
Experiences with Automated Compiler Exercises

Leena Salmela and Jorma Tarhio
Helsinki University of Technology

Abstract
We use home exercises in our Compiler course. We have

implemented a graphical environment for doing compiler
exercises related to finite state automata and parsers. The
system also includes an automatic assessment system for
the exercises. We introduce the main features of the system
and review experiences of the first year of use.

1 Introduction
A course devoted to compiling techniques of program-

ming languages belongs to the Computer Science curricu-
lum of many universities. We use home exercises in our
Compiler course. In our former system, a teaching assis-
tant graded the written answers submitted by the students.
Several problems have arisen with this approach. First of
all, it has not been possible to give individual feedback to
the students given the current resources and the feedback
has arrived too late. Plagiarism has also been a growing
concern in the course since all students have had the same
assignments. Some students also found the practice of re-
turning the home exercises as text files unintuitive.

To attack these problems we automated those home ex-
ercises that deal with finite state automata and parsers. Au-
tomatic assessment allows immediate feedback to the stu-
dents and it is possible to give individual assignments to
students thus alleviating the problem of plagiarism. Our
system is called ACE which is short for Automated Com-
piler Exercises. The technical features of ACE were in-
troduced in our work-in-the-progress paper [14]. In this
paper we review experiences of using ACE and discuss its
significance.

ACE contains a graphical environment for studying and
completing the exercises. The visualizations are mostly
adopted from JFLAP [3] which is a visualization tool for
formal languages and automata theory. JFLAP is based on
earlier work of Susan Rodger.

Automatic assessment has been successfully used in in-
troductory courses at our university [11]. For example the
Ceilidh system [1] and Scheme-Robo [13] have been used
in the programming courses, the TRAKLA2 system [9],
which has a graphical interface for doing algorithm simu-
lation exercises, has been used in the Data Structures and
Algorithms course and the Stratum framework [4] has been
used in several other courses in our university. Automatic

assessment has proved to be effective in these cases and the
student response has also been generally positive.

There are a number of tools visualizing at least some
parts of a compiler [2, 3, 6, 7, 12, 16, 17]. Several visu-
alizations of finite automata and parsers have been devel-
oped. Some of these visualization tools, like JFLAP [3]
and Exorciser [16], have taken a step towards automatic
assessment. They allow the student to try building his own
solution. Once the student thinks he has accomplished the
task the tool will assess the solution and tell the student ifit
is right. These tools also allow the student to take a look at
the model answer. However, these tools do not fully cover
the exercises we have used and they are intended for self
study so they do not keep track of students’ points and so-
lutions.

There are several studies on whether computer-aided as-
signments with visualizations would lead to a better learn-
ing outcome in Computer Science. Most conclusions are
negative, see e.g. [5], but there are some positive cases, see
e.g. [10]. Anyway, visualization is useful in practice by in-
creasing study motivation of students [15], and computer-
aided assignments are cheaper to organize than conven-
tional approaches in large courses [8].

The rest of this paper is organized as follows. In Sec-
tion 2 we give an overview of the exercises. In Section 3
we describe technical details of the ACE system. Section
4 describes the experiences with ACE we have had and in
Section 5 we give some concluding remarks. Understand-
ing of Sections 2 and 3 may require background knowledge
in Computer Science.

2 Overview of the exercises
The home exercises of the course have been organized

into six rounds. The first three rounds handle the front end
of the compiler and the last three rounds the back end. The
aim was to automate only the first three rounds, partly be-
cause the course will be split into two courses in the fu-
ture, and the former part will get an even larger attendance
while latter part will attract less students. The first three
rounds deal with finite state automata (FSAs), LL parsing
and LR parsing respectively. Each round has four exer-
cises. From the constructive point of view, the exercises
deal with building and traversal of graphs related to com-
piling either in a graphical form or as tables.



In the FSA round the student is given a regular expres-
sion and his task is to form a nondeterministic finite state
automaton (NFA). Then the NFA is simulated with a given
input. Next the NFA is converted to a deterministic finite
state automaton (DFA) and this DFA is then simulated.

