
String Matching with LookaheadI

Hannu Peltolaa, Jorma Tarhioa

aDepartment of Computer Science and Engineering,
Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

Abstract

Forward-SBNDM is a recently introduced variation of the BNDM algorithm for
exact string matching. Forward-SBNDM inspects a 2-gram in the text such that
the first character is the last one of an alignment window of the pattern and
the second one is then outside the window. We present a generalization of this
idea by inspecting several lookahead characters beyond an alignment window
and integrate it with SBNDMq, a q-gram variation of BNDM. As a result, we
get several new variations of SBNDMq. In addition, we introduce a greedy skip
loop for SBNDM2. We tune up our algorithms and the reference algorithms
with 2-byte read. According to our experiments, the best of the new variations
are faster than the winners of recent algorithm comparisons for English, DNA,
and binary data.

Keywords: string matching, bit-parallelism, BNDM, 2-byte read, q-grams

1. Introduction

After the advent of the Shift-Or [2] algorithm, bit-parallel string matching
methods have gained more and more interest. The BNDM (Backward Nonde-
terministic DAWG Matching) algorithm [17] is a nice example of an elegant,
compact, and efficient piece of code for exact string matching. BNDM simu-
lates the nondeterministic finite automaton of the reverse pattern even without
constructing the actual automaton.

SBNDM2 [6, 11] is a simplified variation of BNDM. SBNDM2 starts process-
ing of an alignment window of the pattern by reading two characters. Recently
Faro and Lecroq [7] introduced Forward-SBNDM, a lookahead version of the
SBNDM2 algorithm. Forward-SBNDM inspects a 2-gram (a string of 2 charac-
ters) where the latter text character follows an alignment window of the pattern.
In this paper, we present a generalization of the lookahead idea and give new
variations of SBNDMq [6], which is a q-gram extension of SBNDM2. In addi-
tion, we introduce a greedy skip loop for SBNDM2. Our point of view is the

ISupported by the Academy of Finland (grant 134287).
Email addresses: hannu.peltola@aalto.fi (Hannu Peltola), jorma.tarhio@aalto.fi

(Jorma Tarhio)

Preprint submitted to Elsevier October 15, 2013

practical efficiency of exact string matching algorithms. According to our ex-
periments, the best of the new variations are clearly faster than the winners of
recent algorithm comparisons [6, 9] for English, DNA, and binary data.

We use the following notations. Let a pattern P = p1p2 . . . pm and a text
T = t1t2 . . . tn be two strings over a finite alphabet Σ. The task of exact string
matching is to find all occurrences of P in T . Formally we search for all positions
k such that tktk+1 . . . tk+m−1 = p1p2 . . . pm. In the pseudocode of the algorithms
we use the following notations of the programming language C: ‘|’, ‘&, ‘∼’, ‘<<’,
and ‘>>’ represent bitwise operations or, and, one’s complement, left shift, and
right shift, respectively. The register width (or word size informally speaking)
of a processor is denoted by w.

The rest of the paper is organized as follows. Since our work is based on
SBNDMq and Forward-SBNDM, we start with presenting these algorithms in
Section 2. In Section 3 we generalize Forward-SBNDM with wider lookahead
and longer q-grams. In Section 4 the greedy skip loop is presented. Section 5
reviews the results of our experiments before concluding remarks in Section 6.

2. Previous algorithms

2.1. BNDM, SBNDM, and SBNDMq

In BNDM [17] the precomputed table B associates each character with a
bit mask called an occurrence vector expressing its locations in the pattern. In
each alignment window of the pattern, the algorithm reads the text from right
to left until the whole pattern is recognized or the processed text string is not
any factor (i.e. a substring) of the pattern. Between alignments, the algorithm
shifts the pattern forward to the start position of the longest found prefix of the
pattern, or if no prefix is found, over the current alignment window. With the
bit-parallel shift-and technique the algorithm maintains a state vector D, which
has one in each position where a substring of the pattern starts such that the
substring is a suffix of the processed text string. SBNDM [18, 19] is a simplified
version of BNDM. SBNDM does not explicitly care of prefixes, but shifts the
pattern simply over the text character which caused D to become zero when
the alignment is not a match.

SBNDMq [6] is a variation of SBNDM applying q-grams. In each alignment
window, SBNDMq first processes q text characters ti, . . . , ti+q−1 before testing
the state vector D. If D is zero, this q-gram is not a factor of P , and then the
pattern can be shifted forward m − q + 1 positions. If D is not zero, a single
character at a time is read to the left until D becomes zero, which means that the
suffix of the alignment window is not any more a factor of P , or an occurrence
of the pattern has been found. The pseudocode of SBNDMq is shown as Alg. 1.
F (i, q) on line 6 is a shorthand notation for the expression

B[ti] & (B[ti+1] << 1) & · · · & (B[ti+q−1] << (q − 1)).

