
Perspectives on Program Animation with Jeliot?Mordechai Ben-Ari1, Niko Myller2, Erkki Sutinen2, and Jorma Tarhio31 Department of Science TeachingWeizmann Institute of ScienceRehovot 76100, Israelmoti.ben-ari@weizmann.ac.il2 Department of Computer ScienceUniversity of JoensuuP.O. Box 111, FIN-80101 Joensuu, Finlandfnmyller,sutineng@cs.joensuu.fi3 Department of Computer Science and EngineeringHelsinki University of TechnologyP.O. Box 5400, FIN-02015 HUT, Finlandjorma.tarhio@hut.fiAbstract. The Jeliot family consists of three program animation envi-ronments which are based on a self-animation paradigm. A student canvisualize her Java code without inserting additional calls to animationprimitives. The design of the animation environments has been guidedby the analysis of feedback from high school and university students.Evaluation studies indicate the bene�t of dedicated animation environ-ments for di�erent user groups like novice programmers. Based on theresults of these studies, we present plans for a future work on Jeliot.1 IntroductionThe Jeliot family consists of three program animation environments: Eliot [1],Jeliot I [2], and Jeliot 2000 [3], which have been developed in order to improve theteaching and learning of computer science, in particular, programming. The keydesign principle has been learning-by-doing: a student should have an animationtool which helps him to easily construct a visual representation of a program.The two representations of a program, namely its code and its animation, shouldmatch the mental image of the student, so that he could concentrate on thecomprehension process instead of being misled by disturbing visual clues.To achieve the kind of transparency in an animation environment describedabove, you need a consistent technical design. The Jeliot framework is basedupon self-animation: the syntactical structures of a programming language havebuilt-in visual semantics. In this way, an interpreter or compiler can automat-ically generate the animation of a program. This means that a student can, inprinciple, write any program without worrying about how to visualize it. The? The work was supported by the National Technology Agency, Finland.

learning process takes place at the level of coding a program and simultane-ously studying the two representations, textual and visual, not by creating thetextual representation, and then subsequently creating another|visual|one forexisting code.A danger of using an automated system in education is that the student mayexhibit super�cial learning, without having made the personal e�ort to trulyunderstand to subject. Or worse: does a system make a student into a zombie(as a graduate student from Ekaterinburg commented), by forcing him to seethe running-time behavior of a program in a predetermined way? These kinds ofquestions led us to create a semi-automatic implementation of the self-animationparadigm. A semi-automatic visualization environment should allow a studentto de�ne the visual semantics for each of the program structures, or at least tochoose the most appropriate one for his needs.Apparently, there is a trade-o� between the speed at which a fully-automaticanimation can be constructed, and the versatility of the semi-automaticparadigm. One member of the Jeliot family is fully-automatic, rather othersretain the
exibility of the semi-automatic paradigm. Thus, the Jeliot frame-work o�ers an attractive platform for evaluating the e�ects of various animationstrategies in di�erent student populations.2 The Development of the Jeliot FamilyJeliot is an animation tool for visualizing the execution of Java programs oralgorithms. We review two versions of Jeliot: Jeliot I [2, 4] implemented in theUniversity of Helsinki works on the Web, and Jeliot 2000 [3] implemented in theWeizmann Institute of Science is a single Java application. We also consider Eliot[1], the predecessor of Jeliot I, as a member of the Jeliot family, because Eliot isfunctionally similar to Jeliot I. The name Eliot was taken from the Finnish wordEli�ot, which means living organisms. The name Jeliot stands for Java-Eliot.2.1 Early YearsThe Jeliot family is an outcome of a long process. In 1992 Erkki Sutinen andJorma Tarhio were involved with a project [5] of implementing ready-made ani-mations for string algorithms. They noticed that the actual process of creatinganimations was more useful for learning than just watching ready-made anima-tions. Because it took up to 100 hours to create a simple animation using thetools that were available at that time, the development of new tools for creatinganimations was started.The �rst step towards Eliot was the implementation of self-animating datatypes. A data type is self-animating if the animation system provides a selectionof visual representations for the type, and prede�ned animations are associatedwith its operations. If a program uses animated data types, its animation isseen as a sequence of the visualized operations when the program is run. Thisparadigm is called self-animation.

