
Comparison of

Exact String Matching Algorithms

for Biological Sequences?

Petri Kalsi, Hannu Peltola??, and Jorma Tarhio

Department of Computer Science and Engineering
Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, Finland
petri.kalsi@iki.fi, {hpeltola, tarhio}@cs.hut.fi

Abstract. Exact matching of single patterns in DNA and amino acid
sequences is studied. We performed an extensive experimental compari-
son of algorithms presented in the literature. In addition, we introduce
new variations of earlier algorithms. The results of the comparison show
that the new algorithms are efficient in practice.

1 Introduction

String matching is used for locating nucleotide or amino acid sequence patterns
in the biological sequence databases. Nucleotide or DNA sequences have an al-
phabet of four characters, and amino acid sequences have an alphabet of 20
characters, respectively. Because the total number of sequences is rapidly in-
creasing, efficient methods are needed. Recently three novel algorithms, namely
Lecroq’s ‘New’ [13], SSABS [16], and TVSBS [19], were proposed for searching
single exact pattern in DNA and amino acid sequences. This motivated us to
compare these algorithms with older methods known to be efficient. Another rea-
son is advances in the processor and memory technology and in compilers. Old
algorithms do not necessarily behave with new processors and compilers in the
same way they did ten years ago in our extensive comparison [18]. Besides the
comparison in the DNA and amino acid alphabets, we developed new variations
of our earlier algorithm [18].

It turned out that SSABS and TVSBS were poor for DNA sequences. The
new variations of our algorithm were slightly faster than Lecroq’s algorithm in
most cases in the both alphabets. The clear winner for amino acid patterns of
moderate length was SBNDM2 [6], which has not been specifically designed for
biological alphabets.

In terms of computer science, a biological sequence is a string, and therefore
we use both terms. The aim of string matching is to report all exact occur-
rences of a pattern string in a longer text string. We use the following notations

? Supported by the Academy of Finland
?? The corresponding author: hpeltola@cs.hut.fi



throughout the paper. The length of the pattern and the text are m and n,
respectively. The size of the alphabet is σ.

The rest of the paper is organized as follows. We review earlier solutions in
Section 2 and introduce the new variations of our algorithm in Section 3. Section
4 reports the results of our experiments before the conclusion in Section 5.

2 Known Solutions for DNA Sequences

Most of the efficient string matching algorithms in the DNA alphabet are modifi-
cations of the Boyer–Moore algorithm [3]. Most often only the occurrence heuris-
tic (also called the bad character heuristic) is applied for shifting. Algorithms of
this type are greedy in the sense that the pattern is moved forward after the first
character mismatch of an alignment is observed. Shifts may then be unnecessar-
ily short for the nucleotide alphabet if shifting is based on a single character.
Therefore it is advantageous to apply q-grams, strings of q characters, instead
of single characters. This technique was already mentioned in the original paper
of Boyer and Moore [3, p. 772], and Knuth [12, p. 341] analyzed theoretically
its gain. Zhu and Takaoka [21] presented the first algorithm utilizing the idea.
Their algorithm uses two characters for indexing a two dimensional array. They
gave also another version based on hashing. The size of the hash table was two
times the pattern length.

Baeza-Yates [1] introduced an extension to the Boyer–Moore–Horspool algo-
rithm [7] where the shift array is indexed with an integer formed from a q-gram
with shift and add instructions. For this kind of approach the practical upper
limit with 8 bit characters is two characters.

For the DNA alphabet Kim and Shawe-Taylor [10] introduced a convenient
alphabet compression by masking the three lowest bits of ASCII characters. In
addition to the a, c, g, and t one gets distinguishable codes also for n and u.
Even important control code \n=LF has distinct value, but \r=CR gets the
same code as u. With this method they were able to use q-grams of up to six
characters. Indexing of the shift array was similar to Baeza-Yates’ algorithm.

With a small alphabet the probability of an arbitrary q-gram appearing in
long pattern is high. This restricts the average shift length. Kim and Shawe-
Taylor [10] introduced also an interesting variation for the cases where the q-gram
in the text occurs in the pattern. Then two additional characters are checked
one by one to achieve a longer shift.

