SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 1(1), 1-4 (JANUARN88)

A Comparison of
Approximate String Matching Algorithms

PETTERIJOKINEN, JORMA TARHIO, AND ESKO UKKONEN

Department of Computer Science, P.O. Box 26 (Teollisuuska}, FIN-00014 University of Helsinki, Finland
(email: tarhio@cs.helsinki.fi)

SUMMARY

Experimental comparison of the running time of approximate string matching algorithms for the & dif-
ferences problem is presented. Given a pattern string, a téstring, and integer k, the task is to find all
approximate occurrences of the pattern in the text with at mat k differences (insertions, deletions, changes).
We consider seven algorithms based on different approachéscluding dynamic programming, Boyer-Moore
string matching, suffix automata, and the distribution of characters. It turns out that none of the algorithms

is the best for all values of the problem parameters, and thepeed differences between the methods can be
considerable.

KEY WORDS String matching Edit distance k differences peobl

INTRODUCTION

We consider thé differences problena version of the approximate string matching problem.
Given two stringstextT = t1t». . . t, andpatternP = p1p» ... p,, and integek, the task is

to find the end points of all approximate occurrence®&an 7. An approximate occurrence
means a substring’ of 7' such that at mogtediting operations (insertions, deletions, changes)
are needed to conveHt to P.

There are several algorithms proposed for this problemesgethe survey of Galil and
Giancarlo® The problem can be solved in tini&mn) by dynamic programming?2 A very
simple improvement givin@ (kn) expected time solution for random strings is described by
Ukkonen? Later, Landau and Vishkifi? Galil and Park, Ukkonen and Woofgive different
algorithms that consist of preprocessing the pattern ie tiyn?) (or O(m)) and scanning
the text in worst-case tim@ (kn). Tarhio and Ukkonéh® present an algorithm which is based
on the Boyer-Moore approach and works in sublinear average fThere are also several
other efficient solution§’, and som&-14 of them work in sublinear average time. Currently
O(kn) is the best worst-case bound known if the preprocessingitirakowed to be at most
O(m?).

There are also fast algorithfh¥-2°for the k mismatches problem, which is a reduced form
of k differences problem so that a change is the only editingaijwer allowed.

It is clear that with such a multitude of different solutidnghe same problem it is difficult
to select a proper method for each particular approximétegnatching task. The theoretical
analyses given in the literature are helpful but it is impotthat the theory is completed with
experimental comparisons extensive enough.

CCC 0038-0644/88/010001-04 Received 1 March 1988
(©1988 by John Wiley & Sons, Ltd. Revised 25 March 1988

2 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

We will present an experimental compari$ar the running times of seven algorithms for
thek differences problem. The tested algorithms are: two dyng@migramming methods?
Galil-Park algorithnf, Ukkonen-Wood algorithmi,an algorithm counting the distribution
of characters$® approximate Boyer-Moore algorithfrand an algorithm based on maximal
matches between the pattern and the ¥&Kthe last algorithrtf is very similar to the linear
algorithm of Chang and Lawlét,although they have been invented independently.) We give
brief descriptions of the algorithms as well as an Ada codetlieir central parts. As our
emphasis is in the experiments, the reader is advised tailtahe original references for
more detailed descriptions of the methods.

The paper is organized as follows. At first, the frameworkellasn edit distance is intro-
duced. Then the seven algorithms are presented. Finadlgamparison of the algorithms is
represented and its results are summarized.

THE K DIFFERENCES PROBLEM

We use the concept of edit distadté’to measure the goodness of approximate occurrences
of a pattern. Thedit distancebetween two stringsd and B in alphabetz, can be defined
as the minimum number of editing steps needed to con¥ed B. Each editing step is a
rewriting step of the forna — ¢ (a deletion)e — b (an insertion), o — b (a change) where
a, b are inZ ande is the empty string.

The k differencegroblem is, given patter’’ = pips...p, and textT = i1ty .. .1, in
alphabet of sizec, and integek, to find all sucty that the edit distance (i.e., the number of
differences) betweeR and some substring @f ending at; is at mostk. The basic solution
of the problem is the following dynamic programming metRot:et D be anm + 1 byn +
1 table such thab(i, j) is the minimum edit distance betwegip, . .. p; and any substring
of T ending att;. Then

D(0.j)=0, 0<j<n;

D(i,j) =ming D(i—1,j — 1)+ if p;, =t; thenO else 1
D(i,j—1)+1

TableD can be evaluated column-by-column in tiémn). WheneverD(m, j) is found
to be at mosk for somey, there is an approximate occurrencefoending att; with edit
distanceD(m, j) < k. Hencej is a solution to the: differences problem.

In Fig. 1 there is an example of table for T = bcbacbbb and P = cacd. The pattern
occurs at positions 5 and 6 of the text with at most 2 diffeesnc

All the algorithms presented work within this model, butythgilize different approaches
in restricting the number of entries that are necessaryatuate in table). Some of the algo-
rithms work in two phases: scanning and checking. The sogrptiase searches for potential
occurrences of the pattern, and the checking phase vefifies suggested occurrences are
good or not. The checking is always done using dynamic progriag.

* The comparison was carried out in 1991. Some of the neweradethill likely be faster than the tested algorithms for aert
values of problem parameters.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 3

~ArWNFRLO
o0 QO

A WNEF O o
A WNRFROTHEF
WNFP OO0 N
WN R P OITW
WNRFR RO A~
N, OO0 Ol
NN RP P OO
WNNPFPOIT N
WWN = OJT 00

Figure 1. TableD.