Self-animation is similar to the interesting-events approach [6], where theevents are connected with the operations of the data types. However, self-animation has several advantages over the interesting-events approach: The algo-rithm and animation codes are not separated and data is not duplicated, becauseyou do not have to construct the animation by inserting calls to animation prim-itives within the code of the algorithm. With self-animation, the preparation ofan animation for a new algorithm is fast, and code reuse is easier.Related Systems. The animation of Jeliot is controlled by operations on datastructures. This kind of animation is closely connected with the developmentof debuggers and has a long history. Incense [7] was probably the �rst systemcapable of showing data structures of several kinds. Provide [8] o�ers alterna-tive visual representations for variables. PASTIS [9] is an example of associatinganimation with a debugger. UWPI [10] introduced sophisticated automatic ani-mation. In UWPI, a small expert system selects the visualization for a variablebased on naming conventions of data types. At least Lens [11], VCC [12], andAAPT [13] are worth mentioning among other animation systems related toJeliot.2.2 EliotThe key features of Eliot are self-animating data types and a user interface. Eliotextracts and displays the names of the variables of the self-animating types,which are integer, real, character, array and tree. The user decides which vari-ables should be animated and selects their visual appearance. The user mayaccept the default values or change them individually for each object. In thisway, constructing an animation is semi-automatic: the basic operations are de-�ned automatically by the code, while the user can �ne-tune the animation inthe second phase, according to his internal view of data structures.It is the integrated user interface of Eliot which makes self-animation prac-tical to use. With Eliot it takes only a few minutes to design and compile asimple animation for a C program, but the same process would take about anhour without the user interface, because the set of animated variables must beprogrammed and the values of all visual attributes set by hand.Eliot supports multiple animation windows called stages, which can be dis-played simultaneously. The selection of the animated variables and their char-acteristics on each stage is independent. Eliot provides a feature to store theselection of variables and their visual parameters for later use.Presentation of animation in Eliot is based on a theater metaphor [1], whichhas guided the design as well as the implementation. One can see the entireanimation as a theatrical performance. The script of a play involves a numberof roles, where the roles correspond to the variables of the algorithm to be visu-alized. An actor plays a role: in an animation, an actor is a visual interpretationof a variable. A play may have many simultaneous directions on multiple stages;similarly, an algorithm might have di�erent visualizations on multiple animationwindows.

2.3 Jeliot IEliot was completed in 1996. It ran under X windows and used the Polka anima-tion library [14]. Because porting Eliot would have have been diÆcult, we decidedto create a similar system for the World-Wide Web that would be portable. TheJeliot I system for animating Java programs was �nished in 1997. Both Eliot andJeliot I were implemented by students of University of Helsinki under directionof Erkki Sutinen and Jorma Tarhio.

Fig. 1. A screenshot of Jeliot IAlthough the functionality of Jeliot I is similar to that of Eliot, the technicaldesign is completely di�erent and is based on client-server architecture. More-over, the Polka library is not any more used; instead, graphical primitives wereimplemented in using the standard Java libraries. The implementation of self-animation in Eliot relied on the ability to overload operators in the underlyingimplementation language, C++. In Jeliot I, calls of relevant animation primitivesare inserted into the algorithm during preprocessing of the source code.Jeliot I is capable of animating all the primitive types of Java (boolean, in-tegral, and
oating-point types), one- and two-dimensional arrays, stacks andqueues. For all types, visual representations can be selected. However, the ani-mated tree type of Eliot is not supported. Jeliot I highlights the active line ofcode in the program window during execution.In the terms of the theater metaphor, Jeliot I has an additional feature thatdid not exist in Eliot. Jeliot I enables improvisations, where the user can modify