In most cases the q-gram that is taken from the text does not match with the
suffix of the pattern, and the pattern can be shifted forward. For efficiency one
should use a ufast skip loop [8], where the pattern is moved forward until the
last q-gram of the pattern matches with a q-gram in the text. The easiest way
to implement this idea is to artificially define the shift of the last q-gram of the
pattern to be zero. We must also add to the end of the text a copy of the pattern
as a stopper. After the skip loop the pattern is compared with the corresponding
text positions. An advantage of skip loop is that we use text characters both for



preliminary comparison and for computing the shift. So we fetch the characters
only once.

Our earlier algorithm [18] applies a skip loop. The key feature of this algo-
rithm is efficient handling of q-grams. The details are presented in Section 3.1.
Recently Lecroq [13] presented a related algorithm. Its implementation is based
on the Wu–Manber algorithm [20] for multiple string matching, but as suggested
above, the idea is older [3,21].

SSABS [16] and TVSBS [19] were developed for biological sequences. SSABS
is a Boyer–Moore type algorithm. In the search phase the algorithm verifies that
the first and last character of the pattern matches with the current alignment
before checking the rest of the alignment (a.k.a. guard tests). TVSBS uses a 2-
gram for calculating the shift, adopted from the Berry–Ravindran algorithm [2],
which is a cross of the Zhu–Takaoka algorithm and Sunday’s QS algorithm [17].
Instead of the two-dimensional shift table of Berry–Ravindran, TVSBS uses a
hash function to compute an index to a one-dimensional table.

In Section 4, we will present an experimental comparison of several algo-
rithms. Experimental results on some earlier algorithms for DNA sequences can
be found in [18]. We have included three efficient algorithms, namely FAOSO
[4], SBNDM [14,15], and SBNDM2 [6] in the comparison, although they have
not been designed for biological sequences.

Recently Kim et al. [11] presented an algorithm for packed DNA. We excluded
it from the comparison, because there is no fair way to compare other algorithms
with it.

3 Variations of Our Algorithm

3.1 Our Earlier Algorithm

Our algorithm [18] is a modification of the Boyer–Moore–Horspool algorithm [7]
for the DNA alphabet. Instead of inspecting a single character at each alignment
of the pattern, the algorithm reads a q-gram and computes an integer called
fingerprint from it. This idea of applying q-grams was already present in the
earlier algorithms [1,10,21], but we introduced an efficient way to handle q-grams.

The ASCII codes of a, c, g, and t are 97, 99, 103, and 116, respectively.
The ASCII codes are mapped to the range of 4: 0 ≤ r[x] ≤ 3, where r[x] is
the new code of x, such that characters a, c, g, and t get different codes and
other possible characters get e.g. code 0. In this way the computation is limited
to the effective alphabet of four characters. The fingerprint is simply a reversed
number of base 4. A separate transformation table hi is used for each position i
of a q-gram and multiplications are incorporated during preprocessing into the
tables: hi[x] = r[x] · 4i. For q = 4, the fingerprint of x0· · ·x3 is

∑3

i=0
r[xi] · 4i

which is then computed as

h0[x0] + h1[x1] + h2[x2] + h3[x3].

The algorithm is given below as BMHq. It corresponds to Algorithm 4 in
[18] without unrolling. In the algorithm, T = t1· · · tn denotes the text and P =



p1· · · pm the pattern. At each alignment of the pattern the last q-gram of the
pattern is compared with the corresponding q-gram in the text by testing the
equality of their fingerprints. If the fingerprints match, a potential occurrence
has been found, which has to be checked. We need to check only the first m− q
characters of the pattern because our fingerprint method does not cause hash
collisions, assuming that the searched text contains only DNA characters. The
algorithm applies a variation of a skip loop called “unrolled fast” (=ufast) by
Hume and Sunday [8].

Algorithm 1 BMHq(P = p1p2· · · pm, T = t1t2· · · tn)

1: Initialize D[∗]
2: tn+1· · · tn+m ← P /* adding stopper */
3: p ← f(P, m, q)
4: r ← D[p]; D[p] ← 0; k ← m

5: s ← D[f(T, k, q)]
6: loop

7: while s > 0 do

8: k ← k + s

9: s ← D[f(T, k, q)]
10: if k > n then exit /* CORRECTED LINE */
11: Check the potential occurrence
12: s ← r

In the algorithm, f(T, k, q)1 denotes the fingerprint of tk−q+1· · · tk. For com-
putation of the shift table D see [18]. The pattern needs to be copied to the end
of the text, so that the ufast skip loop will end when the search is complete.

