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The Basic Ideas

Use SDEs as prior models for the
system dynamics.
We measure the state of the SDE
though a measurement model.
We aim to determine the conditional
distribution of the trajectory taken by
the SDE given the measurements.
Because the trajectory is an
infinite-dimensional random
variable, we do not want to form the
full posterior distribution.
Instead, we target to time-marginals
of the posterior – this is the idea of
stochastic filtering theory.
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Types of state-estimation problems

Continuous-time:
The dynamics are modeled as
continuous-time processes (SDEs).
The measurements are modeled as
continuous-time processes (SDEs).

Continuous/discrete-time:
The dynamics are modeled as
continuous-time processes (SDEs).
The measurements are modeled as
discrete-time processes.

Discrete-time:
The dynamics are modeled as
discrete-time processes.
The measurements are modeled as
discrete-time processes.
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Example: State Space Model for a Car [1/2]

The dynamics of the car in 2d
(x1, x2) are given by Newton’s law:

F(t) = m a(t),

where a(t) is the acceleration, m is
the mass of the car, and F(t) is a
vector of (unknown) forces.

Let’s model F(t)/m as a 2-dimensional white noise process:

d2x1/ dt2 = w1(t)

d2x2/ dt2 = w2(t).
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Example: State Space Model for a Car [2/2]

If we define x3(t) = dx1/ dt , x4(t) = dx2/ dt , then the model can be
written as a first order system of differential equations:

d
dt


x1
x2
x3
x4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x1
x2
x3
x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

(
w1
w2

)
.

In shorter matrix form:

dx
dt

= F x + L w.

More rigorously:
dx = F x dt + L dβ.

Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 7 / 45



Continuous-Time Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured and the
measurements are corrupted by
white noise e1(t),e2(t):

y1(t) = x1(t) + e1(t)
y2(t) = x2(t) + e2(t).

The measurement model can be now written as

y(t) = H x(t) + e(t), with H =

(
1 0 0 0
0 1 0 0

)
Or more rigorously as an SDE

dz = H x dt + dη.
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General Continuous-Time State-Space Models [1/2]

The resulting model is of the form

dx = F x dt + L dβ

dz = H x dt + dη.

This is a special case of a continuous-time model:

dx = f(x, t) dt + L(x, t) dβ

dz = h(x, t) dt + dη.

The first equation defines dynamics of the system state and the
second relates measurements to the state.
Given that we have observed z(t) (or y(t)), what can we say (in
statistical sense) about the hidden process x(t)?
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General Continuous-Time State-Space Models [2/2]

Bayesian way: what is the posterior distribution of x(t) given the
noisy measurements y(τ) on τ ∈ [0,T ]?
This Bayesian solution is surpricingly old, as it dates back to work
of Stratonovich around 1950s.
The aim is usually to compute the filtering (posterior) distribution

p(x(t) | {y(τ) : 0 ≤ τ ≤ t}).

We are also often interested in the smoothing distributions

p(x(t∗) | {y(τ) : 0 ≤ τ ≤ T}) t∗ ∈ [0,T ].

Note that we could also attempt to compute the “full” posterior

p({x(t∗) : 0 ≤ t∗ ≤ T} | {y(τ) : 0 ≤ τ ≤ T}).

The full posterior is not usually feasible nor sensible – we will
return to this later.
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Discrete-Time Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured at discrete time
instants t1, t2, . . . , tn:

y1,k = x1(tk ) + e1,k

y2,k = x2(tk ) + e2,k ,

(e1,k ,e2,k ) ∼ N(0,R) are Gaussian.

The measurement model can be now written as

yk = H x(tk ) + ek , H =

(
1 0 0 0
0 1 0 0

)
Or in probabilistic notation as

p(yk |x(tk )) = N(yk |H x(tk ),R).
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General Continuous/Discrete-Time State-Space
Models

The dynamic and measurement models now have the form:

dx = F x dt + L dβ

yk = H x(tk ) + rk ,

Special case of continuous/discrete-time models of the form

dx = f(x, t) dt + L(x, t) dβ

yk ∼ p(yk |x(tk )).