the visual appearance on the stage while a performance is running. The modi�edvisualization parameters have an immediate impact on the actors on stage.Figure 1 shows a screen capture from Jeliot I. The main control panel is onthe left; on the right is one stage upon which an animation is taking place. Thereare many control windows used to con�gure the animation, too many in fact fornovice users. The main control panel shows the source code of the program,highlighting the statement that is currently being animated. On the stage isthe animation of a table being sorted with the bubblesort algorithm. Above thetable is an animation of a comparison between two values of the table: "YES!"signi�es that the comparison returns true.2.4 Jeliot 2000The user interface of Jeliot I proved to be diÆcult for novices. Therefore, a newversion of Jeliot was designed and developed by Pekka Uronen during a visit tothe Weizmann Institute of Science under the supervision of Mordechai Ben-Ari.Jeliot 2000 [3] was speci�cally designed to support teaching of novice learners.

Fig. 2. A screenshot of Jeliot 2000Two principles guided the design of Jeliot 2000: completeness and continuity.Every feature of the program must be visualized; for example, the use of aconstant is animated by having the constant move from an icon for a constantstore. Moreover, the animation must make the relations between actions in theprogram explicit; for example, the animation of the evaluation of an expressionincludes the animation of the evaluation of subexpressions.As the intended users have little or no experience working with computers,the user interface of Jeliot 2000 is kept as simple as possible, without the cus-tomization abilities of Jeliot I. Jeliot 2000 displays two panels: one for the source

code, and another for the animation. The execution of the program is controlledthrough familiar VCR-like buttons (see Figure 2).The implementation of Jeliot I is based on self-animating data types, but thismakes it diÆcult to implement visual relations during evaluation of expressions,parameter passing and control structures. Jeliot 2000 embeds the animation sys-tem within an interpreter for Java source code, giving more power of expressionat the cost of a more complicated implementation. It was a challenge to producea smooth animation, because the visual objects that represent an expressionmust remain displayed for the user to examine in the context of the source code.Jeliot 2000 is written in Java like Jeliot I, but unlike the Web-based client-serverarchitecture of Jeliot I, it is structured as a single application for simplicity andreliability in a school PC laboratory. The current implementation of Jeliot 2000is limited in the language constructs that it supports.Figure 2 shows a screen capture from Jeliot 2000. The left panel shows theprogram code that is animated. The lower-left corner contains the simple VCR-like control panel. The lower-right corner of the user interface contains a textboxthat Jeliot 2000 uses to display the output. The animation is performed on thestage in the right panel. Here the animated algorithm is the same bubblesortalgorithm as in Figure 1. The lower left corner of the stage displays a \source"of constants. The rest of the stage displays the animation: on the left, a boxrepresenting the main method including the variables that are declared withinthe method. At the moment, a comparison of two values of the table is beinganimated. One can see from the picture all subexpressions that are needed toevaluate the expression in the program code. In addition, an explanation of theevaluation is displayed.2.5 Comparison and DiscussionEliot and Jeliot I were aimed at teaching algorithms and data structures. Theyare more useful when the student already knows the elements of programming.Constructing of an animation is semi-automatic. Jeliot 2000 was made for novicesto illustrate how a Java program works. Animation is fully automatic, and theuser is not able to customize the animation. Table 1 lists the main features ofthe systems.Comparing the animations of Jeliot I and Jeliot 2000 is diÆcult because inJeliot I one can have several adjustable views, while Jeliot 2000 has only one�xed view. Another di�erence between the systems is in the level of explanation.Jeliot I does not present as many explanatory features as Jeliot 2000; these wereadded in the development of Jeliot 2000 as essential for novices.Automation is one of the key features of Jeliot. Marc Brown [6] has dis-cussed the problems of automatic animation. He argues that in general thereis no one-to-one correspondence between the statements of a program and theimages of the animation. An ideal animation according to him also shows syn-thetic metastructures of the algorithm. Of course, a fully automatic animationsystem cannot produce any synthetic metastructures. But in some cases theycan be achieved by customizing a view, which is possible in Eliot and Jeliot I.