Lecroq’s ‘New’ algorithm [13] is closely related to BMHq. However, Lec-
roq applies a different method based on hashing for computing fingerprints of
q-grams. Moreover, the maximal shift of his algorithm is m − q + 1, while that
of BMHq is m, because BMHq is able to handle all prefixes of the first q-gram
of the pattern.

3.2 Variations for DNA

We tested several ways to compute the fingerprint in order to make our al-
gorithm BMH4 faster. When considering 4-grams, they fit into a 32-bit word
in 8-bit characters. Some CPU architectures, notably the x86, allow unaligned
memory reads of several bytes. This inspired us to try reading several bytes in
one instruction, instead of four separate character reads. Reading several bytes
at a time is by no means a new technique. Many researchers have used it [5,9].
But we have not seen any comparison with standard bytewise reading. One may
argue that is not fair to apply multiple reading, because all CPU architectures

1 This is f2 in [18].



do not support it. But the x86 architecture is nowadays so dominant that it is
reasonable to tune algorithms for it.

We will present two variations of BMH4. BMH4b reads a 32-bit word, and
BMH4c reads two consecutive halfwords. Because in BMH4b we have access to
an integer consisting of four characters, it would be inefficient to use the old
character-based fingerprint method. The fingerprint calculation arrays of BMH4
are replaced with hashing expression, where the input is a whole 4-gram as a
4-character long integer. ASCII codes for a, c, g and t are distinguishable by
the last three bits. The following expression packs the unique bits of the four
characters together in a few instructions, to form an integer in the range of
2313...16191 = 00100100001001...11111100111111.

FP(x) = ((x >> 13) & 0x3838) | (x & 0x0707)

Preprocessing of BMH4b is similar to the earlier algorithm, we just calculate
the fingerprints of the 4-grams in the pattern with the new hash function. So
the main difference between BMH4b and BMH4 is in the computing of f . In
BMH4b this is done with masking, shifting, and bitwise OR. Hashing receives
the current text location pointer as an argument, and reads the 32-bit integer
from that address with FP(*(k-3)). D[x] contains the preprocessed shift values
for each hashed q-gram of the pattern.

Based on our tests, unaligned memory reads on x86 processors incur a speed
penalty of up to 70% when compared with aligned reads. This unfortunately
reduces the speed of BMH4b, because 75% of the reads are unaligned on the
average. So we made another variation BMH4c, which reads two consecutive
halfwords. In the case of BMH4c, only 25% of the reads are unaligned ones
getting the speed penalty (coming on the border of 4 bytes). In BMH4c, the
value of a fingerprint is got as a1[x1] + a2[x2] where xi is a halfword and ai a
preprocessed transformation table, for i = 1, 2.

3.3 Variations for Amino Acids

The q-gram approach is valid also for larger alphabets, although with a larger
alphabet the optimal value of q is smaller. A larger alphabet size required only
minor changes to the algorithm. A new variation BMH2 was created based on
BMHq. The range of the ASCII code mapping r[x] was increased from 4 to 20,
to cover the amino acid alphabet “ACDEF GHIKL MNPQR STVWY” instead
of the DNA alphabet. Otherwise the algorithm is the same as BMHq.

We made also BMH2c, which reads a 2-gram as a 16-bit halfword. The shift
array is indexed directly with halfwords.

These algorithms can be used with any text, e.g. English text. For this kind
of data we mapped each character to a smaller range with a modulo function in
preprocessing. The best results for English text were obtained with modulo 25.
Because the mapping tables are created in the preprocessing phase, the modulo
operation does not affect the search time directly.



4 Experimental Results

Algorithms. Among tested algorithms were SSABS [16], TVSBS [19], BMH4,
BMH4b, BMH4c, BMH2, and BMH2c. KS by Kim and Shawe-Taylor [10] uses
a trie of reversed q-grams of the pattern. The Fast Average Optimal Shift-Or
(FAOSO) [4] was tested with different values of the step size and the unrolling
factor. The given run times of FAOSO are based on the best possible parameter
combination for each pattern length.