The second round deals with LL parsing. First the stu-
dent should remove left recursion from the given grammar
and do left factoring. Then the First and Follow sets are
calculated and the LL parse table is constructed based on
them. Finally, the parser is simulated with the given input.

In the third round an LR parser is constructed. First the
student forms the LR(0) item sets for a given grammar and
figures out the transitions between them. Then the First
and Follow sets are calculated. Based on these sets, the LR
parse table is constructed. The grammar is ambiguous, and
so the parse table now contains ambiguity. Next the am-
biguity is removed from the parse table so that the given
precedence and associativity constraints are satisfied. Fi-
nally, the constructed parser is simulated.

Some of these exercises are clearly algorithm simula-
tion exercises. The simulation of a FSA or a parser clearly
falls into this category. The solution to this kind of exer-
cise is an ordered list of steps. Some of the other exer-
cises include simulation of an algorithm but the algorithm
is more loosely defined. For example the algorithm used in
the NFA construction does not define a total order for the
construction of the automaton parts. Thus it only defines a
partial order for the steps that are needed to construct the
whole automaton. Of course a total order may be enforced
in such an algorithm but this would unnecessarily compli-
cate the exercise. Some of the exercises are even more
loosely defined like the removal of left recursion from a
grammar. In this case some transformation rules are pre-
sented in the study material but the use of exactly these
rules is not enforced. These exercises are conceptual in na-
ture. They test the student’s understanding of the concept
rather than knowledge of a specific algorithm.

We have around ten exercise sets for each round. A
set for each student is chosen randomly among those
sets. Moreover we allow permuting and replacing of local
strings and names in the exercises in order to artificially
increase the number of different exercises. In order to im-
prove the quality of the exercises, we are investigating new
ways to generate grammars and regular expressions.

3 ACE
3.1 Architecture

Given the various types of exercises that the system
needs to support we decided to build a client for computer-
aided doing the exercises and verifiers for checking them.
These components could then be embedded into a frame-
work which takes care of submissions and the needed book
keeping. We call the client with the verifiers ACE.

Overviews of the client and the verifiers are given in
subsections 3.2 and 3.3. We have embedded the client
and the verifiers in a framework called Stratum [4] which
has been developed in our university. Stratum follows the
client/server architecture. Records on exercises, submis-
sions, and results are kept on the server.

The ACE client is a Java applet which is used on the
Web. This applet is the graphical environment for doing
exercises, but with it the student also uses the services of
the server. On the server, each student has a personal Web
page which shows his personal assignments and the sub-
mission status of each subtask. The verifiers module is
embedded in the server.

3.2 ACE Client
The central part of the ACE client is the visualization

of the data structures needed in the exercises. Almost all
these features are present in the JFLAP software [3]. Thus
the ACE client is built reusing the code from JFLAP. How-
ever, some changes also needed to be done. JFLAP does
not support showing precedence and associativity informa-
tion of operators, and so a visualization for this was built.
The simulation of FSAs and parsers in JFLAP are merely
animations, and thus we needed to add some interaction
so that the students can show how a FSA or parser works.
For example when simulating an LL parser, the student has
two choices in each step. He can either choose to advance
in the input or apply a rule from the parse table.

Another major change was adding the notion of exer-
cise rounds and exercises. Now ACE can lead the student
through an exercise round one assignment at a time. Other
changes included the design of a new file format which
contains the information about assignments and exercise
rounds. Because of the new file format, it is also not so
easy for the students to use JFLAP to generate the correct
answers. The generation of correct answers was of course
disabled from the user interface.

Fig. 1 shows a screenshot of the ACE client. Here the
user is converting a NFA to a DFA. He has already defined
the initial state of the DFA and the state which the DFA en-
ters after reading the symbol ’x’ in the initial state. The la-
bels of the DFA states show their corresponding NFA state
sets.

