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We present three algorithms for exact string matching of multiple patterns. Our algorithms
are filtering methods, which apply q-grams and bit parallelism. We ran extensive experiments
with them and compared them with various versions of earlier algorithms, e.g. different trie im-
plementations of the Aho-Corasick algorithm. All of our algorithms showed to be substantially
faster than earlier solutions for sets of 1,000–10,000 patterns and the good performance of two of
them continues to 100,000 patterns. The gain is due to the improved filtering efficiency caused by
q-grams.
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tems]: Information Storage and Retrieval—Search Process
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1. INTRODUCTION

We consider exact string matching of multiple patterns. Many good solutions
have been presented for this problem, e.g. Aho-Corasick [Aho and Corasick 1975],
Commentz-Walter [Commentz-Walter 1979; Navarro and Raffinot 2002], and Rabin-
Karp [Karp and Rabin 1987; Muth and Manber 1996] algorithms with their varia-
tions. However, most of the earlier algorithms have been designed for pattern sets
of moderate size, i.e. a few dozens, and they unfortunately do not scale very well
to larger pattern sets. In this paper we concentrate on practical methods that can
efficiently handle several thousand patterns even in a small main memory (e.g. in
a handheld device). Such algorithms are needed in anti-virus scanning, intrusion
detection [Fisk and Varghese 2001; Markatos et al. 2002; Tuck et al. 2004], content
scanning and filtering, and specific data mining problems [Gum and Lipton 2001].
The focus is mainly on finding the occurrences of rare patterns or on checking that
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unwanted patterns do not occur at all.

The text T = t1t2 · · · tn is a string of n characters in an alphabet of size c. There
are r patterns P1, . . . , Pr of length m in the same alphabet. If the lengths of the
patterns are not equal, we select a substring from each pattern according to the
length of the shortest pattern. We consider cases where m varies between 4 and 32
and r between 100 and 100,000. All exact occurrences of the patterns should be
reported.

As our main contribution we will present three algorithms HG, SOG, and BG
based on search algorithms for a single pattern: Boyer-Moore-Horspool [Horspool
1980], shift-or [Baeza-Yates and Gonnet 1992], and BNDM [Navarro and Raffinot
2000] algorithms, respectively. Our algorithms are filtering algorithms, which oper-
ate in three phases. The patterns are first preprocessed. The second phase reports
candidates for matches, which are verified in the third phase. A common feature
of our algorithms is matching of q-grams instead of single characters. We search
for occurrences of a single generalized pattern of q-grams such that the pattern
includes all the original patterns. In addition, SOG and BG apply bit parallelism.
Related methods for a single pattern have been suggested by Fredriksson [2002]. It
is well known (see e.g. [Baeza-Yates 1989; Boyer and Moore 1977]) that the use of
q-grams can increase the average length of shift in the algorithms of Boyer-Moore
type. This can also be applied to matching of multiple patterns [Wu and Manber
1994]. We use q-grams in a different way in order to improve filtration efficiency.

In order to show the applicability of our algorithms, we ran extensive tests and
compared them with various implementations of earlier algorithms. We used a
random text, which ensures the rareness of matches in our setting. Our algorithms
showed to be very fast in practice. For example, HG is 16 times faster than the
well-known Aho-Corasick algorithm in the case of random patterns for r=10,000,
m=8, and c=256. In addition, the filtering phase of our algorithms does not require
much memory: 64 kB is enough in the specified case. The filtering efficiency of our
algorithms will continue beyond 100,000 patterns if more memory is used.

The following test setting was used in most of our experiments. We used a 32
MB randomly created text in the alphabet of 256 characters. Also the patterns
were randomly generated in the same alphabet. The times are averages over 10
runs using the same text and patterns. Both the text and the patterns reside in the
main memory in the beginning of each test in order to exclude reading times. The
tests were made on a computer with a 1.0 GHz AMD Athlon processor, 512 MB of
memory, and 256 kB on-chip cache. The computer was running Linux 2.4.22. The
algorithms were written in C and compiled with the gcc compiler.

2. BACKGROUND

This section presents background information necessary to understand our new al-
gorithms. Our algorithms apply q-grams and bit parallelism extensively. These
techniques are first discussed and then we present the Boyer-Moore-Horspool [Hor-
spool 1980], the shift-or [Baeza-Yates and Gonnet 1992] and the BNDM [Navarro
and Raffinot 2000] algorithm. All these algorithms are exact matching algorithms
for single patterns.
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2.1 q-Grams

Many string matching algorithms rely on a fairly large alphabet for good perfor-
mance. The idea behind using q-grams is to make the alphabet larger. When
using q-grams we process q characters as a single character. There are two ways
of transforming a string of characters into a string of q-grams. We can either use
overlapping q-grams or consecutive q-grams. When using overlapping q-grams a
q-gram starts at every position of the original text while with consecutive q-grams
a q-gram start in every q:th position. For example transforming the word “pony”
into overlapping 2-grams results in the string “po-on-ny” and transforming it into
consecutive 2-grams yields the string “po-ny”. We use overlapping q-grams in our
algorithms.

