APPROXIMATE BOYER-MOORE
STRING MATCHING

JORMA TARHIOAND ESKO UKKONEN

University of Helsinki, Department of Computer Science
Teollisuuskatu 23, SF-00510 Helsinki, Finland

Draft

Abstract. The Boyer-Mooreidea applied in exact string matching is
generalized to approximate string matching. Two versions of the problem are
considered. Th& mismatches problem is to find all approximate occurrences
of a pattern string (length) in a text string (Ilengtm) with at mostk mis-
matches. Our generalized Boyer-Moore algorithm is shown (under a mild
independence assumption) to solve the problem in expected)ﬁmi(%l_—k +

%)) wherec is the size of the alphabet. A related algorithm is developed for the
k differences problem where the task is to find all approximate occurrences of
a pattern in a text witlk k differences (insertions, deletions, changes).
Experimental evaluation of the algorithms is reported showing that the new
algorithms are often significantly faster than the old ones. Both algorithms are
functionally equivalent with the Horspool version of the Boyer-Moore
algorithm whenrk = 0.

Key words: String matching, edit distance, Boyer-Moore algorithm,
k mismatches problemk differences problem

AMS (MOS) subject classifications: 68C05, 68C25, 68H05

Abbreviated title: Approximate Boyer-Moore Matching

1. Introduction

The fastest known exact string matching algorithms are based on the Boyer-
Moore idea [BoM77, KMP77]. Such algorithms are “sublinear” on the average
in the sense that it is not necessary to check every symbol in the text. The
larger is the alphabet and the longer is the pattern, the faster the algorithm
works. In this paper we generalize this idea to approximate string matching.
Again the approach leads to algorithms that are significantly faster than the
previous solutions of the problem.

We consider two important versions of the approximate string matching
problem. In both, we are given two strings, tleat T=t;t,...t, and the
pattern P = p,p,...p, in some alphabek, and an integek. In the first
variant, called thé& mismatches problenthe task is to find all occurrences of
P in T with at mostk mismatches, that is, ajlsuch thatp; = t,_,,; fori =
1, ...,m except for at most indexesi.

In the second variant, called tkedifferences problepthe task is to find
(the end points of) all substrings of T with the edit distance at madstfrom
P. The edit distance means the minimum number of editing operations (the
differences) needed to convd?t to P. An editing operation is either an
insertion, a deletion or a change of a character.Klimessmatches problem is
a special case with the change as the only editing operation.

There are several algorithms proposed for these two problems, see e.g. the
survey [GaG88]. Both can be solved in ti@émn) by dynamic programming
[Sel80, Ukk85b]. A very simple improvement givi@kn) expected time
solution for random strings is described in [Ukk85b]. Later, Landau and
Vishkin [LaV88, LaV89], Galil and Park [GaP89], Ukkonen and Wood
[UKkW90] have given different algorithms that consist of preprocessing the
pattern in timeO(m2) (or O(m)) and scanning the text in worst-case time
O(kn). For thek differences problemQ(kn) is the best bound currently
known if the preprocessing is allowed to be at n@&n?). For thek mis-
matches problem Kosaraju [Kos88] gives@fnvmpolylog(m)) algorithm.

Also see [GaG86, GrL89].

We develop a new approximate string matching algorithm of Boyer-Moore
type for thek mismatches problem and show, under a mild independence
assumption, that it processes a random text in expectecu(m@nlfk + %))
where c denotes the size of the alphabet. A related but different method is
(independently) developed and analyzed in [Bae89a]. We also give an algo-
rithm for the k differences problem and show in a special case that its

expected processing time for a random texD(g_CZk kn (g +k2k2 + #)). The
preprocessing of the pattern needs ti@ém + kc) and O((k + c)m),
respectively. We have also performed extensive experimental comparison of
the new methods with the old ones showing that Boyer-Moore algorithms are
significantly faster, for largen andc in particular.

Our algorithms can be considered as generalizations of the Boyer-Moore
algorithm for exact string matching, because they are functionally identical
with the Horspool version [Hor80] of the Boyer-Moore algorithm whkenO.

The algorithm of [Bae89a] generalizes the original Boyer-Moore idea for the
k mismatches problem.

All these algorithms are “sublinear” in the sense that it is not necessary to
examine every text symbol. Another approximate string matching method of
this type (based on totally different ideas) has recently been given in [ChL90].

The paper is organized as follows. We first considerkthmismatches
problem for which we give and analyze the Boyer-Moore solution in Section
2. Section 3 develops an extension to kidifferences problem and outlines
an analysis. Section 4 reports our experiments.

2. The k mismatches problem
2.1. Boyer-Moore-Horspool algorithm
The characteristic feature of the Boyer-Moore algorithm [BoM77] for exact

matching of string patterns is the right-to-left scan over the pattern. At each
alignment of the pattern with the text, characters of the text below the pattern

are examined from right to left, starting by comparing the rightmost
character of the pattern with the character in the text currently below it.
Between alignments, the pattern is shifted from left to right along the text.

In the original algorithm the shift is computed using two heuristics: the
match heuristic and the occurrence heuristic. Mla¢ch heuristic implements
the requirement that after a shift, the pattern has to match all the text
characters that were found to match at the previous alignment. The
occurrenceheuristic implements the requirement that we must align the
rightmost character in the text that caused the mismatch with the rightmost
character of the pattern that matches it. After each mismatch, the algorithm
chooses the larger shift given by the two heuristics.