In the original BNDM, the inner loop also recognizes the prefixes of the
pattern. The leftmost one of the found prefixes determines the next alignment

2

Algorithm 1 SBNDMq (P = p1p2 · · · pm, T = t1t2 · · · tn)

Require: 1 ≤ q ≤ m ≤ w
/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0
2: for j ← 1 to m do
3: B[pj]← B[pj] | (1 << (m− j))

/* Searching */
4: i← m− q + 1
5: while i ≤ n− q + 1 do
6: D ← F (i, q)
7: if D 6= 0 then
8: j ← i− (m− q + 1)
9: repeat

10: i← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then
14: report occurrence at j + 1
15: i← i + s0
16: i← i + m− q + 1

window of BNDM. Like SBNDM, SBNDMq does not care of prefixes, but shifts
the pattern over the text character which nullifies D when the alignment is not
a match.

When an occurrence of the pattern is found, the shift is s0, which corresponds
to the distance to the leftmost prefix of the pattern in itself and which is easily
computed from the pattern (see [6]). We skip the details, because a conservative
value s0 = 1 works well in practice. In the subsequent algorithms of this paper,
we use the value s0 = 1.

2.2. Forward-SBNDM

Forward-SBNDM, a lookahead version of SBNDM2, was introduced by Faro
and Lecroq [7]. The idea of the algorithm is the following. The occurrence
vectors B are obtained from the occurrence vectors of SBNDM2 by shifting them
one position to the left and placing a set bit to the right end. As in SBNDM2,
a 2-gram x1x2 is read before testing the state vector D. In SBNDM2, x1x2

is matched with the end of the pattern. In Forward-SBNDM (FSB for short),
only x1 is matched with the end of the pattern, and x2 is a lookahead character
following the current alignment window of the pattern. Note that B[x2] can
nullify several bits of D, and therefore x2 enables longer shifts. The pseudocode
of FSB is shown as Alg. 2.

The basic shift of FSB is m positions, which is one more than in SBNDM2.
Therefore FSB is faster than SBNDM2 for large alphabets [9]. Because the
length of the occurrence vector B of each character is m + 1 in FSB, the upper
limit for the pattern length is thus w − 1.

3

Algorithm 2 FSB (P = p1p2 · · · pm, T = t1t2 · · · tn)

Require: 1 ≤ m < w
/* Preprocessing */

1: for all c ∈ Σ do B[c]← 1
2: for j ← 1 to m do
3: B[pj]← B[pj] | (1 << (m− j + 1))

/* Searching */
4: i← m
5: while i ≤ n do
6: D ← (B[ti+1] << 1) & B[ti] /* F (i, 2) */
7: if D 6= 0 then
8: j ← i
9: repeat

10: i← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: i← i + m− 1
14: if j = i then
15: report occurrence at j + 1
16: i← i + 1
17: i← i + m

In a way FSB is a cross of SBNDM2 and Sunday’s QS [20]. QS was the first
algorithm to use a lookahead character for shifting. Another famous algorithm
using two lookahead characters is by Berry and Ravindran [3].

3. Generalization: Forward-SBNDM(q, f)

Let us analyze how FSB works. The aim of the adjustment of the B vectors
is to gain speed by allowing longer shifts than in SBNDM2. After reading x1x2

there are three possible situations. (i) If x1 matches the last character of P ,
reading continues leftwards. (ii) If x1x2 is a factor of P , reading also continues
leftwards. (iii) Else D becomes zero and the pattern is shifted m positions
(which is one more than in SBNDM2). The strength of FSB is that it is able to
handle the cases (i) and (ii) in a single test D 6= 0.

Ďurian et al. [5, 6] reported that SBNDMq is efficient also for q > 2 on
modern processors, although the number of read text characters increases with
q. This increment can be considerable in the case of short patterns, but this
straightforward method is faster on average than SBNDM in most cases. Based
on this observation we decided to generalize FSB with q-grams and longer looka-
heads than one. So based on SBNDMq we constructed Forward-SBNDM(q, f),
FSB(q, f) for short, where the lookahead f can be any integer between 0 and
q − 1. The pseudocode is given as Alg. 3.

Note that FSB(q,0) is in practice the same as SBNDMq [6] if s0 = 1 is
selected. If we keep f − q in a precomputed variable, then even the search

4

Algorithm 3 FSB(q, f) (P = p1p2 · · · pm, T = t1t2 · · · tn)

Require: q − f ≤ m ≤ w − f and 0 ≤ f < q
/* Preprocessing */

1: for all c ∈ Σ do B[c]← (∼0) >> (w − f) /* 1f */
2: for j ← 1 to m do
3: B[pj]← B[pj] | (1 << (m− j + f))

/* Searching */
4: i← m− q + f
5: while i ≤ n− q + 1 do
6: D ← F (i, q)
7: if D 6= 0 then
8: j ← i− (m− q + f + 1)
9: repeat

10: i← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then
14: report occurrence at j + 1
15: i← i + 1
16: i← i + m− q + f + 1

part of FSB(q, f) is independent of the value of f . Note also that FSB(2, 1)
corresponds to the original FSB.