ALGORITHMS
Dynamic programming

We consider two different versions of dynamic programmirgiiek differences problem.
In the previous section we introduced the trivial solutiomiath computes all entries of table
D. The code of this algorithm is straight-forwaid! and we do not present it here. In the
following, we refer to this solution as Algorithm DP.

Diagonalh of D forh = —m, ... ,n, consistsof alD (i, j) suchthag —i = h. Considering
computation along diagonals gives a simple way to limit w&ssary computation. It is
easy to show that entries on every diagohadre monotonically increasirtg. Therefore
the computation along a diagonal can be stopped, when teshbid value ofk + 1 is
reached, because the rest of the entries on that diagohakngleater thak. This idea leads
to Algorithm EDP (Enhanced Dynamic Programming) workingaiverage timé O (kn).
Algorithm EDP is shown in Fig. 2.

In algorithm EDP, the text and the pattern are stored in &bkendP. TableD is evaluated
a column at a time. The entries of the current column are dtoréable/, and the value of
D(i—1,j— 1) is temporarily stored in variabl€. A work space of)(m) is enough, because
everyD(7 7) depends only on entri@3(i — 1, 7), D(i,j — 1), andD(i — 1,5 — 1). Variable
Toptells the row where the topmost dlagonal still under theghodd value: + 1 intersects the
current column. On line 12 an approximate occurrence isrte@powhen rown is reached.

Galil-Park

TheO(kn) algorithm presented by Galil and Péik based on the diagonalwise monotonic-
ity of the entries of table). It also uses so-called reference triples that represetuiing
substrings of the pattern and the text. This approach wakalssady by Landau and Vishkin.
The algorithm evaluates a modified form of tatdde The core of the algorithm is shown in
Fig. 3 as Algorithm GP.

In preprocessing of patte (procedure calPrefixe$P) on line 2), upper triangular table
Prefix(i, j), 1 < i < j < m, is computed wher@refix(i, j) is the length of the longest
common prefix op; . .. py, andp; ... py,.

Reference tripléu, v, w) consists of start position, end positiorv, and diagonaly such
that substring,, . . . t, matches substring, ,, ... py_ andi, 1 # pyr1_w. Algorithm GP
manipulates several triples; the components of-thériple are presented &5(r), V (), and
W (r).

4 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin

2 Top:=k+1;

3 for 1in 0 .. m loop H(l) :=I; end loop;

4 for Jin 1..nloop

5 C:=0;

6 for I'in 1 .. Top loop

7 if P(I) = T(J) then E :=C;

8 elseE := Min((H(l — 1), H(l), C)) + 1; end if;
9 C = H(\); H(I) := E;

10 end loop

11 while H(Top) > k loop Top := Top — 1; end loop;
12 if Top = m then Report_Match(J);

13 elseTop := Top + 1; end if;

14 end loop,

15 end;

Figure 2. Algorithm EDP.

For diagonall and integeke, let C(e, d) be the largest columpsuch thatD(j — d, j) = e.
In other words, the entries of valueon diagonald of D end at columnC'(e,d). Now
C(e,d) = Col + Jump(Col + 1 — d, Col + 1) holds where

Col=max{C(e—1,d—-1)+1,C(e—1,d)+1,C(e—1,d+ 1)}

andJumgi, j) is the length of the longest common prefixot . . p,, andt; ... 1, foralli, j.

Let C-diagonalg consist of entrie€” (e, d) such thate + d = g. For everyC-diagonal
Algorithm GP performs an iteration that evaluates it frono tpreviousC-diagonals (lines
7-38). The evaluation of each entry starts with evaluativegCol value (line 11). The rest
of the loop (lines 12—35) effectively finds the valdiemgCol + 1 — d, Col 4+ 1) using the
reference triples and tabRrefix A new C-value is stored on line 24.

The algorithm maintains an ordered sequence of refereipbestr The sequence is updated
on lines 28-35. Procedukithin(d) called on line 14 tests if text positiahis within some
interval of thek first reference triples in the sequence. In the positive ,caaéable R is
updated to express the index of the reference triple whdsevil contains text positiodg.

A match is reported on line 26.

Instead of the whol€ defined above, tabl€ of the algorithm contains only three successive
C-diagonals. The use of this buffer of three diagonals is mimgal with variables31, B2,
andB3.

Ukkonen-Wood

AnotherO(kn) algorithm, given by Ukkonen and Woddhas an overall structure identical
to the algorithm of Galil and Park. However, no referencelés are used. Instead, to find
the necessary valuekimgsi, j), the text is scanned with a modified suffix automaton for

