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Abstract. The Boyer-Moore idea applied in exact string matching is

generalized to approximate string matching. Two versions of the problem are

considered. The k mismatches problem is to find all approximate occurrences

of a pattern string (length m) in a text string (length n) with at most k mis-

matches. Our generalized Boyer-Moore algorithm is shown (under a mild

independence assumption) to solve the problem in expected time O(kn( 1
m  – k

 +

k
c
)) where c is the size of the alphabet. A related algorithm is developed for the

k differences problem where the task is to find all approximate occurrences of

a pattern in a text with ≤ k differences (insertions, deletions, changes).

Experimental evaluation of the algorithms is reported showing that the new

algorithms are often significantly faster than the old ones. Both algorithms are

functionally equivalent with the Horspool version of the Boyer-Moore

algorithm when k = 0.
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1. Introduction

The fastest known exact string matching algorithms are based on the Boyer-

Moore idea [BoM77, KMP77]. Such algorithms are “sublinear” on the average

in the sense that it is not necessary to check every symbol in the text. The

larger is the alphabet and the longer is the pattern, the faster the algorithm

works. In this paper we generalize this idea to approximate string matching.

Again the approach leads to algorithms that are significantly faster than the

previous solutions of the problem.

We consider two important versions of the approximate string matching

problem. In both, we are given two strings, the text T = t1t2...tn and the

pattern  P = p1p2...pm in some alphabet Σ , and an integer k. In the first

variant, called the k mismatches problem, the task is to find all occurrences of

P in T with at most k mismatches, that is, all j  such that pi = tj–m+i for i  =

1, ..., m except for at most k indexes i.

In the second variant, called the k differences problem, the task is to find

(the end points of) all substrings P' of T with the edit distance at most k from

P. The edit distance means the minimum number of editing operations (the

differences) needed to convert P' to P. An editing operation is either an

insertion, a deletion or a change of a character. The k mismatches problem is

a special case with the change as the only editing operation.

There are several algorithms proposed for these two problems, see e.g. the

survey [GaG88]. Both can be solved in time O(mn) by dynamic programming

[Sel80, Ukk85b]. A very simple improvement giving O(kn) expected time

solution for random strings is described in [Ukk85b]. Later, Landau and

Vishkin [LaV88, LaV89], Galil and Park [GaP89], Ukkonen and Wood

[UkW90] have given different algorithms that consist of preprocessing the

pattern in time O(m2) (or O(m)) and scanning the text in worst-case time

O(kn). For the k differences problem, O(kn) is the best bound currently

known if the preprocessing is allowed to be at most O(m2). For the k mis-

matches problem Kosaraju [Kos88] gives an O(n√m polylog(m)) algorithm.

Also see [GaG86, GrL89].
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We develop a new approximate string matching algorithm of Boyer-Moore

type for the k mismatches problem and show, under a mild independence

assumption, that it processes a random text in expected time O(kn( 1
m  – k

 + 
k
c
))

where c denotes the size of the alphabet. A related but different method is

(independently) developed and analyzed in [Bae89a]. We also give an algo-

rithm for the k differences problem and show in a special case that its

expected processing time for a random text is O(
c

c – 2k kn (
k

c + 2k2 + 
1
m

)). The

preprocessing of the pattern needs time O(m + kc) and O((k + c)m) ,

respectively. We have also performed extensive experimental comparison of

the new methods with the old ones showing that Boyer-Moore algorithms are

significantly faster, for large m and c in particular.

Our algorithms can be considered as generalizations of the Boyer-Moore

algorithm for exact string matching, because they are functionally identical

with the Horspool version [Hor80] of the Boyer-Moore algorithm when k = 0.

The algorithm of [Bae89a] generalizes the original Boyer-Moore idea for the

k mismatches problem.

All these algorithms are “sublinear” in the sense that it is not necessary to

examine every text symbol. Another approximate string matching method of

this type (based on totally different ideas) has recently been given in [ChL90].

The paper is organized as follows. We first consider the k mismatches

problem for which we give and analyze the Boyer-Moore solution in Section

2. Section 3 develops an extension to the k differences problem and outlines

an analysis. Section 4 reports our experiments.

2. The k mismatches problem

2.1. Boyer-Moore-Horspool algorithm

The characteristic feature of the Boyer-Moore algorithm [BoM77] for exact

matching of string patterns is the right-to-left scan over the pattern. At each

alignment of the pattern with the text, characters of the text below the pattern
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are examined from right to left, starting by comparing the rightmost

character of the pattern with the character in the text currently below it.

Between alignments, the pattern is shifted from left to right along the text.

In the original algorithm the shift is computed using two heuristics: the

match heuristic and the occurrence heuristic. The match heuristic implements

the requirement that after a shift, the pattern has to match all the text

characters that were found to match at the previous alignment. The

occurrence heuristic implements the requirement that we must align the

rightmost character in the text that caused the mismatch with the rightmost

character of the pattern that matches it. After each mismatch, the algorithm

chooses the larger shift given by the two heuristics.

As the patterns are not periodic on the average, the match heuristic is not

very useful. A simplified version of the method can be obtained by using the

occurrence heuristic only. Then we may observe that it is not necessary to

base the shift on the text symbol that caused the mismatch. Any other text

character below the current pattern position will do as well. Then the natural

choice is the text character corresponding to the rightmost character of the

pattern as it potentially leads to the longest shifts. This simplification was

noted by Horspool [Hor80]. We call this method the Boyer-Moore-Horspool

or the BMH algorithm.