Table 1. Characteristics of the Jeliot family.Eliot Jeliot I Jeliot2000Language C Java JavaAnimated objects selectable + + �Visual attributes adjustable + + �Animated data typesNumber + + +Boolean � + �Character + + �Array + + +Queue � + �Stack � + �Tree + � �Active code line highlighted � + +Number of stages many many 1And it is always possible to use an automatic system in an incremental wayby programming synthetic metastructures as additional data structures of thealgorithm and letting the animation system visualize them.On the level of abstraction at which the programs are executed in Jeliot,informative displays are easy to construct, though the length of the programcode and number of the data structures can be a problem. In Eliot and Jeliot I,one can add new stages to accommodate all the data structures that are to beanimated. During the development of Jeliot I, this feature was used to debugthe system, proving that even a large amount of code can be accommodated.Moreover, one can add data types of one's own inside Jeliot I and so animateeven complex data structures. In Jeliot 2000, problems may arise if there aretoo many data structures to be simultaneously animated because Jeliot 2000has only one stage. However, Jeliot 2000 was designed for novice users, so thislimitation is not important.3 Empirical EvaluationThere is no question that visualizations and animation of algorithms and pro-grams is appealing, and can increase the motivation of students studying com-puter science. Intuitively, it would seem that they would signi�cantly improvelearning of computer science concepts; unfortunately, empirical studies do notunequivocally support this claim. From its inception, the Jeliot family has beensubjected to extensive empirical evaluation; the results clearly show when pro-gram visualization can help and when not. In this section, we discuss some the-oretical background, brie
y describe empirical work by John Stasko, and thenpresent details of the empirical evaluation of Eliot, Jeliot I, and Jeliot 2000.

3.1 When Does Visualization Help?Petre and Green [15, 16] examined the use of visual programming by novices andexperts. They concluded that the main advantage of graphics is the informationcontained in secondary notation, which is the informal part of the graphics:placement, color, indentation, and so on. Experts use this information eÆcientlyto understand a graphics display; even if two experts use di�erent secondary no-tation, they are able to easily decipher each others conventions and to recognizethem as the work of experts. Novices ignore or misinterpret secondary notation,so their use of graphics is highly ineÆcient. Petre and Green conclude that: (a)the notational needs of experts and novices are di�erent, and (b) novices mustbe explicitly taught to read graphics.In a broader context, Mayer [17] performed a sequence of experiments onmultimedia learning. He found that visualizations must be accompanied by si-multaneous textual or verbal explanations to be e�ective. Multimedia guidesstudents' attention and helps them create connections between text and con-cepts.These results directly in
uenced the development of Jeliot 2000, by pointingout the need to a di�erent tool for novices, and the need to include explanatorytext with the animation of control structures.3.2 Stasko's WorkStasko, Badre and Lewis [18] used algorithm animation to teach a complicatedalgorithm to graduate students in computer science, but the results were disap-pointing: the group that used animation did not perform better than the controlgroup. They conjecture that the students had not used animation before andfound it diÆcult to map the graphics elements of the animation to the algo-rithm. In another experiment, Byrne, Carambone, and Stasko [19] showed thatstudents in the animation groups got better grades on challenging questions forsimple algorithms, but on diÆcult algorithms the di�erences were not signi�-cant. Kehoe, Stasko, and Taylor [20] found that algorithm animation is moree�ective in open homework sessions than in closed examinations. As one wouldexpect from Mayer's work, they found that animation is not useful in isolation:students need human explanations to accompany the animations.3.3 Evaluating Eliot and Jeliot IAn empirical evaluation of Eliot was carried out in a course on data structures[21, 22], using questionnaires, video tapes, learning diaries and interviews. Thestudies showed that using Eliot improved the motivation and activation levelof the participating students, and that students produced higher quality codeand documentation. Jeliot I has also been used for cross-cultural co-operationin teaching programming [23].Matti Lattu [24] carried out an empirical evaluation of Jeliot I primarily ontwo groups of high-school students. (A group of university students was also