OCO~NOUR~WNPE

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS

begin
Prefixes(P);
for I'in =1 .. k loop
C(l, 1) := —Infinity; C(l, 2) := -1;
end loop,
B1:=0; B2:=1; B3:=2;
forJin0..n—m+kloop
C(-1,B1) :=J;R:=0;
for Ein O .. k loop
H:=J-E,
Col := Max((C(E-1, B2) + 1, C(E-1, B3) + 1, C(E-1, B1)));
Se := Col + 1; Found := false;
while not Found loop
if Within(Col + 1) then
F := V(R) — Col; G := Prefix(Col+1-H, Col+1-W(R));
if F =G then Col := Col + F;
elseCol := Col + Min(F, G); Found := true; end if;
else
if Col —H < m and then P(Col+1-H) = T(Col+1) then
Col :=Col + 1;
elseFound := true; end if;
end if;
end loop,
C(E, B1) := Min(Col, m+H);
if C(E, B1) = H + m and then C(E-1, B2) < m + H then
Report_Match((H + m));
end if;
if V(E) >= C(E, B1) then
if E=0thenU(E) :=J+ 1,
elseU(E) := Max(U(E), V(E-1) + 1); end if;
else
V(E) := C(E, B1); W(E) := H;
if E=0thenU(E) :=J+ 1,
elseU(E) := Max(Se, V(E-1) + 1); end if;
end if;
end loop
B :=B1,; B1:= B3; B3 := B2; B2 := B;
end loop,
end;

Figure 3. Algorithm GP.

6 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin

2 Prefixes(P);

3 forlin—1 .. kloop

4 C(l, 1) := —Infinity; C(l, 2) := -1,

5 end loop,

6 B1:=0;B2:=1;B3:=2;

7 for Jin0..n—m +k loop

8 C(-1,B1) = J;

9 for Ein 0 .. k loop

10 H:=J-E;

11 Col := Max((C(E — 1, B2) + 1,

12 C(E-1,B3)+1, C(E-1,B1)));

13 C(E, B1) := Col + Jump(Col + 1 — H, Col + 1);
14 if C(E, B1) =H + mand thenC(E - 1, B2) < m + H then
15 Report_Match(H + m);

16 end if;

17 end loop

18 B :=Bl1;B1:=B3;B3:=B2; B2 :=B;

19 end loop,

20 eng

Figure 4. Algorithm UW.

patternP. The core of the resulting method, called Algorithm UW, iswh in Fig. 4.
TablePrefixis as in Algorithm GP. Procedure calmgCol + 1 — H,Col + 1) on line 13
returns thelumpvalue, as in Algorithm GP. The value is evaluated as

Jumgi, j) = min(Prefix(i, Mn(j)), MaxprefiXj))

whereMaxprefixj) equals the length of the longest common prefiof . ¢, andp s, ;) - - - P,
and 1< Mm(j) < m is such that the length of this common prefix is maximal. Foheaaxt
positionj, the values oMaxprefixXj) andMm(j) are produced in a left-to-right scan ovér
by a suffix automaton foP.

The suffix automaton is constructed during the preprocgssirase of Algorithm UW.
The construction is a modification of the suffix automata tmiesions of Crochemoré and
Blumer et aP*

Speed-up heuristic based on the distribution of characters

Grossi and Luccit present an algorithm for themismatches problem, where the change
is the only editing operation allowed. The key idea is to skéor substrings of the text whose
distribution of characters differs from the distributiohaharacters in the pattern at most as
much as it is possible undedifferences. In the following we present how the same apgroa
can also be applied to thedifferences problem.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 7

1 begin

2 for 1in 1 .. m loop C(P(l)) := C(P(l)) + 1; end loop;
3 for Jin 1..nloop

4 X :=T(J); EnQueue(Q, X); C(X) := C(X) — 1;
5 if C(X) <0thenzZ:=Z+1; endif;

6 while Z > k loop

7 DeQueue(Q, X);

8 if C(X) <0thenzZ:=Z-1; endif;

9 C(X) :=C(X) + 1,

10 end loop

11 if Size(Q) = m then

12 Mark(J — m + 1); DeQueue(Q, X);

13 if CIX) < 0thenzZ:=Z-1; endif;

14 C(X) :=C(X) + 1;

15 end if;

16 end loop,

17 EDP(m);

18 end;

Figure 5. Algorithm DC.

Algorithm DC in Fig. 5 works in two main phases: scanning ahdaking. The scanning
phase (lines 3-16) scans over the text and marks the pattsnthacontain approximate
occurrences of. This is done by marking on line 12 some diagonal®of

The checking phase (line 17) evaluates all marked diagosalg Algorithm EDP restricted
to the marked diagonals. Whenever EDP refers to an entrideutse diagonals, the entry can
be taken to beco. Parametes of call EDP(x) tells how many columns should be evaluated
for one marked diagonal. The minimum valuefor z is applicable for DC.

The scanning phase is almost identical to the original #lyor'® It maintains queué),
which corresponds to a substring of the text with at mostharacters. Iff (x) andq(z) are
frequencies of characterin the pattern and i), variableZ has the value

> maxq(z) — f(z), 0).

zin Q

The value of7 is computed together with table which maintains the differencgz) — ¢(z)

for everyz. WhenZ is greater thaik, we know for sure that no approximate occurrence of
the pattern with at most differences can contain substring held @y This is because the
value ofZ is always at most as large as the number of differences beti¥@ad the substring

of T that corresponds to the curre@t Items are inserted tQ until Z > k or () contains

m characters. In the latter case a potential approximatermauee has been found, which is
marked on line 12.

8 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 function Maxprefix(I: positive) return integer is
2 begin

3 State := Initial_State; R := I; D:=0;

4 while State.Go_To(T(R)) /= null loop

5 State := State.Go_To(T(R));

6 R=R+1;D:=D+1;

7 end loop,

8 return D;

9 endMaxprefix;

10

11 begin

12 Create; | :=-1;S:=0;

13 while | < n loop

14 S: =S+ 1;Bound =1+ 1 + Maxprefix(l + 2);
15 while | < Bound loop

16 [:=1+1; H() =S;

17 end loop

18 end loop,

19 forlinl..n—-m+k+ 1loop

20 if H(l+ m —k — 1) — H(I) — 1 <= k then Mark(l); end if;
21 end loop,

22 EDP(m + K);

23 eng

Figure 6. Algorithm MM.

