SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(7), 851-861 (JULY 1997)

String Matching in the DNA Alphabet

JORMA TARHIO

Department of Computer Science, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland (email:
tarhio@cs.joensuufi, tarhio@cs.helsinki.fi)

AND

HANNU PELTOLA

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland
(email: hannu.peltola@hel sinki.fi, hannu.peltola@iki.fi)

SUMMARY

Searchingfor long DNA stringsisstudied. A g-gram variation of the Boyer—M oorealgorithm is considered.
An alphabet transfor mation with precomputed tablesisutilized to reducethe processingtime. Experimental
results show that the new algorithm is efficient in practice. (11997 by John Wiley & Sons, Ltd.

KEY WORDS: string matching; Boyer—Moore algorithm

INTRODUCTION

Searching for occurrences of string patterns is a common problem in many applications.
Various good solutions have been presented for string matching. The most efficient solutions
in practice are based on the Boyer—Moore algorithm.!

A typical questioninmolecul ar biology iswhether agiven sequence hasappeared e sewhere.
In the following, we will concentrate on searching for exact occurrences of long patternsin
the DNA aphabet which in a typical case contains four characters, namely a, ¢, g, and t .
However, the biologists are often interested in finding similar sequences. Nevertheless, exact
searching can be used as afast subroutine of approximate searching. At low error levels any
algorithm for exact searching can be used as afast filtering method. Assume that we allow ¢
errors. If wedividethe patternin e + 1 distinct blocks, every approximate occurrence contains
an exact occurrence of at least one of the blocks.? Thus an occurrence of any block defines a
potential approximate occurrence of the pattern, which can be checked with aslower dynamic
programming method.

Hume and Sunday?® review several techniques how to improve the practical efficiency of
the Boyer—Moore agorithm using different shift heuristics, tight loops, unrolling of loops,
and some other approaches. Their study mainly deals with searching for words of an English
text, but they also tested their algorithms on DNA strings. Later Kim and Shawe-Taylor*
present more efficient solutionsfor DNA strings based on an implementation of an agorithm
introduced by Baeza-Yates.®

We will introduce anew version of the Baeza-Yates algorithm,*® which isamaodification of
the Boyer—-M oore-Horspool a gorithm® for small alphabets. In the Bagza-Yates a gorithm the

CCC 0038-0644/97/070851-11 $17-50 Received 14 November 1995
01997 by John Wiley & Sons, Ltd. Revised 1 July and 24 October 1996

852 J. TARHIO AND H. PELTOLA

shift is based on ¢-grams which are strings of ¢ consecutive characters. We will present anew
way to transform such a substring to an integer. Experimental results show that our approach
is more efficient than the previous agorithmsfor long patterns.

BOY ER-MOORE-HORSPOOL ALGORITHM

The characteristic feature of the Boyer—-Moore algorithm? is the right-to-left scan over the
pattern. Let us think a pattern sliding above a text. At each alignment of the pattern with
the text, characters of the text below the pattern are examined from right to left, starting by
comparing the rightmost character of the pattern with the character in the text currently below
it. Between alignments, the pattern is shifted to the right along the text.

After each mismatch, the original Boyer—M oore algorithm choosesthe larger shift given by
two heuristics. In the match heuristic, the pattern hasto match all thetext characters that were
found to match at the previous alignment. In the occurrence heuristic, the character in the text
that caused a mismatch will be aligned with the rightmost occurrence of that character in the
pattern.

If the a phabet islarge enough, the match heuristicis not very useful in practice, because the
patterns are seldom periodic. So it iswise to use only the occurrence heuristic. Because it is
not necessary to base the shift of the pattern on thetext character that caused the mismatch, one
can use the text character under the rightmost character of the pattern. This modification was
presented by Horspool.® In practice the Boyer—Moore-Horspool algorithm is clearly faster
than the original Boyer—Moore algorithm,! e.g. for English texts.

Although the Boyer—M oore-Horspool al gorithmis slower for long patternsthan the original
Boyer—Moore adgorithm in the case of a small alphabet” and though a related variation by
Sunday?® is faster for short patterns,” the Boyer—Moore-Horspool algorithm clearly provides
the best platform to develop more efficient versions. Algorithm 1 is a simple form of the
Boyer—M oore—Horspool agorithm. Thetext isdenoted by T[1] ... T[n] and the pattern by
P[1]... P[m.