The BMH algorithm has a simple code and is in practice better than the

original Boyer-Moore algorithm. In the preprocessing phase the algorithm

computes from the pattern P = p1p2...pm the shift table d, defined for each

symbol a in alphabet Σ as

d[a] = min{ s | s = m or (1 ≤ s < m and pm–s = a)}.

For a text symbol a below pm, the table d shifts the pattern right until the

rightmost a in p1...pm–1 becomes above the a in the text. Table d can be

computed in time O(m + c) where c = |Σ|, by the following algorithm:

Algorithm 1.  BMH-preprocessing.

for  a in Σ do d[a] := m;

for  i := 1, ..., m – 1 do d[pi] := m – i
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The total BMH method [Hor80] including the scanning of the text T = t1t2...tn
is given below:

Algorithm 2. The BMH method for exact string matching.

call Algorithm 1;

j := m; {pattern ends at text position j}

while j ≤ n do begin

h := j; i := m; {h scans the text, i the pattern}

while i > 0 and th = pi do begin

i := i – 1; h := h – 1 end; {proceed to the left}

if  i = 0 then report match at position j;

j := j + d[tj] end {shift to the right}

2.2. Generalized BMH algorithm

The generalization of the BMH algorithm for the k mismatches problem will

be very natural: for k = 0 the generalized algorithm is exactly as Algorithm 2.

Recall that the k mismatches problem asks for finding all occurrences of P in

T such that in at most k positions of P, T and P have different characters.

We have to generalize both the right-to-left scanning of the pattern and the

computation of the shift. The former is very simple; we just scan the pattern

to the left until we have found k + 1 mismatches (unsuccessful search) or the

pattern ends (successful search).

To understand the generalized shift it may be helpful to look at the k

mismatches problem in a tabular form. Let M be a m × n table such that for

1 ≤ i ≤ m, 1 ≤ j ≤ n,

M[i, j] = 
 

0, if p i = t j

1, i f  p i  ≠  t j
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There is an exact match ending at position r of T if M[ i, r – m + i] = 0 for i =

1, ..., m, that is there is a whole diagonal of 0’s in M  ending at M [m, r ].

Similarly, there is an approximate match with ≤ k mismatches if the diagonal

contains at most k 1’s. This implies that any successive k + 1 entries of such a

diagonal have to contain at least one 0.

Assume then that the pattern is ending at text position j and we have to

compute the next shift. We consider the last k + 1 text characters below the

pattern, the characters t j–k, t j–k+1, ..., t j. Then, suggested by the above

observation, we glide the pattern to the right until there is at least one match

in tj–k, tj–k+1, ..., tj. The maximum shift is m – k. Clearly this is a correct

heuristic: A smaller shift would give an unsuccessful alignment because there

are at least k + 1 mismatches, and a shift larger than m – k would skip over a

potential match.

Let d(t j–k, t j–k+1, ..., t j) denote the length of the shift. The values of

d(tj–k, ..., tj) could be precomputed and tabulated. This would lead to quite

heavy preprocessing of at least time Θ(ck). Instead, we apply a simpler pre-

processing that makes it possible to compute the shift on-the-fly with small

overhead while scanning.

In terms of M  the shifting means finding the first diagonal above the

current diagonal such that the new diagonal has at least one 0 for t j–k,

tj–k+1, ..., tj.

   a b a a c b b a b b b a

a  0 1 0 0 1 1 1 0 1 1 1 0
b  1 0 1 1 1 0 0 1 0 0 0 1
b  1 0 1 1 1 0 0 1 0 0 0 1
b  1 0 1 1 1 0 0 1 0 0 0 1

T

P

     
    Figure 1. Determining of shift (k = 1).

For example, consider table M in Fig. 1, where we assume that k = 1. We

may shift from the diagonal of M[1, 1] directly to the diagonal of M[1, 3], as

this diagonal contains the first 0 for characters t3 = a, t4 = a. Hence d(a, a) = 2
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for the pattern abbb. Also note that t4 alone would give a shift of 3 and t3 a

shift of 2, and d(t3, t4) is the minimum over these component shifts.

In general, we compute d(tj–k, ..., tj) as the minimum of the component

shifts for each tj–k, ..., tj. The component shift for th depends both on the

character th itself and on its position below the pattern. Possible positions are

m – k, m – k + 1, ..., m. Hence we need a (k + 1) × c table dk defined for each

i = m – k, ..., m, and for each a in Σ, as

dk[ i, a] = min{ s | s = m or (1 ≤ s < m and pi–s = a)}.

Here the values greater than m – k are not actually relevant. Table dk is pre-

sented in this form, because the same table is used in the algorithm solving the

k differences problem.

Table dk can be computed in time O((m + c)k) by a straightforward

generalization of the BMH-preprocessing which scans k + 1 times over P and

each scanning creates a new row of dk.

A more efficient method needs only one scan, from right to left, over P.

For each symbol pi encountered, the corresponding updates are made to dk.

To keep track of the updates already made, we use a table ready[a], a in ∑,

such that ready[a] = j if dk[ i, a] already has its final value for i = m, m – 1, ...,

j . Initially, ready[a] = m + 1 for all a, and dk[ i , a] = m for all i , a. The

algorithm is as follows:

Algorithm 3.  Computation of table dk.