Speed-up heuristic based on maximal matches

Our next algorithm, described and analyzed in detail by Wekg® has the same two
phases (scanning and checking) as Algorithm DC. The scgairt again marks the potential
approximate occurrences Bf Now they are found using a heuristic measure that triek ta
into account the relative order of the characters. Notetti@brder is totally ignored in the
character distribution heuristic of Algorithm DC. That histic gives the same estimate of
the number of differences for all permutations/ofind all permutations of the corresponding
text portion.

The heuristic is based on the observation that the smalteeisumber of the differences
betweenP and its occurrenc®”’, the longer portions of? and P’ must have exact matches.
Whenever there are long exact matches betweand a substring df’, then the substring is
a potential occurrence a?.

To make this precise, let again for<lj < n,

MaxprefiXj) = l@gx {length of the longest common prefixof.. . ¢, andp; ... pn},

and letMaxprefiXn + 1) = 0. LetBound1) = MaxprefiX1) and letH (i) = 1 for 1 < i <

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 9
Bound1). Generally, ifBounds) = B andB < n, then
H(i) =s+1forB+1<i< B+ 1+ MaxprefiXB + 2),

and
Bounds + 1) = B + 1+ MaxprefiXB + 2).

Informally, assume that we try matdh againstT’ in a greedy fashion by taking as long
matches as possible. Starting frgmand+t;, determine the longest common prefix of the
suffixes of P andt; . .. t,,. When a mismatch is found &t, we continue by searching for the
longest common prefix of the suffixes 8fandt;;1...%,, and so on. Thei (i) tells the
number of discontinuation positionsin. . . ¢;, i.e., how many times a new longest common
prefix is applied or there is no common prefix at all.

It is easy to show that there can be an approximate occuranBewith < £ differences
starting from¢; only if

H(i+m k-1 — H() 1<k

The scanning phase finds valuési), 1 < i < n, and marks for checking the indexgbat
satisfy the above condition. The resulting method, calllegbAithm MM, is given in Figures 6
and 7.

The computation of valueH (i) reduces to valueslaxprefiX:) (line 14 of Fig. 6). These
are found by scanning with a similar but somewhat simpler suffix automaton foas was
used in algorithm UW. The construction of the automatoreesally from Crochemoré is
given in Fig. 7. The automaton consists of the initial stather states (of type Node), and
goto and fail transitions between them. VaMeaxprefixXi) is found simply by scannin@
from ¢; with the automaton using only goto transitions (lines 1-&igf 6). When the first;
is encountered such that there is no matching goto stef firenMaxprefixi) = j — i.

Lines 13-17 of Algorithm MM compute th& (i) values, and line 20 tests and marks the
appropriate entries. This takes linear time. The final checls again done by EDP on line
22.

Boyer-Moore approach

The characteristic feature of the Boyer-Moore algorithfior exact matching of string
patterns is the right-to-left scan over the pattern. At ealdnment of the pattern with the
text, characters of the text below the pattern are examirad fight to left, starting by
comparing the rightmost character of the pattern with trezatter currently below it in the
text. Between alignments, the pattern is shifted to thet ddgng the text.

Tarhio and Ukkonehhave developed an approximate string matching algorithimiwik a
generalization of the Horspool versiSmof the Boyer-Moore algorithm. A slightly modified
version called Algorithm ABM is presented in Fig. 8. The aigun has scanning and checking
phases. The scanning phase based on a Boyer-Moore idetedipegplies two operations:
mark and shift. Checking is done by EDP as in the case of atgosi DC and MM. In the
case of ABM, 2n + k columns have to be checked for every marked diagonal.

Let us consider an alignment of pattefhwith text T. In deciding whether a diagonal
corresponding to this alignment should be marked, we sdardbad characters. Let; be
abovet;. Charactet; in 7' is bad (for this alignment), if the distance fraimo the closest
occurrence of; in P is more thark (whenk = 0, a bad character is simply a mismatch). It can
be shown that no approximate occurrencé&dh T' may contain more thak bad characters.

10 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 function Create

2 Dbegin

3 Root := new Node; Root.Depth := 0; Top := Root;

4 for Iin 1.. m loop

5 New_Node := new Node; Next := Top;

6 while Next /= Root and Next.Go_To(P(1)) = null loop
7 Next.Go_To(P(l)) := New_Node;

8 Next := Next.Fail;

9

end loop
10 if Next.Go_To(P(l)) = null then
11 Root.Go_To(P(l)) := New_Node;
12 New_Node.Fail := Root;
13 elsif Next.Depth + 1 = Next.Go_To(P(l)).Depth then
14 New_Node.Fail := Next.Go_To(P(l));
15 else
16 R := newNode;
17 R.Fail := Next.Go_To(P(1)).Fail;
18 R.Go_To := Next.Go_To(P(l)).Go_To;
19 R.Depth := Next.Depth + 1; New_Node.Fail := R;
20 Next.Go_To(P(l)).Fail = R;
21 loop
22 Next.Go_To(P(l)) := R; Next := Next.Fail;
23 exit when Next = null or else
24 Next.Go_To(P(l)).Depth < R.Depth;
25 end loop,
26 end if;
27 New_Node.Depth := Top.Depth + 1; Top := New_Node;
28 end loop,
29 Initial_State := Root;

30 endCreate;

Figure 7. Preprocessing d? for Algorithm MM.