Algorithm 1

Preprocess D
p:=P[ni;
k:=m
r epeat
t:=T[Kk];
if t=p then
Check other positions;
k: =k+D[t];
until k > n;

Online7 charactersP[1] ... P[m—1] arecomparedwiththecorrespondingtext characters
until amismatch isfound or amatch iscompleted. Horspool’s shift heuristic makesit possible
to do this in any order. The most common orders are a forward scan (left-to-right) and a
reverse scan (right-to-left). It depends both on the string matching problem and mostly on
the computing environment, which order is advantageous, although the difference is often
insignificant. We apply only the forward scan in our algorithms.

The computation of the shift table D is based on the following definition:

OCO~NOOUOITAWNPE

DXl = minimmin{m—d | 1< d < m,P[d] = x}).

STRING MATCHING IN THE DNA ALPHABET 853

FINGERPRINT METHOD

A ¢-gram (or ag-tuple) isasubstring of ¢ characters. In away, ag-gram represents acharacter
of alarger alphabet. It iswidely known that the Boyer—Moore agorithm is able to take longer
shifts by examining a ¢-gram at a time instead of a single text character.»#>°1° The Baeza-
Yates algorithm*® is one of the applications of thisidea. Kim and Shawe-Taylor* present an
efficient implementation of that algorithm for DNA strings. We will consider variations of
the Baeza-Yates algorithm and suggest implementation techniques, which improve the total
speed of the algorithm in the case of the DNA alphabet.

Fromag-gramag . . . a,—1 We compute afingerprintt = 23;01 ¢ - a;, whichisa(reversed)
number of base ¢, where ¢ isthe size of the alphabet.

At each alignment of the pattern, the last ¢-gram of the pattern is compared with the
corresponding ¢-gram in the text by testing the equality of their fingerprints. If thefingerprints
match, we have found a potential occurrence, which has to be checked. Let us cal the
fingerprint of the last ¢-gram of the pattern the fingerprint of the pattern. In Algorithm 1,
which workswith unigrams, p is the fingerprint of the pattern and ¢ is afingerprint computed
fromthetext. Thisalgorithm can beeasily modified to Algorithm 2 which handleslarger values
of ¢. The notation f(7', k, ¢) refers to the fingerprint of the g-gram Tk — ¢ + 1], ..., T[k]
and f (P, m, q) refers to the fingerprint of the pattern. Here fingerprints are computed using
Horner'srule: t = ao+ clar + clag+ - - -clag_a + cag_1) - -).

Note that a straightforward impl ementatlon of Algonthm 2 (or the Baeza-Yates agorithm)
cannot process patterns shorter than ¢, but this problem is easy to avoid by incorporating
Algorithm 1 to Algorithm 2 for short patterns.

Algorithm 2

1 Preprocess D

2 p:=f(P,maq);

3 k:=m

4 repeat

5 t:=f(T,k,QqQ);

6 if t=p then

7 Check other positions;
8 k: =k+D[t];

9 until k > n;

At each alignment, fingerprints t and p are compared. If they are equal, text positions T
[k-m+1], ..., T [k — ¢], corresponding to the m — & characters long prefix of the pattern, are
examined until a mismatch is found or a match is completed. Note that only the fingerprint
of the pattern, not the pattern itself, is needed in the loop on lines 4-9 , which saves time.
In the end of the loop, a shift istaken according to the precomputed shift table /0 indexed by
fingerprints. The computation of D is based on the definition:

Dlz] = min(m,min{m—d | 1 < d < m, Pl[d—e+1]...P[d] = suffix(z, e),e = min(q,d)}),

where suffix(z, €) isthe string of the last e characters of x. Baeza-Yates® as well as Kim and
Shawe-Taylor* use a simpler aternative for the shift table D, which is faster to compute but
which leads slightly shorter shifts:

D'[z)=min(m — ¢+ 1 mn{m—-d|q¢<d<m,Pld-q+1]...Pd=ux}).