We are typically interested in the filtering and smoothing
(posterior) distributions

p(x(tk ) | y1, . . . ,yk ),

p(x(t∗) | y1, . . . ,yT ), t∗ ∈ [0, tT ].

In principle, the full posterior can also be considered – but we will
concetrate on the above.
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General Discrete-Time State-Space Models [1/2]

Recall that the solution to the SDE dx = F x dt + L dβ is

x(t) = exp(F (t − t0))x(t0) +
∫ t

t0
exp(F (t − τ))L dβ(τ).

If we set t ← tk and t0 ← tk−1 we get

x(tk ) = exp(F (tk − tk−1))x(tk−1) +

∫ tk

tk−1

exp(F (t − τ))L dβ(τ).

Thus this is of the form

x(tk ) = Ak−1 x(tk−1) + qk−1

where
Ak−1 = exp(F (tk − tk−1)) is a given (deterministic) matrix and
qk−1 is zero-mean Gaussian random variable with covariance
Qk−1 =

∫ tk
tk−1

exp(F (t − τ))L Q LT exp(F (t − τ))T dτ .
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General Discrete-Time State-Space Models [2/2]

Thus we can write the linear state-space model (e.g. the car)
equivalently in form such as

x(tk ) = Ak−1 x(tk−1) + qk−1

yk = H x(tk ) + rk

This is a special case of discrete-time models of the form

x(tk ) ∼ p(x(tk ) |x(tk−1))

yk ∼ p(yk |x(tk )).

Generally p(x(tk ) |x(tk−1)) is the transition density of the SDE
(The Green’s function of Fokker–Planck–Kolmogorov)
We are typically interested in the filtering/smoothing distributions

p(x(tk ) | y1, . . . ,yk ),

p(x(ti) | y1, . . . ,yT ), i = 1,2, . . . ,T .

Sometimes we can also do the full posterior. . .
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Why Not The Full Posterior?

Consider a discrete-time state-space model:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).

Due to Markovianity, the joint prior is now given as

p(x0:T ) = p(x0)
T∏

k=1

p(xk | xk−1).

Due to conditional independence of measurements, the joint
likelihood is given as

p(y1:T | x0:T ) =
T∏

k=1

p(yk | xk ).
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Why Not The Full Posterior? (cont.)

We can now use Bayes’ rule to compute the full posterior

p(x0:T | y1:T ) =
p(y1:T | x0:T )p(x0:T )

p(y1:T )

=

∏T
k=1 p(yk | xk )p(xk | xk−1)p(x0)∫ ∏T

k=1 p(yk | xk )p(xk | xk−1)p(x0) dx0:T

This is very high dimensional (with SDEs infinite) and hence
inefficient to work with – this is why filtering theory was invented.
We aim to fully utilize the Markovian structure of the model to
efficiently compute the following partial posteriors:

Filtering distributions

p(xk | y1:k ), k = 1, . . . ,T .

Smoothing distributions

p(xk | y1:T ), k = 1, . . . ,T .

Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 17 / 45



Bayesian Optimal Filter: Principle

Assume that we have been given:
1 Prior distribution p(x0).
2 State space model:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ),

3 Measurement sequence y1:k = y1, . . . ,yk .
We usually have xk , x(tk ) for some times t1, t2, . . ..
Bayesian optimal filter computes the distribution

p(xk |y1:k )

Computation is based on recursion rule for incorporation of the
new measurement yk into the posterior:

p(xk−1 |y1:k−1) −→ p(xk |y1:k )
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Bayesian Optimal Filter: Derivation of Prediction Step

Assume that we know the posterior distribution of previous time
step:

p(xk−1 |y1:k−1).

The joint distribution of xk , xk−1 given y1:k−1 can be computed as
(recall the Markov property):

p(xk ,xk−1 |y1:k−1) = p(xk |xk−1,y1:k−1)p(xk−1 |y1:k−1)

= p(xk |xk−1)p(xk−1 |y1:k−1),

Integrating over xk−1 gives the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫
p(xk |xk−1)p(xk−1 |y1:k−1) dxk−1.