So at every alignment of the pattern we search for bad cleasptoceeding from right to
left until ¥ + 1 of them were found or the whole pattern was traversed. Irfidiraer case
there is no approximate occurrence at the current alignieahin the latter case a potential
approximate occurrence has been found.

For determining the length of the shift, i.e. what is the npatential diagonal afteh
for marking, we search for the first diagonal afterwhere at least one of the characters
thams tham—1,- - - them_k Matches with the corresponding charactePof his can be done
with a precomputedi(+ 1) x ¢ tabled defined for each=m — k, ..., m, and for eacl in
S such that

dli,al =min{s | s=mor(1<s <mandp;,_s = a)}.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 11

1 begin
2 Initialize;
3 J=m;
4 while J <= n + k loop
5 R:=J;1:=m;
6 Bad_Chars := 0; Shift := m;
7 while | > 0 and Bad_Chars <= k loop
8 if | >=m —kthen
9 Shift := Min(Shift, d(I, T(R)));
10 end if;
11 if Bad(T(R), I) then
12 Bad_Chars := Bad_Chars + 1;
13 end if;
14 l=1-1,R:=R-1;
15 end loop
16 if Bad_Chars <= k then
17 Mark(J — m —k + 1);
18 J=J+m+1;
19 elsed :=J + Max(Min(k + 1, | + 1), Shift);
20 end if;
21 end loop,
22 EDP(2 * m + Kk);
23 end,
Figure 8. Algorithm ABM.
In Algorithm ABM the minimum ofd[m — k,tp+m—«|, ..., d[m,th+m] iS computed to

variableShiftsimultaneously with the inspection of the bad charactererd are two cases in
determining the final value of shift. If a diagonal is markeéw, length of the shiftig: + 1 (on
line 18), which ensures that no text position is reinspeafezt marking (the value dhiftis
not used in this case). This heuristic is correctas k£ columns ofD are checked by EDP
(line 22), starting from the first column that crosses a maudiagonal. If the diagonal is not
marked, the length of the shift is the maximum of the valueasfableShiftand the minimum
of k+ 1 andl + 1, where variabld tells the number of positions not inspected at the current
alignment.

In order to be able to handle correctly an approximate oeoge ofP in the end of text, it
is assumed thdt additional dummy characters have been appended to the text.

For finding the bad characters fast we use precomputedBalé, o), 1 < i < m, a € Z,
such thaBad(i, a) = true, if and only if a does not appearppn j . .. p;1x, wherep; = ¢ for
j < landj > m.

The computation of tableBadandd from P andS is straightforward. An efficient imple-
mentation for computing is given in Fig. 9, where we assume alphabebnsists of codes
1,...,c. Thisis a corrected form of the original preprocessing aligm °

=
N

PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

1 begin

2 for Jin 1 .. cloop

3 ready(J) :=m + 1;

4 end loop,

5 for Jin 1 .. cloop

6 for Iin m—k .. k loop

7 dd, J) :=m;

8 end loop

9 end loop,

10 for lin reversel .. m—1 loop

11 for Jin reverseMax(I+1, m—k) .. ready(P(l))-1 loop
12 P) =J-1;

13 end loop

14 ready(P()) := Max(l+1, m—k)
15 end loop,

16 end

Figure 9. Computation of tablé for Algorithm ABM.

COMPARISON

We performed an extensive test program on all seven algositbP, EDP, GP, DC, UW, MM,
and ABM described in the previous sections. The resultsi@sgmted in Table I. In our tests,
we used random patterns of varying lengths and random téx¢sgth 100,000 characters
over alphabets of different sizes. Besides random textawa test series on a text of English
fiction. The tests were run on a Vaxstation 3100 under VMS.rtteoto decrease random
variation, the figures of Table | are averages of ten runs difterent patterns. All times are
total execution times including preprocessing, scanr@ngd,checking. The best value on each
row is set in boldface.

All patterns and texts were generated independently, lseciduthe patterns had been
selected from the texts, the scanning speeds of some &lgarivould have depended on the
length of the text. In the case of the fiction text, a 100,00&rabters long portion was used as
a text, and the patterns were selected from another potiotirgy from a character preceded
by a space.

We tested the effect afz in a test series with varyingn = 8, 16,32, 64,128 and fixed
k = 4. We examined the effect @fin two test series. In one series we evaluated the effect
of absolute error with parametets= 0, 1, 2, 4, 6, 8 and with fixedn = 10, and in the other
series we tested fixed relative erroriof= m /8 with m = 8,16, 32 64,128. All tests were
performed for alphabet sizes= || = 2, 4, 10, 30, 90 and for the English text.