854 J. TARHIO AND H. PELTOLA

We mostly use D in our algorithms.

At theimplementationlevel, we use fixed code instead of aloop for computing fingerprints,
because aloop would make the al gorithm slower. Kim and Shawe-Taylor* use aloop where ¢
has been defined as a constant, but the efficiency of this solution depends on the optimization
skills of the compiler.

ALPHABET TRANSFORMATION

The straightforward implementation of Algorithm 2 contains a space problem, because the
shift table D is indexed by the fingerprints. If the aphabet contains characters a, c, g, and
t , whose ASCII codes are 97, 99, 103, and 116, respectively, the size of the actual a phabet
isnot four but 117 or 256. In order to handle case ¢ = 4, we might need a shift table of at
least 1174 elements. A large shift table also makes the preprocessing phase of the algorithm
slow, because the table must be initialized. In practice, the initialization time of the table D
dominates the total running time for large values of g.

An alternative for multiplicationin the computation of afingerprint isto round the al phabet
size c upwardsto a power of two and to apply bitwise shifting.> Bitwise shifting is faster than
multiplication in most computers, and the gain depends on the computer architecture. If ¢ is
not originally apower of two, this approach requires alarger table D.

A third alternative is to replace multiplication by atablelook-up, eg. for ¢ = 4 we have

ap+apx c+az* ®+agxc® = ag + s[a1 + s[az + s[as]]],

where s[a] = a-c. Karkkainen' usesthisapproach in animplementation of atwo-dimensional
string matching al gorithm.*2 This method needs some additional space and preprocessing time
for the look-up table s.

One solutionto the space problem isto apply hashing, which, however, makesthe searching
phase slower than table access. Zhu and Takaoka'® present a two-level hashing scheme for
g = 2. They maintain synonym links, but our experiments suggest that on the average it is
more advantageous in practice to use the smaller shift value in the case of a collision and to
examine also the last g-gram of the potentia occurrence, if necessary, when the fingerprints
match.

Another approach to save space is to cluster the alphabet by mapping input characters to
a narrow range. The simplest mapping is to subtract 97 from the ASCII codes of characters
a,c,g,andt toget0, 3, 7, and 19, respectively, which means that the size of the resulting
alphabet is20. Kim and Shawe-Taylor* introduce another mapping: they use thelast three bits
of the character code, which means that the size of the resulting alphabet is eight. However,
the initiaization of the shift table is still slow for large values of ¢ in the aphabet of eight
characters. Note also that the transformation of Kim and Shawe-Taylor does not work for
arbitrary character codes.

Most of these simple approaches may produce errors, if the input happens to contain
improper symbols. A safe way for mapping is to apply a direct alphabet transformation. We
map the ASCII codes to the range of 4: 0 < r[j] < 3 such that characters a, c, g, and t
get different codes and possible other characters get, for example, code 0. In thisway we are
able to limit the computation to the effective alphabet of four characters. We use a separate
transformation table h; for each position : of a ¢-gram and incorporate multiplicationsinto

STRING MATCHING IN THE DNA ALPHABET 855
thetables: h;[j] = r[j] - 4'. For ¢ = 4, thefingerprint of ag . . . a3 isthen computed as
holao] + hi[a1] + holaz] 4 halaz].

Algorithm PP describes the preprocessing of the transformation tables and the shift table
D for ¢ = 4. The algorithm has a different code for each value of ¢ (¢ can be a compilation
parameter in C). Notethat r[j] = ho[j] and ha[z] = ho[z] * u/c hold.

Algorithm PP
1 c:=4; qg:=4,
2 for i:=0 to 255 do hO[i]: =0;
3 hOo["a]:=0; hO['c']:=1;
4 hO['g']:=2; hO['t’]:=3;
5 for i:=0 to 255 do begin
6 hi[i]:=c*hO[i];
7 h2[i]:=c*h1[i];
8 h3[i]:=c*h2[i] end;
9 u:=c**q;

10 for i:=0 to u-1 do Oi]:=m
11 s:=0; a:-=u,
12 for i:=1 to g-1 do begin

13 s:=s div c+h3[P[i]];
14 a: =al c;
15 for j:=s to s+a-1 do DOj]:=mi end;

16 s:=s div c+h3[P[q]];

17 for i:=g+1 to mdo begin
18 Dl s]:=mi +1;

19 s:=s div c+th3[P[i]] end;

Note that when the data contains more than four different characters, the mapping r is not
an injection. So this mapping defines a ssmple hashing scheme. In Algorithm 2, the ¢-gram
corresponding to ¢ needs never to be re-examined in the checking phase. In the case of a
non-injective mapping that ¢-gram must be re-examined, if the fingerprints are equa and
P[1], ..., Plm — q] match with the text. However, the slow down due to thisis insignificant
in the average case while using the forward scan.