2.2 Bit Parallelism

Bit operations in modern processors are fast. Bit parallelism takes advantage of
this fact by packing several variables into a single computer word. These variables
can then be updated in a single instruction making use of the intrinsic parallelism
of bit operations. For example if we needed to keep track of m ≤ w boolean
variables, where w is the length of the computer word, we could store all these
variables in a single computer word. Furthermore we can update all the variables
in one instructions instead of m instructions. As the length of the computer word
in modern processors is 32 or 64 this technique can give us a significant speedup.

2.3 Boyer-Moore-Horspool

The Boyer-Moore-Horspool (BMH) algorithm [Horspool 1980] is a widely-known
search algorithm for a single pattern. The preprocessing phase of the algorithm
consists of calculating the bad character function B(x). It is defined as the distance
from the end of the pattern p1p2 · · · pm to the last occurrence of the character x:

B(x) = min{h | pm−h = x, h ≥ 1}.

If the character x does not appear in the pattern B(x) = m.
In the matching phase the text is processed in windows of length m. First the

last character in the window is compared with the last character of the pattern.
If they match the whole window is compared against the pattern to check for a
match. After that or if the last characters did not match, the window is shifted by
B(x) where x is the last character of the window.

2.4 Shift-Or

The shift-or algorithm [Baeza-Yates and Gonnet 1992] is a simple bit-parallel algo-
rithm. In the preprocessing phase a bit vector B[x] is initialized for each character
x of the alphabet. The bit in position i is set to 0 in the bit vector if the i:th
character in the pattern is x. Otherwise the bits are set to one.

In the beginning of the matching phase the state vector E is initialized to 1m.
Then the text is read one character at a time and the state vector is updated as
follows:

E = (E << 1)|B[x]
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where x is the character read, << moves the bits to the left and | is the bitwise or
operator. If the m:th bit is zero after this update we have found a match.

2.5 Backward Nondeterministic DAWG Matching

The Backward Nondeterministic DAWG Matching (BNDM) algorithm [Navarro
and Raffinot 2000] has been developed from the backward DAWG matching (BDM)
algorithm [Crochemore and Rytter 1994]. In the BDM algorithm, the pattern is
preprocessed by forming a DAWG (directed acyclic word graph) of the reversed
pattern. The text is processed in windows of size m where m is the length of the
pattern. The window is searched for the longest prefix of the pattern from right
to left with the DAWG. When this search ends, we have either found a match (i.e.
the longest prefix is of length m) or the longest prefix. If a match was not found,
we can shift the start position of the window to the start position of the longest
prefix. If a match was found we can shift on the second longest prefix (the longest
one is the match we just found).

The BNDM algorithm [Navarro and Raffinot 2000] is a bit-parallel simulation
of the BDM algorithm. It uses a nondeterministic automaton instead of the de-
terministic one in the BDM algorithm. For each character x, a bit vector B[x] is
initialized in the preprocessing phase. The i:th bit is 1 in this vector if x appears
in the reversed pattern in position i. Otherwise the i:th bit is 0. The state vector
D is initialized to 1m. The same kind of right to left scan in a window of size m
is performed as in the BDM algorithm. The state vector is updated in a similar
fashion as in the shift-and algorithm [Abrahamson 1987; Baeza-Yates and Gonnet
1992; Wu and Manber 1992b]. If the m:th bit is 1 after this update operation, we
have found a prefix starting at position j where j is the number of updates done in
this window. If j is the first position in the window, a match has been found.

3. EARLIER SOLUTIONS

Many of the earlier algorithms for multiple pattern matching build a pattern trie in
the preprocessing phase and use it for matching. For example, the Aho-Corasick al-
gorithm [Aho and Corasick 1975], the Commentz-Walter based algorithms [Commentz-
Walter 1979] and the SBOM algorithm [Navarro and Raffinot 2002] take this ap-
proach. While this works reasonably well for a small set of patterns, the memory
requirements for huge pattern sets are intolerable because the trie data structure
grows quite rapidly.

Another previous solution is to use hashing algorithms. For example the Rabin-
Karp algorithm [Karp and Rabin 1987] can be extended to multiple patterns. This
approach leads to modest memory requirements but the running time is not much
better than in the trie-based approaches. Another hashing approach is described
in [Kim and Kim 1999].

An attempt to combine the best parts of the previous solutions is described in
[Ping et al. 2005]. In this solution the pattern set is partitioned based on the length
of the patterns and then the best possible algorithm for each subset is used.

