INFORMATION PROCESSING 83, R.E.A. Mason (ed.)
Elsevier Science Publishers B.V. (North-Holland)
- ©IFIP, 1983

59

ALGORITHMS FOR SOME STRING MATCHING PROBLEMS

ARISING IN MOLECULAR GENETICS

Hannu PELTOLA*, Hans SODERLUND**, Jorma TARHIO* and Esko UKKONEN*

* Department of Computer Science, University of Helsinki

Tukholmankatu 2, SF-00250 Helsinki 25, Finland

** Recombinant DNA-laboratory, University of Helsinki

Valimotie 7, SF-00380 Helsinki 38, Finland

Analysis of DNA molecules and other biopolymers is a natural application area for computer
methods. For example, with current laboratory techniques it is possible to determine the
nucleotide order for relatively short fragments of a long DNA molecule while the total order
for long molecules must be reconstructed from the fragments. It is almost impossible to
solve this combinatorially difficult task without computer assistance. We give for this
problem a simple formulation as a string matching problem, and develop efficient algorithms
for finding good approximate solutions. The rapid expansion of recombinant DNA technology is

making such algorithms increasingly important.

1. INTRODUCTION

The genetic information of any organism is en-
coded in its DNA. At the beginning of the
1950"s Watson and Crick showed that the DNA is
a large double-stranded molecule. Each strand
consists of a long sequence of building-blocks
called nucleotides. Four different nucleotides
are alternating in the sequences. The nucleo-
tides are adenosine (abbreviated A), cytosine
(=C), guanine (=G) and thymine (=T). The
strands are twisted together such that A and T
and, respectively, C and G form pairs (fig 1).

—//— A T c G T —/ /-

—//[— T A G o A —//-
Fig. 1. A schematic fragment of DNA.

The individual carriers of information, the
genes, consist of a segment of such a DNA mol-
ecule, and their information is encoded into
the relative order of the nucleotides. To de-
termine the order for different genes, or to
sequence them, is therefore a crucial step to-
wards understanding the utilization of genetic
information. Recently the discovery of so-
called restriction enzymes which allow cleavage
of the long molecule into shorter fragments,
and revolutionary advances in recombinant DNA
technology essentially improved possibilities
to sequence often thousands of nucleotides long
DNA molecules. Currently there are fast se-
quencing techniques with which one person can
sequence about 10 DNA fragments of length 250-
300 per day thus producing a data of total
length of 2000 or 3000 characters {1},{2}.

It is almost inevitable to use computers for
manipulation and analysis of the rapidly accu-
mulating sequence data, and indeed, several
software packages for this purpose have been
developed during past 3 or 4 years {3}. Com
puters are used not only for simple tasks such
as for collecting and storing the primary se-—
quence data, but also for more subtle problems
such as for assembling long sequences from
short fragments and for finding homologies in

* This work was supported by the Academy of

different DNA's. It even is possible to develop
computer programs for overall assistance of a
DNA sequencing project. Such a program which is
a typical expert system in the sense of
Feigenbaum {4}, {14} has also been constructed

{5}.

In this paper we propose algorithms for some
computationally interesting key—problems encoun-—
tered in computer analysis of DNA sequences when
the entire DNA sequence is assembled from the
smaller fragments produced experimentally. The
problem becomes combinatorially difficult be-
cause the locations of the fragments in the long
sequence are not known exactly.

Our point of view is that of computer science
and algorithms design. To achieve a suffi-
ciently concise mathematical formulation of the
problem we will omit almost all biological de-
tails.

2. DNA SEQUENCE ASSEMBLING PROBLEM

To motivate the abstract form of the problem to
be considered, we first sketch some main steps
of a laboratory procedure for DNA sequencing.
Restriction enzymes are the central tools. Each
enzyme has a characteristic pattern c of nucleo-
tides (typically 4-6 nucleotides long) such that
enzyme cuts the DNA molecule at the occurrences
of ¢ in the sequence of the molecule.

The DNA molecule to be sequenced, G, is first
split with some enzyme into smaller pieces Fi,

Fa,...,F_, called fragments. It is then possi-
ble to determine the first 200 or even 400 nu-
cleotides from each end of F.. For each F. we

5 T
get two sequences, g, and g;, called the géls
(because they are reidd from an autoradiograph of
a sequencing gel); each gel is simply a string
of characters A, C, G and T and possibly some
additional characters denoting uncertain identi-
fication of A, C, G or T. The gels can typical-
ly be read at least 95 % correct. They form the
primary data used in assembling the whole se-
quence of G. Fig. 2 (first splitting) illus-
trates the situation; gels are shown as arrows.