studied, but they did not use Jeliot I in depth.) Semi-structured interviews andobservations of the lectures were used. Here is a summary of the results:{ Both students and teachers tend to use continuous execution, rather thanstep-by-step mode. Some educators might �nd this result to be counter-intuitive, because step-by-step execution is more interactive and construc-tivist [25] than continuous execution.{ Teachers frequently used visualization during lectures before presenting theprogram source.{ Jeliot I assisted in concept-forming, especially at the novice level.{ The user interface was too complex for novices. Con�rming Petre's claims,the novices had diÆculty interpreting the visualization, and the grain ofanimation was too coarse.In subsequent research [26], Jeliot I was evaluated for use as a demonstrationaid when teaching introductory programming and Java. Several classes wereobserved during the year and the �eld notes analyzed. The observation alsocaptured the use of traditional demonstration aids: a blackboard and an overheadprojector.Their �rst conclusion is that ease and
exibility of use are of paramountimportance. Developers of visualization software must ensure that the software iseasy to use and reliable; otherwise, low-tech materials will be preferred. Of moreinterest is the observation that all aspects of a program must be visualized: data,control
ow, program code and objects. Jeliot I is primarily a tool for visualizingdata, while Jeliot 2000 signi�cantly improved the visualization of control
ow.Perhaps the next step is to include visualization of program code and objects.The BlueJ system [27] is an excellent example of this type of visualization tool.3.4 Evaluating Jeliot 2000Jeliot 2000 was evaluated by Ronit Ben-Bassat Levy in an experiment [3] thatis as close to a controlled experiment as one could hope for: two classes, oneusing Jeliot 2000 and one as a control group. The experiment was carried outon tenth-grade high school students studying an introductory course on algo-rithms and programming, and the results were evaluated both quantitativelyand qualitatively. The classes were composed randomly, but unfortunately, thecontrol group was better, which made interpretation of the quantitative resultssomewhat diÆcult. The experiment was run for a full year, so that the studentscould overcome the diÆculties inherent in using a new system.The experiment was carried out by testing learning of each new conceptas it was studied during the year. In addition, an assignment at the end ofthe year and a follow-up assignment during the next school year were used toinvestigate long-term e�ects. The quantitative test results were supplementedwith individual problem-solving sessions which were taped and analyzed. Fordetails of the experimental setup and results, see [3]. We can summarize theresults and conclusions as follows:

{ The scores of the animation groups showed a proportionally greater improve-ment, and their average matriculation exam score was the same as that ofthe control group, even though the latter contained stronger students.{ Mediocre students pro�t more from animation than either strong or weakstudents, though the grades of the latter two groups do not su�er.{ Students bene�t most if the animation session includes individual instruc-tion.{ The animation group used a di�erent and better vocabulary of terms thandid the non-animation group. Verbalization is an important step to under-standing a concept, so for this reason alone, the use of animation can bejusti�ed.{ There was signi�cant improvement in the animation group only after severalassignments; one can conclude that it takes time to learn to use an animationtool and to bene�t from its use.{ Students from the animation group used a step-by-step method of explana-tion, and some even used symbols from Jeliot 2000 in order to show the
ow of values. Students from the control group expressed themselves in ageneralized and verbose manner. This di�erence in style continued into thenext year.Here is a summary of a problem-solving session on nested if-statements thatdemonstrates how the above conclusions were arrived at:{ In the control group, only the stronger students could answer the questions,and only after many attempts. They were not sure of the correctness of theiranswers and had diÆculty explaining them.{ The stronger students of the animation group also had diÆculties answeringthis question! They did not use Jeliot 2000 because they believed that theycould understand the material without it.{ The weaker students of the animation group refused to work on the prob-lem, claiming that nested if-statements are not legal, or that they did notunderstand the question.{ The mediocre students of the animation group gave correct answers! Theydrew a Jeliot 2000 display and used it to hand simulate the execution of theprogram.4 Future PlansThe knowledge that has been collected through empirical evaluation of Jeliothas already changed the development of the Jeliot family. Here we present sug-gestions for the further development of Jeliot.4.1 Visualization Techniques and User Interface IssuesIn automatic program visualization, the animation is performed at constantspeed, even though some parts of the program are more diÆcult to understand