3.1 Aho-Corasick

The classical Aho-Corasick algorithm [Aho and Corasick 1975] has been widely
used for multiple pattern matching. We used a code based on the implementation
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Fig. 1. Performance of different trie implementations of the Aho-Corasick algorithm. The ta-
ble/hash table hybrid 1 uses tables in the first two levels of the trie and hash tables of size 64
deeper. The second table/hash table hybrid uses tables in the first three levels and hash tables of
size four deeper.

by Fisk and Varghese [2001] to test the Aho-Corasick algorithm. We tested three
alternative implementations of the goto-function: table, hash table, and binary
tree. The hash table version was tested with different table sizes. We also tried a
combination of table and hash table implementations. In this approach the table
version was used in the first levels of the trie while in deeper levels the hash table
implementation was utilized. Figure 1 shows the results of these experiments.

Although the speed of the Aho-Corasick algorithm is constant for small pattern
sets, the situation is different for large sets even in an alphabet of moderate size.
The run time graph of Figure 1 shows a steady increase. Given the memory graph
of Figure 1, the hierarchical memory could explain this behavior. The table im-
plementation of the trie was fastest up to 10,000 patterns. After that the best
approach turned out to be using the table implementation in the first three levels
of the trie and to use a hash table of size four in further levels.

3.2 Set Horspool

The Commentz-Walter algorithm [Commentz-Walter 1979] for multiple patterns
has been derived from the Boyer-Moore algorithm [Boyer and Moore 1977]. A sim-
pler variant of this algorithm is called Set Horspool [Navarro and Raffinot 2002].
(The same algorithm is called set-wise Boyer-Moore in [Fisk and Varghese 2001].)
This algorithm is developed from the Boyer-Moore-Horspool algorithm [Horspool
1980] for single patterns by generalizing the bad character function. The bad char-
acter function for the set of patterns is defined as the minimum of the bad character
functions of individual patterns.

The reversed patterns are stored in a trie. The initial endpoint is the length of
the shortest pattern. The text is compared from right to left with the trie until no
matching entry is found for a character in the text. Then the bad character function
is applied to the endpoint character and the pattern trie is shifted accordingly.

The Wu-Manber algorithm [Wu and Manber 1994] is a variation of the set Hor-
spool algorithm. It uses a hash table of the last q-grams of patterns. The agrep
tool [Wu and Manber 1992a] is a collection of different algorithms. It uses the
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Wu-Manber algorithm for exact matching of multiple patterns.
We used the code of Fisk and Varghese [2001] to test the Set Horspool algorithm.

The same variations as for the Aho-Corasick algorithm were tried. The results on
memory usage were similar to those of the Aho-Corasick algorithm because the trie
structure is very similar. Also the test results on run times resemble those of the
Aho-Corasick algorithm especially with very large pattern sets. This is probably due
to the memory usage. Differences with less than 1,000 patterns were not significant
between modifications.

3.3 Set Backward Oracle Matching

The third algorithm making use of a trie is the Set Backward Oracle Matching
(SBOM) algorithm [Navarro and Raffinot 2002]. In the preprocessing phase of the
SBOM algorithm, first a trie of the reversed patterns is built. Then some additional
transitions are added to the trie so that at least all factors of the patterns can be
recognized with the resulting factor oracle. In the matching phase the text is
scanned backward with the factor oracle. If the oracle fails to recognize a factor at
a given position, we can shift the pattern beyond that position.

We ran tests on the SBOM algorithm also. The same variations for the imple-
mentation of the trie were tried. The hashing approach proved to be quite slow
with SBOM because the hash tables need to have a more complicated structure.
In the trie built by the SBOM algorithm a node can have several incoming links.
This means that another structure is needed to implement the chaining of colliding
hash table entries while in the tries built by the AC and Set Horspool algorithms
such a structure is not needed. Thus the table implementation of the trie turned
out to be the fastest.

3.4 Rabin-Karp Approach

A well-known solution [Gum and Lipton 2001; Muth and Manber 1996; Zhu and
Takaoka 1989] to cope with large pattern sets with less memory is to combine
the Rabin-Karp algorithm [Karp and Rabin 1987] with binary search. During
preprocessing, hash values for all patterns are calculated and stored in an ordered
table. Matching can then be done by calculating the hash value for each m-character
string of the text and searching the ordered table for this hash value using binary
search. If a matching hash value is found, the corresponding pattern is compared
with the text. We implemented this method for m = 8, 16, and 32. The hash values
for patterns of eight characters are calculated as follows. First a 32-bit integer is
formed of the first four bytes of the pattern and another from the last four bytes of
the pattern. These are then xor’ed together resulting in the following hash function
where ˆ denotes the xor-operation:

Hash(x1 . . . x8) = x1x2x3x4ˆx5x6x7x8

The hash values for m = 16 and 32 are calculated in a similar fashion:

Hash16(x1 . . . x16) = (x1x2x3x4ˆx5x6x7x8)ˆ(x9x10x11x12ˆx13x14x15x16)

Hash32(x1 . . . x32) = ((x1x2x3x4ˆx5x6x7x8)ˆ . . . ˆ(x25x26x27x28ˆx29x30x31x32))
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Fig. 2. Run time comparison of the earlier algorithms.