As the patterns are not periodic on the average, the match heuristic is not
very useful. A simplified version of the method can be obtained by using the
occurrence heuristic only. Then we may observe that it is not necessary to
base the shift on the text symbol that caused the mismatch. Any other text
character below the current pattern position will do as well. Then the natural
choice is the text character corresponding to the rightmost character of the
pattern as it potentially leads to the longest shifts. This simplification was
noted by Horspool [Hor80]. We call this method the Boyer-Moore-Horspool
or the BMH algorithm,

The BMH algorithm has a simple code and is in practice better than the
original Boyer-Moore algorithm. In the preprocessing phase the algorithm
computes from the patterfd = p,p,...p,, the shift tabled, defined for each
symbola in alphabet as

dla] = min{s|s=mor (1< s<mandp,=a)}

For a text symboh below p,, the tabled shifts the pattern right until the
rightmost a in p,...p,,.; becomes above the in the text. Tabled can be
computed in timeéO(m + c) wherec = [2|, by the following algorithm:

Algorithm 1. BMH-preprocessing.
for ainZ dod[a] :=m;
fori:=1, .., m-21dod[p]:=m-i

The total BMH method [Hor80] including the scanning of the extt,t,..t,
is given below:

Algorithm 2. The BMH method for exact string matching.
call Algorithm 1;

ji=m; {pattern ends at text positigh
while j < n do begin
h:=j;i:=m; {h scans the text,the pattern}
while i > 0andt, = p; do begin
i:=i—1;h:=h-1end, {proceed to the left}
if i = Othen report match at positiop
j:=j+d[t] end {shift to the right}

2.2. Generalized BMH algorithm

The generalization of the BMH algorithm for tkemismatches problem will
be very natural: fok = O the generalized algorithm is exactly as Algorithm 2.
Recall that th&k mismatches problem asks for finding all occurrence of

T such that in at most positions ofP, T andP have different characters.

We have to generalize both the right-to-left scanning of the pattern and the
computation of the shift. The former is very simple; we just scan the pattern
to the left until we have founkl + 1 mismatches (unsuccessful search) or the
pattern ends (successful search).

To understand the generalized shift it may be helpful to look akthe
mismatches problem in a tabular form. IMtbe am x n table such that for
1<is<sm,1<j<n,

.. HO,ifp; =t
M["J]-EL if p, £ t

There is an exact match ending at positiaf T if M[i,r —m +i] =0 fori =
1, ...,m, that is there is a whole diagonal of 0’sNh ending atM[m, r].
Similarly, there is an approximate match watk mismatches if the diagonal
contains at modgt 1's. This implies that any successke 1 entries of such a
diagonal have to contain at least one 0.

Assume then that the pattern is ending at text posjtimamd we have to
compute the next shift. We consider the last 1 text characters below the

pattern, the characterg, t_.4, ...,t;. Then, suggested by the above

-
observation, we glide the pattern to the right until there is at least one match
in t_y, i1 .. tj. The maximum shift isn —k. Clearly this is a correct
heuristic: A smaller shift would give an unsuccessful alignment because there
are at leask + 1 mismatches, and a shift larger tlmr-k would skip over a
potential match.

Let d(tj_ ti_x+1, ..., tj) denote the length of the shift. The values of
d(tt) could be precomputed and tabulated. This would lead to quite
heavy preprocessing of at least tidéck). Instead, we apply a simpler pre-
processing that makes it possible to compute the shift on-the-fly with small
overhead while scanning.

In terms ofM the shifting means finding the first diagonal above the
current diagonal such that the new diagonal has at least one tQ,for

tj—k+11 veny t]

T

abaacbbabbba

a©Mi1©011101110

I:,bl@l(DlOOlOOOl

b 10@dD1@®0010001

b 101010010001
—

Figure 1. Determining of shift kK = 1).

For example, consider tabM in Fig. 1, where we assume that 1. We
may shift from the diagonal dfl[1, 1] directly to the diagonal d¥1[1, 3], as
this diagonal contains the first O for charactgrsa, t, = a. Henced(a, a) = 2

for the patterrabbh Also note that, alone would give a shift of 3 anigla
shift of 2, andd(ts, t;) is the minimum over these component shifts.
In general, we computd(t,, ...,t;) as the minimum of the component

shifts for eacht,,, ...,t;. The component shift fot, depends both on the

j.
charactett, itself and on its position below the pattern. Possible positions are
m-k, m—-k+ 1, ... m Hence we need @& + 1) x c tabled, defined for each

i =m-=Kk, ...,m, and for eacla in Z, as
dJi, a] = min{s|s=mor (1< s<mandp_ = a)}.

Here the values greater than—k are not actually relevant. Tabdk is pre-
sented in this form, because the same table is used in the algorithm solving the
k differences problem.

Table d, can be computed in tim®((m + c)k) by a straightforward
generalization of the BMH-preprocessing which sdarsl times oveP and
each scanning creates a new rova,of

A more efficient method needs only one scan, from right to left, Bver
For each symbop, encountered, the corresponding updates are madg to
To keep track of the updates already made, we use aredidg{a], a in Y,
such thatready[a] = if d i, a] already has its final value fo=m, m-1, ...,

j. Initially, readyfa] = m + 1 for alla, andd,[i, a] = m for all i, a. The
algorithm is as follows:

Algorithm 3. Computation of tablel,.

for ain doreadya] :=m+ 1;
forain) do
for i :=mdowntom-kdo
dJi, al :=m;

for i :=m - 1downto 1do begin
for j :=readyp;] — 1 downto maxi, m—Kk) do
dj, pl =] —i;
ready[p,] := maxi, m—-k) end

o N O O B~ W N P

The initializations in steps 1-4 take tird¢kc). Steps 5—-8 scan ovErin time
O(m) plus the time of the updates df in step 7. This takes tim@(kc) as
eachd,[j, p;] is updated at most once. Hence Algorithm 3 runs in Ofa +
kc).