The occurrence vectors B of FSB(q, f) are obtained from the occurrence
vectors of SBNDMq by shifting them f positions to the left and placing f set
bits to the right end (see Fig. 1 a)–b) for an example). Because the length of
the occurrence vectors is m + f , the upper limit for the pattern length is thus
w − f . In addition it is required that 0 < q − f ≤ m. When changing q, only
line 6 needs to be updated. Note that like SBNDMq, FSB(q, f) may read a
few characters beyond the text (line 6) and also one character before the text
(line 11). If necessary, the beginning and the end of the text can be handled
separately.

Providing m ≤ w, the worst case time complexity of BNDM is O(mn), but
the average time complexity is sublinear. The space complexity of BNDM is
O(|Σ|). It is straightforward to show that FSB(q, f) inherits these complexities
when m ≤ w − f .

Let ti · · · ti+q−1 = x1 · · ·xq be the q-gram read on line 6 of Alg. 3. As in the
case of the original FSB, there are three possible situations. (i) If x1 · · ·xq−k

matches a suffix of P for some k = 0, . . . , f , reading continues leftwards. The
extra set bits in the right end of B vectors ensure that the state vector D does
not get nullified. (ii) If x1 · · ·xq is a factor of P , reading continues leftwards.
(iii) Else the pattern is shifted and the next alignment window ends at ti+m.
The shift is m− q + f + 1, which is f positions more than in SBNDMq.

The disadvantage of FSB(q, f) is that the probability to fall to the slow loop

5

a) banana
SBNDMq: B[n]= 001010

b) FSB(4,2): B[b]= 10000011
B[a]= 01010111
B[n]= 00101011
B[x]= 00000011

c) 4-gram naxx: x 00000011
x 00000011
a 01010111
n 00101011

00001000 = D

d) 4-gram D Conclusion Action
axxx 00000000 a: too short suffix shift
naxx 00001000 na: suffix proceed left
anax 00010000 ana: suffix proceed left
nana 00101000 suffix proceed left
anan 01000000 factor proceed left
xana 00000000 not a factor shift

Figure 1: a) The occurrence vector B for character n for P = banana in SBNDMq. b) The
occurrence vectors for the same P in FSB(4,2). c) Computation of D for 4-gram naxx.
d) Actions on some 4-grams in FSB(4,2).

on lines 8–15 is larger than in SBNDMq, because the probability F (i, x) to be
nonzero is higher (or equal if characters depend statistically on each other) for
f > 0 than for f = 0. Actually this increment is the probability of the case (i)
above.

Example 1. Fig. 1 d) shows actions on some 4-grams for P = banana in
FSB(4,2).

Example 2. Let P be abcdefgh. The maximal shifts of SBNDM2 and SBNDM3
are 7 and 6, respectively. The maximal shift of FSB(3,1) is 7. Let us consider a
text T =...xabcdey.... If SBNDM2 reads a 2-gram de, it scans back until x.
If FSB(3,1) reads (from the same alignment) 3-gram dey, it immediately skips
7 positions onwards, because de is not a suffix of P and dey is not a factor of
P .

Variation. The way how f lookahead characters are handled takes f low order
bits in the state vector D, which reduces the maximal length of the pattern. This
could be circumvented by using on line 6 a distinct occurrence vector table Ck

(corresponding to B) for each of the q text positions. Then F (i, q) is interpreted
as

C0[ti] & C1[ti+1] & · · · & Cq−1[ti+q−1],

6

where Ck[x] = (B[x] << k) +
(
(2f − 1) << (q−f)

)
>> (q−1−k) where B is the

occurrence vector table of SBNDMq as well as on line 11 of Alg. 3. If f = 0 the
latter term is not needed. Note that 2f − 1 produces f set lowest order bits.
The right shift takes care that they (get deleted or) come to the correct place.

Implementation note. In the C language the right operand of a shift opera-
tion must be shorter than the width of the left operand. Therefore on line 1 of
Alg. 3, shifting has to be made in two parts or handled e.g. with if clause, when
f = 0.

4. Greedy skip loop

Many string matching algorithms apply a so called skip loop, which is used
for fast scanning before entering the matching phase. E.g. a basic skip loop of
SBNDM is the following:

while B[ti] = 0 do i← i + m.