1. for  a in ∑ do ready[a] := m + 1;

2. for  a in ∑ do

3. for  i := m downto m – k do

4. dk[i, a] := m;

5. for  i := m – 1 downto 1 do begin

6. for  j := ready[pi] – 1 downto max(i, m – k) do

7. dk[ j, pi] := j – i;

8. ready[pi] := max(i, m – k) end
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The initializations in steps 1–4 take time O(kc). Steps 5–8 scan over P in time

O(m) plus the time of the updates of dk in step 7. This takes time O(kc) as

each dk[ j, pi] is updated at most once. Hence Algorithm 3 runs in time O(m +

kc).

We have now the following total method for the k mismatches problem:

Algorithm 4.  Approximate string matching with k mismatches.

 1. compute table dk  from P with Algorithm 3;

 2. j := m; {pattern ends at text position j}

 3. while j ≤ n + k do begin

 4. h := j; i := m; neq := 0; {h scans the text, i the pattern}

 5. d := m – k; {initial value of the shift}

 6. while i > 0 and neq ≤ k do begin

 7. if i ≥ m – k then d := min(d, dk[ i, th]);

{minimize over the component shifts}

 8. if  th ≠ pi then neq := neq + 1;

 9. i := i – 1; h := h – 1 end; {proceed to the left}

10. if  neq ≤ k then report match at position j;

11. j := j + d end {shift to the right}

2.3. Analysis

First recall that the preprocessing of P by Algorithm 3 takes time O(m + kc)

and space O(kc). The scanning of T by Algorithm 4 obviously needs O(mn)

time in the worst case. The bound is strict for example for T = an, P = am.

Next we analyze the scanning time in the average case. The analysis will be

done under the random string assumption which says that individual

characters in P and T are chosen independently and uniformly from Σ. The

time requirement is proportional to the number of the text-pattern

comparisons in step 8 of Algorithm 4. Let Cloc(P) be a random variable
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denoting, for some fixed c and k, the number of such comparisons for some

alignment of pattern P between two successive shifts, and let 
_
Cloc(P) be its

expected value.

Lemma 1. 
_
Cloc(P) < 

 



 

c

c –  1 +  1  (k + 1).

Proof. The distribution of C loc(P) – (k + 1) converges to the negative

binomial distribution (the Pascal distribution) with parameters (k + 1, 1 – 1c)

when m → ∞, because Cloc(P) – (k + 1) is the number of matches until we

find the k + 1st mismatch; the probability of the mismatch is 1 – 1
c. As the

expected value of Cloc(P) increases with m, the expected value  k + 1
c –  1 of this

negative binomial distribution (see e.g. [Fel65]) would be an upper bound

(and the limit as m → ∞) of 
_
Cloc(P) – (k + 1). This, however, ignores the

effect of the fact that after a shift of length d < m – k we know that at least

one and at most k + 1 of characters pm–d–k, ..., pm–d will match. Hence to

bound 
_
Cloc(P) – (k + 1) properly, it surely suffices to add k + 1 to the above

bound which gives

_
Cloc(P) – (k + 1) <  

k + 1
c –  1 + k + 1

and the lemma follows.  

Let S(P) be a random variable denoting the length of the shift in

Algorithm 4 for pattern P and for some fixed k and c when scanning a

random T. Moreover, let P0 be a pattern  that repeatedly contains all charac-

ters in Σ in some fixed order until the length of P0 equals m. Then it is not

difficult to see that P0 gives on the average the minimal shift, that is, the

expected values satisfy 
_
S(P0) ≤ 

_
S(P) for all P of length m. Hence a lower

bound for 
_
S(P0) gives a lower bound for the expected shift over all patterns of

length m (c.f. [Bae89b]).

Lemma 2. 
_
S(P0)  ≥  12 min(

c
k +  1, m – k). Moreover,  

_
S(P0) ≥ 1.
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Proof. Let t = min(c – 1, m – k – 1). Then the possible lengths of a shift are

1, 2, ..., t + 1. Therefore

_
S(P0) = ∑

i=0

t
Pr(S(P0) > i)

where Pr(A) denotes the probability of event A. Then

Pr(S(P0) > i ) = 
 



 

c – i

c  
k+1

because for each of the k + 1 text symbols that are compared with the pattern

to determine the shift (step 8 of Algorithm 4), there are i  characters not

allowed to occur as the text symbols. Otherwise the shift would not be > i.

Hence

_
S(P0) = ∑

i=0

t
 
 



 



1  –  
i
c  

k+1

which clearly is ≥ 1, because t ≥ 0 as we may assume that c ≥ 2 and that

k < m.

We divide the rest of the proof into two cases.

Case 1: m – k < 
c

k +  1.  Then t = m – k – 1, and we have

 
_
S(P0) ≥ ∑

i=0

m–k–1
 
 



 



1 – 
k +  1

c  ·  i

= m – k –  
k + 1

c  · (m – k – 1)(m – k)
2

≥ (m – k)
 



 



1 –   
k  +  1

c  ·  
m  –  k

2    ≥   
1
2(m – k).

Case 2: m – k ≥ 
c

k +  1.  Then t ≥  c
k +  1 – 1, and we have

 
_
S(P0) ≥ ∑

i=0


c

k+1–1

  


 


1  –  
i
c  

k+1
 ≥ ∑

i=0


c

k+1–1

 
 



 



1 – 
k +  1

c  ·  i
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=   c
k +  1 – 

k + 1
c  · 12 ·  c

k +  1 
 



 



 c
k +  1  –  1

≥   c
k +  1 

 



 



1 – 
1
2 ·  

k  +  1
c  ·  

c
k +  1    =   

1
2  c

k +  1.  