We have now the following total method for thenismatches problem:

Algorithm 4. Approximate string matching witk mismatches.

1. compute tablel, from P with Algorithm 3;
2. ji=m; {pattern ends at text positigh
3. whilej<n+kdobegin
4. h:=j;i:=m;neq:=0; {h scans the text,the pattern}
5. d:=m-Kk; {initial value of the shift}
6. while i > 0and neq< kdo begin
7. if i =2m—Kkthen d:=min(d, di, t,]);
{minimize over the component shifts}
8. if t, # p; then neq:=neq+ 1;
9. i:=i—1;h:=h-1end, {proceed to the left}
10. if neq< kthen report match at positiop
11. j:=]+dend {shift to the right}
2.3. Analysis

First recall that the preprocessing®ty Algorithm 3 takes tim&(m + kc)
and spac&(kc). The scanning of by Algorithm 4 obviously need®(mn)
time in the worst case. The bound is strict for exampld fela", P = am.

Next we analyze the scanning time in the average case. The analysis will be
done under the random string assumption which says that individual
characters irfP andT are chosen independently and uniformly fr@mThe
time requirement is proportional to the number of the text-pattern
comparisons in step 8 of Algorithm 4. L€,.(P) be a random variable

denoting, for some fixed andk, the number of such comparisons for some
alignment of patter® between two successive shifts, and@gt(P) be its
expected value.

Lemma 1.C,(P) < % + 1E(k + 1).

Proof. The distribution ofC,,.(P) — (k + 1) converges to the negative
binomial distribution (the Pascal distribution) with parametérs (, 1 —%)
whenm - o, becauseC,,(P) — k + 1) is the number of matches until we
find the k + 1St mismatch; the probability of the mismatch is]%.—As the
expected value of,,.(P) increases withm, the expected valugz(j—% of this
negative binomial distribution (see e.g. [Fel65]) would be an upper bound
(and the limit asn - o) of C,,.(P) — k + 1). This, however, ignores the
effect of the fact that after a shift of lenglhx m —k we know that at least
one and at most + 1 of characterp,, 4 -.-» Pm_g Will match. Hence to
boundC,,.(P) — k + 1) properly, it surely suffices to add+ 1 to the above
bound which gives

k +

c 1+k+1

Cloc(P) - (k + 1) < 1

and the lemma follows;

Let S(P) be a random variable denoting the length of the shift in
Algorithm 4 for patternP and for some fixedk andc when scanning a
randomT. Moreover, letP, be a pattern that repeatedly contains all charac-
ters inX in some fixed order until the length & equalsm. Then it is not
difficult to see thatP, gives on the average the minimal shift, that is, the
expected values satis§(P,) < S(P) for all P of lengthm. Hence a lower
bound for§(P,) gives a lower bound for the expected shift over all patterns of
lengthm (c.f. [Bae89Db]).

Lemma 2.§P,) = %min(k%l, m —Kk). Moreover, S(P,) = 1.

10

Proof. Lett =min(c — 1,m —k — 1). Then the possible lengths of a shift are
1, 2, ...t + 1. Therefore

SPy) = Y Pr(SPY) >1)

wherePr(A) denotes the probability of eveAt Then

PSPy > 1) = o5

because for each of thet 1 text symbols that are compared with the pattern
to determine the shift (step 8 of Algorithm 4), there areharacters not
allowed to occur as the text symbols. Otherwise the shift would notibe >
Hence

SP=3, -l

which clearly is> 1, because > 0 as we may assume that 2 and that
k <m.
We divide the rest of the proof into two cases.

Case 1:m — k< K : 1 Thent=m — k -1, and we have

-t

k+1 (m—k-1)m - K
- c 2

(m—lggl— k2 l.m> lgz >(m - B,

_ C c
Case 22m — k= K+ 1 Thent > %D— 1, and we have

v

S(Po)

=m-k

1\

Cc Cc

S R R A .

_ Cc k+11 c Cc
B L S R 1DE% + 107 4§

C 1 k+ 1 c 1_c
@+:P§‘2' c 'k+—@"2@+1@5

1\

Consider finally the total expected numb@(P) of character comparisons
when Algorithm 4 scans a randomwith patternP. Let f(P) be the random

variable denoting the number of shifts taken during the execution, ah@)et

be its expected value. Then we have

C(P) = T(P) - Cioel(P).

To estimatef (P), we letS be a random variable denoting the lengthtof
shift. At the start of Algorithm 4R is aligned withT such that its first symbol
corresponds to the text position 1, and at theRersdaligned such that its first
symbol corresponds to some text positom —m + k + 1 but the next shift
would lead to a position rR—m+ k + 1. Hence new shifts are taken until the
total length of the shifts exceeds-m + k. This implies thaf(P) equals the
largest indexp such that

Istn—m+k.

Assume now that the different variabl§s are independent, that is, the
shift lengths are independent; note that this simplification is not true for two
successive shifts such that the first one is shorterkirah. Then all variables
S have a common distribution with expected va®ie) = S(P,). Under this
assumption

35}

is, in fact, apure renewal processvithin interval [0,n —m + K] in the
terminology of [Fel66, Chapter XlI]. Then the expected valuegpat
(n—m+k) / SP) for largen —m + k (see [Fel66, p. 359]) Hence

ﬂm:ogiégskg

and by Lemma 2,

T:OEnw%(; 1, ml_ l@ h-—m+ k)g.

