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We present new algorithms for the 𝑘 mismatches version of approximate string matching. Our algorithms 
utilize the SIMD (Single Instruction Multiple Data) instruction set extensions, particularly AVX2 and AVX-512 
instructions. Our approach is an extension of an earlier algorithm for exact string matching with SSE2 and 
AVX2. In addition, we modify this exact string matching algorithm to work with AVX-512. We demonstrate 
the competitiveness of our solutions by practical experiments. Our algorithms outperform earlier algorithms for 
both exact and approximate string matching on various benchmark data sets.

1. Introduction

String matching [1] is a widely studied problem in Computer Sci-

ence. The problem of string matching consists of two strings, a text and 
a pattern, and the task is to find all occurrences of the pattern in the text. 
Given a pattern 𝑃 = 𝑝0⋯𝑝𝑚−1 and a text 𝑇 = 𝑡0⋯ 𝑡𝑛−1 both in a finite 
alphabet Σ, the problem of exact string matching is defined as follows: 
to find all the positions 𝑖 such that 𝑡𝑖𝑡𝑖+1⋯ 𝑡𝑖+𝑚−1 = 𝑝0𝑝1⋯𝑝𝑚−1. In this 
paper we consider the 𝑘 mismatches variation of the problem where 𝑃 ′ , 
a substring of 𝑇 , is an occurrence of 𝑃 , if |𝑃 ′| = |𝑃 | holds and 𝑃 ′ has 
at most 𝑘 mismatches with 𝑃 , 0 ≤ 𝑘 < 𝑚. The mismatch distance of two 
strings of equal length is also called the Hamming distance.

In our study, we propose algorithms that make use of SIMD (Single 
Instruction Multiple Data) computing for approximate string match-

ing with 𝑘 mismatches. By harnessing the AVX2 and AVX-512 features 
found in modern processors, our algorithms can process multiple char-

acters simultaneously. Especially AVX2 is widely available in new Intel 
and AMD processors. To build upon existing work, we start with a sim-

ple algorithm [2] that already utilizes SIMD for exact string matching. 
We extend and modify this algorithm to handle mismatches.

Our main focus is on demonstrating experimentally the practical ef-

ficiency of the new algorithms. As a result, we not only achieve faster 
approximate string matching, but also surpass the speed of earlier algo-

rithms designed for exact string matching. The improvement in approx-

imate string matching is significant: In English data, when permitting 
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one mismatch, our algorithm is approximately six times faster than a 
reference method.

Various algorithms have been developed to solve the string match-

ing with 𝑘 mismatches problem. Baeza-Yates and Gonnet [3] intro-

duced the Shift-Add (SA) algorithm, the first bit-parallel solution for 
the 𝑘-mismatches problem, which operates in linear time for short 
patterns. Tarhio and Ukkonen’s [4] Approximate Boyer-Moore (ABM) 
algorithm extends the Boyer-Moore-Horspool method to approximate 
string matching. Building on this, Liu et al. [5] developed the FAAST 
algorithm by optimizing ABM for small alphabets. Salmela et al. [6] 
later implemented EF, an even faster version of FAAST. Fiori et al. [7] 
developed several solutions applying SIMD. They introduced the ANS 
(Approximate Naive with SIMD) algorithm and its derivative ANS2B 
and an enhanced version of EF. The Baeza-Yates–Perlberg (BYP) [8] al-

gorithm, which uses a partitioning strategy, also benefited from Fiori 
et al.’s [7] application of SIMD techniques. The resulting algorithms 
are called BYPSB and BYPSC. In addition to these practical approaches, 
theoretical solutions such as the kangaroo method [9,10], Clifford’s so-

lution [11], and algorithms based on the fast Fourier transform [12–14] 
have also been proposed.

The rest of the paper is organized as follows: Section 2 presents the 
background. Section 3 introduces our algorithms for approximate string 
matching, Section 4 describes adaptation of the approach to AVX-512, 
and Section 5 depicts the results of our practical experiments, and Sec-

tion 6 concludes the article.
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2. Background

For exact string matching Tarhio et al. [2] presented a naive al-

gorithm which uses the SIMD instruction architecture. The algorithm 
compares 𝛼 characters in parallel, where 𝛼 is 16 or 32. The 32 variation 
utilizes the AVX2 instruction set and it is called N32.