than others. The ability to specify varying animation speeds for di�erent partsof the program would make it easier to concentrate on diÆcult parts of theprogram. For example, initialization could be run at a higher speed than thestatements in the inner loops of a sorting algorithm. The question arises: Howdoes the user specify such diÆcult parts? The user would have to specify suchparts through special comments in the program or using the user interface. Thenext paragraph suggests that semi-automated visualization could help with thisspeci�cation.For a novice user who has never programmed, automatic animation is es-sential. However, as the user becomes more experienced, he or she will want tocontrol the con�guration of the animations, for example, to select the speed ofanimation of di�erent parts of the program, or even to skip the animation ofparts like initialization. The user will also want to con�gure the visual elementsfor color, form and placement as was done in Jeliot I. Jeliot I also showed thatstoring con�gurations is important, because it fosters reuse animations, makingthem easier to share between a teacher and a student, or among the studentsthemselves.While forcing users to shift their gaze from one point to another on thescreen is not recommended [28], it is important to guide the user in focusingon signi�cant elements of the animation. One possibility would be to use sound[17]: the user would come to recognize speci�c sounds as guiding focus to speci�clocations.4.2 Visualization with JeliotStructures of the programming language. The animation of method callsand array access is not entirely transparent in any of the systems of the Jeliotfamily, even though precisely these elements can be diÆcult for novices. It isimportant to �nd better ways to illustrate how a method gets its parametersand how multi-dimensional arrays are accessed. New self-animating data typessuch as lists and graphs would extend the applicability of Jeliot. Furthermore,Jeliot should make it easy for the user to create a new self-animating data type.Object-oriented programming. Jeliot uses Java, a popular object-orientedlanguage, but it can not handle objects or user de�ned classes. The next ver-sion of the Jeliot should provide better support for animating aspects of objects,such as object creation and method calling. Jeliot is quite good at animatingthe dynamic aspects of program execution, but to support object-oriented pro-gramming, it should also visualize the class structure in order to show the usesand inherits from relationships among the classes (cf. [27]).Other programming languages. Currently Jeliot supports only programswritten in the Java language. A visual debugger for Scheme [29] was implementedby slightly modifying Eliot, showing that the Jeliot could be modi�ed to supportother programming languages.

Visualizations of other subjects. Many dynamic phenomena can be de-scribed as algorithms, and therefore visualized by Jeliot [30]. For example, itwould be possible to visualize the Mendelian rules of inheritance for a biologyclass.4.3 Integration with Other EnvironmentsWe would like to integrate Jeliot into the learning environment so that metadata[31] could be collected about the students. For example, if Jeliot could collectmetadata about the diÆculties that an individual student has, this could beused both by the teacher and by Jeliot itself to adapt the animation speed asdescribed above.Jeliot could be integrated with other program visualization tools such asBlueJ [27] to provide a richer variety of views of the program and its execution.A natural application of automatic animation is debugging [1]. The debuggingabilities of Jeliot could be improved by implementing all of the Java language,and also by more eÆcient highlighting of the code. Errors found during compila-tion should be highlighted and partial animation performed if possible. Perhapseven common syntax errors could be animated. Thus, Jeliot could form part ofa semi-automated assessment system for programming exercises [32].4.4 Jeliot in a Learning and Development CommunityUsers should be able to interact with each other. Jeliot could be integrated withInternet communication tools to facilitate students working together on the sameproject, by enabling all participants to view the same animation.Many of the proposed extensions to Jeliot could be implemented indepen-dently. The Jeliot source code could be licensed as free software, perhaps underthe GNU general public license (GPL), with coordination coming from the De-partment of Computer Science at the University of Joensuu.5 ConclusionThe phases of the history of Jeliot re
ect di�erent trends or approaches in com-puter science education, especially in teaching how to program. The predecessorSalsa was a package of ready-made animations for teaching string algorithms:it emphasized the instructive perspective. The Eliot, Jeliot I, and Jeliot 2000systems, with their fully or semi-automatic animation tools, are examples ofconstructive learning environments. The future platforms will be worked out byextended and networked teams: they represent the idea of a learning community.In these communities, one can no more make a distinction between a teacher, alearner, and a designer.One of the main lessons learned during the development and evaluation cycleof Jeliot is that of di�erent learners and learner groups. An animation systemshould always o�er a solution to a certain learner group's needs. Therefore,