Muth and Manber [1996] use two-level hashing to improve the performance of the
Rabin-Karp method. The second hash is calculated from the first one by xor’ing
together the lower 16 bits and the upper 16 bits. At preprocessing time, a bitmap
of 216 bits is constructed. The i:th bit is zero, if no pattern has i as its second
hash value, and one, if there is at least one pattern with i as its second hash value.
When matching, one can quickly check from the bit table, when the first hash value
does not need further inspection, and thus avoid the time consuming binary search
in many cases. In the following, we use the shorthand RKBT for the Rabin-Karp
algorithm combined with binary search and two-level hashing.

The Rabin-Karp approach was tested both with and without two-level hashing.
The use of the second hash table of 216 bits significantly improves the performance
of the algorithm when the number of patterns is less than 100,000. When there are
more patterns, a larger hash table should be considered, because this hash table
tends to be full of 1’s and the gain of two-level hashing disappears.

3.5 Comparison of the Earlier Algorithms

Figure 2 shows a comparison of the earlier algorithms. The times do not include
preprocessing. It also contains tests with the agrep tool [Wu and Manber 1992a].
Since agrep is row-oriented, some characters, like newline, were left out of the
alphabet. In the agrep tool, lines are limited to 1024 characters so we chopped the
text to lines each containing 1024 characters.

In the experiments of Navarro and Raffinot [2002] agrep was the fastest algorithm
for 1,000 patterns for m=8. This holds true also for our experiments (excluding
the new algorithms). The agrep tool is the fastest up to 1,000 patterns, RKBT is
fastest between 1,000 and 10,000 patterns and the SBOM algorithm is fastest with
more than 10,000 patterns.

4. MULTI-PATTERN HORSPOOL WITH Q-GRAMS

Besides the Set Horspool approach, the Boyer-Moore-Horspool algorithm [Horspool
1980] can be applied to multiple patterns also in another way. We call the resulting
filtering algorithm HG (short for Horspool with q-Grams). Given patterns of m
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1-gram tables: HGMatcher(T, n)

1. 2. 3. 4. 5. 6. i = 0;

q q q q q q while(i < n-6)

w w w w w j = 6;

e e e e while (1)

r r r if (not 1GramTable[j][T[i+j]])

t t i = i+j;

y break

else if (j = 0)

Verify-match(i);

i = i+1;

break

else

j = j-1
(a) (b)

Fig. 3. The HG algorithm: (a) the data structures for the pattern ‘qwerty’ and (b) the pseudo-code
for m=6.

characters, we construct a bit table for each of the m pattern positions in the
preprocessing phase. The first table keeps track of characters appearing in the first
position in any pattern, the second table keeps track of characters appearing in the
first or second position in any pattern and so on. Figure 3a shows the six tables
corresponding to the pattern ‘qwerty’.

These tables can then be used in the filtering phase as follows. First the m:th
character is compared with the m:th table. If the character does not appear in this
table, the character cannot appear in positions 1 . . .m in any pattern and a shift
of m characters can be made. If the character is found in this table, the m − 1:th
character is compared to the m−1:th table. A shift of m−1 characters can be made
if the character does not appear in this table and therefore not in any pattern in
positions 1, . . . , m − 1. This process is continued until the algorithm has advanced
to the first table and found a match candidate there. The pseudo-code for m = 6
is shown in Figure 3b. Given this procedure, it is clear that all matches are found.
However, also false matches can occur. E.g. ‘qqqqqq’ is a false candidate in the
example of Figure 3a. In the checking phase the candidates are verified by using
the RKBT method described in Section 3.4.

As the number of patterns grows, the filtering efficiency of the above scheme
decreases until almost all the text positions are candidates because there are only
c different characters. A substantial improvement in the filtering efficiency can be
achieved by using q-grams, q ≥ 2, instead of single characters since there are cq

different q-grams. For an alphabet with 256 characters and for q = 2 this means
that the alphabet size grows from 256 to 65,536. When using 2-grams, a pattern
of m characters is transformed into a sequence of m− 1 2-grams. Thus the pattern
‘qwerty’ would yield the 2-gram string ‘qw-we-er-rt-ty’. The HG algorithm can be
applied to these 2-grams just as it was applied to single characters. With even
larger pattern sets, 3-grams could be used instead of 2-grams. Because this would
require quite a lot of memory, we implemented a 3-gram version of the algorithm
with a hashing scheme. Before forming a 3-gram, each character is hashed to a
7-bit value. This diminishes the number of different 3-grams from 224 to 221.
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Fig. 4. The HG algorithm: (a) comparison of 2-gram and 3-gram versions and (b) run times of
the 2-gram version for different pattern lengths.

Experiments with the HG Algorithm

The HG algorithm was tested both with the 2-gram and 3-gram versions for m = 8,
see Figure 4a. The 3-gram version is faster when the pattern set size is greater
than 10,000. This is due to the better filtering efficiency of the 3-gram approach.
However, when there are less than 10,000 patterns, the 2-gram version is much
faster because of the hashing overhead and memory requirement of the 3-gram
approach.