The key idea of N32 is to test 𝛼 consecutive potential occurrences of 
the pattern in parallel. For that purpose, a comparison vector containing 
𝛼 copies of the same character is constructed for each character of the 
alphabet. N32 first compares the vector of 𝑝0 with 𝑡0⋯ 𝑡31, and then 
it compares the vector of 𝑝1 with 𝑡1⋯ 𝑡32 and so on. A bitvector of 32 
bits keeps track of active match candidates. Matches are counted with 
a popcount function.

Tarhio et al. [2] introduced three versions of N32 which use three 
different orders for comparing the characters of the pattern: plain order 
(N32), fixed order (N32F), and reverse English frequency order (N32E). 
The plain order advances from left to right in the pattern. The fixed 
order applies the following heuristic order:

𝑝0, 𝑝𝑚−1, 𝑝3, 𝑝6,… , 𝑝2, 𝑝5,… , 𝑝1, 𝑝4,…

excluding space characters which are compared last.

In addition to the SIMD instructions, loop peeling has a key role in 
the efficiency of N32. In loop peeling, a number of iterations is moved in 
front of the loop. As a result, the code becomes faster because of fewer 
loop tests. In loop unrolling, the whole loop is peeled. In the following, 
the term ‘peeling factor’ denoted as 𝑟 refers to the number of the moved 
iterations. In their study, Tarhio et al. [2] applied values of 𝑟 = 2 or 𝑟 = 3
when working with the English data, and 𝑟 = 5 when dealing with DNA 
data.

3. Algorithms for approximate matching

Our aim is to develop efficient algorithms for approximate string 
matching. Algorithm 1 (as shown below) counts all the occurrences of a 
given pattern string 𝑃 in a text string 𝑇 , with at most 𝑘 mismatches. The 
algorithm uses SIMD and is a variation of the N32 algorithm extended 
with mismatch counting. It works by handling 𝛼 consecutive starting 
positions of an occurrence candidate of 𝑃 in parallel at a time. In the 
case of AVX2, 𝛼 is 32. Bitvectors found[0],… , found[𝑘] of 𝛼 bits are used 
to keep track of mismatches. The 𝑗th bit of these vectors represents the 
𝑗th candidate. Initially, every bit of each found[𝑖] is set. Before starting 
the search process, a comparison vector for each position of the pattern 
is computed in line 1. Each comparison vector consists of 𝛼 copies of the 
corresponding pattern character. Search proceeds from the leftmost to 
the rightmost position of the pattern. At each position, a bitvector cmp is 
calculated, representing the result of comparing the comparison vector 
of that position with a segment of the text, which contains 𝛼 positions 
and which is shifted one by one. Subsequently, the found[𝑖] vectors for 
𝑖 = 𝑘,𝑘− 1,… ,0 are updated sequentially to track potential matches.

During computation, if the 𝑗th bit of found[𝑖] becomes zero, then 
more than 𝑖 mismatches has been found while checking the 𝑗th candi-

date. If the 𝑗th bit of found[𝑘] stays one until the last position of the 
pattern has been processed, the 𝑗th candidate is an approximate occur-

rence of the pattern with 𝑘 mismatches. If all the bits of found[𝑘] become 
zero, then none of the 𝛼 candidates can be an occurrence of the pattern. 
The operators &, |, and >> denote bit-parallel and, or, and right shift, 
respectively.

The intrinsic function _mm_popcnt_u32 [15] is used for counting 
matches in line 11. The SIMDcompare function for AVX2 is implemented 
using three intrinsic functions [15] as follows [2]:

S I M D c o m p a r e ( x , y , 3 2 ) 
x _ p t r = _ m m 2 5 6 _ l o a d u _ s i 2 5 6 ( x ) 
y _ p t r = _ m m 2 5 6 _ l o a d u _ s i 2 5 6 ( y ) 
r e t u r n _ m m 2 5 6 _ m o v e m a s k _ e p i 8 ( 

_ m m 2 5 6 _ c m p e q _ e p i 8 ( x _ p t r , y _ p t r ) ) 