an evaluation is not just another stage in the design and implementation of anenvironment, but should be carried out simultaneously during the whole process.Moreover, there is seldom one single best application for all animation or programcomprehension needs, but rather a bunch of components of which a learner canpick up the ones she needs.To sum up, what we have learned during the close to ten years of working withprogram animation, is that animation as well as apparently other learning toolsshould help a learner at his individual learning diÆculties adaptively, distanceindependently, and taking into account diverse learning and cognitive styles.References1. Lahtinen, S., Sutinen, E., Tarhio, J.: Automated animation of algorithms withEliot. J. Visual Languages and Computing 9 (1998) 337{349.2. Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Ter�asvirta, T., Vanninen, P.:Animation of user algorithms on the Web. In: Proceedings of VL' 97 IEEE Sym-posium on Visual Languages. (1997) 360{367.3. Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program ani-mation system. Journal of Visual Languages and Computing (2001 (submitted))Preliminary version in E. Sutinen (ed.) First Program Visualization Workshop,pages 131{140, University of Joensuu, 2001.4. Sutinen, E., Tarhio, J., Ter�asvirta, T.: Easy algorithm animation on the Web.Multimedia Tools and Applications (2001) (to appear).5. Sutinen, E., Tarhio, J.: String matching animator Salsa. In Tombak, M., ed.:Proceedings of Third Symposium on Programming Languages and Software, Uni-versity of Tartu (1993) 120{129.6. Brown, M.: Perspectives on algorithm animation. In: Proceedings of CHI '88.(1988) 33{38.7. Myers, B.: Incense: a system for displaying data structures. ACM ComputerGraphics 17 (1983) 115{125.8. Moher, T.: Provide: a process visualization and debugging environment. IEEETransactions on Software Engineering 14 (1988) 849{857.9. M�uller, H., Winckler, J., Grzybek, S., Otte, M., Stoll, B., Equoy, F., Higelin, N.:The program animation system pastis. Journal of Visualization and ComputerAnimation 2 (1991) 26{33.10. Henry, R., Whaley, K., Forstall, B.: The University of Washington illustratingcompiler. In: Proceedings of ACM SIGPLAN '90 Symposium on Compiler Con-struction. Volume 25(6) of SIGPLAN Notices. (1990) 223{233.11. Mukherjea, S., Stasko, J.: Toward visual debugging: integrating algorithm anima-tion capabilities within a source level debugger. ACM Transactions on Computer-Human Interaction 1 (1994) 215{244.12. Baeza-Yates, R., Fuentes, L.: A framework to animate string algorithms. Informa-tion Processing Letters 59 (1996) 241{244.13. Sanders, I., Harshila, G.: AAPT: Algorithm animator and programming toolbox.SIGCSE Bulletin 23 (1991) 41{47.14. Stasko, J.: Polka Animation Designer's Package. (1994) Animator's Manual, in-cluded in Polka software documentation.15. Petre, M.: Why looking isn't always seeing: Readership skills and graphical pro-gramming. Communications of the ACM 38 (1995) 33{44.