We tested the HG algorithm also with several pattern lengths. The verification of
candidates was not carried out in this case since we implemented the RKBT method
only for m = 8, 16, and 32. If the verification would be done, the performance of the
algorithm would worsen for those set sizes that produce spurious hits. Most of the
candidates reported by the HG algorithm are false matches because the probability
of finding a real match is very low.

Figure 4b shows the results of these tests for the 2-gram version of the algorithm.
With 50,000 patterns, the number of matches reported by the HG algorithm is
roughly the same regardless of the pattern length. For c=256 there are 216 =
65, 536 different 2-grams. So, when there are more than 50,000 patterns, nearly all
text positions will match. Figure 4b shows that, when there are less than 10,000
patterns, HG is faster for longer patterns, because they allow longer shifts. When
the number of false matches grows, the algorithm is faster for shorter patterns,
because most positions match anyway and the overhead with shorter patterns is
smaller.

5. MULTI-PATTERN SHIFT-OR WITH Q-GRAMS

The shift-or algorithm [Baeza-Yates and Gonnet 1992] can be extended to a filtering
algorithm for multiple patterns in a straightforward way. Rather than matching the
text against exact patterns, the set of patterns is transformed to a single general
pattern containing classes of characters. For example if we have three patterns,
‘abcd’, ‘pony’, and ‘abnh’, the characters {a, p} are accepted in the first position,
characters {b, o} in the second position, characters {c, n} in the third position
and characters {d, h, y} in the fourth position. This approach has been used for
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extended string matching (see e.g. [Navarro and Raffinot 2002]) where the pattern
is a sequence of classes of characters.

The preprocessing phase now initializes the bit vectors for each character in the
alphabet. The i:th bit is set to 0 if any of the patterns contains the given character
in the i:th position. Otherwise the bit is set to 1. The filtering phase proceeds
then exactly like the matching phase of the shift-or algorithm. Given this scheme,
it is clear that all actual occurrences of the patterns in the text are candidates.
However, there are also false candidates. In the previous example ‘aocy’ would also
match. Therefore, each candidate must be verified using the RKBT method in the
checking phase.

When the number of patterns grows, this approach is no longer adequate. As
in the case of HG, the filtering capability of this approach can be considerably
improved by using q-grams instead of single characters. Then the pattern is a
string of m− q+1 q-gram classes exactly like in the HG algorithm. The bit vectors
are initialized for each q-gram and the text is read one q-gram at a time. We call
our modification SOG (short for Shift-Or with q-Grams).

The improved efficiency of this approach is achieved at the cost of space. If the
alphabet size is 256, storing the 2-gram bit vectors requires 216 bytes for m = 8
while the single character vectors only take 28 bytes. We implemented SOG for
2-grams and 3-grams as in the case of HG.

Baeza-Yates and Gonnet [1992] present a way to extend the shift-or algorithm for
multiple patterns for small values of r. Patterns P1 = p1

1 · · · p
1
m, . . . , Pr = pr

1 · · · p
r
m

are concatenated into a single pattern:

P = p1
1p

2
1 . . . pr

1p
1
2p

2
2 . . . pr

2 . . . p1
mp2

m . . . pr
m.

The patterns can then be searched in the same way as a single pattern except that
the shift of the state vector will be for r bits and a match is found, if any of the r
bits corresponding to the highest positions is 0. This method can also be applied
to SOG to make the algorithm faster for short patterns. The pattern set is divided
into four or two subsets based on the first 2-gram. Each subset is then transformed
into a general pattern like in the plain SOG algorithm. The extension method of
Baeza-Yates and Gonnet is then applied to these general patterns.

Fredriksson and Grabowski [2005] have proposed a modification to enhance the
performance of the shift-or algorithm. In their scheme several patterns are formed
from the original one by taking every k:th character starting at different offsets. For
example for k = 2 the pattern ‘pony’ would produce patterns ‘pn’ and ‘oy’. Now we
can scan the text reading every k:th character and use the shift-or algorithm to find
likely matches. These candidates can then be verified. We tried this modification
for SOG but the shorter patterns produced more spurious hits and the scanning is
a bit more complicated so this modification did not make SOG faster.

Experiments with the SOG Algorithm

We tested the SOG algorithm with several pattern lengths and alphabet sizes. The
3-gram variation and the division of patterns to subsets were also tried.

The tests with pattern length were made for m = 8, 16, and 32, see Figure 5a.
The performance of the SOG algorithm degrades fast when the number of patterns
reaches 100,000. This is the same effect that was found with the HG algorithm;
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Fig. 5. The SOG algorithm. (a) The effect of pattern length. (b) The effect of one, two and four
subsets.

Almost all text positions match because there are only 65,536 different 2-grams.
When the pattern set size is less than 20,000, the run time of the algorithm is
constant because no false matches are found.