The algorithms with two phases (scanning and checking) \wepéemented so that they
perform two subsequent passes dVeAn alternative way would be to merge the two phases
into a one-pass algorithm. In practice this is more derédyim of the algorithms as then we
need a buffer of lengtt(m) only to save the relevant part @t Therefore we also tried (e.g.
for ABM) that type of implementations. In our tests the agmio of two passes was about 10
percent faster, but, on the other hand, it consumes mor@spac

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS

13

Table I. Execution times (in units of 10 milliseconds) of #igorithms ¢ = 100,000). Value E of denotes the

English text.
c m k DP GP UW EDP DC MM ABM
2 8 4 778 2648 2970 807 1157 1129 1095
2 16 4 1440 2847 2957 1352 1691 1716 1677
2 32 4 2803 2836 2996 1479 1819 1876 1823
2 64 4 5565 2775 2757 1493 1878 155 1854
2 128 4 11108 2794 2899 1379 1573 144 1695
2 10 O 919 596 917 343 495 370 305
2 10 1 920 1149 1407 596 760 867 880
2 0 2 924 1716 1913 809 1077 1112 1080
2 10 4 949 2771 3044 988 1356 1314 1280
2 10 6 951 3654 4138 991 1361 1320 1300
2 10 8 950 4537 5203 989 1359 1318 1313
2 8 1 751 1114 1356 559 750 845 848
2 16 2 1433 1681 1914 861 1175 1165 1142
2 32 4 2802 2795 2994 1426 1741 1819 1764
2 64 8 5564 4993 4625 2653 3281 3220 3166
2 128 16 11102 9946 89035102 6038 6047 5829
4 8 4 906 2652 2876 923 1283 1261 1227
4 16 4 1708 2675 2959 1047 1279 1387 1320
4 32 4 3347 2702 3026 1072 1257 244 1378
4 64 4 6650 2619 2811 1051 933 147 1507
4 128 4 13296 2694 2940 1047 597 148 1694
4 10 0 1077 536 935 263 213 164 101
4 10 1 1087 1063 1435 457 393 488 471
4 10 2 1087 1585 1921 631 754 916 897
4 10 4 1093 2691 2928 1019 1379 1358 1322
4 10 6 1114 3695 4014 1150 1538 1505 1479
4 10 8 1117 4617 5134 1156 1548 1514 1505
4 8 1 877 1027 1371 444 405 673 468
4 16 2 1707 1567 1951 644 681 564 978
4 32 4 3341 2699 3033 1065 1207 239 1392
4 64 8 6663 4791 4655 1858 2150 150 2291
4 128 16 13342 9624 8959 3653 4375149 4313
10 8 4 988 2437 2758 860 1060 1202 1166
10 16 4 1917 2445 2952 864 678 1129 896
10 32 4 3774 2478 3044 861 306 157 444
10 64 4 7520 2402 2848 860 197 156 440
10 128 4 15024 2500 2953 863 190 156 432
10 10 0 1218 506 910 237 187 165 49
10 10 1 1221 987 1411 383 195 175 134
10 10 2 1220 1479 1897 542 264 664 279
10 10 4 1222 2479 2875 869 958 1203 1185
10 10 6 1225 3515 3858 1175 1541 1544 1520
10 10 8 1250 4539 4968 1293 1698 1676 1652
10 8 1 990 955 1338 383 200 287 133
10 16 2 1918 1447 1944 539 205 163 232
10 32 4 3768 2489 3045 865 301 157 484
10 64 8 7524 4448 4684 1510 777 157 1737
10 128 16 15035 8999 8964 2886 3028156 3400

14

PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

c m k DP GP UW EDP DC MM ABM
30 8 4 1031 2325 2692 782 333 1128 464
30 16 4 1999 2333 2897 781 189 287 192
30 32 4 3960 2393 3012 779 188 167 179
30 64 4 7906 2315 2841 77 189 165 194
30 128 4 15794 2415 2958 779 188 166 188
30 10 O 1275 500 855 232 188 176 36
30 10 1 1276 965 1351 363 188 176 73
30 10 2 1275 1442 1842 500 188 226 117
30 10 4 1274 2373 2808 779 229 1112 287
30 10 6 1273 3336 3776 1069 788 1440 1079
30 10 8 1287 4328 4798 1321 1682 1714 1683
30 8 1 1031 936 1282 363 188 183 86
30 16 2 1997 1405 1893 500 187 171 94
30 32 4 3958 2395 3014 779 188 167 185
30 64 8 7903 4210 4665 1357 188 165 315
30 128 16 15807 8546 8977 2534 190 165 486
90 8 4 1044 2300 2657 750 193 1097 189
90 16 4 2023 2305 2852 749 188 183 110
90 32 4 4026 2371 2957 747 188 179 81
90 64 4 8045 2298 2771 748 188 176 72
90 128 4 16089 2396 2940 749 189 176 74
90 10 O 1291 497 826 230 187 185 33
90 10 1 1290 960 1318 357 188 184 59
90 10 2 1289 1432 1815 486 187 186 88
90 10 4 1290 2346 2776 748 188 1084 149
90 10 6 1290 3285 3746 1015 230 1389 290
90 10 8 1293 4225 4722 1285 928 1682 1162
90 8 1 1045 932 1252 357 188 186 73
90 16 2 2021 1393 1848 485 187 182 61
90 32 4 4027 2373 2960 749 188 179 82
90 64 8 8039 4114 4589 1281 189 176 185
90 128 16 16091 8225 8959 2377 189 175 292
E 8 4 1012 2370 2730 817 755 1158 967
E 16 4 1964 2393 2923 836 250 883 359
E 32 4 3882 2423 3022 805 188 164 273
E 64 4 7724 2359 2838 823 188 164 292
E 128 4 15443 2460 2972 832 189 168 311
E 10 O 1251 500 888 234 188 171 43
E 10 1 1253 972 1381 370 189 185 101
E 10 2 1253 1456 1874 515 203 493 183
E 10 4 1246 2431 2850 834 626 1166 902
E 10 6 1256 3430 3825 1137 1344 1506 1492
E 10 8 1273 4445 4891 1314 1718 1707 1685
E 8 1 1014 943 1313 371 190 246 111
E 16 2 1968 1418 1919 512 188 169 151
E 32 4 3868 2453 3023 843 189 164 286
E 64 8 7755 4370 4689 1473 192 164 430
E 128 16 15472 8799 8957 2753 206 167 639