Algorithm 1 SIMD-approximate-search

1 for 𝑗 ← 0 to 𝑚− 1 do construct vector(𝑗) for 𝑝𝑗
2 count ← 0; 𝑖← 0
3 while 𝑖 ≤ 𝑛−𝑚 do

4 for 𝑗 ← 0 to 𝑘 do found[𝑗]← 2𝛼 − 1
5 for 𝑗 ← 0 to 𝑚− 1 do

6 cmp ← SIMDcompare(𝑡𝑖+𝑗 , vector(𝑗), 𝛼)

7 for 𝑠← 𝑘 downto 1 do

8 found[𝑠]← found[𝑠] & (found[𝑠− 1] | cmp)

9 found[0]← found[0] & cmp
10 if found[𝑘] = 0 then goto out

11 count ← count + popcount(found[𝑘])
12 out: 𝑖← 𝑖+ 𝛼

13 count ← count− popcount(found[𝑘] > > (𝑛−𝑚− 𝑖+ 𝛼 + 1))

Table 1
An example of computation of found[1] in aabaacaaa

for 𝑃 = abca, 𝑘 = 1, 𝛼 = 6. Vectors are shown in the 
order of the text. The starting positions of matches are 
underlined.

found[1] 1 1 1 1 1 1 aabaacaaa

found[0] 1 1 1 1 1 1 
cmp for a 1 1 0 1 1 0 aabaac

found[1] 1 1 1 1 1 1 
found[0] 1 1 0 1 1 0 
cmp for b 0 1 0 0 0 0 abaaca

found[1] 1 1 0 1 1 0 
found[0] 0 1 0 0 0 0 
cmp for c 0 0 0 1 0 0 baacaa

found[1] 0 1 0 1 0 0 
found[0] 0 0 0 0 0 0 
cmp for a 1 1 0 1 1 1 aacaaa

found[1] 0 1 0 1 0 0 
found[0] 0 0 0 0 0 0 

Because 𝑛 − 𝑚 + 1 is not divisible by 𝛼 in a general case, the last 
execution of line 11 may add extra matches to count in some rare cases. 
For example, this may happen when searching for aaaaa with 𝑘 ≥ 1
mismatches in a text ending with aaaa. Line 13 eliminates such extra 
matches from count. Because found[𝑘] is reversed at the implementation 
level, the vector is shifted to the right in order to hide real matches. 
Here we assume that it is allowed to access some text positions beyond 
𝑡𝑛−1. If that is not the case, texts shorter than 𝛼 +𝑚 − 1 and the end of 
a text should be processed with another algorithm.

Table 1 shows an example how vectors found[𝑘] develop while pro-

cessing a text with a short pattern. For demonstration purposes, 𝛼 is set 
to 6.

Algorithm 1 solves the counting version of approximate string match-

ing with 𝑘 mismatches. It can be transformed into the reporting version 
by printing positions in line 11. 

Tuning up

The pseudocode of Algorithm 1 presents the principles that can be 
applied to any scenario for 𝑘 < 𝑚. Recognizing that the approach is pri-

marily advantageous for small values of 𝑘, we developed algorithms for 
fixed 𝑘 = 1,2,… ,5. By combining these algorithms, we were able to 
craft a more efficient implementation. First we split the for loop in line 
5 of Algorithm 1 into two parts and reduce some unnecessary assign-

ments. The outcome is shown in Algorithm 2.

When 𝑘 is fixed, we can unroll the three loops in lines 1, 3, and 8 of 
Algorithm 2 and the initialization loop in line 4 of Algorithm 1. After 
implementing these changes, the code still includes computations that 
are not strictly necessary, but the compiler can effectively optimize and 
eliminate them.
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Algorithm 2 Loop (line 5) of Alg. 1 split.