Faro and Lecroq [7, 8] introduce several interesting variations of the skip loop.
In the variation (originally for an algorithm of SBNDM2 type)

while B[ti] = 0 do i← i + d[ti+m] (1)

the maximal step is 2m, where d is a shift table based on the bad character
heuristics also known as the occurrence heuristics. We tried several variations
of (1), but we did not succeed improving the speed of our algorithms in our test
setting.

Here we present a new type of skip loop for SBNDM2. We call it greedy,
because in some cases it reads lookahead characters that it does not utilize. The
pseudocode is given as Alg. 4.

Two 2-grams titi+1 and ti+m−1ti+m are read in the skip loop. If both do
not appear in P , the shift is 2m − 2. If the former appears in P , the latter is
not read (the operator && denotes a short-circuit and) and the computation
proceeds as in SBNDM2. If only the latter 2-gram ti+m−1ti+m appears in P ,
the next operation is a shift of m−2. This means that the new former 2-gram is
ti+m−2ti+m−1. Here also a shift of m−1 would be possible, but that alternative
is a bit slower in practice, because we already know that ti+m−1ti+m is a factor
of P .

It is straightforward to generalize the greedy loop for SBNDMq. Instead of
reading two 2-grams, the loop may hold reading of two q-grams or a q-gram and
a 2-gram.

The form of the greedy skip loop is based on the observation that the cost
of side assignments is very small. We tried several variations of the greedy loop
on several processors. Unfortunately, no variation was clearly the best.

7

Algorithm 4 Greedy-SBNDM2 (P = p1p2 · · · pm, T = t1t2 · · · tn)

Require: 1 ≤ m < w
/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0
2: for j ← 1 to m do
3: B[pj]← B[pj] | (1 << (m− j))

/* Searching */
4: i← m− 1
5: while i ≤ n do
6: while

(
D ← ((B[ti+1] << 1) & B[ti])

)
= 0 &&(

(B[ti+m] << 1) & B[ti+m−1]
)

= 0 do
7: i← i + 2m− 2
8: if D 6= 0 then
9: j ← i

10: repeat
11: i← i− 1
12: D ← (D << 1) & B[ti]
13: until D = 0
14: i← i + m− 1
15: if j = i then
16: report occurrence at j + 1
17: i← i + 1
18: else
19: i← i + m− 2

5. Experimental results

We implemented Greedy-SBNDM2 (GSB2 for short) and FSB(q, f) versions
up to q ≤ 8 and for f ≤ min{q−1, 5}. For efficiency, f and q were compile
time constants. For each variation, we implemented two versions. The standard
version corresponds otherwise to the pseudocode, but the test of the outer loop
was eliminated and a copy of the pattern was placed as a stopper after the last
text character tn. The b-version applies simultaneous 2-byte processing, where
two bytes are read with one instruction and used together in indexing of a table.
As a result a part of bit shifts was moved to preprocessing as explained below.
Otherwise the search part of the b-version is identical with the corresponding
standard version.

2-byte processing. Reading several successive (unaligned) bytes at a time
is a well-known technique. Fredriksson [10] was probably the first who an-
alyzed its advantage. A string matching algorithm applying 2-byte read is
in practice much faster than the traditional version applying 1-byte read. In
some cases, the speedup becomes close to two, which is the theoretical limit.
The cost of reading one or two bytes is almost the same on most x86 proces-
sors. Only crossing a word border causes small overhead [14]. A noteworthy

8

additional advantage is the possibility to move computation from the scan-
ning phase to preprocessing. When applying 2-byte read in an algorithm of
BNDM type, we replace a C language expression B[t[i]] & (B[t[i+1]]<<1)

by B2[*(uint16 t*)(t+i)], where (uint16 t*) is a typecast and t+i is a
reference (pointer) to the character t[i]. The table B2 is computed during pre-
processing. When processing a 4-gram, it is advantageous to process it as two
separate 2-byte reads (see [6, 14] for details) in order to decrease the penalty
of crossing word borders. The same holds also for larger values of q. Also the
table that is indexed would be impractically huge for q > 2.

Unaligned 2-byte reads work also on some other CPU architectures than x86.
During preprocessing we take care of endianess (the order in which integer values
are stored as bytes in the computer memory). Let x and y be two successive
characters. The indexing of the table B2 depends on endianess. On a little
endian machine (like x86) B2[(y<<8)+x]=B[x]&(B[y]<<1) is applied, and on
a big endian machine B2[(x<<8)+y]=B[x]&(B[y]<<1) is applied. Note that
B2, the array of 2-byte integers, can be utilized even with the standard 1-byte
read. Depending on the input, B2[(t[i+1]<<8)+t[i]] is slightly faster than
the original expression on many x86 processors.