SBNDM [15] is based on the BNDM [14] algorithm, with simplified shift
calculations. SBNDM2 [6] is a modification of SBNDM. One of the key points
of SBNDM2 is loop unrolling, i.e. handling of a 2-gram before entering to the
inner loop.

We also tested LEC, which is the ‘New’ algorithm of Lecroq [13], and which
uses q-grams and hashing. The run times of LEC are given based on the best
possible q for each pattern length.

SSABS and TVSBS were implemented as described in the articles [16] and
[19]. Because TVSBS is based on Berry–Ravindran algorithm [2], we also im-
plemented two versions of the latter, BR and BRX. In BRX we have modified
the algorithm to calculate shifts based on the last character of the current text
alignment ts and the next character ts+1, instead of ts+1 and ts+2 as in BR
which corresponds to the original Berry–Ravindran. The probability of a shift
of the pattern by one position is approximately 1/σ for BR and 1/σ2 for BRX.
Thus BRX produces with small alphabets longer shifts than BR on the average.
This is due to the inherent weakness of Sunday’s QS algorithm [17]: if the last
character of the pattern is common, then the probability of a shift of one is high.
In such a case, ts+2 is often useless in the computation of shift in BR. Our test
results show that this weakness of BR is noticeable even with amino acids.

All algorithms were implemented in C. The codes of KS, SBNDM2, FAOSO,
and LEC were got from the original authors. Other codes were implemented by
us.

Test setting. The tests were run on a 2.8GHz Pentium D (dual core) CPU with
1 GB of memory. Both cores have 16 KB L1 data cache and 1024 KB L2 cache.
The computer was running Fedora 8 Linux.

All the algorithms were tested in a testing framework of Hume and Sun-
day [8]. All programs were compiled with Intel’s C compiler icc 10.0 producing
x86 “32-bit” code and using the optimization level -O3.

The test patterns were generated based on the text files so that roughly
half of the patterns have matches in the text. These longer patterns were then
cut to shorter patterns. Every pattern set contains 200 patterns for DNA and
100 for amino acids of the same length. For DNA, the test data was taken
from the genome of the fruit fly. The amino acid text is the peptide sequences of
Arabidopsis thaliana. All text files consisted of about 2 ·106 characters. Test runs
were executed on otherwise unloaded computer. To achieve accurate timings the
search for each pattern was repeated 20 times (with DNA and 50 times with
amino acids). Reported results are medians for five successive test runs using



corresponding pattern set. The change of the process from one processor core
to another empties cache memories with various degree. This would slow down
reads from memory and induce annoying variation to the timing of test runs. To
avoid it we have used Linux function sched setaffinity to bind the process to
only one processor or core.

DNA sequences. The search times for DNA sequences are listed in Table 1. The
reported times do not include preprocessing. For most of the tested algorithms
the preprocessing times were less than 1% of search times. The preprocessing
time was slightly more for the BMH2c, BMH4b, BMH4c, TVSBS, KS, BR,
and BRX algorithms, because they have large memory structures, which are
initialized during preprocessing.

Table 1. Search times in milliseconds for DNA sequences (σ = 4)