Finland under grant 01/096 to E.Ukkonen and H.Sdderlund

60 H. Peltola et al.

G: L47]

First splitting:

G: L__ Fl l F2 l F3 |

81 & g3

L] [%]
g1

g, g5
Second splitting:
e | Fa | T]
g, g5
L F | L%]
&, £s

Fig. 2: DNA sequencing.

Cutting G into fragments only once does not
usually give sufficient information to infer
the whole sequence G. In the example of Figure
2, although all of fragment F. is sequenced
since g, and g overlap, fragments F, and F
have a gap between the gels. What still in=
creases the difficulty of assembling G from the
gels is that the lengths of fragments F. is
known only approximately and their order in G
is not known when the gels are read. Sometimes
it is possible to separately determine the lo-
cations of F, in G, but we assume that the con-
struction of G is based solely on the gels as
character strings without using additional
information on their relative positioning (the
"shotgun strategy' of sequencing).

So it is necessary to produce additional sets
of fragments and the corresponding gels (second
splitting in Figure 2) until every position of
G is covered with so many gels that G can as-
sembled with sufficient confidence. Thus we
are playing a sort of "puzzle" with strings
(the gels) that are a few hundred characters
long to assemble the overall picture, the DNA
molecule. Noting that one sequencing project
may produce hundreds of gels, this is almost an
impossible task without computer assistance.

The abstract DNA sequence assembling problem
considered in this paper is as follows: Let the
basic sequence, G, be a string over some finite
alphabet, and let strings g,,...,8, ., the gels,
be approximate substrings of G. This means
that for some fixed error ratic 6, each g. can
be transformed in at most 6|g.| steps to a sub-
string of G, that is, to a stFing q4; such that
G = xq.y for some strings x and y. Possible
transformation steps include insertion and de-
letion of a character, change of a character
and transposition of two adjacent characters.
The problem is, given gels g.,...,g and error
ratio §, to find the best possible approximation
of the basic sequence G. By the best approxi=
mation we mean a shortest string G~ containing
for each g. a substring which can be trans-
formed in at most 6lg.| steps to g.. (The re-
quirement that G~ must be shortest possible
seems the most natural condition to make the

problem non-trivial.)

In this formulation of the problem we assume no
a priori information on the locations of gels in
G although it is not difficult to use such in-
formation in the algorithms to be presented.
Moreover, our formulation simplifies the real
problem by fixing the orientation of the gels
with respect to G. Thus we require for each g.
that it is g, and not possibly the reversal of
q. that is a substring of G. This restriction
is made only to simplify the presentation.

It is most likely that the DNA sequence assem=—
bling problem cannot have a general solution
algorithm whose running time would depend only
polynomially on the total length of the gels.
This is because a related problem (see Section
4) 1s NP-complete. In addition, the internal
repeats and other internal homologies found in
actual DNA sequences suggest that the instances
of the problem arising in real sequencing proj-—
ects are not essentially simpler than the gen-
eral case. Therefore we'll describe an approx-—
imate polynomial time solution having the fol-
lowing main steps:

M 1. For each pair g. and g. of gels, compute
all possible overlaps Between g. and g..
Store all acceptable overlaps. "The redult
can be understood as a graph whose nodes
are the gels and there is one or more edges
between two gels if and only if the gels
overlap. The edges are labelled with de-
tailed description of the structure of the
corresponding overlap.

M 2. Using the graph of the step M1, compute a
global alignment of the gels. This means
that for each gel its most likely position
"below" the imagined basic sequence G is
determined.

M 3. From the alignment of step M2, compute the
corresponding approximate G. Announce un-
certain sections and gaps in the approxi-
mation.

This procedure is interactively used in a se-
quencing project as follows. After producing
the first set of gels g., steps MLl and M2 are
performed. The global alignment is shown to
the biologist who inspects the positioning and
makes the necessary corrections; this may lead
to an iteration of step M2. Finally step M3 is
performed, after which the biologist may manu-
ally edit the approximation into its final form.
If the approximation is not good enough, addi-
tional gels are determined and the process is
repeated from the step Ml. To improve effi-
ciency, it may be useful to replace some of the
old gels by the section of approximate G they
determined.