Reference algorithms. In addition to variations of SBNDMq we tested four
other algorithms:

• BR [3] by Berry and Ravindran,

• EBOM [7] by Faro and Lecroq,

• Hash3 [16] (originally New3) by Lecroq, and

• BMH2 [21, 14], a 2-gram variation of the Horspool algorithm [12].

We updated each algorithm with a stopper handling and made a b-version in
the same way explained above for FSB(q, f).

Concerning BMH2, many researchers have worked out related variations [1,
15, 21, 22]. The basic idea has been mentioned already in the original article of
Boyer and Moore [4]. BR is a cross of BMH2 and Sunday’s QS algorithm [20].
In BMH2 the shift is based on the last 2-gram of the text window aligned with
the pattern, whereas BR applies the 2-gram locating two positions further to the
right. EBOM is an efficient implementation of the oracle automaton utilizing
2-grams.

Because Hash3 applies a 3-gram, the application of 2-byte read is a bit
different. The statements

h = text[i-2];

h = ((h<<1) + text[i-1]);

h = ((h<<1) + text[i]);

are replaced by

h = d2[*(uint16 t*)(text+i-2)]+text[i];

9

BMH2 and BR are examples of old algorithms. EBOM and Hash3 are the
winners of several test cases in a recent comparison [9].

FSB(q, f)b for odd q was implemented so that the q-gram is processed using
(q−1)/2 consecutive 2-byte reads followed by one 1-byte read. Because FSB(q,0)
is in practice the same as SBNDMq, q = 2, 3, . . ., the former ones also serve as
reference methods, because the latter ones are among the best in our recent
comparison [6].

Computer and test setting. We run the tests on a Dell Precision T1500 con-
taining Intel Core i7-860 2.8GHz CPU (8 KiB L1 data cache/core, 256 KiB L2
cache/core, 8 MiB L3 cache, 64 byte line size) running with the 64-bit Ubuntu
kernel 2.6.35-30. The programs in C were compiled with the gcc compiler ver-
sion 4.4.5 to run either in the 32-bit mode or in the 64-bit mode using the
optimization level -O3.

In the main tests we used three texts: English (4 MB), DNA (2 MB), and
binary (2 MB). The English text was the KJV Bible. The binary text was
a random text in the alphabet of two characters. Sets of patterns of various
lengths were randomly taken from each text. Each set contained 200 patterns.
Note that the English patterns did not necessarily start or end with an entire
English word. Thus we followed the experiments in [7].

In order to eliminate possible cache effects, we also tested the algorithms
with the five times concatenated English text, which did not fit to the cache.
Interestingly, the change of search speed depended on the pattern length. The
search speed decreased (from 1% to 11% on the average) when the patterns got
longer. We assume that the memory bus throughput is the limiting factor in
this case.

All the algorithms were tested in a testing framework of Hume and Sunday
[13]. The data was in the main memory so that I/O time had no effect to
speed measurements. The search speeds shown are averages of 300 runs (if not
otherwise told). Accuracy of the results is about 1%.

With 32-bit bitvectors the maximum pattern length for FSB(*,3) is 29.
Therefore some results of FSB(4,3) for length 30 are missing.

Text 1: English. The search speeds on English data are shown in Table 1.
The best speed for each pattern set has been boxed. Both GSB2 and EBOM
were among the fastest standard algorithms for m ≤ 15. Especially FSB(3,1),
FSB(4,0), FSB(4,1), and FSB(4,2) worked well for longer patterns. Among
the b-versions GSB2b was good for short patterns. FSB(4,0)b, FSB(4,1)b, and
FSB(4,2)b were excellent for m ≥ 7.

As explained in Section 3, FSB(4,f), f > 0, was developed from SBNDM4
' FSB(4,0). For most values of m, two of the FSB(4,f) algorithms, f > 0,
were faster than FSB(4,0). The same was true for the b-versions. Note that for
m = 4, FSB(4,0) and FSB(4,0)b process the whole pattern in the outer loop of
the algorithm, and the shift is then always one! As explained in Section 4, GSB2
was developed from SBNDM2 ' FSB(2,0). GSB2 was faster than FSB(2,0) for
short patterns. The same was again true for the b-versions (using 2-byte read).

10

Table 1: Searching speed of algorithms GB/s (for a single pattern) using English text and
patterns. Speeds are averages of 100 runs in 32-bit mode using 32-bit bitvectors.