Consider finally the total expected number 
_
C(P) of character comparisons

when Algorithm 4 scans a random T with pattern P. Let f(P) be the random

variable denoting the number of shifts taken during the execution, and let 
_
f (P)

be its expected value. Then we have

 
_
C(P) = 

_
f (P) · 

_
Cloc(P).

To estimate 
_
f (P), we let Si be a random variable denoting the length of i th

shift. At the start of Algorithm 4, P is aligned with T such that its first symbol

corresponds to the text position 1, and at the end P is aligned such that its first

symbol corresponds to some text position ≤ n – m + k + 1 but the next shift

would lead to a position > n – m + k + 1. Hence new shifts are taken until the

total length of the shifts exceeds n – m + k. This implies that f(P) equals the

largest index φ such that

∑
i=1

φ
Si ≤ n – m + k.

Assume now that the different variables Si  are independent, that is, the

shift lengths are independent; note that this simplification is not true for two

successive shifts such that the first one is shorter than k + 1. Then all variables

Si  have a common distribution with expected value 
_
S(P) ≥ 

_
S(P0). Under this

assumption

{ ∑
i=1

φ
Si }

is, in fact, a pure renewal process within interval [0, n – m + k] in the

terminology of [Fel66, Chapter XI]. Then the expected value of φ  is

(n – m + k) /  
_
S(P) for large n – m + k (see [Fel66, p. 359]) Hence

_
f (P) = O

 



 

n  – m  +  k

S(P0) 
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and by Lemma 2,

 
_
f  = O

 



 



max
 



 

k +  1

c ,  
1

m  –  k ·  (n  –  m  +  k)  .

Recalling finally that 
_
C(P) = 

_
f (P) · 

_
Cloc(P) and applying Lemma 1, we obtain

that

_
C(P) ≤ O

 



 



max
 



 

k +  1

c ,  
1

m  –  k (n  –  m  +  k)  
 



 

c

c –  1 +  1  (k +  1 )

which is O(nk2

c
 + nk

m  –  k
) as n >> m. Hence we have:

Theorem 1. The expected running time of Algorithm 4 is O(nk(k
c
 + 1

m  –  k
)), if

the lengths of different shifts are mutually independent. The preprocessing

time is O(m + kc), and the working space is O(kc).

Removing the independence assumption from Theorem 1 remains open.

3. The k differences problem

3.1. Basic solution by dynamic programming

The edit distance [WaF75, Ukk85a] between two strings, A and B, can be

defined as the minimum number of editing steps needed to convert A to B.

Each editing step is a rewriting step of the form a → ε (a deletion), ε → b (an

insertion), or a → b (a change) where a, b are in Σ and ε is the empty string.

The k differences problem is, given pattern P = p1p2...pm and text T =

t1t2...tn and an integer k, to find all such j  that the edit distance (i.e., the

number of differences) between P and some substring of T ending at tj is at

most k. The basic solution of the problem is by the following dynamic

programming method [Sel80, Ukk85b]: Let D be a m + 1 by n + 1 table such

that D(i, j) is the minimum edit distance between p1p2...pi and any substring of

T ending at tj. Then
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D(0, j) = 0,    0 ≤ j ≤ n;

D(i, j) = min  
 


D ( i  – 1, j )  + 1
D ( i  – 1, j  – 1)  + i f  p i  = t j  t hen 0 else 1
D ( i , j  – 1)  + 1

Table D  can be evaluated column-by-column in time O(mn). Whenever

D(m, j) is found to be ≤ k for some j, there is an approximate occurrence of P

ending at tj with edit distance D(m, j) ≤ k. Hence j  is a solution to the k

differences problem.

3.2. Boyer-Moore approach

Our algorithm contains two main phases: the scanning and the checking. The

scanning phase scans over the text and marks the parts that contain all the

approximate occurrences of P. This is done by marking some entries D(0, j)

on the first row of D. The checking phase then evaluates all diagonals of D

whose first entries are marked. This is done by the basic dynamic

programming restricted to the marked diagonals. Whenever the dynamic

programming refers to an entry outside the diagonals, the entry can be taken

to be ∞. Because this is quite straightforward we do not describe it in detail.

Rather, we concentrate on the scanning part.

The scanning phase repeatedly applies two operations: mark and shift. The

shift operation is based on a Boyer-Moore idea. The mark operation decides

whether or not the current alignment of the pattern with the text needs

accurate checking by dynamic programming and in the positive case marks

certain diagonals. To understand the operations we need the concept of a

minimizing path in table D.

For every D(i , j), there is a minimizing arc from D(i  – 1, j) to D(i , j) if

D(i, j) = D(i – 1, j) + 1, from D(i, j – 1) to D(i, j) if D(i, j) = D(i, j – 1) + 1,

and from D(i – 1, j – 1) to D(i, j) if D(i, j) = D(i – 1, j – 1) when pi = tj or if

D(i, j) = D(i – 1, j – 1) + 1 when  pi ≠ tj. The costs of the arcs are 1, 1, 0 and

1, respectively. The minimizing arcs show the actual dependencies between

the values in table D . A minimizing path is any path that consists of
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minimizing arcs and leads from an entry D(0, j) on the first row of D to an

entry D(m, h) on the last row of D. Note that D(m, h) equals the sum of the

costs of the arcs on the path. A minimizing path is successful if it leads to an

entry D(m, h) ≤ k.