1 for 𝑗 ← 0 to 𝑘 do

2 cmp ← SIMDcompare(𝑡𝑖+𝑗 , vector(𝑝𝑗 ), 𝛼)

3 for 𝑠← 𝑗 downto 1 do

4 found[𝑠]← found[𝑠] & (found[𝑠− 1] | cmp)
5 found[0]← found[0] & cmp
6 for 𝑗 ← 𝑘+ 1 to 𝑚− 1 do

7 cmp ← SIMDcompare(𝑡𝑖+𝑗 , vector(𝑝𝑗 ), 𝛼)

8 for 𝑠← 𝑘 downto 1 do

9 found[𝑠]← found[𝑠] & (found[𝑠− 1] | cmp)
10 found[0]← found[0] & cmp
11 if found[𝑘] = 0 then goto out

We call the tuned version N32A. In the same way as in Section 2, 
we made variations N32FA and N32EA for handling pattern positions 
in the fixed heuristic order and the reverse English frequency order. In 
N32FA and N32EA, the call of the SIMDcompare function in line 6 of 
Algorithm 1 is in the form

SIMDcompare(𝑡𝑖+𝜋(𝑗),vector(𝜋(𝑗)), 𝛼)

where 𝜋 is a permutation of pattern positions.

Algorithms N32 and N32A use different approaches for constructing 
comparison vectors. In N32, vectors are constructed for each character 
of the alphabet, while in N32A, vectors are constructed for each posi-

tion of the pattern. Thus N32A needs 𝛼 ⋅ 𝑚 bytes for the vectors. This 
approach saves space when 𝑚 is less than |Σ|.

4. Adaptation to AVX-512

We decided to adapt N32A to leverage AVX-512 extensions, which 
allow us to compare 64 bytes in parallel. Now we use _mm_popcnt_u64
for counting matches. Here is the redesigned SIMDcompare function for 
AVX-512:

SIMDcompare(x , y , 64)
x_ptr = _mm512_loadu_si512(x)
y_ptr = _mm512_loadu_si512(y)
return _mm512_cmpeq_epi8_mask(x_ptr , y_ptr)

As a result we get algorithms N64A, N64FA, and N64EA. The same 
adaptation into the AVX-512 platform applies naturally also to N32 for 
exact matching. Therefore, we also present new experimental results of 
exact string matching in the next section.

5. Experimental results

We present experimental results in order to compare the behavior 
of our algorithms against the best known solutions in the literature for 
approximate and exact string searching.

Setting All the algorithms were coded1 using the C programming lan-

guage and compiled with Apple Clang 14.0.0 and run in the testing 
framework of Hume and Sunday [16]. The processor was i5-1030NG7 
with 6 MB cache and 8 GB RAM. The operating system used was MacOS 
Ventura 13.0.1.

We used three texts: English (the KJV Bible, 12 MB), DNA (the 
genome of E. Coli, 10 MB), and random binary (|Σ| = 2, 12 MB) for 
testing. We chose the length of the text to be at least 1.5 times the cache 
size (by concatenating the multiples of the text) in order to avoid cache 
interference with running times [17]. In addition, we made some ex-

periments with texts of 100 MB, but the results were similar to those 
with the shorter texts. Sets of patterns of lengths 5, 8, 10, 16, and 32 
were randomly taken from the texts. Each set contained 200 patterns. 

1 The codes are available at https://users.aalto.fi/tarhio/hamming/.
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Fig. 1. Search times of ANS2B for 𝑘 = 1 and N64FA for 𝑘 = 1, 3, and 5 in the 
English dataset.

The tests were made with 99 repeated runs and the execution time of 
the algorithms for each set is given in seconds. Speedup is reported as 
a ratio of the running times of the reference algorithm and a new algo-

rithm.

Approximate matching We compared our algorithms (N32A and N64A 
for the plain order, N32FA and N64FA for the fixed order, N32EA and 
N64EA for the reverse English frequency order) against ANS2B, BYPSB, 
and BYPSC [7] for 5 ≤ 𝑚 ≤ 32. Fiori et al. [7] tested twelve algorithms 
for the 𝑘 mismatches problem, and ANS2B, BYPSB, and BYPSC were 
clearly the best among them. Because all these algorithms apply SIMD, 
we also present test results of TWSA [18], which is one of the best non-

SIMD algorithms for the 𝑘 mismatches problem.