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 1.41 2.23 2.67 3.23 3.68 4.35 2.15 3.11 3.59 4.13 4.47 5.21
FSB(2,0) 1.24 2.04 2.60 3.24 3.76 4.55 1.99 2.97 3.50 4.09 4.49 5.29
FSB(2,1) 1.12 1.71 2.15 2.79 3.29 4.08 1.52 2.20 2.68 3.34 3.92 4.65
FSB(3,1) 1.03 1.92 2.67 3.77 4.69 6.21 1.86 3.29 4.35 5.69 6.68 7.94
FSB(4,0) .300 1.16 1.97 3.22 4.33 6.37 .568 2.13 3.51 5.43 7.05 9.51
FSB(4,1) .565 1.37 2.11 3.28 4.35 6.34 1.42 3.26 4.78 7.02 8.57 10.4
FSB(4,2) .802 1.56 2.26 3.35 4.44 6.28 1.86 3.48 4.80 6.73 8.28 10.1
FSB(4,3) .831 1.40 1.95 2.85 3.79 – 1.32 2.16 2.93 4.24 5.51 –
BMH2 .710 1.18 1.60 2.16 2.75 3.52 1.34 2.27 3.13 4.37 5.48 7.03
BR 1.09 1.59 2.06 2.88 3.65 4.78 1.24 1.81 2.35 3.27 4.19 5.43
Hash3 .414 1.02 1.60 2.53 3.39 5.01 .436 1.07 1.67 2.64 3.53 5.23
EBOM 1.23 1.99 2.48 3.07 3.49 4.15 1.60 2.42 2.91 3.45 3.84 4.51

Note that FSB(2,1)' the original FSB was slower than SBNDM2' FSB(2,0).
(The same was true for the b-versions.) We made an additional test with an al-
phabet of 128 characters in order to verify that FSB(2,1) is faster than FSB(2,0)
in a text of a larger alphabet as shown in [9].

Table 2: Average speedup of 2-byte read based on Table 1.

algorithm speedup
GSB2 1.32
FSB(2,0) 1.34
FSB(2,1) 1.24
FSB(3,1) 1.56
FSB(4,0) 1.72
FSB(4,1) 2.15
FSB(4,2) 2.03
FSB(4,3) 1.51
BMH2 1.96
BR 1.14
Hash3 1.05
EBOM 1.17

Relative speedup of 2-byte read is shown in Table 2. Numbers are arithmetic
means of the speed ratios calculated from the data of Table 1. The overall
average speedup was 1.52 in this test set. The speedup was the biggest for
m = 4 and decreased as patterns get longer. Note that two of the algorithms
exceeded the theoretical limit of two, possibly due to advantageous pipelining.

Text 2: DNA. The search speeds are shown in Table 3. On DNA data,
larger values of q were better than on natural language. On the other hand the
probability to fall to the slow loop, i.e. the inner loop of an algorithm, increases
with f . When q is large enough, it is advantageous to have f > 0. Table 3

11

shows that values of q, that are one larger or smaller than the best one, also
work quite well.

Table 3: Searching speed of algorithms GB/s (per a single pattern) using DNA text and
patterns. Speeds are averages of 300 runs with 64-bit code.

patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 1.19 2.01 2.92 3.80 4.69 5.60 1.22 2.14 3.08 3.91 4.90 5.69
FSB(4,0) 2.25 4.42 5.72 6.62 7.37 8.26 3.42 5.79 6.91 7.96 8.68 9.66
FSB(4,1) 2.25 4.19 5.37 6.40 7.13 7.88 3.41 5.65 6.66 7.78 8.53 9.48
FSB(5,0) 1.81 4.46 6.55 8.37 9.53 10.9 2.77 6.27 8.52 10.5 11.8 13.2
FSB(5,1) 2.04 4.59 6.63 8.34 9.51 10.7 3.05 6.40 8.61 10.4 11.9 13.3
FSB(6,0) 1.26 3.62 5.76 7.77 9.44 11.0 2.49 6.88 10.2 12.6 14.5 16.6
FSB(6,1) 1.55 3.95 6.18 8.17 9.69 11.2 2.92 7.16 10.3 12.8 14.5 16.8
FSB(6,2) 1.76 4.11 6.29 8.20 9.72 11.2 3.20 7.14 10.2 12.5 14.4 16.1
FSB(6,3) 1.86 4.07 6.05 7.89 9.31 10.8 3.07 6.59 9.17 11.4 13.5 15.2
FSB(7,0) .882 3.02 5.04 7.00 8.68 10.2 1.56 5.25 8.53 11.5 13.1 15.2
FSB(7,1) 1.10 3.23 5.21 7.16 8.89 10.3 1.93 5.60 8.96 11.6 13.2 15.0
FSB(7,2) 1.31 3.38 5.34 7.23 8.86 10.4 2.27 5.81 9.06 11.6 13.4 15.1
FSB(7,3) 1.49 3.54 5.46 7.33 8.93 10.4 2.57 6.04 9.13 11.5 13.1 14.7
BMH2 1.27 1.89 2.15 2.41 2.45 2.60 1.89 2.79 3.16 3.55 3.59 3.81
BR .805 1.11 1.26 1.43 1.44 1.50 .859 1.20 1.35 1.53 1.55 1.60
Hash3 1.35 2.72 3.67 4.41 4.93 5.41 1.36 2.90 3.97 4.83 5.39 5.93
EBOM 1.09 1.76 2.38 2.99 3.51 4.09 1.13 1.84 2.46 3.08 3.66 4.20

Text 3: Binary. The search speeds are shown in Table 4. Large values of q
were good with binary data as expected, because otherwise the probability to
fall to slow loop would be too high. Results for FSB(7,*) indicate that with
parameter values f > 3 are not competitive.