A diagonal h of D for h = –m, ..., n, consists of all D(i, j) such that j – i =

h. As any vertical or horizontal minimizing arc adds 1 to the value of the

entry, the next lemma easily follows:

Lemma 3. The entries on a successful minimizing path are contained in

≤ k + 1 successive diagonals of D.

Our marking method is based on the following lemma. For each i = 1, ..., m,

let the k environment of the pattern symbol pi be the string Ci = pi–k...pi+k,

where pj = ε for j < 1 and j > m.

Lemma 4. Let a successful minimizing path go through some entry on a

diagonal h of D. Then for at most k indexes i, 1 ≤ i ≤ m, character th+i does

not occur in k environment Ci.

Proof. Column j, h + 1 ≤ j ≤ h + m, of D is called bad if tj does not appear in

Cj–h. The lemma claims that the number of the bad columns is ≤ k. Let M be

the path in the lemma. Let R be the set of indexes j, h + 1 ≤ j ≤ h + m, such

that path M contains at least one entry D(i, j) on column j of D. If M starts or

ends outside diagonal h, then the size of R can be < m. Then, however, M

must have at least one vertical arc for each index j missing in R because M

crosses diagonal h. Therefore vert(M) ≥ m – size(R) where vert(M) is the

number of vertical arcs of M.

By Lemma 3, M must be contained in diagonals h – k, h – k + 1, ..., h + k

of D . Hence for each j  in R, path M  must enter some entry on column j

restricted to diagonals h – k, ..., h + k, that is, some entry D(i – k, j), ..., D(i

+ k, j). Then if j is bad, the first arc in M that enters column j must add 1 to

the total cost of M. Because such an arc enters a new column, it must be either

a diagonal or a horizontal arc; note that with no restriction on generality we

may assume that the very first arc of M  is not a vertical one. Hence the
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  Figure 2. Mark and shift (k = 2).

number of bad columns in R is ≤ cost(M) – vert(M) where cost(M) is the

value of the final entry of M.

Moreover, there can be m – size(R) additional bad columns as every

column outside R can be bad. The total number of the bad columns is

therefore at most m – size(R) + cost(M) – vert(M) ≤ cost(M) ≤ k.  

Lemma 4 suggests the following marking method. For diagonal h, check for i

= m, m – 1, ..., k + 1 if th+i is in Ci until k + 1 bad columns are found. Note

that to get minimum shift k + 1 (see below) we stop already at i  = k + 1

instead of at i = 1. If the number of bad columns is ≤ k, then mark diagonals h

– k, ..., h + k, that is, mark entries D(0, h – k), ..., D(0, h + k).

For finding the bad columns fast we need a precomputed table Bad(i, a), 1

≤ i ≤ m, a ∈ Σ, such that

Bad(i, a) = true, if and only if a does not appear in k environment Ci.

Clearly, the table can be computed by a simple scanning of P in time

O((c + k)m).

After marking we have to determine the length of shift, that is, what is the

next diagonal after h around which the marking should eventually be done.

The marking heuristics ensures that all successful minimizing paths that are

properly before diagonal h + k + 1 are already marked. Hence we can safely

make at least a shift of k + 1 to diagonal h + k + 1.
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This can be combined with the shift heuristics of Algorithm 4 of Section 2

based on table dk. So we determine the first diagonal after h, say h + d, where

at least one of the characters th+m, th+m–1, ..., th+m–k matches with the

corresponding character of P. This is correct, because then there can be a

successful minimizing path that goes through diagonal h + d. The value of d is

evaluated as in Algorithm 4, using exactly the same precomputed table dk.

Note that unlike in the case of Algorithm 4, the maximum allowed value of d

is now m, not m – k, as the marking starts from diagonal h – k, not from h.

Finally, the maximum of k + 1 and d is the length of the shift.

In practice, the marking and the computation of the shift can be merged if

we start the searching for the bad columns from the end of the pattern.

Fig. 2 illustrates marking and shifting. For r  = h + m, h + m – 1, ...,

h + k + 1 we check whether or not tr appears among the pattern symbols cor-

responding to the shaded block 1 (the k environment). If k + 1 symbols tr that

do not appear are found, entries D(0, h – k), ..., D(0, h + k) are marked.

Simultaneously we check what is the next diagonal after h containing a match

between P and th+m–k, ..., th+m (shaded block 2). The next shift is to this

diagonal but at least to diagonal h + k + 1.

We get the following algorithm for the scanning phase:
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Algorithm 5. The scanning phase for the k differences problem.

 1. compute table Bad and, by Algorithm 3, table dk  from P;

 2. j := m;

 3. while j ≤ n + k do begin

 4. r := j; i := m;

 5. bad := 0; {bad counts the bad indexes}

 6. d := m; {initial value of shift}  

 7. while i > k and bad ≤ k do begin

 8. if i ≥ m – k then d := min(d, dk[ i, tr]);

 9. if  Bad(i, tr) then bad := bad + 1;

10. i := i – 1; r := r – 1 end;

11. if  bad ≤ k then

12. mark entries D(0, j – m – k), ..., D(0,  j – m + k);

13. j := j + max(k + 1, d) end

The loop in steps 7–9 can be slightly optimized by splitting it into two parts

such that the first one handles k + 1 text characters and computes the length of

shift, and the latter goes on counting bad indexes (a similar optimization also

applies to Algorithm 4).