Figure 5a also shows that the algorithm is slower for longer patterns. The struc-
tures of the SOG algorithm take 64 kB memory for m = 8, 128 kB for m = 16,
and 256 kB for m = 32. The increased memory usage seems to slow down the
algorithm.

The use of subsets with the SOG algorithm was tested for m = 8. We tried
versions with one, two and four subsets, see Figure 5b. The versions using two and
four subsets have a better filtering efficiency and thus their run time remains longer
constant when the pattern set size is increased. However they are again hindered
by larger memory requirements. The basic version with one subset needs 64 kB of
memory while the version using two subsets needs 128 kB of memory and the four
subsets version 256 kB of memory.

Given r patterns, using four subsets should result in roughly as many false
matches as using one subset with r/4 patterns because in the version with four
subsets only one subset can match at a given position. The results of the tests
show that there are a little more matches than that. This is due to the more
homogeneous sets produced by the division of patterns.

The behavior of SOG with alphabet sizes 64, 128, and 256 is shown in Figure 6a.
Given the alphabet size 64, there are 4,096 different 2-grams, and so the perfor-
mance of the SOG algorithm was expected to degrade after 4,000 patterns. Using
the same reasoning, the performance of the SOG algorithm using the 7-bit alphabet
was expected to degrade after 16,000 patterns and the 8-bit alphabet version after
65,000 patterns. The graphs of Figure 6a follow nicely this prediction.

The 3-gram version of the SOG algorithm was tested for m = 8. Figure 6b shows
a comparison of the 2-gram and 3-gram versions. With less than 500,000 patterns
the run time of the 3-gram SOG algorithm is constant and there are only a few
false matches because given our hashing scheme there are about 2 · 106 different
3-grams. The 3-gram version is, however, much slower than the 2-gram version due
to the hashing overhead and the greater memory requirement which causes cache
misses.
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Fig. 6. The SOG algorithm: (a) the effect of alphabet size and (b) a comparison of 2- and 3-gram
versions.

6. MULTI-PATTERN BNDM WITH Q-GRAMS

Our third filtering algorithm is based on the (BNDM) algorithm by Navarro and
Raffinot [2000]. This algorithm can be extended to multiple patterns in the same
way as we did with the shift-or algorithm. We call this modification BG (short for
Bndm with q-Grams). This approach corresponds to using the BNDM algorithm
to search for a general pattern containing classes of characters. The bit vectors are
initialized in the preprocessing phase so that the i:th bit is 1 if the corresponding
character appears in any of the reversed patterns in position i. In the filtering phase
the matching is then done with these bit vectors. As with HG and SOG, all match
candidates reported by this algorithm must be verified. The checking phase of the
algorithm uses the RKBT method.

Just like in SOG, 2- and 3-grams can be used to improve the efficiency of the
filtering. That is, the pattern is transformed into a string of q-grams, the bit vectors
are initialized for each q-gram rather than for a single character and the text is read
one q-gram at a time. Also the division to subsets, presented for the SOG algorithm,
can be used with the BG algorithm. This scheme works in the same way as with
SOG algorithm except that the subsets are formed based on the last 2-gram of the
patterns.

Our algorithms utilize overlapping q-grams. We tested our algorithms also with
consecutive non-overlapping q-grams, but this modification brought clearly worse
results for BG as well as HG and SOG.

Experiments with the BG Algorithm

The BG implementation based on the Simple BNDM algorithm presented in [Pel-
tola and Tarhio 2003] was fastest in our experiments. The calculation of shifts is
simplified in Simple BNDM. We tested the performance of the BG algorithm for
m = 8, 16 and 32. Figure 7a shows the results of these tests. The algorithm is
almost as fast in all these cases. The greater memory requirement slows the al-
gorithm down with longer patterns but on the other hand longer patterns allow
for longer shifts. These two effects seem to balance out each other. The filtering
efficiency is also somewhat better with longer patterns.
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Fig. 7. The BG algorithm. (a) The effect of pattern length. (b) The effect of 2- and 3-grams.
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Fig. 8. The effect of subsets on the BG algorithm.

The 3-gram version of the BG algorithm was also tested and the results are shown
in Figure 7b. The result are similar to that of SOG. With less than 50,000 patterns,
the 2-gram approach is clearly faster but after that the 3-gram version performs
faster. The 3-gram version is slower mainly because of its memory usage. The
hashing scheme used also slows it down.

The use of subsets with the BG algorithm was tested for m = 8 with one, two
and four subsets and the results are shown in Figure 8. The results of these tests
are very similar to the ones of the SOG algorithm.

7. ANALYSIS

Let us consider the time complexities of the new algorithms HG, SOG, and BG. The
algorithms can be divided in three phases: preprocessing, filtering, and checking.
When considering the average case complexity, we assume the standard random
string model, where each character of the text and the pattern is selected uniformly
and independently.