m bmh4 bmh4c ssabs tvsbs ks br brx sbndm sbndm2 faoso lec3−5

4 1004 806 1991 1559 - 1545 1294 1754 1152 601 1390

6 678 540 1750 1260 1126 1250 984 1246 885 558 762

8 534 429 1612 1073 592 1063 811 984 743 357 551

10 447 355 1570 945 411 936 696 806 657 306 450

12 391 305 1586 866 324 860 624 692 582 276 379

14 351 270 1556 802 281 795 573 603 515 278 327

16 317 250 1551 755 241 747 538 538 462 228 295

18 286 236 1526 716 212 710 506 482 417 235 272

20 257 224 1516 683 196 672 477 440 381 203 256

22 240 210 1536 663 179 654 462 406 349 205 244

24 232 199 1519 645 170 633 442 375 321 227 231

26 220 191 1491 620 162 612 431 348 299 244 220

28 209 182 1526 602 154 593 417 327 280 228 209

30 201 178 1529 589 149 580 407 308 263 242 198

40 173 156 1492 545 126 536 377 - - - 168

50 156 144 1481 521 113 511 361 - - - 150

60 146 135 1432 501 106 491 346 - - - 139

70 135 126 1495 498 105 489 343 - - - 129

80 125 112 1551 498 102 489 334 - - - 121

90 117 110 1588 494 102 483 334 - - - 114

100 111 108 1569 502 107 491 335 - - - 108

FAOSO, KS, and BMH4c were winners of the DNA test. FAOSO was the
fastest for m ≤ 16 excluding m = 6 and m = 14 where BMH4c was the best. KS
was the fastest for 18 ≤ m ≤ 100.

Multiple reading is advantageous, because BMH4c was approximately 20%
faster than BMH4 for short patterns. The times of BMH4b (not shown) were



Table 2. Search times in milliseconds for amino acid sequences (σ = 20)

m bmh2 bmh2c ssabs tvsbs br brx sbndm sbndm2 faoso lec3−4

4 320 277 326 336 316 288 346 241 164 622

6 225 195 252 260 246 214 294 138 123 340

8 280 156 207 213 206 172 250 104 101 245

10 152 133 186 187 177 149 219 84 91 201

12 131 118 173 170 161 133 196 74 79 166

14 119 106 155 148 142 119 175 67 79 142

16 112 98 145 137 132 109 157 62 75 128

18 107 91 137 128 121 101 141 59 69 118

20 101 85 132 120 115 96 127 55 70 112

22 94 81 127 116 109 90 116 53 70 105

24 90 77 122 107 103 85 106 51 68 99

26 86 74 118 102 98 82 97 50 69 93

28 83 71 115 98 93 79 90 49 69 89

30 80 69 114 96 93 77 84 48 68 86

40 72 62 103 81 79 67 - - - 74

50 67 58 98 74 71 61 - - - 67

60 63 55 95 69 67 58 - - - 62

70 58 51 92 63 61 54 - - - 59

80 53 48 92 58 57 51 - - - 55

90 51 48 91 56 53 50 - - - 52

100 51 49 91 54 52 49 - - - 50

between those of BMH4 and BMH4c for patterns longer than 25 nucleotides; for
shorter patterns is was a little slower than BMH4. Even BMH2c (not shown)
was among the best for patterns shorter than 10.

TVSBS proves to be an improvement on SSABS for long patterns, but its
performance still falls in line with the other algorithms of the comparison. How-
ever, the test results show that SSABS and TVSBS are not appropriate for
DNA sequences. The original Berry–Ravindran algorithm was slightly faster
than TVSBS. The results show that the shift modification in BRX is a clear
improvement on BR for DNA sequences.

Amino acid sequences. The search times in the amino acid alphabet in Ta-
ble 2 are more even. BMH2c works efficiently for all tested pattern lengths, but
SBNDM2 is the overall winner of this test. Because the bitvectors were 32 bits
long, BMH2c and BRX dominate when m > 32. Performance of BMH2 is close
to BR and BRX for all tested pattern lengths.

Additional notes. Further optimizations might improve the search times of
TVSBS, especially the same one we used in BRX. With 64-bit bitvectors FAOSO,



SBNDM, and SBNDM2 can handle longer patterns than in these tests. On sep-
arate test with “64-bit code”, SBDNM2 was the fastest also for pattern lengths
up to 64. Currently we have only 32-bit version of FAOSO, so its performance
with longer bitvectors remained unknown.

It was a surprise that KS was the winner for long patterns, because it was
slower in our earlier test [18] and also in the preliminary test with an older
compiler for this paper. The improvement of KS is due to new compilers. With
gcc 4.1 the performance is nearly the same as in Table 1, but when compiled
with gcc 4.0.1, 3.4.4, or 3.3.5 the search times are at least 12% longer on
several computers tested, and even 100% on the set of the shortest patterns.

We repeated the same tests on another computer having two 2.0GHz AMD
Opteron DP 246 processors each having 6KB L1 cache and 1MB L2 cache.
Size of main memory is 6GB (400MHz DDR PC3200). Unfortunately there is
a unusually large variation in timings on that computer so that it was difficult
to get reliable results. On tests with the DNA data, BMH4 was good for short
patterns. KS was good for patterns longer than 15. BMH4c was the fastest for
m ≤ 22. On amino acids BMH2c was superior for all tried pattern sets. For most
algorithms, the relative speed improvement was clearly smaller than in the tests
reported above, when patterns got longer.