3.3. Analysis

The preprocessing of P requires O((k + c)m) for computing table Bad and

O(m + kc) for computing table dk. As k < m, the total time is O((k + c)m).

The working space is O(cm).

The marking and shifting by Algorithm 5 takes time O(mn ⁄ k) in the worst

case. The analysis of the average case is similar to the analysis of Algorithm 4

in Section 2. Let Bloc(P) be a random variable denoting, for some fixed c and

k, the number of the columns examined (step 9 of Algorithm 5) until k + 1

bad columns are found and the next shift will be taken. Obviously, Bloc(P)
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corresponds to Cloc(P) of Lemma 1. For the expected value 
_
Bloc(P) we show

the following rough bound:

Lemma 5. Let 2k + 1 < c. Then 
_
Bloc(P) ≤ 

 



 

c

c – 2k –  1 +  1  (k + 1).

Proof. The expected value of Bloc(P) – (k + 1) can be bounded from above

by the expected value of the negative binomial distribution with parameters (k

+ 1, q) where q is a lower bound for the probability that a column is bad.

Recall that column j  is called bad if text symbol tj does not occur in the

corresponding k environment. As the k environment is a substring of P of

length at most 2k + 1, it can have at most 2k + 1 different symbols. Therefore

the probability that a random t j does not belong to the symbols of a k

environment is at least  
c – (2k + 1)

c . Hence we can choose q =  
c – (2k + 1)

c .

The negative binomial distribution would then give for 
_
Bloc(P) – (k + 1) an

upper bound 
(2k + 1)(k + 1)
c – (2k + 1) . However, the shift heuristic implies that after a

shift of length < m we know that at least one and at most k + 1 columns will

not be bad. Hence to bound 
_
Bloc(P) – (k + 1) properly, we have to add k + 1

to the above bound which gives

_
Bloc(P) – (k + 1) ≤ 

(2k + 1)
c – (2k +  1) (k + 1) + k + 1

and the lemma follows.   

Let S'(P) be a random variable denoting the length of the shift in Algorithm 5

for pattern P and for some fixed k and c. When scanning a random T, the

special pattern P0 again gives the shortest expected shift, that is, 
_
S'(P0) ≤ 

_
S'(P)

for all P of length m. Lemma 6 gives a bound for 
_
S'(P0).

Lemma 6. 
_
S'(P0) ≥ 12 min(

c
k +  1, m).

Proof. Let t = min(c – 1, m – 1). Then the possible lengths of a shift are 1,

2, ..., t + 1; note that a shift actually is always ≥ k + 1 according to our

heuristic, but the heuristic can be ignored here as our goal is to prove a lower

bound. Therefore
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_
S'(P0) = ∑

i=0

t
Pr(S'(P0) > i).

If 0 ≤ i ≤ m – k – 1, then

Pr(S'(P0) > i) = 
 



 

c – i

c  
k+1

because for each of the k + 1 text symbols that are compared with the pattern

to determine the shift (step 8 of Algorithm 5), there are i  characters not

allowed to occur as the text symbols. This is exactly as in the proof of Lemma

2. A slight difference arises when m – k ≤ i ≤ m – 1. Then

 Pr(S'(P0) > i) =

 



 

c – i

c  
m– i

 · 
c – i  +  1

c  · 
c – i  +  2

c  · ... · 
c – m  + k +  1

c

because now the number of forbidden characters is i for the m – i last text

symbols and i – 1, i – 2, ..., i – (m – k – 1) for the remaining k + 1 – (m – i)

text symbols, listed from right to left. But also in this case

Pr(S'(P0) > i) ≥ 
 



 

c – i

c  
k+1

.

Hence

_
S'(P0) ≥ ∑

i=0

t
 
 



 



1  –  
i
c  

k+1
.

The rest of the proof is divided into two cases which are so similar to the

cases in the proof of Lemma 2 that we do not repeat the details. If m < 
c

k +  1,

then 
_
S'(P0) ≥ 

1
2 m. If m ≥ 

c
k +  1, then 

_
S'(P0) ≥ 

1
2 

c
k +  1

.   

As the length of a shift is always ≥ k + 1, we get from Lemma 6

_
S'(P) ≥ 

_
S'(P0)
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≥ max
 



 



k + 1, min
 



 

c

2(k + 1), 
m
2

= min
 



 



max
 



 



k  +  1 ,  
c

2(k + 1)  , max
 



 



k + 1,  
m
2

≥ 
1
2 min

 



 



k  +  1  +  
c

2(k + 1) ,  
m
2  .

The number of text positions at which a right-to-left scanning of P is

performed between two shifts is again

O
 



 

n – m

S'(P)  = O
 



 

n – m

S'(P0) 
 .

This can be shown as in the analysis of Algorithm 4. Note that for Algorithm

5 we need not assume explicitly that the lengths of different shifts are

independent. They are independent as the length of the minimum shift is k +

1.

Hence the expected scanning time of Algorithm 5 for pattern P is

O
 



 

_

B loc(P) · 
n – m
S'(P)  .

When we apply here the upper bound for 
_
Bloc(P) from Lemma 5 and the

above lower bound for 
_
S'(P), and simplify, we obtain our final result.