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 15

The tests show that algorithms DP, GP, and UW are considestdwer than the other four
algorithms and they can almost never win the best of the fdgorithm DP is the best ifn
is very small ok is close tom; the advantage of DP in such cases is, however, only marginal
both in theory and in practice.

The behavior of the)(kn) algorithms GP and UW is mutually rather similar, mostly
GP being the faster one in our experiments. Both GP and UW shpw) behavior but,
unfortunately, with relative high overhead. Thereforeytlage often slower than the trivial
solution DP.

2048 EDP
/ \
1024 —
512 — — DC
256 —
128 — — MM
64 —
= ABM
32 T T T .
8 16 32 64 128
m

Figure 10. Execution times fer=2 and k = 4.

Because algorithms EDP, DC, MM, and ABM were better than ttheers, we studied
relations of their execution times more carefully. FiguBeshows the total execution times
of EDP, DC, MM, and ABM wherk = 4 andm varies for alphabet size = 2. Algorithm
EDP is the best fom < 32, MM for m > 32. Figure 11 shows the corresponding times when
k = m/8 for alphabet size = 10. Now ABM is the best fok < 2 and MM fork < 2. In
Figure 12m = 10 andk varies for alphabet size= 30. Algorithm ABM is the best fok < 3
and DC for 3< k£ < 7 and EDP fort > 7. Figure 13 presents the situation whére 4 and
m, varies for alphabet size= 90. This time ABM is clearly the best for all tested < 8.

Figure 14 is based on a larger test series. It shows rouglfagitest algorithm for different
values ofm (< 64) andk in the cases of the binary text and the English text. In the o&s
the binary alphabet, DC is only slightly slower than EDP fioradl values ofk.

Based on similar classification in all relevant alphabdtss possible to build a hybrid
algorithm of EDP, DC, MM, and ABM, which selects on the badisvaluesc, m, andk
which method to use. Because DC, MM, and ABM already cont&f &s their subroutine,
it would be easy to incorporate such a selection betweendbhareed method and EDP to
make the total algorithm faster. Particularly the variatid the execution times for ABM can

16 PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

4096 EDP
2048 — /
1024 —
— DC
512 —
256 —
‘ - MM
128 —
64 —
= ABM
32 I I I
1 2 4 8 16
k

Figure 11. Execution times fer= 10 andk = m / 8.

be decreased by widening the belt of diagonals that are &tealifor each marking and by
correspondingly increasing the length of the shift.

In order to get some impression of the behavior of the algeriton other computer systems,
we tested EDP and ABM programmed in Pascal on Sun 4/260S.xgueition times of EDP
and ABM on Sun (shown in Table Il for some parameter valuesgwe the average 68 per
cent and 60 per cent, respectively, of the correspondinggion Vaxstation. Though ABM
seems to work relatively slightly better on Sun than on Vatsh, the results were in general
very similar.

CONCLUSIONS

The string matching algorithms are algorithmic miniatus®se relative speeds are sensitive
on implementation details and on the processor used. Wetespexperimental comparison
(on a Vaxstation 3100) of seven different algorithms for#lfferences problem. The speed
of the algorithms varied in a wide range, depending on therdhgn itself and on the problem
parameterg:;, m andec. Typically a scanning speed of 20,000 — 200,000 text charaqter
second was obtained.

Algorithms DP, GP, and UW turned out to be uniformly slowerttthe remaining methods
EDP, DC, MM, and ABM. Among these, no single method is alwdnssfastest. Rather, we
found the unsatisfactory situation that depending:pm, andc, any algorithm can be the
best. The algorithms also show quite unstable behavioetiain cases the fastest of the four
methods was observed to be even 30 times faster than thesslome Hence the choice of
the proper algorithm can be very significant decision in guliagtion where long texts have
to be scanned.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 17

2048 EDP
1024 —
512 — — DC
256 —
128 — - MM
64 —
= ABM
32 l l l
0 2 4 6 8
K

Figure 12. Execution times for ¢ =30 and m = 10.

Roughly summarized, our results on EDP, DC, MM, and ABM ssgdgieat EDP is the
best method for the binary alphabet and also for other aktisalshenk is relatively large.
Algorithm ABM is the best method for very smaii(k = 1, 2) in which cases it achieves very
high speed. In the remaining cases the choice is betweenthlge MM and DC. Whenn is
large andk not too large relative tan, algorithm MM shows the highest speed, even for the
binary alphabet.

Table Il. Execution times (in units of 10 milliseconds) of E@and ABM on Sun 4/260S.

c m k EDP ABM
2 10 0 217 147
2 10 1 419 542
2 10 2 552 653
2 10 4 702 803
2 10 6 707 816
2 10 8 707 820
30 10 0 149 27
30 10 1 237 44
30 10 2 331 69
30 10 4 527 146
30 10 6 723 568
30 10 8 893 1001

18

PETTERI JOKINEN, JORMA TARHIO, AND ESKO UKKONEN

2048 EDP
1024 —\
512 — — DC
256 —
128 — - MM
64 —
= ABM
32 l l l
8 16 32 64 128
m

Figure 13. Execution times for ¢ =90 and k = 4.