This is the prediction step of the optimal filter.
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Bayesian Optimal Filter: Derivation of Update Step

Now we have:
1 Prior distribution from the Chapman-Kolmogorov equation

p(xk |y1:k−1)

2 Measurement likelihood from the state space model:

p(yk |xk )

The posterior distribution can be computed by the Bayes’ rule
(recall the conditional independence of measurements):

p(xk |y1:k ) =
1
Zk

p(yk |xk ,y1:k−1)p(xk |y1:k−1)

=
1
Zk

p(yk |xk )p(xk |y1:k−1)

This is the update step of the optimal filter.
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Bayesian Optimal Filter: Formal Equations

Optimal filter
Initialization: The recursion starts from the prior distribution p(x0).
Prediction: by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫
p(xk |xk−1)p(xk−1 |y1:k−1) dxk−1.

Update: by the Bayes’ rule

p(xk |y1:k ) =
1
Zk

p(yk |xk )p(xk |y1:k−1).

The normalization constant Zk = p(yk |y1:k−1) is given as

Zk =

∫
p(yk |xk )p(xk |y1:k−1) dxk .
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Bayesian Optimal Filter: Graphical Explanation

On prediction step the
distribution of previous
step is propagated
through the dynamics.

Prior distribution from
prediction and the
likelihood of
measurement.

The posterior distribution
after combining the prior
and likelihood by Bayes’
rule.
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Filtering Algorithms

Kalman filter is the classical optimal filter for linear-Gaussian
models.
Extended Kalman filter (EKF) is linearization based extension of
Kalman filter to non-linear models.
Unscented Kalman filter (UKF) is sigma-point transformation
based extension of Kalman filter.
Gauss-Hermite and Cubature Kalman filters (GHKF/CKF) are
numerical integration based extensions of Kalman filter.
Particle filter forms a Monte Carlo representation (particle set) to
the distribution of the state estimate.
Grid based filters approximate the probability distributions on a
finite grid.
Mixture Gaussian approximations are used, for example, in
multiple model Kalman filters and Rao-Blackwellized Particle
filters.
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Kalman Filter: Model

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

qk−1 ∼ N(0,Qk−1) white process noise.
rk ∼ N(0,Rk ) white measurement noise.
Ak−1 is the transition matrix of the dynamic model.
Hk is the measurement model matrix.
In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).
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Kalman Filter: Equations

Kalman Filter
Initialization: x0 ∼ N(m0,P0)

Prediction step:

m−
k = Ak−1 mk−1

P−
k = Ak−1 Pk−1 AT

k−1 + Qk−1.

Update step:

vk = yk − Hk m−
k

Sk = Hk P−
k HT

k + Rk

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk vk

Pk = P−
k − Kk Sk KT

k .
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Problem Formulation

Probabilistic state space model:

measurement model: yk ∼ p(yk |xk )

dynamic model: xk ∼ p(xk |xk−1)

Assume that the filtering distributions p(xk |y1:k ) have already
been computed for all k = 0, . . . ,T .
We want recursive equations of computing the smoothing
distribution for all k < T :

p(xk |y1:T ).

The recursion will go backwards in time, because on the last step,
the filtering and smoothing distributions coincide:

p(xT |y1:T ).
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Derivation of Formal Smoothing Equations [1/2]

The key: due to the Markov properties of state we have:

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k )

Thus we get:

p(xk |xk+1,y1:T ) = p(xk |xk+1,y1:k )

=
p(xk ,xk+1 |y1:k )

p(xk+1 |y1:k )

=
p(xk+1 |xk ,y1:k )p(xk |y1:k )

p(xk+1 |y1:k )

=
p(xk+1 |xk )p(xk |y1:k )

p(xk+1 |y1:k )
.

Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 28 / 45



Derivation of Formal Smoothing Equations [2/2]

Assuming that the smoothing distribution of the next step
p(xk+1 |y1:T ) is available, we get

p(xk ,xk+1 |y1:T ) = p(xk |xk+1,y1:T )p(xk+1 |y1:T )

= p(xk |xk+1,y1:k )p(xk+1 |y1:T )

=
p(xk+1 |xk )p(xk |y1:k )p(xk+1 |y1:T )

p(xk+1 |y1:k )

Integrating over xk+1 gives

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk )p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1
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Bayesian Optimal Smoothing Equations

Bayesian Optimal Smoothing Equations
The Bayesian optimal smoothing equations consist of prediction step
and backward update step:

p(xk+1 |y1:k ) =

∫
p(xk+1 |xk )p(xk |y1:k ) dxk

p(xk |y1:T ) = p(xk |y1:k )

∫ [
p(xk+1 |xk )p(xk+1 |y1:T )

p(xk+1 |y1:k )

]
dxk+1

The recursion is started from the filtering (and smoothing) distribution
of the last time step p(xT |y1:T ).
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Smoothing Algorithms

Rauch-Tung-Striebel (RTS) smoother is the closed form smoother
for linear Gaussian models.
Extended, statistically linearized and unscented RTS smoothers
are the approximate nonlinear smoothers corresponding to EKF,
SLF and UKF.
Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others
Particle smoothing is based on approximating the smoothing
solutions via Monte Carlo.
Rao-Blackwellized particle smoother is a combination of particle
smoothing and RTS smoothing.
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Linear-Gaussian Smoothing Problem

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

Kalman filter can be used for computing all the Gaussian filtering
distributions:

p(xk |y1:k ) = N(xk |mk ,Pk ).

Rauch–Tung–Striebel smoother then computes the corresponding
smoothing distributions

p(xk |y1:T ) = N(xk |ms
k ,P

s
k ).
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother
Backward recursion equations for the smoothed means ms

k and
covariances Ps

k :

m−
k+1 = Ak mk

P−
k+1 = Ak Pk AT

k + Qk

Gk = Pk AT
k [P

−
k+1]

−1

ms
k = mk + Gk [ms

k+1 −m−
k+1]

Ps
k = Pk + Gk [Ps

k+1 − P−
k+1]G

T
k ,

mk and Pk are the mean and covariance from Kalman filter.
The recursion is started from the last time step T , with ms

T = mT
and Ps

T = PT .
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Continuous/Discrete-Time Bayesian Filtering and
Smoothing: Method A

Consider a continuous-discrete state-space model

dx = f(x, t) dt + L(x, t) dβ

yk ∼ p(yk |x(tk )).

We can always convert this into an equivalent discrete-time model

x(tk ) ∼ p(x(tk ) |x(tk−1))

yk ∼ p(yk |x(tk )).

by solving the transition density p(x(tk ) |x(tk−1)).
Then we can simply use the discrete-time filtering and smoothing
algorithms.
With linear SDEs we can discretize exactly; with non-linear SDEs
we can use e.g. Itô-Taylor expansions.
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Continuous/Discrete-Time Bayesian Filtering and
Smoothing: Method B

Another way is to replace the discrete-time prediction step

p(xk |y1:k−1) =

∫
p(xk |xk−1)p(xk−1 |y1:k−1) dxk−1.

with its continuous-time counterpart.
Generally, we get the Fokker-Planck equation

∂p(x, t)
∂t

= −
∑

i

∂

∂xi
[fi(x , t)p(x, t)]

+
1
2

∑
ij

∂2

∂xi ∂xj

{
[L(x, t)Q LT(x, t)]ij p(x, t)

}
.

with the initial condition p(x, tk−1) , p(xk−1 |y1:k−1).
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Continuous/Discrete-Time Bayesian Filtering and
Smoothing: Method B (cont.)