Theorem 2. Let 2k + 1 < c. Then the expected scanning time of Algorithm 5

is O( c
c – 2k

) · kn  · (
k

c + 2k2 + 
1
m

)). The preprocessing time is O((k + c)m) and the

working space O(cm).

The checking of the marked diagonals can be done after Algorithm 5 or in

cascade with it in which case a buffer of length 2m is enough for saving the

relevant part of text T. The latter approach is presented in Algorithm 6,

which contains a modification of Algorithm 5 as its subroutine, function NPO.
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Algorithm 6.  The total algorithm for the k differences problem.

 1. function NPO; begin {the next possible occurrence}

 2. while j ≤ n + k do begin
 3. r := j; i := m; bad := 0; d := m;
 4. while i > k and bad ≤ k do begin
 5. if i ≥ m – k then d := min(d, dk[ i, tr]);
 6. if  Bad(i, tr) then bad := bad + 1;
 7. i := i – 1; r := r – 1 end;
 8. if  bad ≤ k then goto out;
 9. j := j + max(k + 1, d) end
10. out: if  j ≤ n + k then begin
11. NPO := j – m – k;
12. j := j + max(k + 1, d) end
13. else NPO := n + 1 end;

14. compute tables Bad and dk;
15. j := m;
16. for  i := 0 to m do H0[ i] := i;
17. H := H0;
18. top := min(k + 1, m); { top – 1 is the last row with the value ≤ k}

19. col := NPO;
20. lastcol := col + m + 2k – 1;
21. while col ≤ n do
22. for  r  := col to lastcol do begin
23. c := 0;
24. for  i := 1 to top do begin
25. if  pi = tr then d := c;
26. else d := min((H[i – 1], H[i], c)) + 1;
27. c := H[i]; H[i] := d end;
28. while H(top) > k do top := top – 1;
29. if  top = m then report match at j;
30. else top := top + 1 end;
31. next := NPO;
32. if  next > lastcol + 1 then begin
33. H := H0;
34. top := min(k + 1, m);
35. col := next end
36. else col := lastcol + 1;
37. lastcol := next + m + 2k – 1 end
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The checking phase of Algorithm 6 evaluates a part of D by dynamic

programming (see Section 3.1). Because entries on every diagonal are

monotonically increasing [Ukk85a], the computation along a marked diagonal

can be stopped, when the threshold value of k + 1 is reached, because the rest

of the entries on that diagonal will be greater than k. Algorithm 6 implements

this idea in a slightly streamlined way. Instead of restricting the evaluation of

D exactly on the marked diagonals (which could be done, of course, but leads

to more complicated code), we evaluate each column of D that intersects some

marked diagonal. Each such column is evaluated from its first entry to the last

one that could be ≤ k. This can be easily decided using the diagonalwise

monotonicity of D  [Ukk85b]. The evaluation of each separate block of

columns can start from a column identical to the first column of D (H0 in

Algorithm 6; H  stores the previous as well as the current column under

evaluation). For random strings, this method spends expected time of O(k) on

each column (this conjecture of [Ukk85b] has recently been proved by W.

Chang). Hence the total expected time of the checking phase remains O(kn).

Asymptotically, steps 22–37 of Algorithm 6 are executed very seldom.

Hence except for small patterns, small alphabets and large k's, the expected

time for the checking phase tends to be small in which case the time bound of

Theorem 2 is valid for our entire algorithm.

3.4. Variations

Each marking operation before the next shift takes time O(m) in the worst

case. At the cost of decreased accuracy of marking we can reduce this by

limiting the number of the columns whose badness is examined. The time

reduces to O(k) when we examine only at most ak columns for some constant

a > 1. If there are not more than k bad columns among them, then the

diagonals are marked. This variation appealingly has the feature that the total

time of marking and shifting reduces to O(n) in the worst case. Of course, the

gain may be lost in the checking phase, as more diagonals will be marked.
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On the other hand, the accuracy of the marking heuristic, which quite

often conservatively marks too many diagonals in its present form, can be

improved by a more careful analysis of whether or not a column is bad. Such

an analysis can be based, at the cost of longer preprocessing, on the

observation that two matches on successive columns of D can occur in the

same minimizing path only if they are on the same diagonal.

In Algorithm 6, the width of the band of columns inspected is m + 2k.

The algorithm works better for small alphabets and short patterns, if a wider

width is used, because that will reduce reinspection of text positions during

the scanning phase. If the width is at least 2m + k, then we can in the case of a

potential match make a shift of m + 1, which guarantees that no text position

is reinspected in that situation.

4. Experiments and conclusions

We have tested extensively our algorithms and compared them with other

methods. We will present results of a comparison with the O(kn) expected

time dynamic programming method [Ukk85b] which we have found to be the

best in practice among the old algorithms we have tested [JTU90].

Table 1 shows total execution times of Algorithms 4 and 6 and the

corresponding dynamic programming algorithms DP1 (the k mismatches

problem) and DP2 (the k differences problem).  Preprocessing, scanning and

checking times are specified for Algorithm 6, as well as preprocessing times

for Algorithm 4. In our tests, we used random patterns of varying lengths and

random texts of length 100,000 characters over alphabets of different sizes.