Recalling finally thalC(P) = f(P) - C,.(P) and applying Lemma 1, we obtain

that
C(P)sognaygz 1 ml_ l@(n ~m+ K %ﬁ 1E(k 4 1)@

which isO(™ +

_nk) asn >>m. Hence we have:

Theorem 1.The expected running time of Algorithm 4(E(nk('5‘ + ml_)
the lengths of different shifts are mutually independent. The preprocessing
time isO(m + kc), and the working space @&(kc).

Removing the independence assumption from Theorem 1 remains open.

3. The k differences problem
3.1. Basic solution by dynamic programming

The edit distance[WaF75, Ukk85a] between two string&,andB, can be
defined as the minimum number of editing steps needed to cofvterB.
Each editing step is a rewriting step of the fam ¢ (a deletion)g - b (an
insertion), ora —» b (a change) whera, b are inZ ande is the empty string.

The k differences problens, given patterr® = p;p,...p,and textT =
t,t,...t, and an integek, to find all suchj that the edit distance (i.e., the
number of differences) betwed¢hand some substring df ending att; is at
most k. The basic solution of the problem is by the following dynamic
programming method [Sel80, Ukk85b]: LBtbe am + 1 byn + 1 table such
thatD(i, j) is the minimum edit distance betwegip,...p, and any substring of
T ending at;. Then

D(0,j)=0, O0<jsm;

D(i—1,j) +1

D(i, j) = min (i-1,j—-1) +if py=t;then Oelsel
(,j-1)+1

Table D can be evaluated column-by-column in ti®émn). Whenever

D(m, j) is found to be< k for somej, there is an approximate occurrencePof

ending att; with edit distanceD(m, j) < k. Hence]j is a solution to thé
differences problem.

3.2. Boyer-Moore approach

Our algorithm contains two main phases: the scanning and the checking. The
scanning phase scans over the text and marks the parts that contain all the
approximate occurrences Bf This is done by marking some entri2g), j)

on the first row ofD. The checking phase then evaluates all diagonal3 of
whose first entries are marked. This is done by the basic dynamic
programming restricted to the marked diagonals. Whenever the dynamic
programming refers to an entry outside the diagonals, the entry can be taken
to bew. Because this is quite straightforward we do not describe it in detalil.
Rather, we concentrate on the scanning part.

The scanning phase repeatedly applies two operations: mark and shift. The
shift operation is based on a Boyer-Moore idea. The mark operation decides
whether or not the current alignment of the pattern with the text needs
accurate checking by dynamic programming and in the positive case marks
certain diagonals. To understand the operations we need the concept of a
minimizing path in tabld®.

For everyD(i, j), there is aminimizing arcfrom D(i — 1,j) to D(i, j) if
D(i,j) =D(i —1,j) + 1, fromD(i, j — 1) toD(i, j) if D(i,j) =D(,j — 1) + 1,
and fromD(i — 1,j — 1) toD(i, j) if D(i,) =D(i — 1,j — 1) whenp, =t; or if
D(i,j) =D(i —1,j — 1) + 1 whenp, # t;. The costs of the arcs are 1, 1, 0 and
1, respectively. The minimizing arcs show the actual dependencies between
the values in tabld. A minimizing pathis any path that consists of

14

minimizing arcs and leads from an enfy0, j) on the first row oD to an
entry D(m, h) on the last row oD. Note thatD(m, h) equals the sum of the
costs of the arcs on the path. A minimizing patBuscessfulf it leads to an
entry D(m, h) < k.

A diagonalh of D for h = -m, ...,n, consists of alD(i, j) such thaj —i =
h. As any vertical or horizontal minimizing arc adds 1 to the value of the
entry, the next lemma easily follows:

Lemma 3. The entries on a successful minimizing path are contained in
< k + 1 successive diagonals Df

Our marking method is based on the following lemma. For each, ...,m,
let thek environmentof the pattern symbaqgp; be the strindC; = pi_y.--Pi+k
wherep; =€ forj < 1 andj >m.

Lemma 4. Let a successful minimizing path go through some entry on a
diagonalh of D. Then for at mosk indexesi, 1<i <m, charactet,,; does
not occur ink environmentC;.

Proof. Columnj,h+1<j<h+m, of D is calledbadif t; does not appear in
Ci_n- The lemma claims that the number of the bad columaskid.etM be
the path in the lemma. L& be the set of indexgsh + 1<j <h +m, such
that pathM contains at least one entd(i, j) on columnj of D. If M starts or
ends outside diagondl, then the size oR can be <m. Then, howeverM
must have at least one vertical arc for each ifdemssing inR becauseM
crosses diagondh. Thereforevert(M) = m —sizgR) wherevert(M) is the
number of vertical arcs d¥l.

By Lemma 3,M must be contained in diagondls-k, h—k + 1,h +k
of D. Hence for each in R, pathM must enter some entry on column
restricted to diagonalk —k, ...,h + Kk, that is, some entrp(i -k, j), ..., D(i
+ kK, J). Then ifj is bad, the first arc iM that enters columpmust add 1 to
the total cost oM. Because such an arc enters a new column, it must be either
a diagonal or a horizontal arc; note that with no restriction on generality we
may assume that the very first arc Mf is not a vertical one. Hence the

number of bad columns iR is < cos{M) —vert(M) wherecos{M) is the
value of the final entry oM.