All of our algorithms use the RKBT method for the checking phase. In the best
case, no match candidates are found and then checking needs no time. In the worst
case there are n′ = n − m + 1 candidates and all the patterns and text positions
have the same hash value. In this case we need to inspect the text pairwisely with
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each pattern and the worst case time complexity is thus O(n′rm) = O(nrm). If we
assume that all patterns produce different hash values the worst case complexity is
O(n′(log r + m)) = O(n(log r + m)), where O(log r) comes from the binary search
and O(m) from pairwise inspection.

The preprocessing phase of the filtering phases of the three algorithms is similar
and it works in O(rm). In addition, the initialization of the descriptor bit vectors
needs O(cq). The preprocessing of the checking phase consists of calculating the
hash values of the patterns and sorting the patterns according to these values. The
sorting of the patterns takes O(r log r). 1

Let us now consider the filtering phases of the algorithms. The worst case com-
plexity of the filtering phase of HG occurs when for each text position we scan the
whole window. Thus the worst case complexity for the filtering phase is O(nm).
In the average case the probability of a text character not appearing in the j:th
1-gram table is

dj = (1 − 1/c)rj.

If the character is not found in the j:th 1-gram table and this is the first character
not found in the corresponding 1-gram table a shift of length j will occur. Remem-
ber that the m:th table is checked first, then the m − 1:th table and so on. If all
characters are found in their corresponding 1-gram tables a match candidate has
been found and after verifying it a shift of length one will occur. Thus the expected
length of shift is

S = 1 ·

m∏

i=2

(1 − di) +

m∑

j=2

jdj

m∏

i=j+1

(1 − di).

The first term handles the case when we have to check all the 1-gram tables yielding
a shift of length one. Whether the character is found in the first table or not does
not affect the length of the shift. It merely tells whether we have found a candidate
or not. The rest of the formula handles the cases where the checking of the 1-gram
tables has terminated at the j:th table. The probability for this is dj

∏m
i=j+1(1−di)

and a shift of length j will occur. With suitable values of r, c and m this is greater
than m/2 and thus the filtering phase of HG is sublinear on average, e.g. it inspects
less than n text characters. Switching to q-grams guarantees the sublinearity for
larger values of r and smaller values of c.

The probability of finding a candidate in the HG algorithm is the probability
that each text character in the window is found in the corresponding 1-gram table.
Thus the expected number of candidates is

C = n′
m∏

j=1

(1 − dj).

Again for suitable values of m, c and r the expected number of candidates is low
enough so that the filtering phase dominates. Thus HG is sublinear on average.
Again the use of q-grams guarantees the sublinearity for smaller values of c and
larger values of r.

1Our current implementation utilizes the Quicksort algorithm, which runs in O(r2) time in the
worst case and in O(r log r) time in the average case.
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Let us next consider the time complexities of SOG and BG. We assume that
m ≤ w holds, where w is the word length of the computer. Furthermore we consider
the time complexities of SOG and BG without division to subsets.

In SOG the filtering phase is linear with respect to n. The probability that a text
character matches a given pattern position in any of the patterns is 1− (1− 1/c)r.
Since the number of possible candidates is n′ and there are m positions to match
the number of expected candidates is:

C1 = n′ · (1 − (1 − 1/c)r)m.

This number can be reduced by utilizing q-grams. With q-grams, we estimate this
expression by

Cq ≤ h · (1 − (1 − 1/cq)r)⌊m/q⌋.

Note that this estimate considers only those q-grams which do not overlap. Thus
the real number of candidates is lower. With suitable values of c, q, r and m the
expected number of candidates is low enough so that the filtering time dominates.
Thus SOG is linear on average.

Let us then consider BG. The worst case complexity of the basic BNDM is
O(nm). We did not want to apply any linear modification, because the checking
phase of BG is not linear, and the linear versions of BNDM are slower in practice
[Navarro and Raffinot 2000]. The average searching time of the BNDM algorithm
is O(n logc′ m/m), where c′ is the size of the alphabet for the original BNDM. In
our approach we need to replace c′ by 1/d where d = 1− (1− 1/c)r is the probabil-
ity that a single position of a generalized pattern matches. Clearly log1/d m < m
holds for suitable values of c, r, and m, and BG is then sublinear on the average.
Switching to q-grams, q ≥ 2, guarantees the sublinearity for smaller values of c and
larger values of r.

The expected number of candidates for the BG algorithm is the same as for the
SOG algorithm. So for suitable parameter values the scanning phase dominates
and thus the BG algorithm is sublinear on average.

8. COMPARISON OF THE ALGORITHMS

A run-time comparison of the algorithms is shown in Figures 2 and 9a based on
Table I. These times include verification but exclude preprocessing. The memory
usage and the preprocessing times of the algorithms are shown in Table II. These
are results from tests with patterns of eight characters, where HG, SOG, and BG
use 2-grams. Recall that the size of the text is 32 MB.