Continuous-Discrete Bayesian Optimal filter
1 Prediction step: Solve the Fokker-Planck-Kolmogorov PDE

∂p
∂t

= −
∑

i

∂

∂xi
(fi p) +

1
2

∑
ij

∂2

∂xi∂xj

(
[L Q LT]ij p

)
2 Update step: Apply the Bayes’ rule.

p(x(tk ) |y1:k ) =
p(yk |x(tk ))p(x(tk ) |y1:k−1)∫

p(yk |x(tk ))p(x(tk ) |y1:k−1) dx(tk )

In linear models we can use the mean and covariance equations.
Approximate mean/covariance equations are used in EKF/UKF/. . .
The smoother consists of partial/ordinary differential equations.
Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 37 / 45



Continuous-Time Stochastic Filtering Theory [3/3]

Continuous-time state-space model

dx = f(x, t) dt + L(x, t) dβ

dz = h(x, t) dt + dη.

To ease notation, let’s define a linear operator A ∗:

A ∗(•) = −
∑

i

∂

∂xi
[fi(x , t) (•)]

+
1
2

∑
ij

∂2

∂xi ∂xj
{[L(x, t)Q LT(x, t)]ij (•)}.

The Fokker–Planck–Kolmogorov equation can then be written
compactly as

∂p
∂t

= A ∗p.
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Kushner–Stratonovich equation

By taking the continuous-time limit of the discrete-time Bayesian
filtering equations we get the following:

Kushner–Stratonovich equation
The stochastic partial differential equation for the filtering density
p(x, t | Yt) , p(x(t) | Yt) is

dp(x, t | Yt) = A ∗ p(x, t | Yt) dt

+ (h(x, t)− E[h(x, t) | Yt ])
T R−1(dz− E[h(x, t) | Yt ] dt)p(x, t | Yt),

where dp(x, t | Yt) = p(x, t + dt | Yt+dt)− p(x, t | Yt) and

E[h(x, t) | Yt ] =

∫
h(x, t)p(x, t | Yt) dx.
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Zakai equation

We can get rid of the non-linearity by using an unnormalized equation:

Zakai equation

Let q(x, t | Yt) , q(x(t) | Yt) be the solution to Zakai’s stochastic
partial differential equation

dq(x, t | Yt) = A ∗ q(x, t | Yt) dt + hT(x, t)R−1 dz q(x, t | Yt),

where dq(x, t | Yt) = q(x, t + dt | Yt+dt)− q(x, t | Yt). Then we have

p(x(t) |Yt) =
q(x(t) |Yt)∫

q(x(t) |Yt) dx(t)
.
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Kalman–Bucy filter

The Kalman–Bucy filter is the exact solution to the linear Gaussian
filtering problem

dx = F(t)x dt + L(t) dβ

dz = H(t)x dt + dη.

Kalman–Bucy filter
The Bayesian filter, which computes the posterior distribution
p(x(t) |Yt) = N(x(t) |m(t),P(t)) for the above system is

K(t) = P(t)HT(t)R−1

dm(t) = F(t)m(t) dt + K(t) [dz(t)− H(t)m(t) dt ]
dP(t)

dt
= F(t)P(t) + P(t)FT(t) + L(t)Q LT(t)− K(t)R KT(t).
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Related Topics

We can also estimate parameters θ in SDEs/state-spate models:

dx = f(x, t ;θ) dt + L(x, t ;θ) dβ

The filtering theory provides the means to compute the required
marginal likelihoods and parameter posteriors.
It is also possible estimate f(x, t) non-parametrically, that is, using
Gaussian process (GP) regression.
Model selection, Bayesian model averaging, and other advanced
concepts can also be combined with state-space inference.
Stochastic control theory is related to optimal control design for
SDE models.
GP-regression can also be sometimes converted to inference on
SDE models.
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Summary

We can use SDEs to model dynamics in Bayesian models.
Dynamic (state-) estimation problems can be divided into
continuous-time, continuous/discrete-time, and discrete-time
problems – the continuous models are SDEs.
The full posterior of state trajectory is usually intractable –
therefore we compute filtering and smoothing distributions:

p(x(tk ) | y1, . . . ,yk ),

p(x(t∗) | y1, . . . ,yT ), t∗ ∈ [0, tT ].

The Bayesian filtering and smoothing equations also often need to
be approximated.
Methods: Kalman filters, extended Kalman filters (EKF/UKF/. . . ),
particle filters – and the related smoothers.
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