The delineated solution strategy is similar to
the procedures implemented in some recent DNA
analysis programs {2}, {15}. The detailed al-
gorithms for steps ML, M2 and M3, given in
Sections 3, 4 and 5, are our main contribution.

String Matching Problems in Molecular Genetics 61

3. FINDING OVERLAPS BETWEEN GELS

To refine step M1, let gy and &, be gels. If
they represent overlapping sectlons of G, and
assuming that the errors in gels are uniformly
distributed, g, and g, must have an approximate
overlap. Henceé there“is an alignment as shown
in fig. 3, such that g = Xy, y'z, and y
can be transformed in at most 6%y steps and y~
in at most 5|y] steps into the same substring
of G. This means that at most 2&- max(|y| [v)
steps are needed to transform y into y~ . Of
course, the symmetric case where the right end
of g, is to the left of the right end of g, can
occu¥, too. Also is possible that the whO}e gy
is an approximate substring of g., and vice
versa. In the more general case of the problem
where the relative orientation of the gels is
free, g, should also be replaced by its mirror
image (more precisely, by its so-called re-
versed complement).

gl fos X N Y

e e e

&y

y Z

Fig. 3. Alignment of two gels.

The only mathematically satisfactory algorithm
to find such an alignment can be based on a
well-known dynamic programming method for com—
puting so called evolutionary distance between
two strings. Let the possible "mutation" oper-
ations of character strings be, as already
mentioned, insertion, deletion, change and
transposition. The penalties for mutations are
given by function d. For all characters a and
b, d(a,b) 2 0 1is the penalty of changing a to
b; d(a,b) gives the penalty for inserting b,
if a=¢ (¢ denotes the empty string), and for
deleting a, if b=¢. We also require that
d(a,b)=0, if a=b. The penalty for transposi-
tion is given as d(ab,ba) 2 0 for all (non-
empty) characters a and b; for technical rea-
sons (see {10}) we define that d(ab,cd)==
whenever ab # dc and that 2d(ab,ba) 2

max(d(a,e)+d(e,a), d(b,e)+d(¢,b)). The evo-
lutionary distance between two strings is de-—
fined as the minimum total penalty of the mu-
tation steps that transform one sequence to the
other.

It is natural to select d such that the induced
evolutionary distance function is a metric.
This is true, for example, if

_ 0, if a=b
L { 1, otherwise

_ 1, if ab = dec
diabyed) = { ©, otherwise
We call this metric step-counting metric
because now the evolutionary distance simply
means the minimum number of mutation steps.

As implicitly proposed by Sellers {11}, the
alignments of g. = a,a,...a_and g, = b b «ssb
can be computed by flrst constructing an %m+1)x
(n+l) matrix f(i,j) from the recurrence

£(0,j) = £¢(i,0) = 0, for all 0<i<m, 0<j<€n 3}
£(i,7) = min[£(i-1,3j-1) + d(ai,bj) .

£i<l, §)+ day,, 8] ,

£C 1 ,5-1 + d(e,by)

f(i=-2,j-2) + d(al 1a1 bJ 1b L)]

1]

This method is a variation of the well-known
algorithm for computing the evolutionary dis-
tance as invented several times in various con-

texts {6}, {7}, {8}, {9}.

The computation of values £(i,j) determines a
directed acyclic graph with nodes (i,j) and
with an arc from (i7, j7) to (i,]) if and only
if the minimization gives f(i,j) from £(i7,77).
The subgraph that consists of directed paths
leading to (i,j) is called the history graph
for (i,j). Fig. 4 shows an example where g
GCATAT and g, = AGCAC, and the step- countlng
metric is used. The arcs in the history graph
of the element (6,4) are also given.

A G C A C
0 0 0 0 0 0
~
G 0 i | 0 1 T, 1
™
C 0 1 1 0 1 1
N AN
A 0 Q == 1 1 0 1
N N {
T 0 1 1 — 2 1 1
~N ~N 0 N\
A 0 0 — 1 == 2 2 2
NN N
T 0 1 1 —2 — 3 3

Fig. 4. A matrix f.