3.3 Verifiers
We were also able to reuse some parts of JFLAP when

building the verifiers. Some of the exercises like removing
left recursion from a grammar are not supported by JFLAP
so we needed to implement whole checkers for these. The
simulation of FSAs and parsers in JFLAP are only anima-
tions without the possibility of error so we needed to im-
plement new verifiers for these too.

The verifiers have the following general structure. First
they check if the input the student used was the one given



Figure 1:A screenshot from the ACE client. Here the user is converting a NFA to a DFA.

in his exercise. Then they generate the model answer and
compare that to the student’s solution. As a last step the
verifiers generate feedback to the student.

Checking involves some computational difficulties. For
example, one might like to check the removal of left re-
cursion as follows. First one would check that there is no
left recursion left in the grammar produced by the student.
Then one would check that the grammar still produces the
same language. This approach is unfortunately not possi-
ble because it is undecidable to determine if two context-
free grammars produce the same language. So in this case
we have to enforce the use of a set of transformation rules
to be able to check the exercise.

4 Experiences with ACE
4.1 Activity of students and exam results

There are in total six exercise rounds in the course. In
order to pass the course students have to pass three of these
rounds. One of the passed rounds has to be among the
first three exercise rounds associated with the front-end of
a compiler and one has to be among the last three rounds
associated with the back-end of a compiler. Doing more
than the required number of exercises does not give any
extra credit to a student. Because of this the first round
is very popular, the second round somewhat less popular
and the third round is done by less that half of the students
since doing the third round does not benefit most students
in any way.

Table 1 shows the statistics of the first three exercise
rounds in years 2001–2004. In 2004 the first three rounds
were solved using ACE while in 2001–2003 all the exer-

Exercise round Submitted % Passed %
2004:

1. Finite automata 92 88
2. LL-parsing 81 73
3. LR-parsing 72 53

2003:
1. Finite automata 92 90
2. LL-parsing 85 84
3. LR-parsing 35 35

2002:
1. Finite automata 87 81
2. LL-parsing 73 71
3. LR-parsing 44 43

2001:
1. Finite automata 91 89
2. LL-parsing 87 84
3. LR-parsing 38 33

Table 1: Exercise statistics of the Compiler course in years

2001–2004.

cises were returned via email and checked by the assistant
later. In each year of 2001–2003 the exercises were the
same for all the students while in 2004 there were ten dif-
ferent versions of each exercise. Therefore in the previous
years students could get more easily help from other stu-
dents. In each year about a hundred students participated
in the course.

In the previous years the students submitted a whole
round at a time while in 2004 they submitted one exer-
cise at a time. Thus a student who did not manage to do



the round completely might not have submitted anything
in the previous years whereas in 2004 he might have sub-
mitted only the first exercise of a round (in order to be in-
cluded in the number of Table 1). Therefore the numbers
of active students are not quite comparable. The grading
policy of an exercise round has also changed. In the previ-
ous years small mistakes did not result in failing the round
because the students could submit their solution only once.
With ACE the students were allowed to resubmit as many
times as they wanted but to pass a round they needed to get
all the exercises correct.

Table 1 shows that the percentage of students passing
the first and the second round has not changed very much
over the years. However, the third round was much more
popular in 2004. Moreover, 40% of the students actually
managed to pass all three rounds in 2004 while this number
was considerably lower in the previous years. Therefore it
seems that the system encouraged the students to do more
exercises even if they are not given any extra points for this.

We compared the results of the mid-term exam of Fall
2004 covering the exercise rounds of ACE with those of the
corresponding exams of the previous years. We did not no-
tice any significant change. So it seems that ACE does not
hinder learning. However, because the problems of these
exams are not fully comparable, this is only a preliminary
observation.

4.2 Questionnaire 1
We asked the students of the 2004 course answer to a

questionnaire, and 60% of the 91 students replied. Con-
cerning the possible advantages of ACE, the most com-
mon answer dealt with immediate feedback, which helped
to correct errors. Also ability to make a round incremen-
tally in several sessions and possibility to iterate answers
were also important benefits.

