecture Notes in

Computer Science 834, Berlin, 1994, pp. 234–242. Springer-Verlag.
13. E. Sutinen and J. Tarhio, ‘On using q-gram locations in approximate string matching’, P. Spirakis (ed.),Proc.

3rd Annual European Symposium on Algorithms ESA ’95, Lecture Notes in Computer Science 979, Berlin,
1995, pp. 327–340. Springer.

14. W. Chang and T. Marr, ‘Approximate string matching and local similarity’, M. Crochemore and D. Gusfield
(eds.),Combinatorial Pattern Matching, Proceedings of 5th AnnualSymposium, Lecture Notes in Computer
Science 807, Berlin, 1994, pp. 259–273. Springer-Verlag.

15. W. Chang and J. Lampe, ‘Theoretical and empirical comparisons of approximate string matching algorithms’,
A. Apostolico et al. (ed.),Combinatorial Pattern Matching, Proceedings of Third Annual Symposium, Lecture
Notes in Computer Science 644, Berlin, 1992, pp. 175–184. Springer-Verlag.

16. S. Wu and U. Manber, ‘Fast text searching allowing errors’, Communications of ACM, 35, 83–91 (1992).
17. R. Baeza-Yates and C. Perleberg, ‘Fast and practical approximate string matching algorithms’, A. Apostolico

et al. (ed.),Combinatorial Pattern Matching, Proceedings of Third Annual Symposium, Lecture Notes in
Computer Science 644, Berlin, 1992, pp. 185–192. Springer-Verlag.

18. R. Grossi and F. Luccio, ‘Simple and efficient string matching with k mismatches’,Information Processing
Letters, 33, 113–120 (1989).

19. R. Baeza-Yates and G. Gonnet, ‘A new approach to text searching’, Communications of ACM, 35, 74–82
(1992).

20. P. Pevzner and M. Waterman, ‘Multiple filtration and approximate pattern matching’,Algorithmica, 13,
135–154 (1995).

21. R. Wagner and M. Fischer, ‘The string-to-string correction problem’, Journal of the ACM, 21, 168–173
(1975).

22. E. Ukkonen, ‘Algorithms for approximate string matching’, Information Control, 64, 100–118 (1985).
23. M. Crochemore, ‘String matching with constraints’,13th Symposium on Mathematical Foundations of Com-

puter Science, Lecture Notes in Computer Science 324, Berlin, 1988, pp. 44–58. Springer-Verlag.
24. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas, ‘The smallest automaton

recognizing the subwords of a text’,Theoretical Computer Science, 40, 31–55 (1985).
25. R. Boyer and S. Moore, ‘A fast string searching algorithm’, Communcations of the ACM, 20, 762–772 (1977).
26. N. Horspool, ‘Practical fast searching in strings’,Software – Practice and Experience, 10, 501–506 (1980).