To find an alignment as shown in fig. 3, choose
some (i,,j.) from the last row or column of
matrix f, 1.e., i,=m or j,=n. Let some path in
the history graph of (il,Jl) start from (io,jo).
Then necessarily i =0 of j =0. The path from

]) to (i]) "describes an alignment of g
ana gz such t%at, USlng the notations of fig. %,
Y = ai +1e-+3i; and y~ = b +1...le and the
distanCe between y and y~ 18 £(i »37). TFor
example, there is in fig. 4.a path from (2,0)
to (6,4). Hence GCATAT and AGCAC can be aligned
such that ATAT and AGCA overlap. The distance
between these strings is f(6,4)=3., Each indi-
vidual path specifies a detailed alignment. So
the path given with double arcs gives the align-
ment

GCA TAT (1)
AGCA AC

When (i ,j) varies on the first row and column
and (i, varies on the last row and column,
severa a%lgnments are found. However, the
alignment has to be good enough to be a poten-—
tial overlap occurring in the correct positio-
ning of the gels. Noting in addition that for
relative small values f(ij,j1), the length of
the overlapping portions of g, and g, must be
about min(iy,j1), we obtain with the step-
counting metric that the expected upper bound
on f(i1,j1) / min(i{,j1) is 26. Fromall (i1,]7)
such that f(il,jl)/min(il,jl) €28 we select
those (i ’jl) which locally minimize
f(il,jl)}min(il,jl). Tinally choose some

62 H. Peltola et al.

start node (io,jo) from the history graph of
each selected (i1,j1) as well as some path from
(Lgs]p) to (i1,j1)3 the details of selection
are not important. Each path found in this way
gives an alignment of 8, and g, used later in
assembling the basic seqilence Gt

A straightforward implementation of this proce-
dure runs in time and space O(mn). We now
describe some improvements of implementation
that essentially decrease the time and space
requirements.

First,to choose the right end (ij,j1) of the
alignment path, only the last row and column of
the f matrix has to be known. Because a new
row can be computed from two previous rows,
only these must be stored, and hence the last
row and column can be computed in space ((m+n).

Second, if the evolutionary distance is a
metric (as we assume), one easily proves that
£(i+1,j+1) 2z £(i,j). This means that if £(i,]j)
> 26:min(m,n) for some (i,j), then an accepta-
ble alignment path cannot go through (itk,j+k)
for any k 2 0. If in the evalution of matrix
f, some £(i,j) is greater than 28-min{(m,n), no
f(i+k,j+k) need to be evaluated. Evaluation of
f(i+k,j+k) can simply be skipped and if the
evaluation of some £(i7,j”) asks for f(i+k,j+k),
we may assume f£(itk,j+k) = », This considera-
bly improves time-efficiency because only about
400+6 % of values f(i,j) need explicit evalua-
tion according to our experience.

Third, the computation of the history graph for
(i1,j1) can be made more efficient by noting
that this graph has nodes in a relatively nar-
row diagonal band of matrix f. Suppose that we
are using the step-counting metric or another
metric in which the penalty for insertion and
deletion is at least 1. Then the band has at
most 2+£(i1,j1)+1 diagonal rows with the row
(i1-k,j1-k), k 2 0, in the middle. Because
£(i1,j1) € 25'min(m,n), the band needs at most
space propotional to &-:min(m,n)<. After se-
lecting (i7,j1), only the restriction of matrix
f to this band must be recomputed to find
(ig,jo) and the corresponding alignment path;
c.f. {3,p.190}. Clearly, the computation can
be done in time and space propotional to
&emin(m,n) 2

Summarizing, the alignment procedure can be
implemented such that it decides in time 0(&nm)
,and in space O(n+m) whether there are accepta-
ble alignments between g1 and g,. In most
cases there are none and we are done. If

there are acceptable alignments, each can be
found in time and space 0(§+min(n,m)2). Our
experience shows that this procedure is reason-
ably efficient and has no ad hoc features usual
in procedures used for same purpose so far;

see {3},

The procedure finds for every pair of gels g1
and gy zero or more alignments. Each alignment
is stored for later use as a record which con-
tains the starting point of the overlapping
section and a list of locations where an inser—
tion of a blank character is to be made in
either gel to align them. For example, the
overlap in (1) is described by a record (3;3;4)
indicating that the overlap starts at third

character of the first gel, and that a blank
character is to be inserted after the third
character of the first gel and after the fourth
character of the second gel.