Other processors. We tested the algorithms also in several other computers
having a x86 processor (Pentium III or newer). The relative performance of the
algorithms was mostly similar. The only exception was Atom N450, on which
BMH2b was a clear winner.

On binary data, the relatively good performance of FSB(4,3) on IBM ThinkPad
X61s having Intel Core 2 Duo Processor L7300 was surprising. With FSB(4,3)
only one text character comes from the alignment window, and therefore the
probability to fall to the slow loop is quite high. Also the relative performance
of Hash3 was much weaker.

Memory usage and preprocessing time. All b-versions using 2-byte read
require additional 262 kB (bitvectors of 32 bits) or 524 kB (bitvectors of 64
bits). The initialization of the additional table takes about 15–20 milliseconds
for 200 patterns. Preprocessing of FSB(q, f) is more laborious when f > 0. In
our tests the preprocessing time increased at most 6%.

12

Table 4: Searching speed of algorithms GB/s (per a single pattern) using binary text and
patterns. Speeds are averages of 300 runs with 64-bit code.

patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 .586 1.15 1.68 2.20 2.70 3.20 .574 1.15 1.70 2.24 2.77 3.29
FSB(4,0) .661 1.16 1.73 2.31 2.88 3.44 .739 1.30 1.91 2.53 3.09 3.68
FSB(4,1) .632 1.19 1.76 2.34 2.90 3.46 .722 1.34 1.96 2.57 3.16 3.72
FSB(5,0) .846 1.32 1.76 2.29 2.81 3.36 .978 1.48 1.98 2.59 3.19 3.78
FSB(5,1) .815 1.31 1.76 2.28 2.82 3.33 .945 1.48 2.03 2.63 3.24 3.84
FSB(6,0) .870 1.66 2.14 2.60 3.03 3.48 1.27 2.12 2.59 3.02 3.52 4.03
FSB(6,1) .960 1.73 2.19 2.63 3.07 3.53 1.29 2.10 2.56 3.07 3.57 4.03
FSB(6,2) .909 1.64 2.14 2.59 3.06 3.54 1.16 1.97 2.49 2.99 3.53 4.09
FSB(6,3) .776 1.46 1.99 2.50 3.01 3.53 .935 1.73 2.31 2.89 3.49 4.07
FSB(7,0) .755 1.99 2.80 3.39 3.86 4.29 1.22 2.85 3.72 4.33 4.69 5.13
FSB(7,1) .874 2.03 2.77 3.39 3.84 4.32 1.38 2.87 3.73 4.29 4.69 5.04
FSB(7,2) .935 1.99 2.71 3.32 3.82 4.26 1.40 2.74 3.54 4.14 4.50 4.95
FSB(7,3) .883 1.83 2.53 3.14 3.65 4.16 1.24 2.45 3.20 3.81 4.26 4.78
FSB(7,4) .787 1.58 2.25 2.84 3.40 3.91 .970 1.96 2.71 3.35 3.88 4.41
FSB(8,0) .543 2.02 3.14 4.06 4.76 5.36 1.05 3.45 4.99 6.00 6.49 7.16
FSB(8,1) .696 2.10 3.18 4.05 4.77 5.35 1.30 3.53 5.01 5.93 6.56 7.14
FSB(8,2) .812 2.14 3.17 4.00 4.71 5.28 1.45 3.49 4.90 5.84 6.39 6.90
BMH2 .369 .375 .373 .371 .383 .384 .496 .502 .500 .497 .511 .513
BR .228 .214 .232 .223 .222 .233 .244 .229 .248 .239 .237 .248
Hash3 .610 .820 .834 .796 .832 .865 .613 .826 .847 .843 .872 .874
EBOM .422 .767 1.09 1.37 1.64 1.87 .436 .781 1.11 1.39 1.68 1.91

6. Concluding remarks

For long we believed that the tuned algorithms of Hume and Sunday [13]
were the final solution for exact string matching of natural language. Only
long patterns offered space for improvement. But the development of processor
technology changed the situation: new algorithms, especially those applying
bit-parallelism, can be much faster than the old ones.