Figure 9a shows that our algorithms are considerably faster than the algorithms
presented earlier. The HG and BG algorithms are the fastest, when there are less
than 2,000 patterns. Between 2,000 and 20,000 patterns the BG algorithm is the
fastest and after that the SOG algorithm is the fastest. The BG algorithm has
the best overall efficiency. With larger patterns sets, the use of subsets with these
algorithms would be advantageous. Our algorithms scale to even larger pattern
sets by using larger q-grams if there is enough memory available.

Table II shows that the preprocessing phase of our algorithms is fast. Table II also
shows that the memory usage of our algorithms is fairly small. In fact, the memory
usage of our filtering techniques is constant. Because our algorithms use RKBT as
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Table I. Run times of the algorithms when r varies for m=8 and c=256. AC,
Set Horspool and SBOM algorithms use the table implementation of the trie.

100 500 1,000 5,000 10,000 50,000 100,000

AC 0.628 1.453 2.159 3.965 6.132 17.436 30.639
Set Horspool 0.373 1.430 2.177 3.971 5.990 16.672 25.857
agrep 0.290 0.410 0.630 3.370 8.350 118.640 273.600
SBOM 0.280 0.475 0.648 1.710 2.675 4.613 7.086
RKBT 0.611 0.663 0.738 1.434 2.331 12.894 25.074
HG 0.148 0.155 0.164 0.244 0.369 7.812 25.339
SOG 0.305 0.306 0.305 0.305 0.305 0.556 5.773
BG 0.132 0.138 0.144 0.187 0.214 0.783 6.997

Table II. Memory usage and preprocessing times of
the algorithms for r = 100 and 100,000. AC, Set Hor-
spool and SBOM algorithms use the table implemen-
tation of the trie.

Algorithm Memory (kB) Preprocessing (s)
100 100,000 10,000 100,000

AC 702 565,600 1.44 48.37
Set Horspool 706 565.607 0.32 3.12
SBOM 719 571,702 0.62 20.87
RKBT 13 1,184 0.02 0.17
HG 69 1,240 0.02 0.21
SOG 77 1,248 0.02 0.18
BG 77 1,248 0.02 0.18
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Fig. 9. Run time comparison of the algorithms for (a) random data (m=8, c=256) and (b) DNA
data (m=32).

a subroutine, their numbers cover also all the structures of RKBT including the
second hash table. The space increase in Table II is due to the need to store the
patterns for the verification phase. The space for the patterns could be reduced by
using clever hash values. For example for m = 8, we could store only four characters
of each pattern and use a 32-bit hash value such that the other four characters can
be obtained from these characters and the hash value.

We also run tests on DNA data. Our text was a chromosome from the fruit fly
genome (20 MB). We used random patterns of 32 characters. We tried the values
4 through 10 of q in our filtering algorithms yielding the best results with 8-grams.
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Fig. 10. (a) Run times of the algorithms when using 10,000 patterns and a text containing a
variable amount of matches. (b) Run times of the algorithms when searching English words from
the King James version of the Bible.

The results using 8-grams are shown in Figure 9b. The algorithms HG and BG
worked very well for sets of less than 10,000 patterns.

Our algorithms are filtering methods so they are not designed for searching texts
that contain a lot of matches. Nevertheless we tested the algorithms also in a setting
where the text contained matches. Results of these tests show that our algorithms
perform surprisingly well also in this setting, see Figure 10a.

To further test our algorithms with a text containing matches, we ran several
tests on English text getting somewhat controversial results. We used the King
James version of the Bible as a text. First we used patterns that were formed from
at least 8 character long words from the text. Because our algorithms require the
patterns to be of equal length, we used 8 character long prefixes of the words. There
were 4216 distinct prefixes. Figure 10b shows the results of this experiment. The
Set Horspool algorithm, which is not shown in the figure, was a bit slower than the
SBOM algorithm. As the figure shows, agrep is the fastest of the earlier methods,
which holds true also in the experiments of Navarro and Raffinot [2002]. The agrep
tool skips a line when it has found an occurrence of a pattern while all the other
algorithms scan the whole line even if a match has already been found. This gives
agrep a slight advantage in this experiment. Our algorithms, however, are faster
with pattern sets containing more than 200 patterns.

In the other experiments with English text we used 8 character long strings
randomly chosen from the text. In these tests the traditional algorithms performed
faster than our new ones. The good performance of our algorithms in the first
test is probably due to the patterns not containing any space characters which are
very frequent in the text. This allows our algorithms to filter out most of the text
positions.

9. CONCLUDING REMARKS

We have presented efficient solutions for multiple string matching using q-grams
and bit-parallelism. Our algorithms work in three phases: preprocessing, filtering
and verifying. Our methods use smaller amounts of memory than previous methods
and they scale well to very large pattern sets by using larger q-grams. We have
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demonstrated that our algorithms work well for random test data and DNA data.
They are also applicable for searching English text in some cases.
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