We describe the final output of step Ml as
graph, called the alignment graph. Such a graph
is defined as a directed multigraph with the
gels gy,...,8, as nodes and with a directed arc
between g; and g3 for each alignment found by
our procedure with given 6. An arc between gi
and g: is directed from g; to g: if and only if
the corresponding overlap starts properly to the
right of the first character of gi or the first
characters of g; and gj are aligned and 1 < j.

4. FINDING GLOBAL ALIGNMENT

To refine step M2, we must give a procedure for
finding a global arrangement of the gels such
that the approximation for G computed from the
arrangement is best possible. As already men-
tioned, by the best approximation derivable from
gels gy,...,g we mean a shortest sequence G~
which contains for each gi a substring qj whose
distance from g. in the step-counting metric is
at most &-|g;|. Unfortunately, this is an NP-
complete problem because restricted to the case
6=0, finding G~ is the so-called shortest common
superstring problem, which is known to be NP-
complete {13}. Hence a polynomial time proce—
dure for finding G~ is highly improbable, and a
reasonable approximate solution should be used.

Our solution is based on the alignment graph
found in step Ml. The graph may contain arcs
which are wrong in the sense that the corre-
sponding overlaps do not ocecur in the correct
global arrangement of the gels. The probability
of finding wrong arcs increases rapidly with 6.
To locate wrong arcs we can examine

whether the arcs are inconsistent, that is, the
corresponding overlaps cannot occur simultane-
ously in the global arrangement. Having found
an inconsistency, the preference is given to the
arc with longer overlap thus using the heuristic
argument that a longer overlap is wrong with
smaller likelihood. TFor finding a consistent
subgraph of the alignment graph we also use some
properties of directed interval graphs.

For our purposes, a directed interval graph {12}
is a directed graph whose every node gi corre-
sponds to some substring (=interval) of some
basic string, and there is a directed arc from
gi to g; if and only if strings g; and g: over-
lap suc% that the overlap starts either properly
to the right of the first character of g; or at
the first character of g; and gj and i< 3.

Such graphs have properties:

Pl. The graph is acyclic.

P2. The graph has a directed spanning tree
whose every node has at most one son
which is not a leaf.

P3. The graph satisfies the triangle
condition.

It is easy to verify Pl and P2. As regards P3,
the triangle condition is the following consis-—
tency condition (i)-(ii) between arcs and
overlaps:

9 TIA NOSVIA e

String Matching Problems in Molecular Genetics) 63

(i) Suppose that there is an arc from gi to gj
and the overlap between g; and g; starts
at the (p:;+1)th character of g;, and that
there is an arc from g; to g, and the
overlap between g; and g, starts at the
(pk+1)th character of g;. If Pk < Pj and
pk+|gk\ > Pj then the graph has an arc
from g to g; which is consistent with the
two arcs in the sense that the correspond-
ing overlap between gy and gj must start
at the (pj—pk+1)th character of gy.
Otherwise, if p; € pj and pj+|gj? > Pk
then the graph has a consistent arc from
g; to g (from g to g: if P;i=Py and k<j)
such that the overlap betweeh g; and g
must start at the (pk—pj+1)th character
of 8j-

(11) Suppose that there is an arc from g; Lo g
and from g: to gy . Then g; and g; neces-
sarily overlap and the graph has a consist-—
ent arc from g; to g; or from gy to gj-

It should be clear that if the alignment graph
contains only correct arcs then it is in fact a
directed interval graph. However, the actual
alignment graph formed by step M1 only approxi-
mates the correct graph, but it is reasonable
to assume that the approximation is relatively
good. This suggests that we can base our glo-
bal alignment procedure on finding for the
alignment graph a subgraph with properties P1-
P3. The procedure has the alignment graph as
its input and proceeds in steps Al — A4 as
follows.

A 1. To construct for the alignment graph a
directed spanning tree of the form men-—
tioned in P2, select a node (=a gel) 1,
with no entering arcs. Node r, will be

0
the root of the tree. Also set 1 := 1.

A 2, Select node rj € {rg,...,r;_q} from all
nodes to which there is an arc from rj-1
by requiring that the right end of rj is
to the right of the right end of r;_; in
the overlap corresponding to arc (ri_l,ri)
and that the overlap is longest possible.
Then (ri—l’ri) is the next arc of the tree
and r; the next node of the tree. Set
i := i+l. Repeat step A2 until no new r;
can be found.

A 3. For each ry, i=k,k-1,...,0, selected so
far do the following: 1if (ri,r) is an arc
and r is not yet in the tree, add node r
and arc (ri,r) to the tree.