We carried out the experiments for 𝑘 = 1, 3, and 5. The results for 
𝑘 = 1 and 𝑘 = 3 are shown in Table 2 and Table 3, respectively. The 
best time for each pattern set has been boxed and the peeling factor 
used for each run has been super-scripted in the tables. From the re-

sults, it is clear that the new algorithms outperform earlier algorithms 
with a wide margin. For the English dataset, the speedup of N64FA over 
ANS2B is about six for 𝑘 = 1, indicating a significant improvement in 
performance. Although BYPC is faster than ANS2B for 𝑚 = 16 and 32, 
N64FA is clearly faster than BYPC. The speedup AVX-512 offers over 
AVX2 is typically 1.5 or more, i.e. speedup of the variations of N64A 
over the corresponding versions of N32A.

When 𝑘 increases, our algorithms become slower. As an example, 
Fig. 1 shows the search times of ANS2B for 𝑘 = 1 and N64FA for 𝑘 = 1, 
3, and 5 in the English dataset. The 64-byte algorithms stay competitive 
at least until 𝑘 = 5. The times of ANS2B for 𝑘 = 3 and 5 are not shown, 
because they were very close to the times for 𝑘 = 1.

In most of the cases N64EA and N64FA are almost equally fast for 
English data as well as N64A and N64FA for binary and DNA data. There 
is no upper limit for the pattern size our algorithms can handle, but the 
speed does not change much when the pattern gets longer.

Effect of peeling factor We analyzed the performance of the N64FA al-

gorithm with various peeling factors for 𝑘 = 1 and 5 ≤𝑚 ≤ 16 as shown 
in Fig. 2. The optimal choice of the peeling factor 𝑟 depends on the na-

ture of data. The values 𝑟 = 4,5 produced the best speed for English 
data, 𝑟 = 8 for DNA, and 𝑟 = 𝑚 for binary data. In general, adjusting 
the 𝑟 value may lead to significant savings in search times. In the best 
scenarios, search speed can be more than double. For instance, when 
searching for DNA patterns of 10 characters, the search times are 0.639 
and 0.262 for 𝑟 = 2 and 𝑟 = 8, respectively.

Choice of comparison vectors Algorithm N32 constructs comparison vec-

tors for each character of the alphabet, whereas Algorithm N32A con-
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Table 2
Search times in seconds for 200 patterns, 𝑘= 1.

𝑚 = 5 8 10 16 32 
English ANS2B 1.18 1.27 1.30 1.31 2.62 

BYPSC —– 3.14 3.19 0.807 0.43 
TWSA 4.53 3.25 2.77 1.83 0.886 
N32FA 0.336{5} 0.295{4} 0.283{4} 0.265{4} 0.222{4}

N32EA 0.357{5} 0.325{4} 0.305{4} 0.245{3} 0.209{3}

N64FA 0.208 {5} 0.220{5} 0.206{5} 0.188 {4} 0.167{4}

N64EA 0.219{5} 0.217 {4} 0.200 {4} 0.188 {4} 0.154 {4}

DNA ANS2B 1.02 1.09 1.12 1.12 2.15 
BYPSB —– 3.58 3.22 0.81 0.35 
TWSA 5.71 3.72 3.20 1.90 0.909 
N32A 0.273{5} 0.448{8} 0.443{8} 0.452{8} 0.428{8}

N32FA 0.277{5} 0.370{7} 0.373{7} 0.398{7} 0.368{7}

N64A 0.189 {5} 0.271{8} 0.271{8} 0.269 {8} 0.266{8}

N64FA 0.205{5} 0.249 {8} 0.262 {8} 0.277{8} 0.252 {8}

Binary ANS2B 1.26 1.34 1.35 1.38 2.75 
BYPSB —– 11.91 8.20 5.01 0.699 
TWSA —– —– —– 3.85 1.91 
N32A 0.323{5} 0.520{8} 0.654{10} 0.965{8} 0.930{11}

N32FA 0.334{5} 0.539{8} 0.704{11} 0.988{13} 0.915{13}

N64A 0.213 {5} 0.304{8} 0.385 {10} 0.536 {15} 0.549{15}

N64FA 0.221{5} 0.299 {8} 0.392{10} 0.539{14} 0.530 {14}

Table 3
Search times in seconds for 200 patterns, 𝑘= 3.