Moreover, there can bm —sizgR) additional bad columns as every
column outsideR can be bad. The total number of the bad columns is
therefore at mosin —sizg€R) + cos{M) —vert(M) < cos{M) < k.

Lemma 4 suggests the following marking method. For diagonetieck fori
=m,m-1, .. k+1ift, isinC; until k + 1 bad columns are found. Note
that to get minimum shifk + 1 (see below) we stop alreadyiatk + 1
instead of at = 1. If the number of bad columnssk, then mark diagonals
-k, ...,h + Kk, that is, mark entrieB(0, h —k), ...,D(0, h + k).

For finding the bad columns fast we need a precomputed Balolg, a), 1
<i<m,alZ, such that

Bad(i, a) =true, if and only ifa does not appear kenvironmeniC.,.

Clearly, the table can be computed by a simple scanning of time
O((c + k)m).

After marking we have to determine the length of shift, that is, what is the
next diagonal afteh around which the marking should eventually be done.
The marking heuristics ensures that all successful minimizing paths that are
properly before diagondl + k + 1 are already marked. Hence we can safely
make at least a shift &+ 1 to diagonah +k + 1.

.ot t ...t

h r h—k them

— 2

[

l
R&%‘\}:&K&H‘«Eﬁ
NN

Figure 2. Mark and shift kK = 2).

16

This can be combined with the shift heuristics of Algorithm 4 of Section 2
based on tabld,. So we determine the first diagonal afteisayh + d, where
at least one of the charactets,,, th+m_1, .- themk Matches with the
corresponding character &f. This is correct, because then there can be a
successful minimizing path that goes through diagbnatl. The value ofl is
evaluated as in Algorithm 4, using exactly the same precomputeddable
Note that unlike in the case of Algorithm 4, the maximum allowed value of
is nowm, notm —k, as the marking starts from diagored k, not fromh.
Finally, the maximum ok + 1 andd is the length of the shift.

In practice, the marking and the computation of the shift can be merged if
we start the searching for the bad columns from the end of the pattern.

Fig. 2 illustrates marking and shifting. For=h+m,h+m -1, ...,
h +k + 1 we check whether or nptappears among the pattern symbols cor-
responding to the shaded block 1 (khenvironment). Ik + 1 symbolg, that
do not appear are found, entrig40, h —k), ...,D(0, h + k) are marked.
Simultaneously we check what is the next diagonal aftentaining a match
betweenP andt,. . ---, th«m (Shaded block 2). The next shift is to this
diagonal but at least to diagoriat k + 1.

We get the following algorithm for the scanning phase:

17

Algorithm 5. The scanning phase for tlkedifferences problem.

1. compute tablé8ad and, by Algorithm 3, tabld, from P;

2. ji=m;

3. whilej<n+kdobegin

4, r=j;i:=m;

5. bad:=0; {bad counts the bad indexes}
6. d:=m; {initial value of shift}

7. while i >k and bad< k do begin

8. if i =2m —kthen d :=min(d, di, t.]);

9. if Bad(i, t,) then bad:=bad+ 1;

10. i=1—=1r:=r-1end;

11. if bad< kthen

12. mark entriesD(0,j —m—=k), ...,D(0, j —m + Kk);
13. j =] +maxk+ 1,d) end

The loop in steps 7-9 can be slightly optimized by splitting it into two parts
such that the first one handles 1 text characters and computes the length of
shift, and the latter goes on counting bad indexes (a similar optimization also
applies to Algorithm 4).

3.3. Analysis

The preprocessing d® requiresO((k + c)m) for computing tableBad and
O(m + kc) for computing tabled,. As k <m, the total time iO((k + c)m).
The working space i©(cm).
The marking and shifting by Algorithm 5 takes timen@y k) in the worst
case. The analysis of the average case is similar to the analysis of Algorithm 4
in Section 2. LeB,,(P) be a random variable denoting, for some fixemhd
k, the number of the columns examined (step 9 of Algorithm 5) kntill
bad columns are found and the next shift will be taken. Obvio&g/y(P)

corresponds t&€,,.(P) of Lemma 1. For the expected valBg.(P) we show
the following rough bound:

Lemma 5. Let % + 1 < c. TherB,.(P) < E:#—l + 1E(k + 1).

Proof. The expected value &, (P) — (k + 1) can be bounded from above
by the expected value of the negative binomial distribution with paramgters (
+ 1,q) whereq is a lower bound for the probability that a column is bad.
Recall that columry is called bad if text symbd| does not occur in the
correspondingk environment. As thé environment is a substring &f of
length at most+ 1, it can have at mosk2 1 different symbols. Therefore
the probability that a randotpdoes not belong to the symbols ofka
environment is at Ieasfjgk—”). Hence we can choose q%j3<—+1).

The negative binomial distribution would then give By (P) — k + 1) an
upper bound‘fk_—J'(zlkme)l). However, the shift heuristic implies that after a
shift of length <m we know that at least one and at mwst 1 columns will
not be bad. Hence to bouBg,(P) — k + 1) properly, we have to add k + 1
to the above bound which gives

(2k + 1)
c— (2 + 1)

Bic(P) — k + 1)< (k+1)+k+1

and the lemma followsy;

Let S(P) be a random variable denoting the length of the shift in Algorithm 5
for patternP and for some fixedk andc. When scanning a randofin the
special patteriP, again gives the shortest expected shift, tha&'{®,) < S(P)

for all P of lengthm. Lemma 6 gives a bound f&(P,).

Lemma 6.S(P,) = % min(g : 1, M).