The tests were run on a VAX 8800 under VMS. In order to decrease random

variation, the figures of Table 1 are averages of ten runs. Still more

repetitions should be necessary to eliminate variation as can seen in the

duplicate entries of Table 1 corresponding to different test series with the

same parameters.
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Figures 3–6 have been drawn from the data of Table 1. Figures 3 and 4

show the total execution times when k = 4 and m varies for alphabet sizes c =

2 and 90. Figures 5 and 6 show the corresponding times when m = 8 and k

varies for alphabet sizes c = 4 and 30.

Our algorithms, as all algorithms of Boyer-Moore type, work very well

for large alphabets, and the execution time decreases when the length of the

pattern grows. An increment of the error limit k slows down our algorithms

more than the dynamic programming algorithms. Observe also that the

Boyer-Moore approach is relatively better in solving the k differences

problem than in solving the k mismatches problem.

Our methods turned out to be faster than the previous methods, when the

pattern is long enough (m > 5), the error limit k is relatively small  and the

alphabet is not very small (c > 5). Results of the practical experiments are

consistent with our theoretical analysis. To devise a more accurate and

complete theoretical analysis of the algorithms is left as a subject for further

study.

Table 1. Execution times (in units of 10 milliseconds) of the algorithms (n = 100,000).
Prepr., Scan and Check denote the preprocessing, scanning and checking times,
respectively.

c m k ALG. 4 DP1 ALG. 6 DP2
Prepr. Total Prepr. Scan Check Total

2 8 4 0 574 227 0 129 406 535 403
2 16 4 0 681 403 0 240 705 945 700
2 32 4 0 681 371 0 451 759 1210 756
2 64 4 0 679 385 0 881 813 1694 817
2 128 4 0 688 349 0 1762 792 2554 786
2 256 4 0 691 361 0 3172 827 3999 824

4 8 4 0 451 213 0 129 469 598 465
4 16 4 0 453 224 0 235 557 792 553
4 32 4 0 447 222 0 427 731 1158 550
4 64 4 0 464 227 0 700 538 1238 563
4 128 4 0 459 226 0 849 216 1065 556
4 256 4 0 436 226 0 724 2 726 553

30 8 4 0 151 174 0 84 84 168 406
30 16 4 0 88 170 0 75 0 75 410
30 32 4 0 78 167 0 72 0 72 406
30 64 4 0 75 167 0 70 0 70 403
30 128 4 0 79 167 1 73 0 74 404
30 256 4 0 79 167 1 73 0 74 403

90 8 4 0 126 166 0 63 2 65 389
90 16 4 0 50 164 0 40 0 40 389
90 32 4 0 33 166 0 30 0 30 390
90 64 4 0 27 165 1 25 0 26 389
90 128 4 0 27 164 2 26 0 28 388
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90 256 4 1 27 164 4 27 0 31 387

2 8 0 0 89 102 0 106 9 115 164
2 8 1 0 234 155 0 260 246 506 278
2 8 2 0 371 193 0 208 361 569 353
2 8 3 0 488 220 0 158 405 563 399
2 8 4 0 570 223 0 127 405 533 404
2 8 5 0 628 223 0 109 407 516 407
2 8 6 0 677 221 0 93 405 498 401

4 8 0 0 56 78 0 63 0 63 129
4 8 1 0 95 113 0 112 43 155 229
4 8 2 0 211 153 0 199 358 557 353
4 8 3 0 344 175 0 158 415 573 408
4 8 4 0 480 211 0 128 447 575 445
4 8 5 0 575 225 0 108 481 589 477
4 8 6 0 582 232 0 98 505 603 503

30 8 0 0 16 68 0 18 0 18 115
30 8 1 0 36 93 0 32 0 32 187
30 8 2 0 63 120 0 54 0 54 263
30 8 3 0 102 144 0 68 5 73 336
30 8 4 0 157 169 0 79 44 123 412
30 8 5 0 222 194 0 84 170 254 484
30 8 6 0 364 219 0 90 519 609 548

90 8 0 0 15 67 0 16 0 16 114
90 8 1 0 32 93 0 29 0 29 189
90 8 2 0 55 119 0 40 0 40 258
90 8 3 0 87 144 0 53 0 53 332
90 8 4 0 132 170 0 63 1 64 408
90 8 5 0 208 198 0 78 37 115 484
90 8 6 0 344 221 0 84 207 291 554
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Figures 3–6 have been drawn from the data of Table 1. Figures 3 and 4

show the total execution times when k = 4 and m varies for alphabet sizes c =

2 and 90. Figures 5 and 6 show the corresponding times when m = 8 and k

varies for alphabet sizes c = 4 and 30.

Our algorithms, as all algorithms of Boyer-Moore type, work very well

for large alphabets, and the execution time decreases when the length of the

pattern grows. An increment of the error limit k slows down our algorithms

more than the dynamic programming algorithms. Observe also that the

Boyer-Moore approach is relatively better in solving the k differences

problem than in solving the k mismatches problem.

Our methods turned out to be faster than the previous methods, when the

pattern is long enough (m > 5), the error limit k is relatively small  and the

alphabet is not very small (c > 5). Results of the practical experiments are

consistent with our theoretical analysis. To devise a more accurate and

complete theoretical analysis of the algorithms is left as a subject for further

study.
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Figure 3. Total times for k = 4 and c = 2.



27

Alg. 4

DP1

Alg. 5

DP2

     m

8 16 32 64 128 256

16

64

256

1024

4096

 

  

Figure 4. Total times for k = 4 and c = 90.
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Figure 5. Total times for m = 8 and c = 4.
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Figure 6. Total times for m = 8 and c = 30.
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