ACKNOWLEDGEMENTS

The financial support of the Academy of Finland and the Aleleaivon Humboldt Foundation
is gratefully acknowledged.

10.

11.

REFERENCES

Z. Galil and R. Giancarlo, ‘Data structures and algorghior approximate string matchingJournal of
Complexity 4, 33—72 (1988).

P. Sellers, ‘The theory and computation of evolutionasyeshces: Pattern recognitiodournal of Algorithms

1, 359-372 (1980).

E. Ukkonen, ‘Finding approximate patterns in stringsiurnal of Algorithms6, 132—137 (1985).

G. Landau and U. Vishkin, ‘Fast string matching with k difinces’,Journal of Computer and System
Sciences37, 63-78 (1988).

G. Landau and U. Vishkin, ‘Fast parallel and serial apjpnate string matching'Journal of Algorithms10,
157-169 (1989).

Z. Galiland K. Park, ‘An improved algorithm for approxiteatring matching’SIAM Journal on Computing
19, 989-999 (1990).

E. Ukkonen and D. Wood, ‘Approximate string matching véttifix automata’ Algorithmicg 10, 353-364
(1993).

J. Tarhio and E. Ukkonen, ‘Boyer-Moore approach to appnate string matching’, J. Gilbert and R. Karlson
(eds.),SWAT90, 2nd Scandinavian Workshop on Algorithm Theagture Notes in Computer Science 447,
Berlin, 1990, pp. 348-359. Springer-Verlag.

J. Tarhio and E. Ukkonen, ‘Approximate Boyer-Moore grinatching’,SIAM Journal on Computing2,
243-260 (1993).

E. Ukkonen, ‘Approximate string matching with g-gramsd anaximal matchesTheoretical Computer
Science92, 191-211 (1992).

W. Chang and E. Lawler, ‘Sublinear approximate stringctniag and biological applicationsAlgorithmica

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.
26.

A COMPARISION OF APPROXIMATE STRING MATCHING ALGORITHMS 19

k k
c=2 30 English text 32
16 EDP - 16
-8 —8
4 DC MM —4
EDP
2 / -2
MM ABM
1 1
I I I I I I I I I I
m 4 8 16 32 64 m 4 8 16 32 64

Figure 14. Rough classification.

12, 327-344 (1994).

T. Takaoka, ‘Approximate pattern matching with sanmpl€soceedings of ISAAC '94.ecture Notes in
Computer Science 834, Berlin, 1994, pp. 234-242. Sprivgeag.

E. Sutinen and J. Tarhio, ‘On using g-gram locations pr@ximate string matching’, P. Spirakis (ed?ypc.
3rd Annual European Symposium on Algorithms ESA [$gture Notes in Computer Science 979, Berlin,
1995, pp. 327-340. Springer.

W. Chang and T. Marr, ‘Approximate string matching anchlsimilarity’, M. Crochemore and D. Gusfield
(eds.),Combinatorial Pattern Matching, Proceedings of 5th AnnBgimposiumLecture Notes in Computer
Science 807, Berlin, 1994, pp. 259-273. Springer-Verlag.

W. Chang and J. Lampe, ‘Theoretical and empirical coispas of approximate string matching algorithms’,
A. Apostolico et al. (ed.XCombinatorial Pattern Matching, Proceedings of Third Aah8ymposiumiecture
Notes in Computer Science 644, Berlin, 1992, pp. 175-18dn&egr-Verlag.

S. Wu and U. Manber, ‘Fast text searching allowing etr@emmunications of ACMB5, 83-91 (1992).

R. Baeza-Yates and C. Perleberg, ‘Fast and practicabgippate string matching algorithms’, A. Apostolico
et al. (ed.),Combinatorial Pattern Matching, Proceedings of Third Aah@ymposiumLecture Notes in
Computer Science 644, Berlin, 1992, pp. 185-192. Sprikgeag.

R. Grossi and F. Luccio, ‘Simple and efficient string rhatg with k mismatches’Information Processing
Letters 33, 113-120 (1989).

R. Baeza-Yates and G. Gonnet, ‘A new approach to textlsea’, Communications of ACM35, 74-82
(1992).

P. Pevzner and M. Waterman, ‘Multiple filtration and ap@mate pattern matching/Algorithmicg 13,
135-154 (1995).

R. Wagner and M. Fischer, ‘The string-to-string coiimectproblem’, Journal of the ACM 21, 168-173
(1975).

E. Ukkonen, ‘Algorithms for approximate string matafiinnformation Controj 64, 100-118 (1985).

M. Crochemore, ‘String matching with constraints3th Symposium on Mathematical Foundations of Com-
puter Sciencelecture Notes in Computer Science 324, Berlin, 1988, pp584Springer-Verlag.

A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. TieB, and J. Seiferas, ‘The smallest automaton
recognizing the subwords of a textheoretical Computer Scienc0, 31-55 (1985).

R. Boyer and S. Moore, ‘A fast string searching algorittBommuncations of the ACMO, 762-772 (1977).
N. Horspool, ‘Practical fast searching in stringsaftware — Practice and Experiend®, 501-506 (1980).