Proof. Lett =min(c — 1,m — 1). Then the possible lengths of a shift are 1,

2, ...,t + 1; note that a shift actually is alwagsk + 1 according to our
heuristic, but the heuristic can be ignored here as our goal is to prove a lower
bound. Therefore

StPo) = 3 Pr(StPy) >1).

IfO<i<m-k-1, then

Pr(S(Py >1) = 15"

because for each of thet 1 text symbols that are compared with the pattern
to determine the shift (step 8 of Algorithm 5), there areharacters not
allowed to occur as the text symbols. This is exactly as in the proof of Lemma
2. A slight difference arises when—k<i<m-1. Then

Pr(S(Po) >i) =

E:—igm_ic—i+l c—i+ 2 c-m+k+ 1
c ' c ' c c

because now the number of forbidden charactersfas them —i last text
symbols and — 1,i — 2, ...,i — (n—k — 1) for the remaining + 1 — —i)
text symbols, listed from right to left. But also in this case

Pr(S(Pg) >i) > %%'Ql

Hence

S(P,) 22 El —iCEk”.

The rest of the proof is divided into two cases which are so similar to the
cases in the proof of Lemma 2 that we do not repeat the detaits< {f; 1,

c

thenS(Py) 2 ;m. If m2 £ 4, thenS(Pg) 253 ¢ 0

As the length of a shift is alwaysk + 1, we get from Lemma 6

S(P) 2 S(P,)

2ma>§<+ 1,min@%kci+l), n;%
—mlngn @(+ 1’2(k+ 1)E max§< + 1, R

TP ¢
min 2(k + 1) 2F

The number of text positions at which a right-to-left scanning of P is

I\JH—‘

performed between two shifts is again

© S(PTE OE‘%E

This can be shown as in the analysis of Algorithm 4. Note that for Algorithm
5 we need not assume explicitly that the lengths of different shifts are
independent. They are independent as the length of the minimum dhift is
1.

Hence the expected scanning time of Algorithm 5 for patdam

%MC(P) S(Pn)] @

When we apply here the upper bound Bgy(P) from Lemma 5 and the
above lower bound fa8{(P), and simplify, we obtain our final result.

Theorem 2.Let X + 1 <c. Then the expected scanning time of Algorithm 5
is O(; 2|() kn - W +)) The preprocessing time @((k + c)m) and the
working spaced(cm).

The checking of the marked diagonals can be done after Algorithm 5 or in
cascade with it in which case a buffer of lengthi2 enough for saving the
relevant part of texfT. The latter approach is presented in Algorithm 6,
which contains a modification of Algorithm 5 as its subroutine, fundtiBr.

© o Nk wwDdE

el el el
whN o

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Algorithm 6. The total algorithm for th& differences problem.

function NPO; begin {the next possible occurrence}
while j < n + kdo begin
r:=j;i:=m;bad:=0;d:=m,
while i >k and bad< k do begin
if i 2m —Kkthen d :=min(d, di, t]);
if Bad(i, t,) then bad:=bad+ 1;
i=i—=1;r:=r-1end;
if bad< k then goto out;
j:=]+maxk+ 1,d) end

.out if] <n +kthen begin

NPO:=] —m-Kk;
j =) +maxk+ 1,d) end
elseNPO:=n + 1end;

compute tableBad andd,;
ji=m;
for i :=0to mdo Hy[i] :=i;
H:=H,
top := min(k + 1, m); {top— 1 is the last row with the valgek}
col :=NPQO,
lastcol:=col + m + 2k — 1;
while col<ndo
for r := col to lastcoldo begin
c:=0;
for i := 1to topdo begin
if pp =t thend :=c;
elsed :=min((H[i — 1], HJ[i], ¢)) + 1;
c :=Hili]; H[i] :=dend;
while H(top) >k do top :=top — 1;
if top = mthen report match af;
elsetop :=top + 1end;
next:=NPG,
if next> lastcol+ 1then begin
H:=H,
top := min(k + 1, m);
col := nextend
elsecol :=lastcol + 1;
lastcol:=next+ m+ 2k — 1end

The checking phase of Algorithm 6 evaluates a parD dby dynamic
programming (see Section 3.1). Because entries on every diagonal are
monotonically increasing [Ukk85a], the computation along a marked diagonal
can be stopped, when the threshold valuk 6fl is reached, because the rest
of the entries on that diagonal will be greater thaAlgorithm 6 implements
this idea in a slightly streamlined way. Instead of restricting the evaluation of
D exactly on the marked diagonals (which could be done, of course, but leads
to more complicated code), we evaluate eambimnof D that intersects some
marked diagonal. Each such column is evaluated from its first entry to the last
one that could be& k. This can be easily decided using the diagonalwise
monotonicity of D [Ukk85b]. The evaluation of each separate block of
columns can start from a column identical to the first colum ¢H in
Algorithm 6; H stores the previous as well as the current column under
evaluation). For random strings, this method spends expected ti®&)adn
each column (this conjecture of [Ukk85b] has recently been proved by W.
Chang). Hence the total expected time of the checking phase redfkms

Asymptotically, steps 22—37 of Algorithm 6 are executed very seldom.
Hence except for small patterns, small alphabets and ksgéhe expected
time for the checking phase tends to be small in which case the time bound of
Theorem 2 is valid for our entire algorithm.