𝑚 = 5 8 10 16 32 
English ANS2B 1.25 1.325 1.23 1.27 2.70 

BYPSC —– —– —– 4.24 1.17 
TWSA 6.23 5.18 4.65 2.83 —– 
N32FA 0.322{5} 0.706{6} 0.693{6} 0.589{6} 0.832{6}

N32EA 0.335{5} 0.771{6} 0.652{6} 0.526{6} 0.427{6}

N64FA 0.215{5} 0.458{8} 0.447{7} 0.390{6} 0.330{6}

N64EA 0.213 {5} 0.415 {8} 0.445 {7} 0.349 {6} 0.260 {6}

DNA ANS2B 1.09 1.08 1.22 1.12 2.18 
BYPSB —– —– —– 4.37 1.09 
TWSA 3.87 5.32 4.62 2.92 —– 
N32A 0.245{5} 0.656{8} 0.945{10} 1.06{10} 1.07{10}

N32FA 0.267{5} 0.663{8} 1.07{10} 1.12{10} 1.04{10}

N64A 0.170 {5} 0.343 {8} 0.531 {10} 0.615 {10} 0.615{10}

N64FA 0.189{5} 0.343 {8} 0.542{10} 0.629{10} 0.600 {10}

Binary ANS2B 1.38 1.30 1.32 1.38 3.62 
BYPSB —– —– —– 17.19 6.86 
TWSA 4.91 5.16 5.25 5.81 —– 
N32A 0.316{5} 0.744{8} 1.16{10} 2.67{8} 3.09{8}

N32FA 0.321{5} 0.823{8} 1.26{10} 2.93{12} 3.60{12}

N64A 0.202 {5} 0.419 {8} 0.581 {10} 1.22 {12} 1.57 {12}

N64FA 0.202{5} 0.429{8} 0.598{10} 1.38{12} 1.70{12}

structs vectors for each position of the pattern. The latter approach offers 
computational advantage during the search process, potentially result-

ing in faster running times. To verify this, we tested N64FA and N32FA 
on our main test processor equipped with AVX-512. Surprisingly, both 
approaches performed equally well for both algorithms on this proces-

sor.

To further investigate the performance on other processors, we tested 
N32FA with both approaches on three processors without AVX-512 but 
with AVX2. In this scenario, the latter approach (used originally in 
N32A) exhibited a speed improvement of approximately 5–10 percent 
compared to the former approach. The same improvement is naturally 
applicable to exact string matching with N32.

Exact matching We compared the 64 byte variations of N32 against 
EPSM [19], EPSMA [20], and the corresponding variations of N32 [2]. 
EPSM and EPSMA were clearly the best for 𝑚 ≤ 16 in the extensive ex-

perimental comparison of [20]. Table 4 demonstrates that the N64 vari-

ations are clearly faster than the N32 and EPSM variations for 5 ≤𝑚 ≤ 16
on English. However, the gain of the AVX-512 technology is smaller than 
in the case of approximate matching.

6. Conclusions

We have introduced new algorithms for the 𝑘 mismatches problem. 
N32A and its variations utilize SIMD instructions based on the AVX2 
technology. We adapted N32A into N64A which applies the AVX-512 
technology. As a secondary outcome, we have developed N64, which 
is a refined version of a previous algorithm, tailored for exact string 
matching using AVX-512.

We have presented an experimental analysis of variations of N32A, 
N64A, and N64. By comparing them with previous algorithms, we have 
demonstrated their excellent performance for short patterns and small 
values of 𝑘. Notably, we have observed a substantial speed improvement 
by executing instructions that process 64 bytes simultaneously.
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Fig. 2. Search times of N64FA in seconds for 200 patterns for 𝑘= 1 in the English dataset with various peeling factors. 

Table 4
Search times in seconds for 200 patterns, exact matching.

𝑚 = 5 8 10 16 
English EPSM 0.429 0.409 0.451 0.386 

EPSMA 0.280 0.306 0.330 0.239 
N32F 0.180{3} 0.163{3} 0.170{3} 0.164{3}

N64F 0.164 {4} 0.148 {3} 0.148 {3} 0.141 {3}
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