A 4. Check that the tree constructed in steps
Al - A3 satisfies the triangle condition
by verifying for each pair of arcs in the
tree which satisfies the premises of the
triangle condition (in fact, only case (i)
may occur), that a good approximation of
the implied third arc is in the original
alignment graph.

This procedure can be implemented in a depth-
first traversal starting from r . We call the
tree constructed in this way an alignment tree.
The tree fixes in an obvious way a consistent
global arrangement for its nodes, It may hap-
pen that every gel is not included in the tree,
that is,the tree spans only a subgraph of the
alignment graph. Then steps Al — A4 are

repeated for the subgraph induced by the re-
maining gels. Each tree found corresponds to a
connected section of the basic sequence G.

If in step Al all nodes have entering arcs, the
construction can be started, say, from the node
with minimum number of entering arcs. In step
A4 all violations of the triangle condition are
reported to the user who should first interac-
tively remove or change the inconsistent arcs
and overlaps in the alignment graph and then
find a consistent alignment by repeating steps
Al - A4, The user must also be notified if
there are arcs in the alignment graph that join
two nodes in different trees. Such arcs indi-
cate that some tree arcs are possibly wrong and
should be removed.

Step M2 of the main procedure gives in this way
a forest of alignment trees which satisfy the
triangle condition. Since the procedure exam-—
ines each arc of the alignment graph only a
bounded number of times, the time requirement

to produce a forest is linear in the size of the
graph. Compared to the procedures proposed in
{2}, {15} for finding global arrangements of
gels, the use of interval graphs is the main
novel feature of our method.

5. COMPUTING THE FINAL APPROXIMATION

To finally refine step M3, let T be some align-
ment tree produced by step M2. Tree T gives a
unique global arrangement for its gels but the
detailed alignment of the gels is known only
pairwise, as computed in step Ml. Since more
than two gels may overlap the same region, we
must give a procedure for aligning arbitrary many
gels character by character. A many-dimensional
generalization of the alignment procedure of
Section 3 would give the best solution but it is
useless in practice because its time and space
requirements are exponential in the number of
sequences to be aligned.

Our practical solution utilizes the alignment
information associated with each arc (g;,g;) of
the alignment tree in step Ml. We call this
information the arcwise insertion lists, and
denote it by (Kij;Li;L')' An example of such
lists was given already at the end of Section 3.
To describe an additional example, let

AACAACTGGGATA and
CACTTGGATAA

&1
€

]

be gels connected by an arc. Then (K 2;Ll;LZ)
might be (3 3 7 5 2,6) indicating that the
overlap starts at the third character of g,
and that the insertion list is 7 for gy and 2,6
for gy. The encoded alignment is

gl =AACAACT GGGATA
g, = C A CTTG GATAA

From arcwise lists we compute a global insertion
list M; for each gel g; in tree T,

Initially, each M; is empty. The effect of each
arcwise list on M; can be calculated, for exam-
ple, in the same order as the arcs were origi-
nally added to the tree. What is essential is
that when processing the list for arc (g.,g.),
the list for the arc leading to g{ in T fas?

64 H. Peltola et al.

already been processed. So if an arcwise list
(KlJ,Ll,L) is the next in the order, we set
first M; = L: Moreover each s such that

s + Ky is in M but not in L; is added to M;
In addltlon, each element s' whlch is in L; %ut
not in M is added to M. Finally, if any gel
Bk inserted to the tree before gel g; overlaps
the position s' of g:. (this can be decided
because the global alignment is fixed), then
position s" which in gy overlaps position s' of
g; is added to M.

To illustrate the method, we continue the above
example. Let g3 = ACTGTGAATAACC. When B1s 8
and g3 are aligned together by first JDlnlng g7
to g as above and then g, to g, using arcwise
list (K23;L2;L3) =(13; 6,83 2), we obtain

g = AACAACT GGGA TA
= CA CTTG GA TAA
= A c TGTGAATAACG

and the global insertion lists are My = (7,11),
My = (2,6,8) and M3 = (1,2). Note that the
global alignment is achieved by inserting blank
symbols. Hence no information is lost.