3.4. Variations

Each marking operation before the next shift takes () in the worst

case. At the cost of decreased accuracy of marking we can reduce this by
limiting the number of the columns whose badness is examined. The time
reduces tdD(k) when we examine only at mast columns for some constant

a > 1. If there are not more thdn bad columns among them, then the
diagonals are marked. This variation appealingly has the feature that the total
time of marking and shifting reduces@gn) in the worst case. Of course, the
gain may be lost in the checking phase, as more diagonals will be marked.

On the other hand, the accuracy of the marking heuristic, which quite
often conservatively marks too many diagonals in its present form, can be
improved by a more careful analysis of whether or not a column is bad. Such
an analysis can be based, at the cost of longer preprocessing, on the
observation that two matches on successive columi® cdn occur in the
same minimizing path only if they are on the same diagonal.

In Algorithm 6, the width of the band of columns inspectethis 2.
The algorithm works better for small alphabets and short patterns, if a wider
width is used, because that will reduce reinspection of text positions during
the scanning phase. If the width is at least+Xk, then we can in the case of a
potential match make a shift of + 1, which guarantees that no text position
is reinspected in that situation.

4. Experiments and conclusions

We have tested extensively our algorithms and compared them with other
methods. We will present results of a comparison withQflen) expected

time dynamic programming method [Ukk85b] which we have found to be the
best in practice among the old algorithms we have tested [JTU90].

Table 1 shows total execution times of Algorithms 4 and 6 and the
corresponding dynamic programming algorithd®1 (thek mismatches
problem) andDP2 (thek differences problem). Preprocessing, scanning and
checking times are specified for Algorithm 6, as well as preprocessing times
for Algorithm 4. In our tests, we used random patterns of varying lengths and
random texts of length 100,000 characters over alphabets of different sizes.
The tests were run on a VAX 8800 under VMS. In order to decrease random
variation, the figures of Table 1 are averages of ten runs. Still more
repetitions should be necessary to eliminate variation as can seen in the
duplicate entries of Table 1 corresponding to different test series with the
same parameters.

24

Figures 3—6 have been drawn from the data of Table 1. Figures 3 and 4
show the total execution times whkr 4 andm varies for alphabet sizes=
2 and 90. Figures 5 and 6 show the corresponding times mhe® andk
varies for alphabet sizes= 4 and 30.

Our algorithms, as all algorithms of Boyer-Moore type, work very well
for large alphabets, and the execution time decreases when the length of the
pattern grows. An increment of the error lirkislows down our algorithms
more than the dynamic programming algorithms. Observe also that the
Boyer-Moore approach is relatively better in solving thedifferences
problem than in solving thie mismatches problem.

Our methods turned out to be faster than the previous methods, when the
pattern is long enoughm(> 5), the error limik is relatively small and the
alphabet is not very smalt (> 5). Results of the practical experiments are
consistent with our theoretical analysis. To devise a more accurate and
complete theoretical analysis of the algorithms is left as a subject for further
study.

Table 1. Execution times (in units of 10 milliseconds) of the algorithms (L00,000).
Prepr., Scan and Check denote the preprocessing, scanning and checking times,

respectively.
c m k ALG. 4 DP1 ALG. 6 DP2
Prepr. Total Prepr. Scan Check Total
2 8 4 0 574 227 0 129 406 535 403
2 16 4 0 681 403 0 240 705 945 700
2 32 4 0 681 371 0 451 759 121 756
2 64 4 0 679 385 0 881 813 1694 817
2 128 4 0 688 349 0 1762 792 2554 786
2 256 4 0 691 361 0 3172 827 3999 824
4 8 4 0 451 213 0 129 469 598 465
4 16 4 0 453 224 0 235 557 792 553
4 32 4 0 447 222 0 427 731 1158 550
4 64 4 0 464 227 0 700 538 123 563
4 128 4 0 459 226 0 849 216 1065 556
4 256 4 0 436 226 0 724 2 726 553
30 8 4 0 151 174 0 84 84 168 406
30 16 4 0 88 170 0 75 0 75 410
30 32 4 0 78 167 0 72 0 72 406
30 64 4 0 75 167 0 70 0 70 403
30 128 4 0 79 167 1 73 0 74 404
30 256 4 0 79 167 1 73 0 74 403
90 8 4 0 126 166 0 63 2 65 389
90 16 4 0 50 164 0 40 0 40 389
90 32 4 0 33 166 0 30 0 30 390
90 64 4 0 27 165 1 25 0 26 389
90 128 4 0 27 164 2 26 0 28 388

90 256 4 1 27 164 4 27 0 31 387
2 8 0 0 89 102 0 106 9 115 164
2 8 1 0 234 | 155 0 260 246 508| 278
2 8 2 0 371 | 193 0 208 361 569 353
2 8 3 0 488 | 220 0 158 405 563 399
2 8 4 0 570 | 223 0 127 405 533 404
2 8 5 0 628 | 223 0 109 407 516 407
........ 2B 8 QBT 220 Q93405 498 40
4 8 0 0 56 78 0 63 0 63 129
4 8 1 0 95 113 0 112 43 155 229
4 8 2 0 211 | 153 0 199 358 557 353
4 8 3 0 344 | 175 0 158 415 573 408
4 8 4 0 480 | 211 0 128 447 575 445
4 8 5 0 575 | 225 0 108 481 589 477
4 8 6 0 582 | 232 0 98 505 603| 503
30 8 0 0 16 68 0 18 0 18 115
30 8 1 0 36 93 0 32 0 32 187
30 8 2 0 63 120 0 54 0 54 263
30 8 3 0 102 | 144 0 68 5 73 336
30 8 4 0 157 | 169 0 79 44 123 412
30 8 5 0 222 | 194 0 84 170 254[484
A A 6.f (U 364 {.219.1 . Qe 9........ 219, 809) 248
90 8 0 0 15 67 0 16 0 16 114
90 8 1 0 32 93 0 29 0 29 189
90 8 2 0 55 119 0 40 0 40 258
90 8 3 0 87 144 0 53 0 53 332
90 8 4 0 132 | 170 0 63 1 64 408
90 8 5 0 208 | 198 0 78 37 115 484
90 8 6 0 344 | 221 0 84 207 291] 554

Figures 3—6 have been drawn from the data of Table 1. Figures 3 and 4
show the total execution times whkr 4 andm varies for alphabet sizes=
2 and 90. Figures 5 and 6 show the corresponding times mhe® andk
varies for alphabet sizes= 4 and 30.