Several students said that ACE saves time when com-
pared with the traditional pen and paper way. However, the
students who already mastered the topics of the exercises
before using ACE, found the computer-aided approach
slower than pen and paper, because they had to learn to
use ACE. In the specific question, we asked whether the
students felt wasting time with ACE. Only 13% of them
answered yes, and 2% were uncertain. The rest 85% did
not waste time. The average use time per round was 4 h 8
min.

We also asked the students about problems they encoun-
tered when using ACE, and 76% of them reported those,
mostly minor technical problems. A part of the minor
problems has already been corrected, and most of them
will be taken care of before the next course will begin.
A typical complaint dealt with vague error messages and
unclear and limited instructions. Several students wished
for demonstrations and examples in order to get easier ac-

Classification %
Flop 2
Poorer 2
Similar 48
Better 39
Superior 9

100

Table 2: Answers to the question: ”How did you find ACE

when compared with the other tools (flop, poorer, similar, be t-

ter, superior)?”

quainted with the system and the input formats.
Then we asked whether ACE supported learning. The

answer was clear: 96% of the students answered ”yes”.
Finally, we requested the students to compare ACE with

similar computer-aided tools for homework assignments of
other courses. There are at least three other courses using
such technology at our department. So 80% of the stu-
dents had used similar systems earlier. Table 2 shows the
result of the comparison. ACE was well received, and al-
most half of students regarded it at least better than the
other systems. One student explained his opinion as fol-
lows pointing out some problems of computer-aided in-
struction: ”ACE is better because it is not as mechanical
as some other tools, which do not require pondering at all;
yet even ACE provides so much help (in guiding towards
the solution) that if only using ACE, one does not know
what to do without it. So ACE is good, but pen-and-paper
is still needed.”

4.3 Questionnaire 2
Among the same student group as the first question-

naire, we made another questionnaire in connection with
the course evaluation in which 54% of the students par-
ticipated. A course evaluation is organized in the end of
every course at our department. Besides fixed questions,
the teacher is allowed to present additional questions. We
asked the students to compare ACE with the traditional ap-
proach. The result is shown in Table 3. Note that the first
questionnaire took place after the fourth exercise round,
whereas the students had completed all the exercises while
the second questionnaire was made.

The first question dealt with meaningfulness. Only few
of the students had experienced the traditional way more
meaningful than ACE. One third did not see difference
between the alternatives, and more than half found the
computer-aided way more meaningful.

Next the students were asked to compare the laborious-
ness of the approaches. Based on the first questionnaire
we already knew that those students, who already mastered
the subject, wasted time whereas those students, who did
not know the subject beforehand, saved time. Now in the
end of the course, half of the students found the traditional



Which way was. . . ACE No diff. Trad.
More meaningful? 59 33 8 100
More laborious? 18 31 51 100
Better from the point

of view of learning? 51 37 12 100

Table 3: Answers to the question: ”Which way was more

meaningful, more laborious, and better from the point of vie w

of learning? ACE or the traditional approach?” The numbers

are percentages.

way more laborious. About one third experienced both ap-
proaches similar, and the rest of the students considered
ACE more laborious.

The last question was about learning. Half of the stu-
dents thought that the computer-aided approach was bet-
ter from the point of view of learning. Only 12% of them
found the traditional approach better.

5 Concluding remarks
We have described the ACE system for automatically

assessing exercises related to finite state automata and
parsers. The system supports individual exercises for stu-
dents and it has a visual interface for studying and com-
pleting the exercises. The system has been used once in
our Compiler course, and it was well received by the stu-
dents.

ACE is an advanced learning environment. It makes the
concepts of compiler construction concrete by visualizing
them. ACE supports learning by doing. The student can
submit a trial solution, and the system gives feedback about
the possible errors. Because only correct submissions are
accepted, the student is allowed to try each exercise of a
round several times. Most of the exercises are constructed
in such a way that it is almost impossible to reach an ac-
ceptable solution only by guessing.