Having found the final global alignment we must
still generate the implied approximation G~ for
the segment of the basic sequence G represented
by T. This is a simple voting process. Con-
sider some position s. If every gel overlap-
ping s has the same character X in s, then G~
will have X in position s. Otherwise, if X is
the character that occurs most often in s, then
G” will have X (= uncertain X) in s. If X is
not unique, notation ? is used., The above
alignment for 81> 8y and gy would yield in this
way

G"=AACAACTITG?GAATAACG

The time needed in producing G~ is clearly
linear in the total langth of the gels in tree
T. Of cource, different improvements of the
voting procedure can be imagined. However, the
final confirmation of G™ must in every case be
done interactively by the user.

6. CONCLUSION

Starting with some concepts from string match-
ing algorithms and from graph algorithms, we
developed a solution method for the DNA sequence
assembling problem. The solution has a reason-
able balance between computational efficiency
and accuracy. Also important is that we have
ayoided using ad hoc ideas by working with a
precise mathematical formulation of the problem.

Our algorithm consists of main steps Ml, M2 and
M3. The time requirement is dominated by M1,
which performs the pairwise comparison of the
gels. In fact, step Ml needs time OQ(6N%) while
steps M2 and M3 are linear in N where N = Z]gil
denotes the total length of the gels.

We have constructed a prototype FORTRAN77 im—
plementation of the algorithm running on
Burroughs B7800. To test the program we used a
data of 123 gels from a (not yet completed)
sequencing project. The total length N of the
gels was about 17500. The program produced
automatically about 5800 characters long ap-—
proximation for the DNA sequence. The quality

of the approximation was comparable to what was
obtained ealier by a more conventional program
requiring frequent user interaction. The total
CPU time for M1, M2, M3 was about 26 minutes
including about 5 seconds for step M2 and less
than 5 seconds for step M3. Thus the dominance
of Ml is very clear. It should emphasized,
however, that the time requirement of M1l de-
creases rapidly with & (for example, the time
was about 20 minutes for &=5%) and that the time
spent by Ml is also very useful: new approxima-
tions can be generated in a few seconds with
steps M2 and M3 from the information computed
by MIl.

REFERENCES

{1} T.R.Gingeras & R.J.Roberts, Steps toward
computer analysis of nucleotide sequences.
Science 209(19 Sept.1980), 1322-1328.

{2} R.Staden, Automation of the computer han-—
dling of gel reading data produced by the
shotgun method of DNA sequencing. Nucleic
Acids Research 10, 15(1982), 4731-4751.

{3} Nucleic Acids Research 10, 1(January 11,
1982). Special issue devoted to the appli-
cations of computers to research on nucleic
acids.

{4} E.A.Feigenbaum, The art of artificial in-
telligence: I. Themes and case studies of
knowledge engineering. Proc. Fifth Int.
Joint Conf. Artificial Intelligence (1977),
1014-1029.

{5} P.Friedland, L.Kedes, D.Brutlag, Y.Iwasaki,
R.Bach, GENESIS, a knowledge-based genetic
engineering simulation system for represen-
tation of genetic data and experiment plan-—
ning. Nucleic Acids Research 10(1982),
323-340.

{6} V.I.Levenshtein, Binary codes capable of
correcting deletions, insertions, and rever—
sals. Sov. Phys. Dokl. 10(1966), 707-710.

{7} R.Wagner & M.Fisher, The string-to-string
correction problem.J.ACM 21(1974), 168-178,

{8} S.B.Needleman & C.D.Wunsch, A general meth-
od applicable to the search for similari-
ties in the amino acid sequence of two
proteins. J. Mol. Biol. 48(1970), 443-453.

{9} D.Sankoff, Matching sequences under dele-
tion/insertion constraints. Proc. Nat.
Acad. Seci. 69(1972), 4-6.

{10} R.Lowrance & R.Wagner, An extension to the
string-to-string correction problem. J.ACM
22(1975), 177-183.

{11} P.H.Sellers, The theory and computation of
evolutionary distances:Pattern recognition.
Journal of Algorithms 1(1980), 359-373.

{12} M.C.Columbic, Algorithmic Graph Theory and
Perfect Graphs. Academic Press, 1980.

{13} M.R.Garey & D.S.Johnson, Computers and
Intractability. Freeman, 1979.

{14} M.Stefik & al., The organization of expert
systems, a tutorial. Artificial Intelligence
18(1982), 135-173.

{15} G.Osterburg, K.H.Glatting, J.Buchert, J.
Wolters, A fast method for arranging DNA
sequence fragments. Manuscript, German
Cancer Research Center, 1982.