Our algorithms, as all algorithms of Boyer-Moore type, work very well
for large alphabets, and the execution time decreases when the length of the
pattern grows. An increment of the error lirkislows down our algorithms
more than the dynamic programming algorithms. Observe also that the
Boyer-Moore approach is relatively better in solving thedifferences
problem than in solving thie mismatches problem.

Our methods turned out to be faster than the previous methods, when the
pattern is long enoughm(> 5), the error limik is relatively small and the
alphabet is not very smalt (> 5). Results of the practical experiments are
consistent with our theoretical analysis. To devise a more accurate and
complete theoretical analysis of the algorithms is left as a subject for further
study.

4096 Alg. 4

1024 —
* DP1

256 —

= Alg. 5

64 —

1
6 I | I |
8 16 32 64 128 256

Figure 3. Total times fork = 4 andc = 2.

4096

1024 —

256 —

—

16 I I I I
8 16 32 64 128 256

Figure 4. Total times fork = 4 andc = 90.

4096

1024 —

256 —

64 —

16 I I I I I

Figure 5. Total times form = 8 andc = 4.

Alg. 4

©+ DP1

= Alg. 5

Alg. 4

' DP1

= Alg. 5

ww DP2

4096

1024 —

Alg. 4

** DP1

= Alg. 5

Figure 6. Total times fom = 8 andc = 30.

Acknowledgement

Petteri Jokinen performed the experiments which is gratefully acknowledged.

References

[Bae89a]

[Bae89Db]

[BOM77]

[ChL9O]

[Fel65]

R. Baeza-Yates: Efficient Text Searching. Ph.D. Thesis, Report
CS-89-17, University of Waterloo, Computer Science Department,
1989.

R. Baeza-Yates: String searching algorithms revisited. In:
Proceedings of the Workshop on Algorithms and Data Structures
(ed. F. Dehne et al.), Lecture Notes in Computer Science 382,
Springer-Verlag, Berlin, 1989, 75-96.

R. Boyer and S. Moore: A fast string searching algorithm.
Communcations of the ACRD (1977), 762-772.

W. Chang and E. Lawler: Approximate string matching in
sublinear expected time. IRroceedings of the 31st IEEE Annual
Symposium on Foundations of Computer Scigh€EE, 1990,
116-124.

W. Feller: An Introduction to Probability Theory and Its
Applications.Vol. I. John Wiley & Sons, 1965.

[Fel66]

[GaG86]

[GaG8s]

[GaP89]

[GrL89]
[Hor80]
[ITU90]
[Kos88]
[KMP77]
[Lav8g]
[Lav8g]
[Sel80]
[Ukk85a]
[UKk85b]

[UKWOO]

[WaF75]

W. Feller: An Introduction to Probability Theory and Its
Applications.Vol. II. John Wiley & Sons, 1966.

Z. Galil and R. Giancarlo: Improved string matching with k
mismatchesSIGACT Newd7 (1986), 52-54.

Z. Galil and R. Giancarlo: Data structures and algorithms for
approximate string matchingournal of Complexity (1988), 33—
72.

Z. Galil and K. Park: An improved algorithm for approximate
string matchingProceedings of the 16th International Colloquium
on Automata, Languages and Programmihgcture Notes in

Computer Science 372, Springer-Verlag, Berlin, 1989, 394-404.

R. Grossi and F. Luccio: Simple and efficient string matching with
k mismatcheslnformation Processing Lette33 (1989), 113-120.

N. Horspool: Practical fast searching in strin§eftware Practice
& Experiencel0 (1980), 501-506.

P. Jokinen, J. Tarhio and E. Ukkonen: A comparison of approxi-
mate string matching algorithms. In preparation.

S. R. Kosaraju: Efficient string matching. Extended abstract. Johns
Hopkins University, 1988.

D. Knuth, J. Morris and V. Pratt: Fast pattern matching in strings.
SIAM Journal on Computing (1977), 323—-350.

G. Landau and U. Vishkin: Fast string matching witk k differences.
Journal of Computer and System Scier®££1988), 63—78.

G. Landau and U. Vishkin: Fast parallel and serial approximate
string matchingJournal of AlgorithmslL0O (1989), 157-169.

P. Sellers: The theory and computation of evolutionary distances:
Pattern recognitionJournal of Algorithmsl (1980), 359-372.

E. Ukkonen: Algorithms for approximate string matching.
Information Control64 (1985), 100-118.

E. Ukkonen: Finding approximate patterns in stringgmurnal of
Algorithms6 (1985), 132-137.

E. Ukkonen and D. Wood: Fast approximate string matching with
suffix automata. Report A-1990-4, Department of Computer
Science, University of Helsinki, 1990.

R. Wagner and M. Fischer: The string-to-string correction
problem.Journal of the ACM21 (1975), 168-173.