Although FAOSO was fast for short patterns, it is rather unpractical. Namely
it has two constant parameters and it is a tedious process to find out the best
combination of them for each type of input. Without varying both of them, one
will likely get slower run times.

5 Conclusion

We demonstrated that it is possible to speed up q-gram calculation by read-
ing several characters at the same time. According to the comparison, the new
variations BMH4c and BMH2c were among the fastest ones for DNA and amino
acid data, respectively. Our intention is to continue working on multiple reading.
We expect that multiple reading would speed up also other algorithms handling
continuous q-grams, like BR, LEC, and SBNDM2. KS is promising for searching
of long DNA patterns on modern processors while using an up-to-date compiler.

We showed how to fix the inefficiency of the Berry–Ravindran algorithm in
the case of DNA data. This modification is advantageous also for amino acid
data.

We noticed that the results depend more on the processor and compiler than
we expected. Algorithm A may be faster than algorithm B on computer C and
the other way around on computer D. For more profound practical evaluation
of algorithms, several environments should be tried.

References

1. R. Baeza-Yates: Improved string searching. Software: Practice and Experience, 19

(3):257–271, 1989.



2. T. Berry and S. Ravindran: A fast string matching algorithm and experimental
results. Proc. of the Prague Stringology Club Workshop ’99, Czech Technical Uni-
versity, Prague, Czech Republic, Collaborative Report DC-99-05, pp. 16–28, 1999.

3. R.S. Boyer and J S. Moore: A fast string searching algorithm. Communications of
the ACM, 20(10):762–772, 1977.

4. K. Fredriksson and Sz. Grabowski: Practical and optimal string matching. In Proc
SPIRE’05, Lecture Notes in Computer Science 3772:376–387, 2005.

5. K. Fredriksson: Personal communication.
6. J. Holub and B. Ďurian: Fast variants of bit parallel approach to suffix automata.

(Unpublished Lecture) University of Haifa. 2005-04-05.
7. R.N. Horspool: Practical fast searching in strings. Software: Practice and Experi-

ence, 10(6):501–506, 1980.
8. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience,

21(11):1221–1248, 1991.
9. H. Hyyrö: Personal communication.

10. J.Y. Kim and J. Shawe-Taylor: Fast string matching using an n-gram algorithm.
Software: Practice and Experience, 24(1):79–88, 1994.

11. J.W. Kim, E. Kim, and K. Park: Fast matching method for DNA sequences. In
Proc ESCAPE 2007, Lecture Notes in Computer Science 4614:271–281, 2007.

12. D.E. Knuth, J.H. Morris, and V.R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(1): 323–350, 1977.

13. T. Lecroq: Fast exact string matching algorithms. Information Processing Letters,
102(6): 229–235, 2007.

14. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithms, 5(4):1–
36, 2000.

15. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching.
In Proc SPIRE’03, Lecture Notes in Computer Science 2857:80–93, 2003.

16. S.S. Sheik, S.K. Aggarwal, A. Poddar, N. Balakrishnan, and K. Sekar: A FAST
pattern matching algorithm. J. Chem. Inf. Comput. Sci., 44(4):1251–1256, 2004.

17. D.M. Sunday: A very fast substring search algorithm. Communications of the
ACM, 33(8):132–142, 1990.

18. J. Tarhio and H. Peltola: String matching in the DNA alphabet. Software: Practice
and Experience, 27(7):851–861, 1997.

19. R. Thathoo, A. Virmani, S.Sai Lakshmi, N. Balakrishnan, and K. Sekar: TVSBS:
A fast exact pattern matching algorithm for biological sequences. Current Science
91(1):47–53, 2006.

20. S. Wu and U. Manber: A fast algorithm for multi-pattern searching, Report TR-
94-17, Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

21. R.F. Zhu and T. Takaoka: On improving the average case of the Boyer–Moore string
matching algorithm. Journal of Information Processing, 10(3):173–177, 1987.