When the data contains more than four different characters, thereis aso another problem.
Namely, if a ¢-gram of the text contains a rare character, the shift for it is possibly shorter
with the mapping » than without it. For example, if the patterniscacgt cccc and the g-gram
isxcgt and r[a] = r[x], the shift for this ¢-gram is 5 with the mapping and 9 without it.
However, the frequency of other charactersthana, ¢, g,andt islow inrea DNA data so that
thisslow down isinsignificant in practice.

When applying the character transformation to a larger alphabet, where there are several
text characters that do not occur in the pattern, al these characters can be mapped together. I
the total frequency of these characters is low, the size of the effective alphabet is the number
of different characters in the pattern, otherwise one more.

856 J. TARHIO AND H. PELTOLA
Algorithm 3

Execute Al gorithm PP,
p:=f2(P,maq);
k: =m
r epeat
t:=f2(T,k,Qq);
if t=p then
Check the potential occurrence;
k: =k+D[t];
until k>n;

O©CoO~NOOUIWNE

Algorithm 3isAlgorithm 2 with the alphabet transformation. On line 7 characters P[1], . . .,
P[m] are compared with the corresponding text characters until amismatchisfound or amatch
iscompleted. Thenotation f2 refersto the computati on of fingerprints based on transformation
tables created by Algorithm PP,

SKIP LOOP

In Algorithm 3 there are two testsin themain loop: on lines 6 and 9. The loop would be faster,
if one of the tests could be removed. Such aloop with only one test is called a skip loop® or
afast loop.t Algorithm 4 is a modification of Algorithm 3 containing the variation of a skip
loop called ‘unrolled fast’ by Hume and Sunday.?

Algorithm 4

1 Execute Algorithm PP,

2 p:=f2(P,maq);

3 x:=Dp];

4 DO p]:=0;

5 k:=m

6 s:=D[f2(T,k,q)];

7 fast:

8 r epeat

9 k: =k+s;

10 k:=k+D[f2(T, k,q)];
11 k:=k+D{f2(T,k,q)];
12 s:=Df2(T,k,q)];

13 until s=0;

14 if k>n then exit;

15 Check the potential occurrence;
16 S: =X;

17 goto fast;

The value of D[p] is stored to a variable z and D]p] is set to zero in order to make the
skip loop on lines 8-13 work properly. That loop is repeated until a ¢g-gram with a matching
fingerprint is found. In order to be able to detect the end of the text, an occurrence of the
pattern must be copied to 7'[n + 1] . . . T'[n + m]. Theloop contains 3-fold unrolling. (A basic
skip loop without unrolling is got by leaving lines 10 and 11 out.) The condition D[p] = 0

STRING MATCHING IN THE DNA ALPHABET 857

Tablel. Searchingtimes (in seconds)

m G RF KS B.4 B6 | BC6 BC7 | A36 A44 A45 A46

25 1557 1702 1593 1296 2134 | 2234 2711 | 1590 930 1036 13.30
50 1235 1030 937 760 1187 | 1165 1383 | 895 580 639 807
100 989 639 475 408 572 | 566 655 | 434 319 328 4.06
200 775 379 237 235 284 | 277 326| 215 189 172 206
400 670 244 122 1.56 145 | 137 15 | 116 124 093 1.05
800 5.67 155 070 116 073 | 071 080| 05 094 054 054
1600 4.83 100 041 09 041 040 040 | 031 078 036 031
3200 438 073 027 09 025| 024 022| 019 080 029 021

guarantees that the variable k is not increased before exiting the loop, though a ¢-gram with a
matching fingerprint is detected on any phase of the loop.