ACE shares a part of the visualizations of JFLAP which
is an excellent tool for demonstration and self-study pur-
poses. However, the integrated assessment and bookkeep-
ing make ACE more useful than JFLAP because the as-
signments of a large course can be delivered and graded
automatically with ACE.

ACE works on the Web so that students can do the ex-
ercises anywhere at the time suitable for them. Thus ACE
suits well to distance learning e.g. in a virtual university.
The general principles of ACE can be adapted to other sub-
ject with constructive assignments.

Acknowledgements
We thank Susan Rodger and Tomi Janhunen for letting

us use their codes.

References
[1] S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A. M. Zin.

Ceilidh: A course administration and marking system. InProceed-

ings of the 1st International Conference of Computer Based Learn-
ing, 1993.

[2] C. Boroni, F. Goosey, M. Grinder, and R. Ross. Engaging students
with active learning resources: Hypertextbooks for the web. In Pro-
ceedings of the 32nd SIGCSE Technical Symposium on Computer
Science Education, pages 65–69. ACM, 2001.

[3] R. Cavalcante, T. Finley, and S. H. Rodger. A visual and interac-
tive automata theory course with JFLAP 4.0. InProceedings of the
35th SIGCSE Technical Symposium on Computer Science Educa-
tion, pages 140–144. ACM, 2004.

[4] T. Janhunen, T. Jussila, M. Järvisalo, and E. Oikarinen. Teaching
Smullyan’s analytic tableaux in a scalable learning environment. In
Proceedings of the 4th Finnish/Baltic Sea Conference on Computer
Science Education, 2004.

[5] C. Kehoe, J. Stasko, and A. Taylor. Rethinking the evaluation of
algorithm animations as learning aids: an observational study. In-
ternational Journal of Human-Computer Studies, 54(2):265–284,
2001.

[6] A. Kerren. Animation of the semantical analysis. InProceedings
of 8. GI-Fachtagung Informatik und Schule, INFOS99. Informatik
aktuell, Springer, 1999. (in German).

[7] J. Khuri and Y. Sugano. Animating parsing algorithms. InPro-
ceedings of the 29th SIGCSE Technical Symposium, pages 232–236.
ACM, 1998.

[8] A. Korhonen. Visual Algorithm Simulation. Dissertation. Helsinki
University of Technology, 2003.

[9] A. Korhonen, L. Malmi, and P. Silvasti. TRAKLA2: a framework
for automatically assessed visual algorithm simulation exercises. In
Proceedings of the 3rd Finnish/Baltic Sea Conference on Computer
Science Education, pages 48–56, 2003.

[10] R. Levy, M. Ben-Ari, and P. Uronen. The Jeliot 2000 program ani-
mation system.Computers and Education, 40(1):1–15, 2003.

[11] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences inauto-
matic assessment on mass courses and issues for designing virtual
courses. InProceedings of the 7th Annual SIGCSE/SIGCUE Con-
ference on Innovation and Technology in Computer Science Educa-
tion, pages 55–59. ACM, 2002.

[12] R. D. Resler and D. M. Deaver. VCOCO: A visualisation tool for
teaching compilers.ACM SIGCSE Bulletin, 30(3):199–202, 1998.

[13] R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic as-
sessment of programming exercises. InProceedings of the 6th An-
nual SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education, pages 133–136. ACM, 2001.

[14] L. Salmela and J. Tarhio. ACE: Automated compiler exercises. In
Proceedings of the 4th Finnish/Baltic Sea Conference on Computer
Science Education, 2004.

[15] J. Stasko. Using student-built algorithm animations as learning aids.
In Proceedings of the 28th SIGCSE Technical Symposium on Com-
puter Science Education, pages 25–29. ACM, 1997.

[16] V. Tscherter, R. Lamprecht, and J. Nievergelt. Exorciser: Auto-
matic generation and interactive grading of exercises in the theory
of computation. In4th International Conference on New Educa-
tional Environments, pages 47–50, 2002.

[17] S. R. Vegdahl. Using visualization tools to teach compiler design.
Journal of Computing Sciences in Colleges, 16(2):72–83, 2001.