In this paper, we have presented a generalization of the Forward-SBNDM
algorithm and introduced the Greedy-SBNDM2 algorithm. We have shown that
the new algorithms are competitive for a wide range of pattern lengths in En-
glish, DNA, and binary texts. Generally the number of lookahead characters f
has smaller influence than the q-gram size. Lookahead characters can apprecia-
bly increase the shift length in the case of pattern lengths q − f ≤ m ≤ 3q and
thus make the algorithms faster.

In addition we tested the effect of 2-byte read. The speedup of simultaneous
2-byte processing varied from a few percents to the factor of two. It is clear
that 2-byte read should be used whenever it is possible.

When comparing the search speed of two string matching algorithms, sev-
eral factors affect the result: processor, memory, compiler, stage of tuning, text,
pattern. Even a small change in the pattern may switch the order of the algo-
rithms. Thus there is no absolute truth in which algorithm is the best. Because
the continuing development of processor and compiler technologies, it is also dif-
ficult to anticipate how present algorithms manage after a few years. We have

13

experienced several times how the speed order of old algorithms has changed
when switching to a new computer.

In experimental comparisons, the choice of pattern sets may have a notice-
able effect. If the patterns were words (or their substrings) of a natural lan-
guage (more specifically synthetic languages, e.g., Indo-European languages),
the character distribution of the patterns would be different from that of the
text, because space is the most common character. This has influence on the
behavior of skip loops.

References

[1] R. Baeza-Yates. Improved string searching. Softw. Pract. Exp., 19(3):257–
271, 1989.

[2] R. Baeza-Yates, G. Gonnet. A new approach to text searching. Commun.
ACM 35(10):74–82, 1992.

[3] T. Berry and S. Ravindran. A fast string matching algorithm and experi-
mental results. Proc. of the Prague Stringology Club Workshop ’99, Czech
Technical University, Prague, Czech Republic, Collaborative Report DC-
99-05, pp. 16–28, 1999.

[4] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, 1977.

[5] B. Ďurian, J. Holub, H. Peltola, and J. Tarhio. Tuning BNDM with q-
grams. In Proc. ALENEX09, Tenth Workshop on Algorithm Engineering
and Experiments: 29–37, 2009.

[6] B. Ďurian, J. Holub, H. Peltola, and J. Tarhio. Improving practical exact
string matching. Information Processing Letters 110(4):148–152, 2010.

[7] S. Faro and T. Lecroq. Efficient variants of the backward-oracle-matching
algorithm. International Journal of Foundations of Computer Science
20(6): 967–984, 2009.

[8] S. Faro and T. Lecroq. An efficient matching algorithm for encoded DNA
sequences and binary strings. In Proc. CPM 2009, Combinatorial Pattern
Matching, 20th Annual Symposium, LNCS 5577: 106–115, Springer, 2009.

[9] S. Faro and T. Lecroq. The exact string matching problem: a comprehen-
sive experimental evaluation. CoRR abs/1012.2547, 2010.

[10] K. Fredriksson. Shift-or string matching with super-alphabets. Information
Processing Letters, 87(4):201–204, 2003.

[11] J. Holub and B. Ďurian. Fast variants of bit parallel approach to suffix au-
tomata. Presentation in: The Second Haifa Annual International Stringol-
ogy Research Workshop, 2005.

14

[12] R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp.,
10(6):501–506, 1980.

[13] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp.,
21(11):1221–1248, 1991.

[14] P. Kalsi, H. Peltola, and J. Tarhio. Exact string matching algorithms for
biological sequences. In Proc. BIRD 2008, 2nd International Conference on
Bioinformatics Research and Development, Communications in Computer
and Information Science 13:417–426, Springer, 2008.

[15] J. Y. Kim and J. Shawe-Taylor. Fast string matching using an n-gram
algorithm. Softw. Pract. Exp., 24(1):79–88, 1994.

[16] T. Lecroq. Fast exact string matching algorithms. Information Processing
Letters, 102(6):229–235, 2007.

[17] G. Navarro and M. Raffinot. Fast and flexible string matching by com-
bining bit-parallelism and suffix automata. ACM Journal of Experimental
Algorithmics (JEA), 5(4), 2000.

[18] G. Navarro. NR-grep: A fast and flexible pattern-matching tool. Softw.
Pract. Exp., 31(13):1265–1312, 2001.

[19] H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string
matching. In Proc. SPIRE’03, 10th International Conference on String
Processing and Information Retrieval, Lecture Notes in Computer Science
2857:80–93, 2003.

[20] D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132–142, 1990.

[21] J. Tarhio and H. Peltola. String matching in the DNA alphabet. Softw.
Pract. Exp., 27(7):851–861, 1997.

[22] R. F. Zhu and T. Takaoka. On improving the average case of the Boyer–
Moore string matching algorithm. Journal of Information Processing,
10(3):173–177, 1987.

15