The unrolling factor of three workswell in practice. The best value of the factor depends on
the pattern, the text, and the computer architecture. If the control often leaves the skip loop, a
smaller factor is better. However, the effect of unrolling israther small for long DNA patterns.

EXPERIMENTAL RESULTS

We tested severa agorithms on DNA data. Our DNA data consists of a text of 1,982,672
characters (nucleotides) and eight pattern files each containing 200 patterns of afixed length,
from 25 to 3200 characters.” The total number of occurrences of the pattern classes in the
text ranges from 14 to 40. The text and the patterns were picked from the EMBL seguence
database.® The text is a combination of nucleotide sequence strings shorter than 20,000 and
longer than 8500 characters. The patterns are randomly selected continuous nonoverlapping
strings of the database. The alphabet consists of characters a, c, g, t , and n besides the line
feed. The character n represents an uncertain character, and its frequency islow.

We implemented Algorithms 3 and 4 in C and tested them with different values of ¢. Our
testing framework isamodification of the one used by Hume and Sunday.® Tables I-111 report
the results of the experiments carried out in a Linux workstation with 16 MB RAM and a 90
M Hz Pentium processor. The searching, preprocessing, and total timeswere recorded for four
versionsA3.6, A4.4, A4.5, and A4.6, where the suffix expresses the value of ¢. We also tested
avariation of the Baeza-Yates a gorithm® where the direct character transformationistheonly
addition the original algorithm. These versions are denoted by BC.6 and BC.7 for ¢ = 6, 7.
Asacomparison, we executed the same tests with implementationsof five earlier agorithms.
For each algorithm, the mean timing of one hundred runsis given and the best valueis shown
in boldface on each row. Each run includesthe processing of 200 different patterns.

Algorithm Gisuf ast . r ev. gd2 of Hume and Sunday,® and it applies a two-dimensional
shift table indexed by the pattern position and the mismatching text character. This heuristic
gives longer shifts than the two usual Boyer—M oore heuristics, because the shift is computed
for each possible mismatching character for each suffix of the pattern. Algorithm G was the
best for DNA data in the comparison of Hume and Sunday.®

Algorithm RF isthereverse-factor algorithmby Lecrog.”'* Thekey feature of thisalgorithm

* The algorithms and the data are available at <http://www.cs.helsinki.fi/~tarhio/sm/>.

858 J. TARHIO AND H. PELTOLA

2 :
KS'
;) B4 e
| // 'BC.E -=-
a,' ’A3.6’
Y/ C——
16t
[0} =3 - - A i E
£
= 1.2t
1 .-
0g "
06 b
25 50 100 200 400 800 1600 3200

Pattern length

Figure 1. Relative searching times (A3.6 = 1)

isto control searching with the suffix automaton of a reversed pattern. Algorithm RF was the
best for DNA data in the comparison performed by Lecrog.’

Algorithm RF is related to the optimized »-gram algorithm presented by Kim and Shawe-
Taylor.* Thisagorithm (named here as Algorithm KS) uses on thefirst level atrie of reversed
g-grams of the pattern, where each level of the trie holds a separate index. AlgorithmsB.4 and
B.6 are the block algorithms of Kim and Shawe-Taylor* for ¢ = 4, 6. The block algorithms
were the best for DNA datain the comparison performed by Kim and Shawe-Taylor.*

In searching times (Table I), Algorithm A3.6 is the fastest for patterns of 1600-3200
characters, Algorithm A4.6 isthefastest for patterns of 800-1600 characters, Algorithm A4.5

Tablell. Preprocessing times (in seconds)

m G RF KS B4 B.6|BC6 BC7 | A36 A44 A45 A46

25 010 038 08 010 726 | 007 031| 010 003 005 013
5 019 082 09% 010 727 | 008 034 | 011 003 005 014
100 0.38 177 09 011 727 | 008 034 | 011 003 005 014
200 075 364 102 012 727 | 008 037 | 011 003 005 014
400 150 783 117 014 734 | 009 035| 012 004 006 015
800 298 1671 148 018 739 | 012 040 | 013 005 008 0.16
1600 597 3480 204 026 751 | 016 044 | 017 008 010 019
3200 1198 7058 308 041 771 | 024 052| 023 014 016 026