16. Petre, M., Green, T.R.: Learning to read graphics: Some evidence that `seeing' aninformation display is an acquired skill. Journal of Visual Languages and Com-puting 4 (1993) 55{70.17. Mayer, R.E.: Multimedia learning: Are we asking the right questions? EducationalPsychologist 32 (1997) 1{19.18. Stasko, J., Badre, A., Lewis, C.: Do algorithm animations assist learning: Anempirical study and analysis. In: Proceedings of the INTERCHI '93 Conferenceon Human Factors in Computing Systems, Amsterdam, The Netherlands (1993)61{66.19. Byrne, M., Catrambone, R., Stasko, J.: Do algorithm animations aid learning?Technical Report GIT-GVU-96-19, Georgia Institute of Technology (1996).20. Kehoe, C., Stasko, J., Taylor, A.: Rethinking the evaluation of algorithm anima-tions as learning aids: An observational study. Technical Report GIT-GVU-99-10,Georgia Institute of Technology (1999).21. Sutinen, E., Tarhio, J., Lahtinen, S.P., Tuovinen, A.P., Rautama, E., Meisalo, V.:Eliot|an algorithm animation environment. Technical Report A-1997-4, Univer-sity of Helsinki (1997). http://www.cs.helsinki.�/tr/a-1997/4/a-1997-4.ps.gz.22. Meisalo, V., Sutinen, E., Tarhio, J.: CLAP: teaching data structures in a creativeway. In: Proceedings Integrating Technology into Computer Science Education(ITiCSE 97), Uppsala (1997) 117{119.23. J�arvinen, K., Pienim�aki, T., Kyaruzi, J., Sutinen, E., Ter�asvirta, T.: Between Tan-zania and Finland: Learning Java over the Web. In: Proceedings Special InterestGroup in Computer Science Education (SIGCSE 99), New Orleans, LA (1999)217{221.24. Lattu, M., Meisalo, V., Tarhio, J.: How a visualization tool can be used: Eval-uating a tool in a research and development project. In: 12th Workshop ofthe Psychology of Programming Interest Group, Corenza, Italy (2000) 19{32.http://www.ppig.org/papers/12th-lattu.pdf.25. Ben-Ari, M.: Constructivism in computer science education. Journal of Computersin Mathematics and Science Teaching 20 (2001) 45{73.26. Lattu, M., Meisalo, V., Tarhio, J.: On using a visualization tool as a demonstrationaid. In Sutinen, E., ed.: First Program Visualization Workshop, University ofJoensuu (2001) 141{162.27. K�olling, M., Rosenberg, J.: Guidelines for teaching object orientation with Java.In: Proceedings Integrating Technology into Computer Science Education (ITiCSE01), Canterbury, UK (2001) 33{36. www.bluej.org.28. Saariluoma, P.: Psychological problems in program visualization. In Sutinen,E., ed.: Proceedings of the First Program Visualization Workshop. Volume 1 ofInternational Proceedings Series., Department of Computer Science, University ofJoensuu (2001) 13{27.29. Lahtinen, S.P.: Visual debugger for Scheme. Master's thesis, Deparment of Com-puter Science, University of Helsinki (1996) (in Finnish).30. Meisalo, V., Sutinen, E., Tarhio, J., Ter�asvirta, T.: Combining algorithmic andcreative problem solving on the web. In Davies, G., ed.: Proceedings of Teleteaching'98/IFIP World Computer Congress 1998, Austrian Computer Society (1998) 715{724.31. Markus, B.: Educational metadata. In: Proceedings of Qua Vadis-International.FIG Working Week, Prague (2000).32. Higgins, C., Suhonen, J., Sutinen, E.: Model for a semi-automatic assessmenttool in a web-based learning environment. In Lee, C.H., ed.: Proceedings ofICCE/SchoolNet 2001 Conference, Seoul, Korea (2001) 1213{1220.