STRING MATCHING IN THE DNA ALPHABET 859

Tablelll. Total times (in seconds)

m G RF KS B.4 B6 BC6 BC7 A36 A44 A45 A46

25 1567 1740 1682 13.06 2860 2241 2743 1600 932 1041 1343
50 1254 1112 1027 770 1913 1172 1417 906 582 644 822
100 1027 815 570 419 1299 574 689 445 322 333 420
200 850 743 339 247 1012 28 363 226 192 178 219
400 819 1027 239 169 880 146 191 128 128 099 1.19
800 865 1827 218 133 812 082 120 069 099 061 0.70
1600 10.80 3580 245 122 793 055 083 048 08 046 049
3200 1636 7130 3.35 135 797 048 075 042 094 046 046

isthefastest for patterns of 200-800 characters, and Algorithm A4.4 isthe fastest for patterns
of 25-100 characters. Figure 1 showstherelative searching timesof KS, B.4, BC.6, A3.6, and
A4.A4.

Algorithms A4.4, A4.5, and A4.6 contain the skip loop. We tried them al so without the skip
loop. The benefit of the skip loop decreases when the pattern gets longer. For m = 25 the
speed benefit is 4% and for m = 3200 the agorithms are already faster without the skip loop.
When searching for short words in an English text, the benefit of the skip loop may be even
20%.3 The advantage in our setting is considerable smaller.

Inpreprocessing times(Tablell) Algorithm A4.4isthefastest for all patternsizes. Algorithm
BC.4 would beat Algorithm A4.4 in the preprocessing speed, but because its searching speed
is even slower than that of Algorithm B.4, we left it out. The preprocessing of Algorithms
A3.6 and A4.4-A4.6 could be made a bit faster by initializing transformation tables during
compilation time.

Algorithms A4.4, A4.5, and A4.6 use the shift table D and B.4, B.6, BC.6, BC.7, and A3.6
the shift table D'.

In total times (Table 1) Algorithm A3.6 is the fastest for patterns of 3200 characters,
Algorithm A4.5 is the fastest for patterns of 200-1600 characters, and Algorithm A4.4 isthe
fastest for patterns of 25-100 characters.

Comparing total timesis troublesome, because thelength of text affects the rel ative propor-
tion of the preprocessing time. However, it would not be fair to neglect preprocessing times
totally, because the preprocessing timeis considerable in the case of long patterns.

We also tested our algorithmswith other values of ¢. The average searching time of Algo-
rithm A4.3is8.88 secondsfor patternsof 25 characters, and soitisdlightly faster than A4.4for
thislength. The average searching time of Algorithm A3.7is0.17 secondsfor patterns of 3200
characters, and so it is somewhat faster than A3.6 for thislength. However, the preprocessing
time of A3.7 is0.50 seconds, which makesit slower in the total time. Because the advantage
of A4.3 and A3.7 is only marginal, we left them out from Tables I-11. Algorithms B.q and
BC.q for other values of ¢ were not competitivein our setting.

MEMORY REQUIREMENTS

To compare the memory requirements of the algorithms, we calculated the maximal size of
global data structures used during searching in the C implementation. These figures are given

860 J. TARHIO AND H. PELTOLA

Table V. Memory usage of data structures (1000 bytes)

m G RF KS B4 B6 BC6 BC7 A36 A44 A45 A46
25 13 52 133 16 1049 17 67 23 5 9 23

50 26 103 134 16 1049 17 67 23 5 9 23
100 52 206 138 16 1049 18 67 23 5 9 23
200 103 412 145 17 1049 18 67 23 5 9 23
400 207 825 160 17 1049 18 67 23 6 10 23
800 414 1650 188 17 1049 18 67 23 6 10 23

1600 827 3299 246 18 1050 19 68 24 7 11 24
3200 1654 6598 361 20 1052 21 70 26 8 12 26

in Table V. Note that the memory requirements of the reference methods are based on the
original implementations of these algorithms, and those implementations are not necessarily
tuned to achieve the maximal space-efficiency while maintaining their speed.

Algorithm KS usesthe al phabet of 8 characters and the tested implementation of Algorithm
G uses the alphabet of 128 characters. The memory usage of KS is upper limit, because it
initializes data structures only when it needs them.

In these calculations, we assume that we have integers and pointers (memory addresses) of
four bytes and no padding in and between records (structsin C).

CONCLUSION

Our approach reduces the processing time and the space requirement of the Baeza-Yates
algorithm, and allows the use of longer ¢-grams for a still faster searching phase in the DNA
alphabet. Our a gorithms reduce the need for paging of the virtual memory, and they even fit
computers with a small main memory. Our approach is independent of the character codes,
and it is aso applicableto other small al phabets having lessthan 15 common characters. The
alphabet clustering technique can even be used with large alphabets.

None of the algorithmswasthe best for al pattern lengthstested. A hybrid algorithm, which
selects ¢ according to the length of the pattern, would have the best general efficiency. A good
estimate® for the value of ¢ islog,(4m).

The implementation techniques we presented are not limited to C. That iswhy we gave our
algorithms in a pseudocode close to Pascal. We have also tested Algorithms 14 in Pasca
with comparable results.

Algorithms RF” and KS* are theoretically appealing, because they examine fewer text
characters than the other algorithms we tested. However, they are slower than Algorithm
A3.6 because of the overhead of transitions in an automaton or in a tree. Also, the space
requirements of RF and KS are large. Algorithm KS was clearly faster than RF in our tests.
The obvious reason for thisisthat it restricts the height of the suffix trie. An interesting topic
for afurther study would be to find faster waysto traverse a suffix trie.

ACKNOWLEDGEMENTS

We thank K. Ramo for fruitful discussions. We also thank J. Shawe-Taylor and T. Lecroq for

STRING MATCHING IN THE DNA ALPHABET 861

providing the C codes of their agorithms. We thank areferee for suggesting of testing the BC
algorithms. Thefinancia support of the Academy of Finland is appreciated.

11.
12.

13.
14.

REFERENCES
R. S. Boyer and S. Moore, ‘A fast string searching algorithm’, Communications of the ACM, 20, 762—772
(51.9\/7V7u).and U. Manber, ‘Fast text searching allowing errors’, Communications of the ACM, 35(10), 83-91
gzéiu;me and D. Sunday, ‘Fast string searching’, Software—Practice and Experience, 21(11), 1221-1248

J. Kim and J. Shawe-Taylor, ‘Fast string matching using an n-gram algorithm’, Software—Practice and
Experience, 24, (1), 79-88 (1994).

R. Baeza-Yates, ‘ Improved string searching’, Software—Practice and Experience, 19(3), 257-271 (1989).
N. Horspool, ‘ Practical fast searchingin strings', Software—Practice and Experience 10(6), 501-506 (1980).
T. Lecroq, ‘ Experimental results in string matching algorithms’, Software — Practice and Experience 25(7),
727-765 (1995).

D. Sunday, ‘A very fast substring search algorithm’, Communications of the ACM, 33, 132-142 (1990).

R. Sedgewick, Algorithms, Addison-Wesley, 1983.

R. Zhuand T. Takaoka, ‘ On improving the average case of Boyer—M oore string matching algorithm’, Journal
of Information Processing, 10, 173-177 (1987).

J. Karkkainen, Personal communication, 1994.

J. Kérkkédinen and E. Ukkonen, ‘Two and higher dimensional pattern matching in optimal expected time',
Proceedingsof the Fifth Symposiumon Discrete Algorithms, ACM-SIAM, 1994, pp. 715-723.

The EMBL Seguence Database, Version 41, 1995, URL : ftp://ftp.ebi.ac.uk/.

T. Lecrog, ‘A variation on the Boyer—-Moore algorithm’, Theoretical Computer Science, 92, 119-144 (1992).

	INTRODUCTION
	BOYER--MOORE--HORSPOOL ALGORITHM
	FINGERPRINT METHOD
	ALPHABET TRANSFORMATION
	SKIP LOOP
	EXPERIMENTAL RESULTS
	MEMORY REQUIREMENTS
	CONCLUSION
	acknowledgements
	REFERENCES

